WO2021149173A1 - Optical coherence tomography apparatus and method for controlling same - Google Patents

Optical coherence tomography apparatus and method for controlling same Download PDF

Info

Publication number
WO2021149173A1
WO2021149173A1 PCT/JP2020/002056 JP2020002056W WO2021149173A1 WO 2021149173 A1 WO2021149173 A1 WO 2021149173A1 JP 2020002056 W JP2020002056 W JP 2020002056W WO 2021149173 A1 WO2021149173 A1 WO 2021149173A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
region
measurement light
scan
Prior art date
Application number
PCT/JP2020/002056
Other languages
French (fr)
Japanese (ja)
Inventor
洋紀 矢澤
久美子 西村
勇輝 照井
秀太朗 大西
朝陽 福田
俊 亀井
中山 繁
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2020/002056 priority Critical patent/WO2021149173A1/en
Priority to JP2021572177A priority patent/JP7327521B2/en
Publication of WO2021149173A1 publication Critical patent/WO2021149173A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an optical coherence tomography and an optical coherence tomography.
  • a branch portion that branches the laser light emitted from the light source into a measurement light and a reference light, a scanning unit that scans the measurement light toward a predetermined region of the object, and reflection from the predetermined region of the object.
  • An interference unit that generates interference light between light and the reference light, a detection unit that detects the interference light and outputs a detection signal, and the predetermined area in order to acquire a tomographic image of a predetermined area of the object.
  • 6 is a timing chart showing the relationship between wavelength sweeping and scanning of measurement light when acquiring a B-Scan image according to the fifth embodiment. 6 is a timing chart showing the relationship between wavelength sweeping and scanning of measurement light when acquiring a B-Scan image of the sixth embodiment.
  • FIG. 1 shows a schematic configuration of the ophthalmic apparatus 110.
  • the ophthalmic apparatus 110 is an example of the "optical coherence tomography" of the technique of the present disclosure.
  • OCT optical coherence tomography
  • the horizontal direction is the "X direction” and the direction perpendicular to the horizontal plane is the "Y direction", connecting the center of the pupil of the anterior segment of the eye 12 to the center of the eyeball.
  • the direction is "Z direction”. Therefore, the X, Y, and Z directions are perpendicular to each other.
  • the ophthalmic apparatus 110 includes a control device 16, an OCT unit 20, and an imaging optical system 19.
  • the OCT unit 20 and the photographing optical system 19 are controlled by the control device 16.
  • a tomographic image or frontal image (en-face image) of the retina created based on the OCT data acquired by the OCT unit 20 is referred to as an OCT image.
  • the control device 16 includes a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D. ing.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read-Only memory
  • I / O input / output
  • the control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D.
  • the input / display device 16E has a graphic user interface for displaying an image of the eye 12 to be inspected and receiving various instructions from the user.
  • the graphic user interface includes a touch panel display.
  • control device 16 includes an image processing device 17 connected to the I / O port 16D.
  • the image processing device 17 generates an image of the eye to be inspected 12.
  • the image processing device 17 is an example of the “tomographic image generation unit” of the technique of the present disclosure.
  • the control device 16 of the ophthalmic device 110 includes the input / display device 16E, but the technique of the present disclosure is not limited to this.
  • the control device 16 of the ophthalmic apparatus 110 may not include the input / display device 16E, but may include an input / display device that is physically independent of the ophthalmic apparatus 110.
  • the display device includes an image processing processor unit that operates under the control of the CPU 16A of the control device 16.
  • the image processing processor unit may display a tomographic image or the like based on the image signal output instructed by the CPU 16A.
  • the OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimating lens 20E, and a second optical coupler 20F.
  • the light source 20A of the OCT unit 20 emits wavelength sweep type light (laser light) under the control of the CPU 16A. More specifically, as the light source 20A, a tunable light source (wavelength scanning light source) that changes the emission wavelength at high speed in time is used.
  • the light source 20A is composed of, for example, a laser medium, a resonator, and a wavelength selection filter. Examples of the wavelength selection filter include a combination of a diffraction grating and a polygon mirror, and a filter using Fabry-Perot Etalon. Further, as the light source 20A, a VCSEL type tunable light source may be used as the light source 20A.
  • the CPU 16A controls the diffraction grating and the polygon mirror so that light having a desired wavelength (measurement light described later) is emitted at a desired time.
  • the photographing optical system 19 includes a KTN scanner 23, a reflection mirror 25, and a relay optical system 30.
  • the KTN scanner 23 has a property that the refractive index can be freely changed by applying a voltage of a KTN crystal (an oxide crystal composed of potassium (K), tantalum (Ta), and niobium (Nb)) (space charge control electro-optical effect). It is a high-speed and compact optical scanner with no moving parts.
  • the scanning time of the measurement light of the KTN scanner 23 is the same as the sweep time Tswept of the wavelength of the light source 20A.
  • the CPU 16A synchronizes the wavelength sweep of the light source 20A and the scanning of the measurement light of the KTN scanner 23.
  • the CPU 16A has the light source 20A and the KTN scanner 23 so that the start timing and end timing of the wavelength sweep of the light source 20A and the start timing and end timing of scanning the measurement light by the KTN scanner 23 are the same. To control.
  • the relay optical system 30 is composed of a plurality of lenses. Further, the relay optical system 30 is configured so that the position of the KTN scanner 23 and the position of the pupil are conjugated.
  • the light emitted from the light source 20A is branched by the first optical coupler 20C.
  • One of the branched lights is made into parallel light by the collimating lens 20E as measurement light, and then is incident on the photographing optical system 19.
  • the measurement light is scanned by the KTN scanner 23 in a predetermined direction (for example, the Y direction).
  • the scanning light is applied to the fundus through the relay optical system 30 and the pupil.
  • the measurement light reflected by the fundus is incident on the OCT unit 20 via the relay optical system 30 and the KTN scanner 23, and is incident on the second optical coupler 20F via the collimating lens 20E and the first optical coupler 20C. do.
  • the other light emitted from the light source 20A and branched by the first optical coupler 20C is incident on the reference optical system 20D as reference light, and is incident on the second optical coupler 20F via the reference optical system 20D. do.
  • the image processing device 17 operating under the control of the CPU 16A generates an OCT image such as a tomographic image of the fundus (retina) or an en-face image based on the OCT data detected by the sensor 20B. It is also possible to generate an OCT image such as a tomographic image or an en-face image of the anterior segment of the eye by reflecting the measurement light not only on the fundus but also on the anterior segment of the cornea or the crystalline lens.
  • the first optical coupler 20C, the KTN scanner 23, the second optical coupler 20F, and the sensor (detection element) 20B are the "branch portion”, “scanning portion”, “interference portion”, and “interference portion” of the techniques of the present disclosure, respectively. This is an example of a “detector”.
  • FIG. 2A shows the relationship between wavelength sweeping and scanning of measurement light in the prior art.
  • a straight line region is designated as a region for acquiring a tomographic image of the fundus.
  • A-Scan image a one-dimensional tomographic image
  • B-Scan image a two-dimensional tomographic image
  • FIG. 2B shows the relationship between the wavelength sweep and the scanning of the measurement light in the first embodiment.
  • the measurement light in the scanning direction F is scanned a plurality of times (S1, S2, ... SM) for the range RI for acquiring the tomographic image as follows.
  • the wavelength of the measurement light irradiated to each region (for example, a point) of the range RI is different in each scan (S1, S2, ... SM).
  • Tscan the time required to scan the range RI for acquiring a tomographic image once
  • Tswept the time required for wavelength sweeping.
  • the scanning of the measurement light is repeated while shifting the wavelength sweep timing.
  • the measurement light is scanned M (M and m are integers, M> m> 1) times in the range RI for acquiring the tomographic image, and the irradiation start wavelength ⁇ m in the mth scan is set to ⁇ m.
  • ⁇ 1 is the wavelength at which the scanning start region RS in the range RI for acquiring the tomographic image in the first scanning is irradiated.
  • ⁇ 2- ⁇ 1 ⁇ / M
  • ⁇ 2 ⁇ 1 + ⁇ / M
  • ⁇ 3- ⁇ 2 ⁇ / M
  • ⁇ 3 ⁇ 1 + 2 ⁇ ⁇ / M
  • ... ⁇ N- ⁇ N-1 ⁇ / M
  • ⁇ N ⁇ 1 + (M-1) ⁇ ⁇ / M Is.
  • the wavelength of the measurement light applied to the range RI is ⁇ 1. , ⁇ 2, ... ⁇ N.
  • the wavelength of the measurement light applied to the range RI is ⁇ 1. , ⁇ 2, ... ⁇ N.
  • the wavelength of the measurement light applied to the range RI is from ⁇ 2 to ⁇ N as the measurement light is scanned from the start region RS to the end region RE of the scan in the range RI.
  • the wavelength can be swept from ⁇ 3 by the time the scanning start region RS of the third scanning S3 is scanned.
  • the light source 20A is controlled.
  • the range RI for acquiring the tomographic image is performed a plurality of (M) times, and the detection signal for generating the final tomographic image G110 can be acquired. ..
  • the range RI for acquiring tomographic images is an example of a "predetermined area" of the technique of the present disclosure.
  • the scanning performed while shifting the wavelength sweep timing of the measurement light will be described in detail with reference to FIG.
  • a linear scan is performed on the range in which the tomographic image is acquired in the retina. That is, the measurement light is applied to the predetermined line segment section RI, which is the range for acquiring the tomographic image.
  • the scanning performed for acquiring the B-Scan data for the line segment section RI has been performed once in the past, but in the first embodiment, it is performed a plurality of (M) times (2000 times in FIG. 3).
  • the light source 20A and the KTN scanner 23 are controlled so that the measurement light from the light source 20A is scanned for the line segment section RI while the wavelength is swept from the wavelength ⁇ 1 to the wavelength ⁇ 2000. .. Specifically, first, the first region R1 of the line segment section RI is irradiated with the measurement light having the wavelength ⁇ 1. As the KTN scanner 23 is driven, the measurement light moves in the line segment section RI in the B-Scan scanning direction. For example, the region R2 adjacent to the region R1 is irradiated with the measurement light having the wavelength ⁇ 2. In this way, in the line segment section RI, when the measurement light is scanned from left to right on the paper surface of FIG. 2, the wavelength of the measurement light changes from ⁇ 1 to ⁇ N (for example, ⁇ 2000). Therefore, each region (for example, a point) of the line segment section RI is irradiated with measurement light having a different wavelength.
  • the light source 20A and the KTN scanner 23 are controlled so that the measurement light having the wavelength ⁇ 2 is irradiated to the first region R1 of the line segment section RI.
  • the wavelength of the measurement light is swept up to the region R1999 immediately before the last region R2000, as in the first scan.
  • the measurement light of the wavelength ⁇ 3 is irradiated to the region R2 adjacent to the region R1
  • the measurement light of the wavelength ⁇ 4 is the region next to the region R2.
  • R3 is irradiated, and the region R1999 is irradiated with measurement light having a wavelength of ⁇ 2000.
  • the final region R2000 is irradiated with the measurement light having the wavelength R1.
  • the first region R1 in the line segment section RI is irradiated with light of all wavelengths from ⁇ 1 to ⁇ 2000 by 2000 scans.
  • the measurement light to the region R1 is divided into 2000 times and irradiated, and the total energy amount of the light continuously irradiated to the region R1 is the case of the scanning method of FIG. 2A of the prior art.
  • the scanning start region is continuously irradiated with the measurement light in the range of ⁇ 1 to ⁇ N ( ⁇ 2000) for the wavelength sweep time.
  • the amount of energy of the light continuously irradiated to the region R1 is larger than that of the first embodiment.
  • the time during which the measurement light is continuously irradiated to each region (for example, a point) in the line segment section RI, which is the range for acquiring the tomographic image, is shown in FIG. 2B by the scanning method of FIG. 2A of the conventional technique.
  • the scanning method of the first embodiment is shorter.
  • IEC6025-1 (2014 version), which is one of the world standards, is adopted as a laser safety standard for the eyes.
  • MPE Maximum Permissible Exposure
  • C4 and C6 are constants, and t is the total irradiation time of the laser irradiated per retina.
  • the MPE derived here is a value on the cornea of the eye.
  • MPE is proportional to t to the 0.75th power. That is, when the sweep speed of the wavelength sweep light source is increased and the irradiation time per retina is shortened, the laser power cannot be increased proportionally. That is, a simple speedup results in a reduction in the SNR (SN ratio: signal-to-noise ratio) of the OCT image at the same time.
  • MPE is proportional to the 0.75th power of t, it is possible to increase the permissible incident laser power in the scanning of the measurement light of the first embodiment. Therefore, the SNR can be improved.
  • FIG. 4 shows the principle that the SNR is improved by scanning the measurement light in the first embodiment.
  • the vertical axis represents the intensity of the laser beam and the horizontal axis represents the time of irradiation, and in order to maintain safety, the irradiation time of irradiating a certain area (for example, a point) with the laser light and the irradiation of the area. It is a figure which showed the relationship with the intensity of the laser light.
  • the irradiation time for continuously irradiating each region of the range in which the tomographic image is acquired with the laser light becomes long.
  • the laser intensity needs to be low (see rectangular area I in FIG. 4).
  • the wavelength sweep speed increases, so that the irradiation time of continuously irradiating each region of the tomographic image acquisition range with the laser beam is 100 kHz. It will be shorter than. Therefore, the intensity of the laser beam for maintaining safety can be increased as compared with the case of 100 kHz (see the rectangular region II in FIG. 4).
  • the scanning of the measurement light of the first embodiment for example, when the wavelength sweep speed is 200 kHz
  • the time for continuously irradiating the laser light is increased. It can be shortened and the intensity of the laser beam per unit time can be increased (see rectangular region III in FIG. 4).
  • the SNR becomes high.
  • the time it is irradiated per retina is the same as the scanning of the measurement light of the conventional technique.
  • Relative SNR [(Allowable incident laser power / 100 kHz allowable incident laser power) x (Irradiation time per retina / 100 kHz irradiation time)] 0.5 ... (2)
  • the ophthalmic apparatus of the second embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the second embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
  • FIG. 5 shows a schematic configuration of the ophthalmic apparatus 110 of the second embodiment.
  • the polygon mirror 24 is used instead of the KTN scanner 23 and the reflection mirror 25 of the photographing optical system 19 of the ophthalmic apparatus 110 of the first embodiment.
  • the ophthalmologic apparatus 110 scans the area R1, the area R2, ... the area R100 ... the area RN obtained by dividing the range RI for acquiring the tomographic image of the retina, and obtains the A-Scan data of the range RI.
  • FIG. 6 shows the relationship between the wavelength sweep of the second embodiment and the scanning of the measurement light.
  • FIG. 7 shows the relationship between the wavelength sweep and the drive timing of the polygon mirror 24.
  • a tomographic image is acquired by using a polygon mirror 24 in which the wavelength sweep time Tswept and the time Tscan required for one scan are controlled so as to be different.
  • a method of shifting the wavelength of irradiation at each point in the range to be used is used.
  • the light source 20A starts wavelength sweeping ( ⁇ 1 to ⁇ 2000) every time a drive signal from the CPU 16A is input in a cycle of 200 KHz.
  • the drive signal output from the CPU 16A to the polygon mirror 24 changes from ⁇ d to d, the polygon mirror 24 rotates by a predetermined angle corresponding to one scan.
  • the wavelength sweep from ⁇ 1 to ⁇ 2000 is repeated, for example, four times, and the angle of one reflecting surface of the polygon mirror 24 on which the measurement light is incident changes with respect to the eye to be inspected.
  • the measurement light is scanned once for the range RI for which a tomographic image is acquired.
  • the CPU 16A changes the drive signal output to the polygon mirror 24 from d to ⁇ d, and the measurement is performed by the next reflecting surface of the polygon mirror 24. Allows scanning of light.
  • the CPU 16A requires a predetermined time T0 (for example, sweeping 20 wavelengths) from the time when the first scanning of the measurement light is completed at the timing of outputting the drive signal to the light source 20A.
  • the time that is, the time required for sweeping the wavelength widths of ⁇ 1 to ⁇ 20 and ⁇ 21 to ⁇ 40) is delayed, and the wavelength sweep is repeated four times. Therefore, the irradiation start timing at the time of the second scanning is when a predetermined time T0 has elapsed from the time when the first scanning is completed.
  • the CPU 16A changes the drive signal output to the polygon mirror 24 from d to ⁇ d in the same manner as described above.
  • the CPU 16A delays the timing of outputting the drive signal to the light source 20A by a predetermined time T0 from the time when the fourth wavelength sweep for the second scan S2 is completed. This timing is when 2 ⁇ T0 has elapsed from the end of the second scanning of the measurement light (that is, when the drive signal from the CPU 16A to the polygon mirror 24 becomes d). 2 ⁇ T0 is the time required to sweep 40 wavelengths.
  • the measurement light is scanned M (M>m> 1, an integer) times for the range RI for acquiring the tomographic image, and the m-th irradiation start timing Tm is from the time when the m-1th scan is completed.
  • the CPU 16A controls at least one of the light source 20A and the polygon mirror 24 so that the time has passed. As a result, the final B-Scan image is generated.
  • the measurement light is scanned M times for the range RI for acquiring the tomographic image, and the area R1 for acquiring the tomographic image is divided into the divided regions R1 and R2 .
  • A-Scan data can be obtained for each region of the region R100 ... region RN (PN).
  • PN region RN
  • a predetermined number of wavelength ranges for example, a wavelength range from ⁇ 1 to ⁇ 20 are swept in one scan.
  • the measurement light is irradiated.
  • the first region R1 in the first scan S1 is irradiated with the swept measurement light from ⁇ 1 to ⁇ 20.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 21 to ⁇ 40.
  • the 100th region R100 is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000, as shown in the frame f200 also shown on the left side of FIG.
  • the wavelength of the light source 20A is swept from ⁇ 1 to ⁇ 2000, it returns to ⁇ 1 and is swept again. Since the wavelength sweep ( ⁇ 1 to ⁇ 2000) of the light source 20A is repeated, the measurement light swept from ⁇ 1 to ⁇ 20 is applied to the 101st region R101.
  • the irradiation of the measurement term by such wavelength sweep is repeated until the last region RN in the range in which the tomographic image is acquired.
  • Tscan ⁇ ⁇ ⁇ Tswept ( ⁇ is an integer of 2 or more) Is.
  • the number of wavelengths swept between ⁇ 1 and ⁇ 20 is 20.
  • the time for sweeping and the start timing of wavelength sweep are delayed by 20 wavelengths.
  • each region R1 to RN of the retina is irradiated with measurement light whose wavelength has been swept by 20 wavelengths. Therefore, in the second scan of the measurement light, the measurement light is not applied to the first region R1 in the range in which the tomographic image is acquired.
  • the measurement light is emitted from the second region R2. Specifically, the second region R2 is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the third region R3 is irradiated with the measurement light swept from ⁇ 21 to ⁇ 40.
  • the 100th region R100 is irradiated with the measurement light swept from ⁇ 1961 to ⁇ 1980. It is repeated until the last region RN in the range where the tomographic image is acquired.
  • the last region RN is irradiated with the measurement light swept from ⁇ 1961 to ⁇ 1980.
  • the timing at which the measurement light swept from ⁇ 1981 to ⁇ 2000, which is the range A of the next sweep (the rectangular area shaded in FIG. 6), is irradiated is the tomographic image in the third scan of the measurement light. This is the timing at which the measurement light is applied to the first region R1 in the acquisition range.
  • the first region R1 in the range in which the tomographic image is acquired is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000 as described above.
  • the start timing of the wavelength sweep is delayed by 20 wavelengths. Therefore, in the third scan of the measurement light, the measurement light is not irradiated to the second region R2 in the range in which the tomographic image is acquired.
  • the third region R3 is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the last region RN in the range for acquiring the tomographic image is irradiated with the measurement light swept from ⁇ 1941 to ⁇ 1960.
  • the timing at which the measurement light swept from ⁇ 1961 to ⁇ 1980, which is the next sweep range B (rectangular range not shaded in FIG. 6), is irradiated is the fault in the fourth scan S4 of the measurement light. This is the timing at which the measurement light is applied to the first region R1 in the range in which the image is acquired. Further, the timing at which the measurement light swept from ⁇ 1981 to ⁇ 2000, which is the next sweep range A, is irradiated is measured in the second region R2 in the range for acquiring the tomographic image in the fourth scan S4 of the measurement light. It is the timing when the light is irradiated.
  • the area R1 to R99 in the range for acquiring the tomographic image is 20 of any of ⁇ 1 to ⁇ 2000 in the wavelength range from ⁇ 1 to ⁇ 2000.
  • the measurement light in the wavelength range is not irradiated.
  • the region R1 is irradiated with the measurement light in the range of ⁇ 1 to ⁇ 20 and the range of ⁇ 41 to ⁇ 2000, but is not irradiated with the measurement light in the range of ⁇ 21 to ⁇ 40. This is because, as described above, in the second scan, the start timing of the wavelength sweep is delayed by 20 wavelengths.
  • the measurement light having a wavelength of ⁇ 1 to ⁇ 2000 is irradiated by scanning 100 times.
  • ⁇ 1981 to ⁇ 2000 were swept by the first scan
  • ⁇ 1 to ⁇ 20 were swept in the 100th scan.
  • the measurement light is irradiated. That is, since all wavelengths between ⁇ 1 and ⁇ 2000 are not irradiated from region R1 to region R99, A-SCAN data is not created, and all wavelengths between ⁇ 1 and ⁇ 2000 are irradiated from region R100 to region.
  • A-scan data is generated by RN.
  • the A-Scan data of the region R100 is constructed from the detection signal of the interference light between the return light of the measurement light irradiated to the region R100 and the reference light. Since the detection signal in the region R100 is the first scan, the second scan, ... the 100th scan, and the data obtained discretely rather than continuously in time (lower side of FIG. 6). (Refer to the wavelength range in the rectangle surrounded by R100), the detection signal of each scan is stored in the memory. Then, by extracting the detection signal of the timing at each scanning time in which the area R100 is scanned from the memory, the detection signal necessary for constructing the A-Scan data of the area R100 can be obtained.
  • the timing at which the area R100 is scanned in the mth scan in the M times is assumed to be zero (start time) when the start time of each scan (the time when the area R1 is scanned) is set to zero (start time).
  • (Mm) x Tswept / M it can be expressed.
  • the detection signal necessary for constructing the A-Scan data in the region R100 is specified.
  • a plurality of A-scan data in the region R100 to the region RN are generated, and a tomographic image which is B-scan data is generated. ..
  • the method of constructing A-Scan data will be specifically described with reference to FIG.
  • the sensor 20B for example, focusing on the detection signal corresponding to the 100th region R100, ⁇ 1981 to ⁇ 2000, ⁇ 1961 to ⁇ 1980, ...
  • the detection signals H1, H2, ... H100 corresponding to the measurement light swept from .. ⁇ 1 to ⁇ 20 are cut out.
  • the cut-out detection signals are aligned (H100, ... H2, H1) along the wavelength axis. This aligned detection signal corresponds to an interference spectrum signal.
  • the image processing apparatus 17 constructs A-Scan data by performing a fast Fourier transform on the interference spectrum signal.
  • the image processing device 17 performs the above processing for each point to construct A-Scan data.
  • the range for acquiring the tomographic image may be scanned not only linearly but also rectangularly or circularly.
  • OCT volume data can be obtained by scanning a rectangle or a circle, and stereoscopic image data of the retina can be obtained.
  • Total number of scans (number of sweep wavelengths) / (timing shift amount per scan)
  • Total measurement speed (1 / scanner speed)
  • x total number of scans
  • Number of data samples (total number of scans) x (wavelength sweep speed / scanner speed)
  • the polygon mirror 24 assumes a hexahedral rotating six-sided mirror at a rotation speed of 100 kRPM (scanning angle 120-deg, scanning speed equivalent to 10 kHz).
  • the scanning angle is 120-deg, which corresponds to about 33.5 mm in the range of the retina.
  • the relative SNR is about 1.54 times when calculated according to the derivation formulas (1) and (2).
  • the measurement light is scanned while repeating the wavelength sweep ( ⁇ 1 to ⁇ 2000) of the light source 20A, and the start timing of the wavelength sweep is shifted in the second and subsequent scans.
  • the techniques of the present disclosure are not limited to this.
  • the first region R1 of each scan after the second measurement light is irradiated with the measurement light of ⁇ 1981 to ⁇ 2000, which is the last 20 wavelengths in the previous scan. This is realized by the CPU 16A adjusting the wavelength sweep of the light source 20A.
  • the first region R1 in the range in which the tomographic image is acquired is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 21 to ⁇ 40.
  • the third region R3 is irradiated with the measurement light swept from ⁇ 41 to ⁇ 60.
  • the 100th region R100 is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000.
  • the first region R1 is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the third region R3 is irradiated with the measurement light swept from ⁇ 21 to ⁇ 40.
  • the 100th region R100 is irradiated with the measurement light swept from ⁇ 1961 to ⁇ 1980.
  • the first region R1 is irradiated with the measurement light swept from ⁇ 1961 to ⁇ 1980.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000.
  • the third region R3 is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the 100th region R100 is irradiated with the measurement light swept from ⁇ 1941 to ⁇ 1960.
  • each region R1 to R100 is irradiated with all the sweep wavelengths ( ⁇ 1 to ⁇ 2000) divided in time into 100 times. Then, A-Scan data is generated and tomographic image data can be generated by the same method as in FIG.
  • the ophthalmic apparatus of the third embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the third embodiment is the same as the configuration of the ophthalmic apparatus of the second embodiment (see FIG. 5), the description thereof will be omitted.
  • FIG. 10 shows the relationship between the wavelength sweep and the drive timing of the polygon mirror 24.
  • the third embodiment is also a method of shifting the wavelength to be irradiated to each region in the range in which the tomographic image is acquired by using the polygon mirror 24 in which the wavelength sweep time and the time required for one scanning are different.
  • the light source 20A is a light source having a wavelength sweep argument of 2000 and a wavelength sweep frequency of 200 kHz.
  • the rotation frequency of the polygon mirror 24 is 198 kHz.
  • the wavelength irradiated to each region in the range in which the tomographic image is acquired shifts by 20 wavelengths in each scanning cycle. This is repeated for each scan 100 times.
  • the start timing of the drive signal of the polygon mirror 24 and the start timing of the wavelength sweep of the light source 20A coincide with each other.
  • the time for one scan is the time obtained by adding the time for four wavelength sweeps of the light source 20A and the time for wavelength sweeps for 20 wavelengths (for convenience of explanation, one wavelength ⁇ 1 is used.
  • the wavelength ⁇ 2 is similarly counted as one.
  • the wavelengths ⁇ 1 to ⁇ 20 are 20 wavelengths). Therefore, the first region R in the range for acquiring the tomographic image is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the region immediately before the end is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 2000.
  • the last region is irradiated with the measurement light swept from ⁇ 1 to ⁇ 20.
  • the measurement light swept from ⁇ 21 to ⁇ 40 is irradiated to the first region in the range in which the tomographic image is acquired.
  • the last region is irradiated with the measurement light swept from ⁇ 21 to ⁇ 40.
  • the third embodiment is different from the second embodiment in the wavelength shifting method, and the irradiation time on the retina does not change. Therefore, the relative SNR of the third embodiment is also about 1.54 times.
  • the ophthalmic apparatus of the fourth embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the fourth embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
  • FIG. 11 shows a schematic configuration of the photographing optical system 19T of the ophthalmic apparatus 110 of the fourth embodiment.
  • the image is received from the KTN scanner 23 side.
  • a first relay optical system 30A and a second relay optical system 30B are provided on the optometry side.
  • the first relay optical system 30A and the second relay optical system 30B are each composed of a plurality of lenses.
  • the position of the KTN scanner 23 is conjugated by the first relay optical system 30A and the intermediate position between the first relay optical system 30A and the second relay optical system 30B, and the second relay optical system 30B causes the position of the KTN scanner 23 to be conjugated.
  • the intermediate position and the position of the eye to be inspected are conjugate.
  • the scanning angle of the KTN scanner 23 is a predetermined angle (for example, 10-deg (10 degrees)).
  • the scanning angle of the measurement light is expanded by the first relay optical system 30A.
  • the first relay optical system 30A has a magnification (horizontal magnification) of, for example, (1/7) times.
  • the scanning angle can be increased 7 times (70-deg (70 degrees)).
  • the ophthalmic apparatus of the fifth embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the fifth embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
  • FIG. 12 shows a schematic configuration of the photographing optical system 19U of the ophthalmic apparatus 110 according to the fifth embodiment.
  • the scanning mirror is replaced with the reflection mirror 25 and the relay optical system 30 of the photographing optical system 19 of the ophthalmic apparatus 110 of the first embodiment. It includes 25C and a relay optical system 30C.
  • the scanning mirror 25C moves the region scanned by the measurement light each time the measurement light is scanned by the KTN scanner 23. With the relay lens 30C, the position of the KTN scanner 23 and the position of the eye to be inspected are conjugated.
  • the scannable range in the first embodiment is expanded by a method different from that in the fourth embodiment. That is, in the fifth embodiment, the angle of view that can be scanned is widened by the combination of the KTN scanner 23 and the scanning mirror 25C. Therefore, the fundus region of the eye to be inspected in FIG. 12 can be photographed with a wider angle of view than in the first to fourth embodiments. This means that it is possible to acquire a tomographic image of a wider fundus region (a region including not only the central part of the fundus but also the peripheral part of the fundus).
  • FIG. 13 shows the relationship between the wavelength sweep and the scanning of the measurement light when acquiring the tomographic image data (B-Scan data) by scanning the wide angle of view according to the fifth embodiment. There is.
  • a tomographic image of the first region Rc (see FIG. 12), which is the central part of the fundus, is acquired.
  • the measurement light in which ⁇ 1 to ⁇ 10 is swept in the first region R1 in the first region Rc within the range for acquiring the tomographic image. Is irradiated.
  • the region R2 adjacent to the first region R1 is irradiated with the measurement light swept from ⁇ 11 to ⁇ 20.
  • the last region R200 of the first region Rc is irradiated with the measurement light swept from ⁇ 1991 to ⁇ 2000.
  • the first region R1 in the first region Rc within the range for acquiring the tomographic image was swept from ⁇ 11 to ⁇ 20.
  • Light is emitted.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 21 to ⁇ 30.
  • the last region RN point of the first region Rc is irradiated with the measurement light swept from ⁇ 1 to ⁇ 10.
  • the first region R1 in the first region Rc within the range to acquire the tomographic image was swept from ⁇ 1991 to ⁇ 2000. Light is emitted.
  • the second region R2 is irradiated with the measurement light swept from ⁇ 1 to ⁇ 10.
  • the last region RN of the first region Rc is irradiated with the measurement light swept from ⁇ 1981 to ⁇ 1990.
  • the central tomographic image data of the region Rc can be obtained.
  • the scanning mirror 25C moves the scanning region to the first peripheral region Rp1 adjacent to the region Rc on the upper side.
  • the first peripheral tomographic image data of the adjacent region Rp1 is acquired in the same manner as the multiple scans of the region Rc shown in FIG.
  • the second peripheral tomographic image data of the second peripheral region Rp2 adjacent to the lower side of the region Rc is acquired.
  • the first to fourth embodiments are performed. It is possible to generate tomographic image data of a wide range of RL.
  • the tomographic image is acquired by dividing into three regions of the central region Rc, the first peripheral region Rp1, and the second peripheral region Rp2.
  • the tomographic image may be acquired by dividing it into an arbitrary number of regions.
  • the ophthalmic apparatus of the sixth embodiment will be described with reference to the drawings.
  • any configuration from the first embodiment to the fifth embodiment can be adopted.
  • FIG. 14 shows the relationship between the wavelength sweep and the scanning of the measurement light when acquiring the tomographic image data.
  • the wavelength is fixed in each scan.
  • the wavelength is swept, for example, one wavelength, and scanning is performed again at that wavelength. This is repeated to generate the final tomographic image data. It differs from the first embodiment to the fifth embodiment in that the wavelength of the measurement light is fixed during one scan and the wavelength is swept during the entire plurality of scans.
  • the required wavelength sweep speed can be slowed down.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided is an optical coherence tomography apparatus comprising: a wavelength-sweeping type light source for emitting laser light, the light source capable of wavelength-sweeping the wavelength of the emitted laser light over a sweeping range Δλ = λN - λ1 from a wavelength λ1 to a wavelength λN; a branching unit for branching the laser light emitted from the light source into measurement light and reference light; a scanning unit for directing the measurement light toward a predetermined region of an object to scan the same; an interference unit for generating interference light of reflection light from the predetermined region of the object and the reference light; a detection unit for detecting the interference light and outputting a detection signal; and a controlling unit for controlling the light source and the scanning unit such that the scanning unit scans the predetermined region M times and an irradiation initiation wavelength λm in the m-th scan satisfies λm = λ1 + (m - 1) × Δλ / M, where M and m are integers of M > m> 1, so as to obtain a tomographic image of the predetermined region of the object.

Description

光干渉断層計及び光干渉断層計の制御方法Control method of optical coherence tomography and optical coherence tomography
 本発明は、光干渉断層計及び光干渉断層計に関する。 The present invention relates to an optical coherence tomography and an optical coherence tomography.
 国際公開第2010/123892号公報には、波長掃引光源を用いて断層画像を取得する光干渉断層計が開示されている。 International Publication No. 2010/123892 discloses an optical coherence tomography that acquires tomographic images using a wavelength sweep light source.
 本開示の技術の光干渉断層計は、レーザー光を発すると共に、発するレーザー光の波長を、波長λ1から波長λNまでの掃引幅Δλ=λN-λ1で波長掃引が可能な波長掃引型の光源と、前記光源から発せられたレーザー光を、測定光と参照光とに分岐させる分岐部と、前記測定光を、物体の所定領域に向けて走査する走査部と、前記物体の所定領域からの反射光と、前記参照光との干渉光を発生させる干渉部と、前記干渉光を検出し検出信号を出力する検出部と、前記物体の所定領域の断層画像を取得するために、前記所定領域をM(M及びmは整数であり、M>m>1)回走査し、m回目の走査での照射開始波長λmを、λm=λ1+(m-1)×Δλ/Mとなるように、前記光源及び前記走査部を制御する制御部と、を備える。 The optical interference tomometer of the technique of the present disclosure is a wavelength sweep type light source that emits laser light and can sweep the wavelength of the emitted laser light with a sweep width Δλ = λN−λ1 from wavelength λ1 to wavelength λN. , A branch portion that branches the laser light emitted from the light source into a measurement light and a reference light, a scanning unit that scans the measurement light toward a predetermined region of the object, and reflection from the predetermined region of the object. An interference unit that generates interference light between light and the reference light, a detection unit that detects the interference light and outputs a detection signal, and the predetermined area in order to acquire a tomographic image of a predetermined area of the object. M (M and m are integers, M> m> 1) scans, and the irradiation start wavelength λm in the mth scan is set to λm = λ1 + (m-1) × Δλ / M. It includes a light source and a control unit that controls the scanning unit.
眼科装置110の概略構成を示す図である。It is a figure which shows the schematic structure of the ophthalmic apparatus 110. 従来の技術における波長掃引と測定光の走査との関係を示す図である。It is a figure which shows the relationship between the wavelength sweep and the scanning of the measurement light in the prior art. 第1の実施の形態における波長掃引と測定光の走査との関係を示す図である。It is a figure which shows the relationship between the wavelength sweep and the scanning of the measurement light in the 1st Embodiment. 第1の実施の形態における波長掃引と測定光の走査との関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the wavelength sweep and the scanning of the measurement light in 1st Embodiment. 第1の実施の形態における測定光の走査によってSNRが向上する原理を示す図である。It is a figure which shows the principle that SNR is improved by scanning of the measurement light in 1st Embodiment. 第2の実施の形態の眼科装置110の概略構成を示す図である。It is a figure which shows the schematic structure of the ophthalmic apparatus 110 of the 2nd Embodiment. 第2の実施の形態の波長掃引と測定光の走査との関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the wavelength sweep and the scanning of the measurement light of the 2nd Embodiment. 波長掃引とポリゴンミラー24の駆動タイミングとの関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the wavelength sweep and the drive timing of a polygon mirror 24. A-Scanデータの構築方法を示す図である。It is a figure which shows the construction method of A-Scan data. 第2の実施の形態の変形例における波長掃引と測定光の走査との関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the wavelength sweep and the scanning of the measurement light in the modification of the 2nd Embodiment. 第3の実施の形態の波長掃引とポリゴンミラー24の駆動タイミングとの関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the wavelength sweep of 3rd Embodiment, and the drive timing of a polygon mirror 24. 第4の実施の形態の眼科装置110の撮影光学系19Tの概略構成を示す図である。It is a figure which shows the schematic structure of the photographing optical system 19T of the ophthalmic apparatus 110 of 4th Embodiment. 第5の実施の形態の眼科装置110の撮影光学系19Uの概略構成を示す図である。It is a figure which shows the schematic structure of the photographing optical system 19U of the ophthalmic apparatus 110 of the 5th Embodiment. 第5の実施の形態のあるB-Scan像を取得する際の、波長掃引と測定光の走査との関係を示すタイミングチャートである。6 is a timing chart showing the relationship between wavelength sweeping and scanning of measurement light when acquiring a B-Scan image according to the fifth embodiment. 第6の実施の形態のB-Scan像を取得する際の、波長掃引と測定光の走査との関係を示すタイミングチャートである。6 is a timing chart showing the relationship between wavelength sweeping and scanning of measurement light when acquiring a B-Scan image of the sixth embodiment.
 以下、図面を参照して本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施の形態]
 以下、本発明の第1の実施形態に係る眼科装置について図面を参照して説明する。
 図1には、眼科装置110の概略構成が示されている。
 眼科装置110は、本開示の技術の「光干渉断層計」の一例である。
[First Embodiment]
Hereinafter, the ophthalmic apparatus according to the first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of the ophthalmic apparatus 110.
The ophthalmic apparatus 110 is an example of the "optical coherence tomography" of the technique of the present disclosure.
 説明の便宜上、光干渉断層計(Optical Coherence Tomography)を「OCT」と称する。 For convenience of explanation, the optical coherence tomography is referred to as "OCT".
 なお、眼科装置110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部の瞳孔の中心と眼球の中心とを結ぶ方向を「Z方向」とする。従って、X方向、Y方向、およびZ方向は互いに垂直である。 When the ophthalmic apparatus 110 is installed on a horizontal plane, the horizontal direction is the "X direction" and the direction perpendicular to the horizontal plane is the "Y direction", connecting the center of the pupil of the anterior segment of the eye 12 to the center of the eyeball. The direction is "Z direction". Therefore, the X, Y, and Z directions are perpendicular to each other.
 眼科装置110は、制御装置16、OCTユニット20、および撮影光学系19を含む。OCTユニット20、および撮影光学系19は、制御装置16により制御される。OCTユニット20により取得されたOCTデータに基づいて作成された網膜の断層画像や正面画像(en-face画像)などをOCT画像と称する。 The ophthalmic apparatus 110 includes a control device 16, an OCT unit 20, and an imaging optical system 19. The OCT unit 20 and the photographing optical system 19 are controlled by the control device 16. A tomographic image or frontal image (en-face image) of the retina created based on the OCT data acquired by the OCT unit 20 is referred to as an OCT image.
 制御装置16は、CPU(Central Processing Unit(中央処理装置))16A、RAM(Random Access Memory)16B、ROM(Read-Only memory)16C、および入出力(I/O)ポート16Dを有するコンピュータを備えている。 The control device 16 includes a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D. ing.
 制御装置16は、I/Oポート16Dを介してCPU16Aに接続された入力/表示装置16Eを備えている。入力/表示装置16Eは、被検眼12の画像を表示したり、ユーザから各種指示を受け付けたりするグラフィックユーザインターフェースを有する。グラフィックユーザインターフェースとしては、タッチパネル・ディスプレイが挙げられる。 The control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D. The input / display device 16E has a graphic user interface for displaying an image of the eye 12 to be inspected and receiving various instructions from the user. The graphic user interface includes a touch panel display.
 また、制御装置16は、I/Oポート16Dに接続された画像処理装置17を備えている。画像処理装置17は、被検眼12の画像を生成する。
 画像処理装置17は、本開示の技術の「断層画像生成部」の一例である。
Further, the control device 16 includes an image processing device 17 connected to the I / O port 16D. The image processing device 17 generates an image of the eye to be inspected 12.
The image processing device 17 is an example of the “tomographic image generation unit” of the technique of the present disclosure.
 上記のように、図1では、眼科装置110の制御装置16が入力/表示装置16Eを備えているが、本開示の技術はこれに限定されない。例えば、眼科装置110の制御装置16は入力/表示装置16Eを備えず、眼科装置110とは物理的に独立した別個の入力/表示装置を備えるようにしてもよい。この場合、当該表示装置は、制御装置16のCPU16Aの制御下で動作する画像処理プロセッサユニットを備える。画像処理プロセッサユニットが、CPU16Aが出力指示した画像信号に基づいて、断層画像等を表示するようにしてもよい。 As described above, in FIG. 1, the control device 16 of the ophthalmic device 110 includes the input / display device 16E, but the technique of the present disclosure is not limited to this. For example, the control device 16 of the ophthalmic apparatus 110 may not include the input / display device 16E, but may include an input / display device that is physically independent of the ophthalmic apparatus 110. In this case, the display device includes an image processing processor unit that operates under the control of the CPU 16A of the control device 16. The image processing processor unit may display a tomographic image or the like based on the image signal output instructed by the CPU 16A.
 OCTユニット20は、光源20A、センサ(検出素子)20B、第1の光カプラ20C、参照光学系20D、コリメートレンズ20E、および第2の光カプラ20Fを含む。 The OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimating lens 20E, and a second optical coupler 20F.
 OCTユニット20の光源20Aは、CPU16Aの制御下で、波長掃引型の光(レーザー光)を射出する。より詳細には、光源20Aとして、出射波長を時間的に高速で変化させる波長可変光源(波長走査型光源)が用いられる。光源20Aは、例えば、レーザー媒体、共振器、及び波長選択フィルタによって構成される。そして、波長選択フィルタとして、例えば、回折格子とポリゴンミラーの組み合わせ、ファブリー・ペローエタロンを用いたフィルタが挙げられる。また、光源20Aとして、VCSEL式波長可変光源が用いられてもよい。第1の実施の形態では、CPU16Aは、所望の時間に所望の波長の光(後述する測定光)が射出されるように、回折格子とポリゴンミラーを制御する。これにより、光源20Aは、波長λ1から波長λNまでの掃引幅Δλ=λN-λ1及び掃引時間Tsweptで波長を掃引する。 The light source 20A of the OCT unit 20 emits wavelength sweep type light (laser light) under the control of the CPU 16A. More specifically, as the light source 20A, a tunable light source (wavelength scanning light source) that changes the emission wavelength at high speed in time is used. The light source 20A is composed of, for example, a laser medium, a resonator, and a wavelength selection filter. Examples of the wavelength selection filter include a combination of a diffraction grating and a polygon mirror, and a filter using Fabry-Perot Etalon. Further, as the light source 20A, a VCSEL type tunable light source may be used. In the first embodiment, the CPU 16A controls the diffraction grating and the polygon mirror so that light having a desired wavelength (measurement light described later) is emitted at a desired time. As a result, the light source 20A sweeps the wavelength with the sweep width Δλ = λN−λ1 from the wavelength λ1 to the wavelength λN and the sweep time Tswept.
 撮影光学系19は、KTNスキャナ23と、反射ミラー25、リレー光学系30を含む。 The photographing optical system 19 includes a KTN scanner 23, a reflection mirror 25, and a relay optical system 30.
 KTNスキャナ23は、KTN結晶(カリウム(K)、タンタル(Ta)、ニオブ(Nb)から成る酸化物結晶)の電圧を加えると屈折率を自在に変えられるという性質(空間電荷制御電気光学効果)を利用した、可動部の無い高速かつ小型の光スキャナである。KTNスキャナ23の測定光の走査時間は、光源20Aの波長の掃引時間Tsweptと同じである。第1の実施の形態では、CPU16Aは、光源20Aの波長掃引とKTNスキャナ23の測定光の走査とを同動させる。CPU16Aは、光源20Aの波長掃引の開始のタイミング及び終了のタイミングのそれぞれとKTNスキャナ23による測定光の走査の開始タイミング及び終了のタイミングのそれぞれとが同じになるように、光源20A及びKTNスキャナ23を制御する。 The KTN scanner 23 has a property that the refractive index can be freely changed by applying a voltage of a KTN crystal (an oxide crystal composed of potassium (K), tantalum (Ta), and niobium (Nb)) (space charge control electro-optical effect). It is a high-speed and compact optical scanner with no moving parts. The scanning time of the measurement light of the KTN scanner 23 is the same as the sweep time Tswept of the wavelength of the light source 20A. In the first embodiment, the CPU 16A synchronizes the wavelength sweep of the light source 20A and the scanning of the measurement light of the KTN scanner 23. The CPU 16A has the light source 20A and the KTN scanner 23 so that the start timing and end timing of the wavelength sweep of the light source 20A and the start timing and end timing of scanning the measurement light by the KTN scanner 23 are the same. To control.
 リレー光学系30は、複数のレンズにより構成されている。また、KTNスキャナ23の位置と瞳孔位置とが共役となるようにリレー光学系30が構成されている。 The relay optical system 30 is composed of a plurality of lenses. Further, the relay optical system 30 is configured so that the position of the KTN scanner 23 and the position of the pupil are conjugated.
 光源20Aから射出された光は、第1の光カプラ20Cで分岐される。分岐された一方の光は、測定光として、コリメートレンズ20Eで平行光にされた後、撮影光学系19に入射される。測定光は、KTNスキャナ23によって所定方向(例えば、Y方向)に走査される。走査光はリレー光学系30及び瞳孔を経由して、眼底に照射される。眼底により反射された測定光は、リレー光学系30及びKTNスキャナ23を経由してOCTユニット20へ入射され、コリメートレンズ20Eおよび第1の光カプラ20Cを介して、第2の光カプラ20Fに入射する。 The light emitted from the light source 20A is branched by the first optical coupler 20C. One of the branched lights is made into parallel light by the collimating lens 20E as measurement light, and then is incident on the photographing optical system 19. The measurement light is scanned by the KTN scanner 23 in a predetermined direction (for example, the Y direction). The scanning light is applied to the fundus through the relay optical system 30 and the pupil. The measurement light reflected by the fundus is incident on the OCT unit 20 via the relay optical system 30 and the KTN scanner 23, and is incident on the second optical coupler 20F via the collimating lens 20E and the first optical coupler 20C. do.
 光源20Aから射出され、第1の光カプラ20Cで分岐された他方の光は、参照光として、参照光学系20Dへ入射され、参照光学系20Dを経由して、第2の光カプラ20Fに入射する。 The other light emitted from the light source 20A and branched by the first optical coupler 20C is incident on the reference optical system 20D as reference light, and is incident on the second optical coupler 20F via the reference optical system 20D. do.
 第2の光カプラ20Fに入射されたこれらの光、即ち、眼底で反射された測定光と、参照光とは、第2の光カプラ20Fで干渉されて干渉光を生成する。干渉光はセンサ20Bで受光される。CPU16Aの制御下で動作する画像処理装置17は、センサ20Bで検出されたOCTデータに基づいて眼底(網膜)の断層画像やen-face画像などのOCT画像を生成する。また、眼底だけでなく、角膜や水晶体などの前眼部で測定光が反射するようにして、前眼部の断層画像やen-face画像などのOCT画像を生成することも可能である。
 第1の光カプラ20C、KTNスキャナ23、第2の光カプラ20F、及びセンサ(検出素子)20Bはそれぞれ、本開示の技術の「分岐部」、「走査部」、「干渉部」、及び「検出部」の一例である。
These lights incident on the second optical coupler 20F, that is, the measurement light reflected by the fundus and the reference light are interfered with by the second optical coupler 20F to generate interference light. The interference light is received by the sensor 20B. The image processing device 17 operating under the control of the CPU 16A generates an OCT image such as a tomographic image of the fundus (retina) or an en-face image based on the OCT data detected by the sensor 20B. It is also possible to generate an OCT image such as a tomographic image or an en-face image of the anterior segment of the eye by reflecting the measurement light not only on the fundus but also on the anterior segment of the cornea or the crystalline lens.
The first optical coupler 20C, the KTN scanner 23, the second optical coupler 20F, and the sensor (detection element) 20B are the "branch portion", "scanning portion", "interference portion", and "interference portion" of the techniques of the present disclosure, respectively. This is an example of a "detector".
 次に、図2Aと、図2B及び図3とを参照して、波長掃引と測定光の走査との関係を説明する。 Next, the relationship between the wavelength sweep and the scanning of the measurement light will be described with reference to FIG. 2A and FIGS. 2B and 3.
 図2Aには、従来の技術における波長掃引と測定光の走査との関係が示されている。眼底の断層画像を取得する領域として直線の領域が指定された場合を説明する。図2Aに示すように、従来の技術における測定光の走査では、網膜1点において光源の波長掃引を行い、干渉光を検出し、1次元の断層画像(A-Scan像)を取得し、次の測定点に測定光を走査する。これを繰り返して、2次元の断層画像(B-Scan像)G1を構築する。このように測定光が、波長λ1~λNまで波長掃引されながら、網膜1点に照射される。従って、網膜1点に測定光が照射されている時間は、詳細には後述する第1の実施の形態の対応する時間より長い。 FIG. 2A shows the relationship between wavelength sweeping and scanning of measurement light in the prior art. A case where a straight line region is designated as a region for acquiring a tomographic image of the fundus will be described. As shown in FIG. 2A, in the scanning of the measurement light in the conventional technique, the wavelength of the light source is swept at one point on the retina, the interference light is detected, and a one-dimensional tomographic image (A-Scan image) is acquired. The measurement light is scanned at the measurement point of. This is repeated to construct a two-dimensional tomographic image (B-Scan image) G1. In this way, the measurement light irradiates one point on the retina while sweeping the wavelengths from λ1 to λN. Therefore, the time during which the measurement light is irradiated to one point of the retina is longer than the corresponding time in the first embodiment described in detail later.
 図2Bには、第1の実施の形態における波長掃引と測定光の走査との関係が示されている。図2Bに示すように、第1の実施の形態では、以下のように、断層画像を取得する範囲RIについて、走査方向Fの測定光の走査が複数回(S1,S2,...SM)行われると共に、各走査(S1,S2,...SM)で、当該範囲RIの各領域(例えば、点)に照射される測定光の波長が異なる。 FIG. 2B shows the relationship between the wavelength sweep and the scanning of the measurement light in the first embodiment. As shown in FIG. 2B, in the first embodiment, the measurement light in the scanning direction F is scanned a plurality of times (S1, S2, ... SM) for the range RI for acquiring the tomographic image as follows. At the same time, the wavelength of the measurement light irradiated to each region (for example, a point) of the range RI is different in each scan (S1, S2, ... SM).
 まず、断層画像を取得する範囲RIを1回走査するために必要な時間をTscan、波長掃引にかかる時間をTsweptとすると、
 Tscan=Tswept
である。
First, let Tscan be the time required to scan the range RI for acquiring a tomographic image once, and Tswept be the time required for wavelength sweeping.
Tscan = Tswept
Is.
 そして、波長掃引タイミングをシフトさせながら測定光の走査を繰り返す。具体的には、断層画像を取得する範囲RIにおいて測定光を、M(M及びmは整数であり、M>m>1)回走査し、m回目の走査での照射開始波長λmを、λm=λ1+(m-1)×Δλ/Mとなるように、CPU16Aは、光源20A及びKTNスキャナ23を制御する。なお、λ1は、1回目の走査での断層画像を取得する範囲RIにおける走査開始領域RSに照射される波長である。 Then, the scanning of the measurement light is repeated while shifting the wavelength sweep timing. Specifically, the measurement light is scanned M (M and m are integers, M> m> 1) times in the range RI for acquiring the tomographic image, and the irradiation start wavelength λm in the mth scan is set to λm. The CPU 16A controls the light source 20A and the KTN scanner 23 so that = λ1 + (m-1) × Δλ / M. Note that λ1 is the wavelength at which the scanning start region RS in the range RI for acquiring the tomographic image in the first scanning is irradiated.
 具体的には、
λ2-λ1=Δλ/M、λ2=λ1+Δλ/M、
λ3-λ2=Δλ/M、λ3=λ1+2×Δλ/M、
...
λN-λN-1=Δλ/M、λN=λ1+(M-1)×Δλ/M
である。
In particular,
λ2-λ1 = Δλ / M, λ2 = λ1 + Δλ / M,
λ3-λ2 = Δλ / M, λ3 = λ1 + 2 × Δλ / M,
...
λN-λN-1 = Δλ / M, λN = λ1 + (M-1) × Δλ / M
Is.
 より具体的には、次の通りである。
(1)第1回目の走査S1では、測定光が断層画像を取得する範囲RIにおける走査の開始領域RSから終了領域REまで走査されるに従って、当該範囲RIに照射される測定光の波長がλ1、λ2、...λNまで掃引される。
(2)第1回目の走査S1で走査の終了領域REまで走査された場合、第2回目の走査S2の走査の開始領域RSが走査される時までに、波長がλ2から掃引開始できるように、光源20Aが制御される。
(3)第2回目の走査S2では、測定光が当該範囲RIにおける走査の開始領域RSから終了領域REまで走査されるに従って、当該範囲RIに照射される測定光の波長は、λ2からλNまで掃引され、最後に終了領域REにおいてλ1に掃引される。当該m(=2)回目の走査での照射開始波長λ2は、
λ2=λ1+(2-1)×Δλ/Mとなる。
(4)第2回目の走査S2で走査の終了領域まで走査された場合、第3回目の走査S3の走査の開始領域RSが走査される時までに、波長がλ3から掃引開始できるように、光源20Aが制御される。
(5)第3回目の走査S3での照射開始波長λ3は、
λ3=λ1+(3-1)×Δλ/Mとなる。
 このような光源20A及びKTNスキャナ23の制御が繰り返され、断層画像を取得する範囲RIが複数(M)回行われ、最終的な断層画像G110を生成するための検出信号を取得することができる。
 断層画像を取得する範囲RIは、本開示の技術の「所定領域」の一例である。
More specifically, it is as follows.
(1) In the first scanning S1, as the measurement light is scanned from the start region RS to the end region RE of the scan in the range RI for acquiring the tomographic image, the wavelength of the measurement light applied to the range RI is λ1. , Λ2, ... λN.
(2) When the scan end region RE is scanned in the first scan S1, the wavelength can be swept from λ2 by the time the scan start region RS of the second scan S2 is scanned. , Light source 20A is controlled.
(3) In the second scanning S2, the wavelength of the measurement light applied to the range RI is from λ2 to λN as the measurement light is scanned from the start region RS to the end region RE of the scan in the range RI. It is swept and finally swept to λ1 in the end region RE. The irradiation start wavelength λ2 in the m (= 2) th scan is
λ2 = λ1 + (2-1) × Δλ / M.
(4) When the scanning end region of the second scanning S2 is scanned, the wavelength can be swept from λ3 by the time the scanning start region RS of the third scanning S3 is scanned. The light source 20A is controlled.
(5) The irradiation start wavelength λ3 in the third scan S3 is
λ3 = λ1 + (3-1) × Δλ / M.
Such control of the light source 20A and the KTN scanner 23 is repeated, the range RI for acquiring the tomographic image is performed a plurality of (M) times, and the detection signal for generating the final tomographic image G110 can be acquired. ..
The range RI for acquiring tomographic images is an example of a "predetermined area" of the technique of the present disclosure.
 図3を用いて、測定光の波長掃引タイミングをシフトさせながら行う走査について詳細に説明する。第1の実施の形態では、断層画像であるB-Scanデータを取得するために、網膜における断層画像を取得する範囲について直線状に走査を行う。つまり、断層画像を取得する範囲である所定の線分区間RIに測定光が照射される。線分区間RIについてB-Scanデータを取得するために行う走査は、従来では一回であったが、第1の実施の形態では、複数(M)回(図3では2000回)である。 The scanning performed while shifting the wavelength sweep timing of the measurement light will be described in detail with reference to FIG. In the first embodiment, in order to acquire B-Scan data which is a tomographic image, a linear scan is performed on the range in which the tomographic image is acquired in the retina. That is, the measurement light is applied to the predetermined line segment section RI, which is the range for acquiring the tomographic image. The scanning performed for acquiring the B-Scan data for the line segment section RI has been performed once in the past, but in the first embodiment, it is performed a plurality of (M) times (2000 times in FIG. 3).
 測定光の第1回目の走査S1では、光源20Aからの測定光が、波長λ1から波長λ2000まで波長掃引されながら、線分区間RIについて走査されるように光源20A及びKTNスキャナ23が制御される。具体的には、まず、線分区間RIの最初の領域R1に、波長λ1の測定光が照射される。KTNスキャナ23が駆動されるにしたがって測定光は線分区間RIを、B-Scan走査方向に移動する。例えば、領域R1の隣の領域R2には、波長λ2の測定光が照射される。このようにして、線分区間RIにおいて、図2の紙面の左から右に測定光が走査される際に、測定光の波長が、λ1からλN(例えば、λ2000)まで変化する。よって、線分区間RIの各領域(例えば、点)には異なる波長の測定光が照射される。 In the first scanning S1 of the measurement light, the light source 20A and the KTN scanner 23 are controlled so that the measurement light from the light source 20A is scanned for the line segment section RI while the wavelength is swept from the wavelength λ1 to the wavelength λ2000. .. Specifically, first, the first region R1 of the line segment section RI is irradiated with the measurement light having the wavelength λ1. As the KTN scanner 23 is driven, the measurement light moves in the line segment section RI in the B-Scan scanning direction. For example, the region R2 adjacent to the region R1 is irradiated with the measurement light having the wavelength λ2. In this way, in the line segment section RI, when the measurement light is scanned from left to right on the paper surface of FIG. 2, the wavelength of the measurement light changes from λ1 to λN (for example, λ2000). Therefore, each region (for example, a point) of the line segment section RI is irradiated with measurement light having a different wavelength.
 測定光の第2回目の走査S2では、線分区間RIの最初の領域R1に、波長λ2の測定光が照射されるように光源20A及びKTNスキャナ23が制御される。領域R2以降で、最後の領域R2000の1つ前の領域R1999までは、第1回目の走査と同様に、測定光の波長掃引がされる。具体的には、波長λ3になるタイミングで、波長λ3の測定光は、領域R1の隣の領域R2に照射され、波長λ4になるタイミングで、波長λ4の測定光は、領域R2の隣の領域R3に照射され、領域R1999には、波長λ2000の測定光が照射される。そして、最後の領域R2000には、波長R1の測定光が照射される。 In the second scanning S2 of the measurement light, the light source 20A and the KTN scanner 23 are controlled so that the measurement light having the wavelength λ2 is irradiated to the first region R1 of the line segment section RI. After the region R2, the wavelength of the measurement light is swept up to the region R1999 immediately before the last region R2000, as in the first scan. Specifically, at the timing when the wavelength λ3 is reached, the measurement light of the wavelength λ3 is irradiated to the region R2 adjacent to the region R1, and at the timing when the wavelength λ4 is reached, the measurement light of the wavelength λ4 is the region next to the region R2. R3 is irradiated, and the region R1999 is irradiated with measurement light having a wavelength of λ2000. Then, the final region R2000 is irradiated with the measurement light having the wavelength R1.
 以上を、測定光の合計M(図3では、2000)回目の走査まで繰り返す。これにより、例えば、線分区間RIにおける最初の領域R1には、2000回の走査によって、λ1からλ2000までのすべての波長の光が照射される。これは、領域R1への測定光が2000回に分割されて照射されることになり、領域R1に継続して照射され続く光の総エネルギー量は、従来の技術の図2Aの走査方法の場合より、小さくなる。即ち、従来の技術の図2Aの走査方法では、走査開始領域には、λ1からλN(λ2000)の範囲の測定光が、波長掃引時間、継続して照射され続く。よって、領域R1に継続して照射され続く光のエネルギー量は、第1の実施の形態より、大きい。
 このように断層画像を取得する範囲である線分区間RIにおける各領域(例えば、点)に測定光が継続して照射され続く時間は、従来の技術の図2Aの走査方法より図2Bに示す第1の実施の形態の走査方法のほうが短い。
The above is repeated until the total M (2000 in FIG. 3) scan of the measurement light. As a result, for example, the first region R1 in the line segment section RI is irradiated with light of all wavelengths from λ1 to λ2000 by 2000 scans. This means that the measurement light to the region R1 is divided into 2000 times and irradiated, and the total energy amount of the light continuously irradiated to the region R1 is the case of the scanning method of FIG. 2A of the prior art. Becomes smaller. That is, in the scanning method of FIG. 2A of the conventional technique, the scanning start region is continuously irradiated with the measurement light in the range of λ1 to λN (λ2000) for the wavelength sweep time. Therefore, the amount of energy of the light continuously irradiated to the region R1 is larger than that of the first embodiment.
The time during which the measurement light is continuously irradiated to each region (for example, a point) in the line segment section RI, which is the range for acquiring the tomographic image, is shown in FIG. 2B by the scanning method of FIG. 2A of the conventional technique. The scanning method of the first embodiment is shorter.
 第1の実施の形態における測定光の2000回の走査に係る時間は、次の通りである。
たとえば、波長掃引周期が200kHz、波長掃引数2000(λ1からλ2000)とすると、
(1/200kHz)×(2000)=0.01 (秒)
The time required for 2000 scans of the measurement light in the first embodiment is as follows.
For example, if the wavelength sweep period is 200 kHz and the wavelength sweep argument is 2000 (λ1 to λ2000),
(1/200 kHz) x (2000) = 0.01 (seconds)
 これは、上記従来技術における測定光の走査に係る時間に比較して、2倍の高速化が可能になっている。 This can be twice as fast as the time required for scanning the measurement light in the above-mentioned conventional technique.
 第1の実施の形態では、眼に対するレーザー安全基準としてワールドスタンダードのひとつであるIEC60825-1(2014年度版)を採用する。当該基準によると、許容できる眼への入射レーザーパワー(Maximum Permissible Exposure: MPE)は以下の式により導出される。
18×t0.75×C4×C6(Jm-2)・・・(1)
In the first embodiment, IEC6025-1 (2014 version), which is one of the world standards, is adopted as a laser safety standard for the eyes. According to the criteria, the acceptable laser power incident on the eye (Maximum Permissible Exposure: MPE) is derived by the following equation.
18 × t 0.75 × C4 × C6 (Jm- 2 ) ・ ・ ・ (1)
 ここで、C4及びC6は定数、tは網膜1点あたりに照射されるレーザーのトータル照射時間である。なおここで導出されるMPEは眼の角膜上での値である。 Here, C4 and C6 are constants, and t is the total irradiation time of the laser irradiated per retina. The MPE derived here is a value on the cornea of the eye.
 (1)式に規定されているように、MPEは、tの0.75乗に比例する。つまり、波長掃引光源の掃引速度を高速化して網膜1点あたりの照射時間を短くした場合に、それに比例してレーザーパワーを上げることはできない。つまり単純な高速化は、同時にOCT画像のSNR(SN比:信号 (signal)と雑音(noise)の比)の低減をもたらす結果となる。 As specified in equation (1), MPE is proportional to t to the 0.75th power. That is, when the sweep speed of the wavelength sweep light source is increased and the irradiation time per retina is shortened, the laser power cannot be increased proportionally. That is, a simple speedup results in a reduction in the SNR (SN ratio: signal-to-noise ratio) of the OCT image at the same time.
 第1の実施の形態の測定光の走査では、眼のレーザー安全基準の導出式(1)の照射時間tが、全掃引波長のうち1波長が発振している極めて短い時間となる。たとえば、波長掃引周期が200kHz、波長掃引数2000(λ1からλ2000)とすると、
t=(1/200kHz)×(1/2000)=2.5×10-9 (秒)
となる。
In the scanning of the measurement light of the first embodiment, the irradiation time t of the derivation formula (1) of the laser safety standard for the eye is an extremely short time during which one of the total sweep wavelengths is oscillating. For example, if the wavelength sweep period is 200 kHz and the wavelength sweep argument is 2000 (λ1 to λ2000),
t = (1/2000 kHz) x (1/2000) = 2.5 x 10-9 (seconds)
Will be.
 従来の技術の測定光の走査では、t=(1/200kHz)=5.0x10-6 (秒)となる。 The measurement light scanned in the conventional art, t = (1 / 200kHz) = 5.0x10 -6 becomes seconds.
 MPEはtの0.75乗に比例するので、第1の実施の形態の測定光の走査では、許容入射レーザーパワーを大きくすることが可能となる。よって、SNRを向上させることができる。 Since MPE is proportional to the 0.75th power of t, it is possible to increase the permissible incident laser power in the scanning of the measurement light of the first embodiment. Therefore, the SNR can be improved.
 図4には、第1の実施の形態における測定光の走査によってSNRが向上する原理が示されている。図4は縦軸にレーザー光の強度、横軸に照射されている時間をとり、安全性を保つための、ある領域(例えば、点)にレーザー光を照射する照射時間と、当該領域に照射するレーザー光の強度との関係を示した図である。
図4に示すように、従来の技術において、例えば、波長掃引速度が100kHzの測定光の走査では、断層画像を取得する範囲の各領域へレーザー光を継続して照射する照射時間が長くなるので、安全のため、レーザー強度を低くする必要がある(図4の矩形領域Iを参照)。また、従来の技術において、例えば、波長掃引速度が200kHzの測定光の走査では、波長掃引速度が上がるため、断層画像を取得する範囲の各領域へレーザー光を継続して照射する照射時間が100kHzに比べて短くなる。このため、安全性を保つためのレーザー光の強度は、100kHzの場合と比べて高くできる(図4の矩形領域IIを参照)。
 これに対し、第1の実施の形態(例えば、波長掃引速度が200kHzの場合)の測定光の走査では、断層画像を取得する範囲を複数走査するので、継続してレーザー光を照射する時間を短くすることができ、単位時間当たりのレーザー光の強度を高くすることが可能となる(図4の矩形領域IIIを参照)。このように、第1の実施の形態の測定光の走査では、強度の高いレーザー光を用いることができるので、SNRが高くなる。
FIG. 4 shows the principle that the SNR is improved by scanning the measurement light in the first embodiment. In FIG. 4, the vertical axis represents the intensity of the laser beam and the horizontal axis represents the time of irradiation, and in order to maintain safety, the irradiation time of irradiating a certain area (for example, a point) with the laser light and the irradiation of the area. It is a figure which showed the relationship with the intensity of the laser light.
As shown in FIG. 4, in the conventional technique, for example, in scanning the measurement light having a wavelength sweep speed of 100 kHz, the irradiation time for continuously irradiating each region of the range in which the tomographic image is acquired with the laser light becomes long. For safety reasons, the laser intensity needs to be low (see rectangular area I in FIG. 4). Further, in the conventional technique, for example, when scanning the measurement light having a wavelength sweep speed of 200 kHz, the wavelength sweep speed increases, so that the irradiation time of continuously irradiating each region of the tomographic image acquisition range with the laser beam is 100 kHz. It will be shorter than. Therefore, the intensity of the laser beam for maintaining safety can be increased as compared with the case of 100 kHz (see the rectangular region II in FIG. 4).
On the other hand, in the scanning of the measurement light of the first embodiment (for example, when the wavelength sweep speed is 200 kHz), since a plurality of tomographic image acquisition ranges are scanned, the time for continuously irradiating the laser light is increased. It can be shortened and the intensity of the laser beam per unit time can be increased (see rectangular region III in FIG. 4). As described above, in the scanning of the measurement light of the first embodiment, since the laser light having high intensity can be used, the SNR becomes high.
 全掃引波長のうち1波長(たとえばλ1)のみに着目すると、それが網膜1点あたりに照射される時間は従来の技術の測定光の走査と比べて変わらない。 Focusing on only one of the total sweep wavelengths (for example, λ1), the time it is irradiated per retina is the same as the scanning of the measurement light of the conventional technique.
 以下の相対SNRの導出式(2)でいえば、許容入射レーザーパワーは向上するが照射時間は変わらないという状況が実現できる。 Speaking of the following relative SNR derivation formula (2), it is possible to realize a situation in which the allowable incident laser power is improved but the irradiation time does not change.
 相対SNR=[(許容入射レーザーパワー/100kHzの許容入射レーザーパワー)x(網膜1点あたりの照射時間/100kHzの照射時間)]0.5・・・・(2) Relative SNR = [(Allowable incident laser power / 100 kHz allowable incident laser power) x (Irradiation time per retina / 100 kHz irradiation time)] 0.5 ... (2)
 導出式(1)および(2)から計算すると、約1.99倍の相対的SNR向上を実現することができる。 Calculating from the derivation formulas (1) and (2), it is possible to realize a relative SNR improvement of about 1.99 times.
 このように、第1の実施の形態の測定光の走査により、断層画像の取得の高速化と断層画像におけるSNR向上が同時に実現することができる。 As described above, by scanning the measurement light of the first embodiment, it is possible to simultaneously realize high-speed acquisition of the tomographic image and improvement of SNR in the tomographic image.
[第2の実施の形態] [Second Embodiment]
 次に、第2の実施の形態の眼科装置について図面を参照して説明する。第2の実施の形態の眼科装置の構成は、第1の実施の形態の眼科装置の構成と略同様であるので、同一部分には同一の符号を付して、その説明を省略し、主として異なる部分のみを説明する。 Next, the ophthalmic apparatus of the second embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the second embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
 図5には、第2の実施の形態の眼科装置110の概略構成が示されている。図5に示すように、第2の実施の形態の眼科装置110では、第1の実施の形態の眼科装置110の撮影光学系19のKTNスキャナ23及び反射ミラー25に代えて、ポリゴンミラー24を備えている。眼科装置110は、網膜の断層画像を取得する範囲RIを分割した領域R1、領域R2、...領域R100...領域RNを走査し、範囲RIのA-Scanデータを得る。 FIG. 5 shows a schematic configuration of the ophthalmic apparatus 110 of the second embodiment. As shown in FIG. 5, in the ophthalmic apparatus 110 of the second embodiment, the polygon mirror 24 is used instead of the KTN scanner 23 and the reflection mirror 25 of the photographing optical system 19 of the ophthalmic apparatus 110 of the first embodiment. I have. The ophthalmologic apparatus 110 scans the area R1, the area R2, ... the area R100 ... the area RN obtained by dividing the range RI for acquiring the tomographic image of the retina, and obtains the A-Scan data of the range RI.
 図6には、第2の実施の形態の波長掃引と測定光の走査との関係が示されている。図7には、波長掃引とポリゴンミラー24の駆動タイミングとの関係が示されている。 FIG. 6 shows the relationship between the wavelength sweep of the second embodiment and the scanning of the measurement light. FIG. 7 shows the relationship between the wavelength sweep and the drive timing of the polygon mirror 24.
 図6及び図7に示すように、第2の実施の形態では、波長掃引時間Tsweptと1回の走査にかかる時間Tscanとが異なるように制御されるポリゴンミラー24を用いて、断層画像を取得する範囲における各点に照射される波長をシフトする手法が用いられる。 As shown in FIGS. 6 and 7, in the second embodiment, a tomographic image is acquired by using a polygon mirror 24 in which the wavelength sweep time Tswept and the time Tscan required for one scan are controlled so as to be different. A method of shifting the wavelength of irradiation at each point in the range to be used is used.
 具体的には、図7(A)に示すように、CPU16Aからの駆動信号が200KHzの周期で入力される毎に、光源20Aは、波長掃引(λ1からλ2000)を開始する。図7(B)に示すように、CPU16Aからポリゴンミラー24に出力される駆動信号が-dからdに変化すると、ポリゴンミラー24が1走査に対応する所定角度回転する。 Specifically, as shown in FIG. 7A, the light source 20A starts wavelength sweeping (λ1 to λ2000) every time a drive signal from the CPU 16A is input in a cycle of 200 KHz. As shown in FIG. 7B, when the drive signal output from the CPU 16A to the polygon mirror 24 changes from −d to d, the polygon mirror 24 rotates by a predetermined angle corresponding to one scan.
 1回目の走査S1では、λ1からλ2000までの波長掃引が、例えば、4回繰り返えされながら、測定光が入射されているポリゴンミラー24の1つの反射面の被検眼に対する角度が変化し、当該測定光が、断層画像を取得する範囲RIについて1回走査される。 In the first scan S1, the wavelength sweep from λ1 to λ2000 is repeated, for example, four times, and the angle of one reflecting surface of the polygon mirror 24 on which the measurement light is incident changes with respect to the eye to be inspected. The measurement light is scanned once for the range RI for which a tomographic image is acquired.
 2回目の走査S2では、1回目の測定光の走査が終わった時に、CPU16Aは、ポリゴンミラー24に出力する駆動信号を、dから-dに変化させ、ポリゴンミラー24の次の反射面による測定光の走査を可能にする。
 一方、2回目の走査S2では、CPU16Aは、光源20Aへの駆動信号を出力するタイミングを、1回目の測定光の走査が終了した時から、所定時間T0(例えば、20波長掃引するのに要する時間、つまりλ1~λ20やλ21~λ40の波長幅の掃引に要する時間)、遅らせ、4回波長掃引を繰り返す。よって、2回目の走査の際の照射開始タイミングは、1回目の走査が終了したときから、所定時間T0経過したときである。
In the second scanning S2, when the scanning of the first measurement light is completed, the CPU 16A changes the drive signal output to the polygon mirror 24 from d to −d, and the measurement is performed by the next reflecting surface of the polygon mirror 24. Allows scanning of light.
On the other hand, in the second scanning S2, the CPU 16A requires a predetermined time T0 (for example, sweeping 20 wavelengths) from the time when the first scanning of the measurement light is completed at the timing of outputting the drive signal to the light source 20A. The time, that is, the time required for sweeping the wavelength widths of λ1 to λ20 and λ21 to λ40) is delayed, and the wavelength sweep is repeated four times. Therefore, the irradiation start timing at the time of the second scanning is when a predetermined time T0 has elapsed from the time when the first scanning is completed.
 3回目の走査S3では、2回目の測定光の走査が終わった時に、CPU16Aは、ポリゴンミラー24に出力する駆動信号を、上記と同様にdから-dに変化させる。
 一方、3回目の走査S2では、CPU16Aは、光源20Aへの駆動信号を出力するタイミングを、2回目の走査S2のための4回目の波長掃引が終了したときから所定時間T0だけ遅らせる。なお、このタイミングは、2回目の測定光の走査の終了時(即ち、CPU16Aからポリゴンミラー24への駆動信号がdになった時)から、2×T0経過したときである。2×T0は、40波長掃引するのに要する時間である。
In the third scanning S3, when the second scanning of the measurement light is completed, the CPU 16A changes the drive signal output to the polygon mirror 24 from d to −d in the same manner as described above.
On the other hand, in the third scan S2, the CPU 16A delays the timing of outputting the drive signal to the light source 20A by a predetermined time T0 from the time when the fourth wavelength sweep for the second scan S2 is completed. This timing is when 2 × T0 has elapsed from the end of the second scanning of the measurement light (that is, when the drive signal from the CPU 16A to the polygon mirror 24 becomes d). 2 × T0 is the time required to sweep 40 wavelengths.
 このように、断層画像を取得する範囲RIについて測定光をM(M>m>1で、整数)回走査し、m回目の照射開始タイミングTmは、m-1回目の走査が終了したときから、
Tm=(m-1)×Tswept/M=(m-1)×T0
経過した時となるように、CPU16Aは、光源20A及びポリゴンミラー24の少なくとも一方を制御する。これにより、最終的なB-Scan画像を生成する。
In this way, the measurement light is scanned M (M>m> 1, an integer) times for the range RI for acquiring the tomographic image, and the m-th irradiation start timing Tm is from the time when the m-1th scan is completed. ,
Tm = (m-1) x Tswept / M = (m-1) x T0
The CPU 16A controls at least one of the light source 20A and the polygon mirror 24 so that the time has passed. As a result, the final B-Scan image is generated.
 以上をより詳細に説明すると、図6にも示すように、断層画像を取得する範囲RIについて測定光をM回走査し、断層画像を取得する範囲R1が分割された領域R1、領域R2...領域R100...領域RN(PN)の領域ごとにA-Scanデータが得られる。第2の実施の形態では、A-Scan画像を取得する各領域においては、1回の走査においては、所定数の波長範囲(例えば、λ1~λ20までの波長の範囲)の波長掃引がされた測定光が照射される。 Explaining the above in more detail, as shown in FIG. 6, the measurement light is scanned M times for the range RI for acquiring the tomographic image, and the area R1 for acquiring the tomographic image is divided into the divided regions R1 and R2 .. A-Scan data can be obtained for each region of the region R100 ... region RN (PN). In the second embodiment, in each region for acquiring an A-Scan image, a predetermined number of wavelength ranges (for example, a wavelength range from λ1 to λ20) are swept in one scan. The measurement light is irradiated.
 具体的には、1回目の走査S1における最初の領域R1には、λ1からλ20の掃引された測定光が照射される。2番目の領域R2には、λ21からλ40の掃引がされた測定光が照射される。同様に、100番目の領域R100には、図6の左にも記載されている枠f200の中に示すように、λ1981からλ2000の掃引がされた測定光が照射される。光源20Aの波長は、λ1からλ2000まで掃引されると、λ1に戻って再度掃引される。光源20Aの波長掃引(λ1からλ2000)が繰り返えされるので、101番目の領域R101には、λ1からλ20の掃引がされた測定光が照射される。このような波長掃引による測定項の照射が断層画像を取得する範囲における最後の領域RNまで繰り返される。図6に示す例では、断層画像を取得する範囲の1走査で4回の波長掃引が行われる。すなわち、λ1からλ2000の波長掃引が4回繰り返される。従って、断層画像を取得する範囲RIを1回走査するために必要な時間Tscanと、波長掃引にかかる時間Tsweptとは、以下の関係がある。
Tscan=4×Tswept
Specifically, the first region R1 in the first scan S1 is irradiated with the swept measurement light from λ1 to λ20. The second region R2 is irradiated with the measurement light swept from λ21 to λ40. Similarly, the 100th region R100 is irradiated with the measurement light swept from λ1981 to λ2000, as shown in the frame f200 also shown on the left side of FIG. When the wavelength of the light source 20A is swept from λ1 to λ2000, it returns to λ1 and is swept again. Since the wavelength sweep (λ1 to λ2000) of the light source 20A is repeated, the measurement light swept from λ1 to λ20 is applied to the 101st region R101. The irradiation of the measurement term by such wavelength sweep is repeated until the last region RN in the range in which the tomographic image is acquired. In the example shown in FIG. 6, the wavelength sweep is performed four times in one scan of the range in which the tomographic image is acquired. That is, the wavelength sweep from λ1 to λ2000 is repeated four times. Therefore, the time Tscan required to scan the range RI for acquiring a tomographic image once and the time Tswept required for wavelength sweep have the following relationship.
Tscan = 4 × Tswept
 本開示の技術では、1走査で4掃引が行われることに限定されない。例えば、1走査で2、3、5...掃引されてもよい。よって、
 Tscan≧α×Tswept (αは2以上の整数)
 である。
The technique of the present disclosure is not limited to performing four sweeps in one scan. For example, two, three, five ... may be swept in one scan. Therefore,
Tscan ≧ α × Tswept (α is an integer of 2 or more)
Is.
 測定光の2回目の走査S2では、波長掃引の開始タイミングが、T2=(2-1)×Tswept/100、シフトされる(m=2、M=100)。
 説明の都合上、波長λ1を1個、波長λ2を同様に1個として数えるとすると、λ1からλ20の間に波長掃引される波長の数は、20個である。
 測定光の2回目の走査では、波長が20個分、掃引される時間、波長掃引の開始タイミングが遅れる。
In the second scan S2 of the measurement light, the start timing of the wavelength sweep is shifted by T2 = (2-1) × Tswept / 100 (m = 2, M = 100).
For convenience of explanation, assuming that the wavelength λ1 is counted as one and the wavelength λ2 is similarly counted as one, the number of wavelengths swept between λ1 and λ20 is 20.
In the second scan of the measurement light, the time for sweeping and the start timing of wavelength sweep are delayed by 20 wavelengths.
 上記のように網膜の各領域R1~領域RNについては、それぞれ20個分、波長が掃引された測定光が照射される。よって、測定光の2回目の走査では、断層画像を取得する範囲における最初の領域R1には、測定光は照射されない。2番目の領域R2から測定光が照射される。具体的には、2番目の領域R2には、λ1からλ20の掃引がされた測定光が照射される。3番目の領域R3には、λ21からλ40の掃引がされた測定光が照射される。100番目の領域R100には、λ1961からλ1980の掃引がされた測定光が照射される。断層画像を取得する範囲における最後の領域RNまで繰り返される。最後の領域RNには、λ1961からλ1980の掃引がされた測定光が照射される。次の掃引の範囲A(図6において斜線が引かれた矩形の範囲)であるλ1981からλ2000の掃引がされた測定光が照射されるタイミングは、測定光の3回目の走査における、断層画像を取得する範囲における最初の領域R1に測定光が照射されるタイミングである。 As described above, each region R1 to RN of the retina is irradiated with measurement light whose wavelength has been swept by 20 wavelengths. Therefore, in the second scan of the measurement light, the measurement light is not applied to the first region R1 in the range in which the tomographic image is acquired. The measurement light is emitted from the second region R2. Specifically, the second region R2 is irradiated with the measurement light swept from λ1 to λ20. The third region R3 is irradiated with the measurement light swept from λ21 to λ40. The 100th region R100 is irradiated with the measurement light swept from λ1961 to λ1980. It is repeated until the last region RN in the range where the tomographic image is acquired. The last region RN is irradiated with the measurement light swept from λ1961 to λ1980. The timing at which the measurement light swept from λ1981 to λ2000, which is the range A of the next sweep (the rectangular area shaded in FIG. 6), is irradiated is the tomographic image in the third scan of the measurement light. This is the timing at which the measurement light is applied to the first region R1 in the acquisition range.
 測定光の3回目の走査S3では、断層画像を取得する範囲における最初の領域R1には、上記のように、λ1981からλ2000の掃引がされた測定光が照射される。その後、第2回目の走査と同様に、波長掃引の開始タイミングが、波長が20個分、遅れる。よって、測定光の3回目の走査では、断層画像を取得する範囲における2番目の領域R2には、測定光は照射されない。3番目の領域R3には、λ1からλ20の掃引がされた測定光が照射される。断層画像を取得する範囲における最後の領域RNには、λ1941からλ1960の掃引がされた測定光が照射される。次の掃引の範囲B(図6において斜線が引かれていない矩形の範囲)であるλ1961からλ1980の掃引がされた測定光が照射されるタイミングは、測定光の4回目の走査S4における、断層画像を取得する範囲における最初の領域R1に測定光が照射されるタイミングである。更に次の掃引の範囲Aであるλ1981からλ2000の掃引がされた測定光が照射されるタイミングは、測定光の4回目の走査S4における、断層画像を取得する範囲における2番目の領域R2に測定光が照射されるタイミングである。 In the third scan S3 of the measurement light, the first region R1 in the range in which the tomographic image is acquired is irradiated with the measurement light swept from λ1981 to λ2000 as described above. After that, as in the second scan, the start timing of the wavelength sweep is delayed by 20 wavelengths. Therefore, in the third scan of the measurement light, the measurement light is not irradiated to the second region R2 in the range in which the tomographic image is acquired. The third region R3 is irradiated with the measurement light swept from λ1 to λ20. The last region RN in the range for acquiring the tomographic image is irradiated with the measurement light swept from λ1941 to λ1960. The timing at which the measurement light swept from λ1961 to λ1980, which is the next sweep range B (rectangular range not shaded in FIG. 6), is irradiated is the fault in the fourth scan S4 of the measurement light. This is the timing at which the measurement light is applied to the first region R1 in the range in which the image is acquired. Further, the timing at which the measurement light swept from λ1981 to λ2000, which is the next sweep range A, is irradiated is measured in the second region R2 in the range for acquiring the tomographic image in the fourth scan S4 of the measurement light. It is the timing when the light is irradiated.
 以上を図6に示す例では、100回目の走査まで行われる(M=100)。
 λ1からλ2000の波長掃引を100回の走査で行うとすると、断層画像を取得する範囲の領域R1から領域R99までは、λ1からλ2000の波長範囲の内、λ1~λ2000の中のいずれかの20波長範囲の部分の測定光が照射されないことになる。例えば、領域R1には、λ1からλ20の範囲と、λ41からλ2000までの範囲の測定光が照射されるが、λ21からλ40までの範囲の測定光は照射されない。なぜなら、上記のように、第2回目の走査では、波長掃引の開始タイミングが、波長が20個分、遅れるからである。
In the example shown in FIG. 6, the above is performed up to the 100th scan (M = 100).
Assuming that the wavelength sweep from λ1 to λ2000 is performed in 100 scans, the area R1 to R99 in the range for acquiring the tomographic image is 20 of any of λ1 to λ2000 in the wavelength range from λ1 to λ2000. The measurement light in the wavelength range is not irradiated. For example, the region R1 is irradiated with the measurement light in the range of λ1 to λ20 and the range of λ41 to λ2000, but is not irradiated with the measurement light in the range of λ21 to λ40. This is because, as described above, in the second scan, the start timing of the wavelength sweep is delayed by 20 wavelengths.
 これに対し、領域R100~領域RNでは100回走査されることにより、λ1からλ2000の波長の測定光が照射されることになる。例えば、100番目の領域R100には、1回目の走査によりλ1981からλ2000、2回目の走査によりλ1961からλ1980、3回目の走査によりλ1981からλ2000...100回目においてλ1からλ20の掃引がされた測定光が照射される。つまり、領域R1~領域R99まではλ1~λ2000の間のすべての波長が照射されないので、A-SCANデータの作成は行わず、λ1~λ2000の間のすべての波長が照射される領域R100~領域RNでA―scanデータの生成を行う。 On the other hand, in the region R100 to the region RN, the measurement light having a wavelength of λ1 to λ2000 is irradiated by scanning 100 times. For example, in the 100th region R100, λ1981 to λ2000 were swept by the first scan, λ1961 to λ1980 by the second scan, λ1981 to λ2000 by the third scan, and λ1 to λ20 were swept in the 100th scan. The measurement light is irradiated. That is, since all wavelengths between λ1 and λ2000 are not irradiated from region R1 to region R99, A-SCAN data is not created, and all wavelengths between λ1 and λ2000 are irradiated from region R100 to region. A-scan data is generated by RN.
 領域R100に照射された測定光の戻り光と参照光との干渉光の検出信号から、領域R100のA-Scanデータが構築される。
 領域R100の当該検出信号は、1回目の走査、2回目の走査、...100回目の走査と、時間的に連続したデータではなく離散的に得られるデータであるため(図6の下側のR100で囲まれた矩形の中の波長範囲を参照)、各回の走査による検出信号をメモリに保存しておく。そして、領域R100が走査される各走査回におけるタイミングの検出信号をメモリから取り出すことにより、領域R100のA-Scanデータを構築するのに必要な検出信号を得ることができる
The A-Scan data of the region R100 is constructed from the detection signal of the interference light between the return light of the measurement light irradiated to the region R100 and the reference light.
Since the detection signal in the region R100 is the first scan, the second scan, ... the 100th scan, and the data obtained discretely rather than continuously in time (lower side of FIG. 6). (Refer to the wavelength range in the rectangle surrounded by R100), the detection signal of each scan is stored in the memory. Then, by extracting the detection signal of the timing at each scanning time in which the area R100 is scanned from the memory, the detection signal necessary for constructing the A-Scan data of the area R100 can be obtained.
 M回(図6では100回)におけるm回目の走査で、領域R100が走査されるタイミングは、各回の走査の開始時刻(領域R1が走査される時刻)をゼロ(スタート時刻)とすると、
 (M-m)×Tswept/M
で、あらわすことができる。
The timing at which the area R100 is scanned in the mth scan in the M times (100 times in FIG. 6) is assumed to be zero (start time) when the start time of each scan (the time when the area R1 is scanned) is set to zero (start time).
(Mm) x Tswept / M
And it can be expressed.
 1回目の走査では、(100-1)×Tswept/100からTswept/100経過する間、
 2回目の走査では、(100-2)×Tswept/100からTswept/100経過する間、
 ...
 100回目の走査では、(100-100)×Tswept/100=ゼロ、つまりスタート時間からTswept/100経過する間となる。
In the first scan, during the elapse of (100-1) × Tswept / 100 to Tswept / 100,
In the second scan, during the elapse of (100-2) × Tswept / 100 to Tswept / 100,
...
In the 100th scan, (100-100) × Tswept / 100 = zero, that is, Tswept / 100 elapses from the start time.
 よって、領域R100が走査される各走査回におけるタイミングが計算で判明するので、領域R100のA-Scanデータ構築に必要な検出信号が特定される。このような処理を領域R100から領域RNに行うことにより、領域R100~領域RNにおける複数のA―scanデータを生成し、B-scanデータである断層画像が生成される。
 。
Therefore, since the timing at each scanning time in which the region R100 is scanned is determined by calculation, the detection signal necessary for constructing the A-Scan data in the region R100 is specified. By performing such processing from the region R100 to the region RN, a plurality of A-scan data in the region R100 to the region RN are generated, and a tomographic image which is B-scan data is generated.
..
 なお、領域R99が走査されるタイミングは、次の通りである。
 1回目の走査では、(100-2)×Tswept/100からTswept/100経過する間、
 2回目の走査では、(100-3)×Tswept/100からTswept/100経過する間、
 ...
 99回目の走査では、(100-100)×Tswept/100=ゼロ、つまりスタート時間からTswept/100経過する間となる。
The timing at which the region R99 is scanned is as follows.
In the first scan, during the elapse of (100-2) × Tswept / 100 to Tswept / 100,
In the second scan, during the elapse of (100-3) × Tswept / 100 to Tswept / 100,
...
In the 99th scan, (100-100) × Tswept / 100 = zero, that is, Tswept / 100 elapses from the start time.
 図8を用いて、A-Scanデータの構築方法を具体的に説明する。図8に示すように、センサ20Bでは、例えば、100番目の領域R100に対応する検出信号に着目すると、1回目、2回目...100回目の走査における、λ1981からλ2000、λ1961からλ1980、...λ1からλ20の掃引がされた測定光に対応する検出信号H1、H2、...H100が切り出される。切り出された検出信号は、波長軸に沿って整列(H100、...H2、H1)させる。この整列した検出信号が干渉スペクトル信号に相当する。画像処理装置17は、干渉スペクトル信号を高速フーリエ変換することにより、A-Scanデータを構築する。画像処理装置17は、以上の処理を、各点について行い、A-Scanデータを構築する。そして、これらを、断層画像を取得する範囲の領域R1~RNの順に並べてB-Scanデータ(網膜の断層画像データ、あるいはOCTデータ)を生成する。断層画像を取得する範囲は線状だけでなく矩形、や円形などを走査するようにしてもよい。矩形や円形の走査ではOCT体積データを得ることができ、網膜の立体画像データを得ることができる。 The method of constructing A-Scan data will be specifically described with reference to FIG. As shown in FIG. 8, in the sensor 20B, for example, focusing on the detection signal corresponding to the 100th region R100, λ1981 to λ2000, λ1961 to λ1980, ... The detection signals H1, H2, ... H100 corresponding to the measurement light swept from ..λ1 to λ20 are cut out. The cut-out detection signals are aligned (H100, ... H2, H1) along the wavelength axis. This aligned detection signal corresponds to an interference spectrum signal. The image processing apparatus 17 constructs A-Scan data by performing a fast Fourier transform on the interference spectrum signal. The image processing device 17 performs the above processing for each point to construct A-Scan data. Then, these are arranged in the order of the regions R1 to RN in the range in which the tomographic image is acquired to generate B-Scan data (tomographic image data of the retina or OCT data). The range for acquiring the tomographic image may be scanned not only linearly but also rectangularly or circularly. OCT volume data can be obtained by scanning a rectangle or a circle, and stereoscopic image data of the retina can be obtained.
 第2の実施の形態において実現される諸パラメータを一般化すると以下のようになる。 The generalization of the parameters realized in the second embodiment is as follows.
 全走査回数=(掃引波長数)/(走査毎のタイミングシフト量)
 トータル測定スピード=(1/スキャナ速度)×(全走査回数)
 データサンプル数=(全走査回数)×(波長掃引速度/スキャナ速度)
 例えば、ポリゴンミラー24が、回転速度100kRPMで6面体の回転6面鏡を想定する(走査角度120-deg、走査速度10kHz相当)。
Total number of scans = (number of sweep wavelengths) / (timing shift amount per scan)
Total measurement speed = (1 / scanner speed) x (total number of scans)
Number of data samples = (total number of scans) x (wavelength sweep speed / scanner speed)
For example, the polygon mirror 24 assumes a hexahedral rotating six-sided mirror at a rotation speed of 100 kRPM (scanning angle 120-deg, scanning speed equivalent to 10 kHz).
 走査毎のタイミングシフト量を20波長分とするとB-Scanデータを生成するための走査回数は、(2000)/(20)=100回となる。その結果、トータルの測定スピードは以下のように見積もられる。
(1/10kHz)×(100)=0.01 (秒)
Assuming that the timing shift amount for each scan is 20 wavelengths, the number of scans for generating B-Scan data is (2000) / (20) = 100 times. As a result, the total measurement speed is estimated as follows.
(1/10 kHz) x (100) = 0.01 (seconds)
 この場合のOCT断層画像のデータサンプル数は、
(2000/20)×(200kHz /10kHz)=2000点
となる。
The number of data samples of the OCT tomographic image in this case is
(2000/20) x (200 kHz / 10 kHz) = 2000 points.
 波長掃引速度100kHzの光源を用いた従来の技術では、データサンプル数を2000とした場合、その測定スピードは、
(100kHz/2000)=50Hz
となるので、それと比較すると2倍の高速化が実現できる。
In the conventional technique using a light source with a wavelength sweep speed of 100 kHz, when the number of data samples is 2000, the measurement speed is
(100kHz / 2000) = 50Hz
Therefore, it is possible to realize twice the speed as compared with it.
 なおタイミングシフト量を40波長分とすると、全走査回数は
(2000/40)=50回
となる。そしてトータルの測定スピードは、
(1/10kHz)×(50)=0.005(s)、
即ち、200Hzとなり4倍高速化する。
Assuming that the timing shift amount is 40 wavelengths, the total number of scans is (2000/40) = 50 times. And the total measurement speed is
(1/10 kHz) x (50) = 0.005 (s),
That is, it becomes 200 Hz, which is four times faster.
 次に、本構成によるSNR向上効果を説明する。 Next, the SNR improvement effect of this configuration will be described.
 走査角度は120-degであり、これは網膜の範囲にして約33.5mmに相当する。この範囲に (全掃引波長数2000)×(波長掃引速度200kHz/スキャナ速度 10kHz)=40000点の波長が照射されることになる。すると、1波長あたりの照射範囲は33.5mm/40000=0.84umとなる。 The scanning angle is 120-deg, which corresponds to about 33.5 mm in the range of the retina. This range is irradiated with wavelengths of (total sweep wavelength 2000) x (wavelength sweep speed 200 kHz / scanner speed 10 kHz) = 40,000 points. Then, the irradiation range per wavelength becomes 33.5 mm / 40,000 = 0.84 um.
 被検眼の瞳への入射ビーム径を2mmとすると、網膜上における集光スポット径は6.62umとなる。よって、網膜1点あたりには
 6.62um/0.84um=7.88
となり、約8波長が照射され続けることになる。
 時間に換算すると、
 8×(1/200kHz)×(1/2000)=20ns
となる。
Assuming that the diameter of the incident beam to the pupil of the eye to be inspected is 2 mm, the diameter of the focused spot on the retina is 6.62 um. Therefore, 6.62um / 0.84um = 7.88 per retina.
Therefore, about 8 wavelengths will continue to be irradiated.
When converted to time
8 x (1/2000 kHz) x (1/2000) = 20 ns
Will be.
 この場合、導出式(1)および(2)に従って計算すると相対的SNRは約1.54倍となる。 In this case, the relative SNR is about 1.54 times when calculated according to the derivation formulas (1) and (2).
 なお、200kHzの波長掃引光源を用いた従来の技術では、相対的SNRは0.77に低下する。 In the conventional technique using a wavelength sweep light source of 200 kHz, the relative SNR is lowered to 0.77.
 以上説明した第2の実施の形態では、光源20Aの波長掃引(λ1からλ2000)を繰り返しながら測定光の走査を行うと共に、2回目以降の走査では、波長掃引の開始タイミングをシフトさせている。本開示の技術はこれに限定されない。 In the second embodiment described above, the measurement light is scanned while repeating the wavelength sweep (λ1 to λ2000) of the light source 20A, and the start timing of the wavelength sweep is shifted in the second and subsequent scans. The techniques of the present disclosure are not limited to this.
 図9に示すように、測定光の2回目以降の各走査の最初の領域R1には、前回の走査における最後の20波長分であるλ1981からλ2000の測定光が照射される。なお、これは、CPU16Aが、光源20Aの波長掃引を調整することにより、実現される。 As shown in FIG. 9, the first region R1 of each scan after the second measurement light is irradiated with the measurement light of λ1981 to λ2000, which is the last 20 wavelengths in the previous scan. This is realized by the CPU 16A adjusting the wavelength sweep of the light source 20A.
 具体的には、測定光の1回目の走査では、断層画像を取得する範囲における最初の領域R1には、λ1からλ20の掃引がされた測定光が照射される。2番目の領域R2には、λ21からλ40の掃引がされた測定光が照射される。3番目の領域R3には、λ41からλ60の掃引がされた測定光が照射される。100番目の領域R100には、λ1981からλ2000の掃引がされた測定光が照射される。 Specifically, in the first scan of the measurement light, the first region R1 in the range in which the tomographic image is acquired is irradiated with the measurement light swept from λ1 to λ20. The second region R2 is irradiated with the measurement light swept from λ21 to λ40. The third region R3 is irradiated with the measurement light swept from λ41 to λ60. The 100th region R100 is irradiated with the measurement light swept from λ1981 to λ2000.
 断層画像を取得する範囲の2回目の走査では、最初の領域R1には、λ1981からλ2000の掃引がされた測定光が照射される。2番目の領域R2には、λ1からλ20の掃引がされた測定光が照射される。3番目の領域R3には、λ21からλ40の掃引がされた測定光が照射される。100番目の領域R100には、λ1961からλ1980の掃引がされた測定光が照射される。 In the second scan of the range for acquiring the tomographic image, the first region R1 is irradiated with the measurement light swept from λ1981 to λ2000. The second region R2 is irradiated with the measurement light swept from λ1 to λ20. The third region R3 is irradiated with the measurement light swept from λ21 to λ40. The 100th region R100 is irradiated with the measurement light swept from λ1961 to λ1980.
 断層画像を取得する範囲の3回目の走査では、最初の領域R1には、λ1961からλ1980の掃引がされた測定光が照射される。2番目の領域R2には、λ1981からλ2000の掃引がされた測定光が照射される。3番目の領域R3には、λ1からλ20の掃引がされた測定光が照射される。100番目の領域R100には、λ1941からλ1960の掃引がされた測定光が照射される In the third scan of the range for acquiring the tomographic image, the first region R1 is irradiated with the measurement light swept from λ1961 to λ1980. The second region R2 is irradiated with the measurement light swept from λ1981 to λ2000. The third region R3 is irradiated with the measurement light swept from λ1 to λ20. The 100th region R100 is irradiated with the measurement light swept from λ1941 to λ1960.
 図9に示す例では、100回目の走査まで行われる。よって、各領域R1~領域R100にすべての掃引波長(λ1からλ2000)が100回に時間的に分割されて照射されることになる。そして、図8と同様の手法で、A-Scanデータが生成され断層画像データを生成することができる。 In the example shown in FIG. 9, the scanning is performed up to the 100th scan. Therefore, each region R1 to R100 is irradiated with all the sweep wavelengths (λ1 to λ2000) divided in time into 100 times. Then, A-Scan data is generated and tomographic image data can be generated by the same method as in FIG.
[第3の実施の形態] [Third Embodiment]
 次に、第3の実施の形態の眼科装置について図面を参照して説明する。第3の実施の形態の眼科装置の構成は、第2の実施の形態の眼科装置の構成(図5参照)と同様であるので、その説明を省略する。 Next, the ophthalmic apparatus of the third embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the third embodiment is the same as the configuration of the ophthalmic apparatus of the second embodiment (see FIG. 5), the description thereof will be omitted.
 図10には、波長掃引とポリゴンミラー24の駆動タイミングとの関係が示されている。第3の実施の形態も、波長掃引時間と1回の走査にかかる時間とが異なるポリゴンミラー24を用いて、断層画像を取得する範囲における各領域に照射される波長をシフトする手法である。 FIG. 10 shows the relationship between the wavelength sweep and the drive timing of the polygon mirror 24. The third embodiment is also a method of shifting the wavelength to be irradiated to each region in the range in which the tomographic image is acquired by using the polygon mirror 24 in which the wavelength sweep time and the time required for one scanning are different.
 例えば、光源20Aは、波長掃引数が2000で波長掃引周波数が200kHzの光源である。ポリゴンミラー24の回転周波数は、198kHzである。断層画像を取得する範囲における各領域に照射される波長は走査の1周期毎に20波長だけシフトする。これを100回の各走査について繰り返す。 For example, the light source 20A is a light source having a wavelength sweep argument of 2000 and a wavelength sweep frequency of 200 kHz. The rotation frequency of the polygon mirror 24 is 198 kHz. The wavelength irradiated to each region in the range in which the tomographic image is acquired shifts by 20 wavelengths in each scanning cycle. This is repeated for each scan 100 times.
 より詳細に説明すると、図10に示すように、1回目の走査では、ポリゴンミラー24の駆動信号の開始タイミングと、光源20Aの波長掃引の開始タイミングとが一致する。しかし、1回の走査の時間は、光源20Aの波長掃引が4回分の時間と、20波長分の波長掃引の時間とを加算した時間になっている(説明の都合上、波長λ1を1個、波長λ2を同様に1個として数える。例えば、波長λ1~λ20は20波長分とする)。よって、断層画像を取得する範囲における最初の領域Rには、λ1からλ20の掃引がされた測定光が照射される。最後から1つ前の領域には、λ1981からλ2000の掃引がされた測定光が照射される。最後の領域には、λ1からλ20の掃引がされた測定光が照射される。 More specifically, as shown in FIG. 10, in the first scan, the start timing of the drive signal of the polygon mirror 24 and the start timing of the wavelength sweep of the light source 20A coincide with each other. However, the time for one scan is the time obtained by adding the time for four wavelength sweeps of the light source 20A and the time for wavelength sweeps for 20 wavelengths (for convenience of explanation, one wavelength λ1 is used. , The wavelength λ2 is similarly counted as one. For example, the wavelengths λ1 to λ20 are 20 wavelengths). Therefore, the first region R in the range for acquiring the tomographic image is irradiated with the measurement light swept from λ1 to λ20. The region immediately before the end is irradiated with the measurement light swept from λ1981 to λ2000. The last region is irradiated with the measurement light swept from λ1 to λ20.
 よって、2回目の走査では、断層画像を取得する範囲における最初の領域には、λ21からλ40の掃引がされた測定光が照射される。最後の領域には、λ21からλ40の掃引がされた測定光が照射される。 Therefore, in the second scan, the measurement light swept from λ21 to λ40 is irradiated to the first region in the range in which the tomographic image is acquired. The last region is irradiated with the measurement light swept from λ21 to λ40.
 以上の処理が繰り返され、断層画像を取得する範囲の各領域に波長掃引される範囲の全波長の測定光が照射され、断層画像が得られる。 The above process is repeated, and each region of the tomographic image acquisition range is irradiated with measurement light of all wavelengths in the wavelength sweep range, and a tomographic image is obtained.
 ポリゴンミラー24の回転周波数を低くすることも可能で、例えば、9.995kHzである場合は、1走査内に20回の波長掃引と20波長分のシフトが行われる。この場合の測定時間は以下のようになる。
 (1/9.995kHz)×(100)=0.010005 (秒)
It is also possible to lower the rotation frequency of the polygon mirror 24. For example, in the case of 9.995 kHz, 20 wavelength sweeps and 20 wavelength shifts are performed in one scan. The measurement time in this case is as follows.
(1 / 9.995 kHz) × (100) = 0.010005 (seconds)
 第3の実施の形態は、第2の実施の形態と波長シフトの手法を変えたものであり、網膜上での照射時間は変わらない。そのため、第3の実施の形態の相対的SNRも約1.54倍となる。 The third embodiment is different from the second embodiment in the wavelength shifting method, and the irradiation time on the retina does not change. Therefore, the relative SNR of the third embodiment is also about 1.54 times.
[第4の実施の形態] [Fourth Embodiment]
 次に、第4の実施の形態の眼科装置について図面を参照して説明する。第4の実施の形態の眼科装置の構成は、第1の実施の形態の眼科装置の構成と略同様であるので、同一部分には同一の符号を付して、その説明を省略し、主として異なる部分のみを説明する。 Next, the ophthalmic apparatus of the fourth embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the fourth embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
 図11には、第4の実施の形態の眼科装置110の撮影光学系19Tの概略構成が示されている。図11に示すように、第4の実施の形態の撮影光学系19Tでは、第1の実施の形態の眼科装置110の撮影光学系19のリレー光学系30に代えて、KTNスキャナ23側から被検眼側に、第1のリレー光学系30Aと第2のリレー光学系30Bとを備えている。第1のリレー光学系30Aと第2のリレー光学系30Bはそれぞれ複数のレンズから構成されている。 FIG. 11 shows a schematic configuration of the photographing optical system 19T of the ophthalmic apparatus 110 of the fourth embodiment. As shown in FIG. 11, in the photographing optical system 19T of the fourth embodiment, instead of the relay optical system 30 of the photographing optical system 19 of the ophthalmic apparatus 110 of the first embodiment, the image is received from the KTN scanner 23 side. A first relay optical system 30A and a second relay optical system 30B are provided on the optometry side. The first relay optical system 30A and the second relay optical system 30B are each composed of a plurality of lenses.
 第1のリレー光学系30Aにより、KTNスキャナ23の位置と、第1のリレー光学系30Aと第2のリレー光学系30Bとの間の中間位置とが共役となり、第2のリレー光学系30Bにより、当該中間位置と被検眼の位置とは共役となる。 The position of the KTN scanner 23 is conjugated by the first relay optical system 30A and the intermediate position between the first relay optical system 30A and the second relay optical system 30B, and the second relay optical system 30B causes the position of the KTN scanner 23 to be conjugated. , The intermediate position and the position of the eye to be inspected are conjugate.
 ところで、KTNスキャナ23の走査角度は、所定角度(例えば、10-deg(10度))である。 By the way, the scanning angle of the KTN scanner 23 is a predetermined angle (for example, 10-deg (10 degrees)).
 第4の実施の形態では、第1のリレー光学系30Aにより、測定光の走査角度を拡大させている。具体的には、第1のリレー光学系30Aは、倍率(横倍率)を、例えば、(1/7)倍としている。これにより、走査角度を7倍(70-deg(70度))とすることができる。 In the fourth embodiment, the scanning angle of the measurement light is expanded by the first relay optical system 30A. Specifically, the first relay optical system 30A has a magnification (horizontal magnification) of, for example, (1/7) times. As a result, the scanning angle can be increased 7 times (70-deg (70 degrees)).
[第5の実施の形態] [Fifth Embodiment]
 次に、第5の実施の形態の眼科装置について図面を参照して説明する。第5の実施の形態の眼科装置の構成は、第1の実施の形態の眼科装置の構成と略同様であるので、同一部分には同一の符号を付して、その説明を省略し、主として異なる部分のみを説明する。 Next, the ophthalmic apparatus of the fifth embodiment will be described with reference to the drawings. Since the configuration of the ophthalmic apparatus of the fifth embodiment is substantially the same as the configuration of the ophthalmic apparatus of the first embodiment, the same parts are designated by the same reference numerals, the description thereof will be omitted, and mainly. Only the different parts will be described.
 図12には、第5の実施の形態の眼科装置110の撮影光学系19Uの概略構成が示されている。図12に示すように、第5の実施の形態の撮影光学系19Uでは、第1の実施の形態の眼科装置110の撮影光学系19の反射ミラー25及びリレー光学系30に代えて、走査ミラー25C及びリレー光学系30Cを備えている。走査ミラー25Cにより、KTNスキャナ23により測定光が1回走査される毎に、測定光が走査する領域が移動される。リレーレンズ30Cにより、KTNスキャナ23の位置と、被検眼の位置とは共役となる。 FIG. 12 shows a schematic configuration of the photographing optical system 19U of the ophthalmic apparatus 110 according to the fifth embodiment. As shown in FIG. 12, in the photographing optical system 19U of the fifth embodiment, the scanning mirror is replaced with the reflection mirror 25 and the relay optical system 30 of the photographing optical system 19 of the ophthalmic apparatus 110 of the first embodiment. It includes 25C and a relay optical system 30C. The scanning mirror 25C moves the region scanned by the measurement light each time the measurement light is scanned by the KTN scanner 23. With the relay lens 30C, the position of the KTN scanner 23 and the position of the eye to be inspected are conjugated.
 第5の実施の形態では、第1の実施の形態における走査可能な範囲を、第4の実施の形態とは異なる方法で、拡大している。即ち、第5の実施の形態では、KTNスキャナ23及び走査ミラー25Cの組み合わせにより、走査できる画角を広角にしている。よって、図12の被検眼の眼底領域を、第1~第4の実施の形態よりも広い画角で撮影可能である。これは、より広範囲の眼底領域(眼底中心部だけではなく眼底周辺部を含む領域)の断層画像を取得可能であることを意味する。眼底中心部に存在する視神経乳頭や黄斑を含む領域の弾道画像だけでなく、眼底周辺部の病変、新生血管、渦静脈などを含む領域の断層画像を取得することができる。 In the fifth embodiment, the scannable range in the first embodiment is expanded by a method different from that in the fourth embodiment. That is, in the fifth embodiment, the angle of view that can be scanned is widened by the combination of the KTN scanner 23 and the scanning mirror 25C. Therefore, the fundus region of the eye to be inspected in FIG. 12 can be photographed with a wider angle of view than in the first to fourth embodiments. This means that it is possible to acquire a tomographic image of a wider fundus region (a region including not only the central part of the fundus but also the peripheral part of the fundus). It is possible to acquire not only a ballistic image of a region including the optic nerve head and the macula existing in the central part of the fundus, but also a tomographic image of a region including lesions, new blood vessels, vortex veins, etc. around the fundus.
 図13には、第5の実施の形態である広角な画角を走査での断層画像データ(B-Scanデータ)を取得する際の、波長掃引と測定光の走査との関係が示されている。 FIG. 13 shows the relationship between the wavelength sweep and the scanning of the measurement light when acquiring the tomographic image data (B-Scan data) by scanning the wide angle of view according to the fifth embodiment. There is.
 まず、眼底中心部である第1領域Rc(図12参照)の断層画像の取得を行う。
 測定光の1回目の走査S1(図13の一番上参照)では、断層画像を取得する範囲の内の第1領域Rcにおける最初の領域R1には、λ1からλ10の掃引がされた測定光が照射される。最初の領域R1の隣の領域R2には、λ11からλ20の掃引がされた測定光が照射される。第1領域Rcの最後の領域R200には、λ1991からλ2000の掃引がされた測定光が照射される。
First, a tomographic image of the first region Rc (see FIG. 12), which is the central part of the fundus, is acquired.
In the first scan S1 of the measurement light (see the top of FIG. 13), the measurement light in which λ1 to λ10 is swept in the first region R1 in the first region Rc within the range for acquiring the tomographic image. Is irradiated. The region R2 adjacent to the first region R1 is irradiated with the measurement light swept from λ11 to λ20. The last region R200 of the first region Rc is irradiated with the measurement light swept from λ1991 to λ2000.
 測定光の2回目の走査S2(図13の上から2番目参照)では、断層画像を取得する範囲の内の第1領域Rcにおける最初の領域R1には、λ11からλ20の掃引がされた測定光が照射される。2番目の領域R2には、λ21からλ30の掃引がされた測定光が照射される。第1領域Rcの最後の領域RN点には、λ1からλ10の掃引がされた測定光が照射される。 In the second scan S2 of the measurement light (see the second from the top of FIG. 13), the first region R1 in the first region Rc within the range for acquiring the tomographic image was swept from λ11 to λ20. Light is emitted. The second region R2 is irradiated with the measurement light swept from λ21 to λ30. The last region RN point of the first region Rc is irradiated with the measurement light swept from λ1 to λ10.
 最後の走査SM(200回目の走査、図13の一番下参照)では、断層画像を取得する範囲の内の第1領域Rcにおける最初の領域R1には、λ1991からλ2000の掃引がされた測定光が照射される。2番目の領域R2には、λ1からλ10の掃引がされた測定光が照射される。第1領域Rcの最後の領域RNには、λ1981からλ1990の掃引がされた測定光が照射される。 In the final scan SM (200th scan, see bottom of FIG. 13), the first region R1 in the first region Rc within the range to acquire the tomographic image was swept from λ1991 to λ2000. Light is emitted. The second region R2 is irradiated with the measurement light swept from λ1 to λ10. The last region RN of the first region Rc is irradiated with the measurement light swept from λ1981 to λ1990.
 以上の複数回の走査により、領域Rcの中心断層画像データが得られる。 By the above multiple scans, the central tomographic image data of the region Rc can be obtained.
 次に、走査ミラー25Cにより、領域Rcに上側に隣接する第1周辺領域Rp1に、走査領域を移動させる。走査ミラー25Cにより走査領域を移動させた後、図13に示す、領域Rcの複数回の走査と同様にして、当該隣接する領域Rp1の第1周辺断層画像データを取得する。 Next, the scanning mirror 25C moves the scanning region to the first peripheral region Rp1 adjacent to the region Rc on the upper side. After the scanning region is moved by the scanning mirror 25C, the first peripheral tomographic image data of the adjacent region Rp1 is acquired in the same manner as the multiple scans of the region Rc shown in FIG.
 そして、同様にして、領域Rcに下側に隣接する第2周辺領域Rp2の第2周辺断層画像データを取得する。そして、画像処理装置17にて、中心断層画像データ、第1周辺断層画像データおよび第2周辺領域Rp2の第2周辺断層画像データを合成することにより、第1~第4の実施の形態よりも広範囲RLの断層画像データを生成することができる。
上述では、中心領域Rc、第1周辺領域Rp1、第2周辺領域Rp2の3つの領域に分割して断層画像を取得したが、断層画像を取得する範囲を、2、3、5あるいは7領域など任意の領域数に分割して、断層画像を取得するようにしてもよい。
Then, in the same manner, the second peripheral tomographic image data of the second peripheral region Rp2 adjacent to the lower side of the region Rc is acquired. Then, by synthesizing the central tomographic image data, the first peripheral tomographic image data, and the second peripheral tomographic image data of the second peripheral region Rp2 by the image processing apparatus 17, the first to fourth embodiments are performed. It is possible to generate tomographic image data of a wide range of RL.
In the above, the tomographic image is acquired by dividing into three regions of the central region Rc, the first peripheral region Rp1, and the second peripheral region Rp2. The tomographic image may be acquired by dividing it into an arbitrary number of regions.
[第6の実施の形態] [Sixth Embodiment]
 次に、第6の実施の形態の眼科装置について図面を参照して説明する。第6の実施の形態の眼科装置の構成は、第1の実施の形態から第5の実施の形態の何れの構成も採用することができる。 Next, the ophthalmic apparatus of the sixth embodiment will be described with reference to the drawings. As the configuration of the ophthalmic apparatus according to the sixth embodiment, any configuration from the first embodiment to the fifth embodiment can be adopted.
 図14には、断層画像データを取得する際の、波長掃引と測定光の走査との関係が示されている。 FIG. 14 shows the relationship between the wavelength sweep and the scanning of the measurement light when acquiring the tomographic image data.
 図14に示すように、第6の実施の形態では、各走査においては、波長を固定する。1回の走査が終了すると、波長を、例えば、1波長掃引させ、当該波長で再び走査を行う。これを繰り返し、最終的な断層画像データを生成するものである。一回の走査中は測定光の波長を固定し、複数回の走査全体では、波長が掃引されるという点で、第1の実施の形態から第5の実施の形態と異なる。 As shown in FIG. 14, in the sixth embodiment, the wavelength is fixed in each scan. When one scan is completed, the wavelength is swept, for example, one wavelength, and scanning is performed again at that wavelength. This is repeated to generate the final tomographic image data. It differs from the first embodiment to the fifth embodiment in that the wavelength of the measurement light is fixed during one scan and the wavelength is swept during the entire plurality of scans.
 第6の実施の形態では、一回の走査の間は波長が固定されるため、必要とされる波長掃引速度を緩やかにすることができる In the sixth embodiment, since the wavelength is fixed during one scan, the required wavelength sweep speed can be slowed down.
 以上説明した各処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 Each process explained above is just an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, or the processing order may be changed within a range that does not deviate from the purpose.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  レーザー光を発すると共に、発するレーザー光の波長を、波長λ1から波長λNまでの掃引幅Δλ=λN-λ1で波長掃引が可能な波長掃引型の光源と、
     前記光源から発せられたレーザー光を、測定光と参照光とに分岐させる分岐部と、
     前記測定光を、物体の所定領域に向けて走査する走査部と、
     前記物体の所定領域からの反射光と、前記参照光との干渉光を発生させる干渉部と、
     前記干渉光を検出し検出信号を出力する検出部と、
     前記物体の所定領域の断層画像を取得するために、
     前記所定領域をM(M及びmは整数であり、M>m>1)回走査し、
     m回目の走査での照射開始波長λmを、
     λm=λ1+(m-1)×Δλ/M
     となるように、前記光源及び前記走査部を制御する制御部と、
    を備える光干渉断層計。
    A wavelength sweep type light source that emits laser light and can sweep the wavelength of the emitted laser light with a sweep width Δλ = λN−λ1 from wavelength λ1 to wavelength λN.
    A branching portion that splits the laser light emitted from the light source into measurement light and reference light.
    A scanning unit that scans the measurement light toward a predetermined area of an object, and
    An interference portion that generates interference light between the reflected light from a predetermined region of the object and the reference light.
    A detection unit that detects the interference light and outputs a detection signal,
    To obtain a tomographic image of a predetermined area of the object
    The predetermined area was scanned M (M and m are integers, M>m> 1) times.
    The irradiation start wavelength λm in the mth scan,
    λm = λ1 + (m-1) × Δλ / M
    A control unit that controls the light source and the scanning unit so as to
    Optical coherence tomography.
  2.  前記所定領域を1回走査するために必要な時間をTscan、
     前記波長掃引にかかる時間をTswept、
    としたとき、
     Tscan=Tswept
    である、請求項1の光干渉断層計。
    The time required to scan the predetermined area once is Tscan,
    The time required for the wavelength sweep is Tswept,
    When
    Tscan = Tswept
    The optical coherence tomography according to claim 1.
  3.  M回の前記所定領域の走査で得られた検出信号を用いて、前記所定領域の断層画像を生成する断層画像生成部と、
    をさらに備える、請求項1または請求項2に記載の光干渉断層計。
    A tomographic image generation unit that generates a tomographic image of the predetermined region by using the detection signal obtained by scanning the predetermined region M times.
    The optical coherence tomography according to claim 1 or 2, further comprising.
  4.  レーザー光を発すると共に、発するレーザー光の波長を、波長λ1から波長λNまでの掃引幅Δλ=λN-λ1及び掃引時間Tsweptで波長掃引が可能な波長掃引型の光源と、
     前記光源から発せられたレーザー光を、測定光と参照光とに分岐させる分岐部と、
     前記測定光を、物体の所定領域に向けて走査する走査部と、
     前記物体の所定領域からの反射光と、前記参照光との干渉光を発生させる干渉部と、
     前記干渉光を検出し検出信号を出力する検出部と、
     前記物体の所定領域の断層画像を取得するために、
     前記所定領域をM(M及びmは整数であり、M>m>1)回走査し、
     m回目の照射開始タイミングは、m-1回目の走査終了時から、(m-1)×Tswept/Mの時間が経過した時となるように、前記光源及び前記走査部を制御する制御部と、
     を備える光干渉断層計。
    A wavelength sweep type light source that emits laser light and can sweep the wavelength of the emitted laser light with a sweep width Δλ = λN−λ1 from wavelength λ1 to wavelength λN and a sweep time Tswept.
    A branching portion that splits the laser light emitted from the light source into measurement light and reference light.
    A scanning unit that scans the measurement light toward a predetermined area of an object, and
    An interference portion that generates interference light between the reflected light from a predetermined region of the object and the reference light.
    A detection unit that detects the interference light and outputs a detection signal,
    To obtain a tomographic image of a predetermined area of the object
    The predetermined area was scanned M (M and m are integers, M>m> 1) times.
    The m-th irradiation start timing is the time when the time of (m-1) × Tswept / M elapses from the end of the m-1st scan, and the control unit that controls the light source and the scanning unit. ,
    Optical coherence tomography.
  5.  前記所定領域を1回走査するために必要な時間をTscanとすると、
      Tscan≧α×Tswept (αは2以上の整数)
     である、請求項4の光干渉断層計。
    Let Tscan be the time required to scan the predetermined area once.
    Tscan ≧ α × Tswept (α is an integer of 2 or more)
    The optical coherence tomography according to claim 4.
  6.  前記検出信号に基づいて前記所定領域の断層画像を生成する断層画像生成部をさらに備える、請求項1から請求項5の何れか1項に記載の光干渉断層計。 The optical coherence tomography according to any one of claims 1 to 5, further comprising a tomographic image generation unit that generates a tomographic image of the predetermined region based on the detection signal.
  7.  請求項1から請求項3の何れか1項に記載の光干渉断層計の制御方法であって、
     前記制御部は、
     前記物体の所定領域の断層画像を取得するために、
     前記所定領域をM(M及びmは整数であり、M>m>1)回走査し、
     m回目の走査での照射開始波長λmを、
     λm=λ1+(m-1)×Δλ/M
     となるように、前記光源及び前記走査部を制御する、
     光干渉断層計の制御方法。
    The method for controlling an optical coherence tomography according to any one of claims 1 to 3.
    The control unit
    To obtain a tomographic image of a predetermined area of the object
    The predetermined area was scanned M (M and m are integers, M>m> 1) times.
    The irradiation start wavelength λm in the mth scan,
    λm = λ1 + (m-1) × Δλ / M
    The light source and the scanning unit are controlled so as to be.
    How to control an optical coherence tomography.
  8.  請求項4から請求項6の何れか1項に記載の光干渉断層計の制御方法であって、
     前記制御部は、
     前記物体の所定領域の断層画像を取得するために、
     前記所定領域をM(M及びmは整数であり、M>m>1)回走査し、
     m回目の照射開始タイミングは、m-1回目の走査終了時から、(m-1)×Tswept/Mの時間が経過した時となるように、前記光源及び前記走査部を制御する、
     光干渉断層計の制御方法。
    The method for controlling an optical coherence tomography according to any one of claims 4 to 6.
    The control unit
    To obtain a tomographic image of a predetermined area of the object
    The predetermined area was scanned M (M and m are integers, M>m> 1) times.
    The light source and the scanning unit are controlled so that the m-th irradiation start timing is when the time of (m-1) × Tswept / M elapses from the end of the m-1th scanning.
    How to control an optical coherence tomography.
PCT/JP2020/002056 2020-01-22 2020-01-22 Optical coherence tomography apparatus and method for controlling same WO2021149173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/002056 WO2021149173A1 (en) 2020-01-22 2020-01-22 Optical coherence tomography apparatus and method for controlling same
JP2021572177A JP7327521B2 (en) 2020-01-22 2020-01-22 Optical coherence tomography and control method for optical coherence tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002056 WO2021149173A1 (en) 2020-01-22 2020-01-22 Optical coherence tomography apparatus and method for controlling same

Publications (1)

Publication Number Publication Date
WO2021149173A1 true WO2021149173A1 (en) 2021-07-29

Family

ID=76991822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002056 WO2021149173A1 (en) 2020-01-22 2020-01-22 Optical coherence tomography apparatus and method for controlling same

Country Status (2)

Country Link
JP (1) JP7327521B2 (en)
WO (1) WO2021149173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114359254A (en) * 2022-01-13 2022-04-15 视微影像(河南)科技有限公司 Anterior segment OCT image light beam detection and positioning tracking method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233700A1 (en) * 2014-02-14 2015-08-20 Carl Zeiss Meditec, Inc. Swept source interferometric imaging systems and methods
JP2018192001A (en) * 2017-05-17 2018-12-06 キヤノン株式会社 Ophthalmologic imaging apparatus, control method thereof, and program
JP2019045271A (en) * 2017-08-31 2019-03-22 学校法人 総持学園 鶴見大学 Optical coherence tomographic imaging apparatus
JP2019201952A (en) * 2018-05-24 2019-11-28 キヤノン株式会社 Imaging apparatus and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154996A (en) 2018-03-16 2019-09-19 株式会社トプコン Ophthalmologic apparatus and ophthalmologic information processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233700A1 (en) * 2014-02-14 2015-08-20 Carl Zeiss Meditec, Inc. Swept source interferometric imaging systems and methods
JP2018192001A (en) * 2017-05-17 2018-12-06 キヤノン株式会社 Ophthalmologic imaging apparatus, control method thereof, and program
JP2019045271A (en) * 2017-08-31 2019-03-22 学校法人 総持学園 鶴見大学 Optical coherence tomographic imaging apparatus
JP2019201952A (en) * 2018-05-24 2019-11-28 キヤノン株式会社 Imaging apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114359254A (en) * 2022-01-13 2022-04-15 视微影像(河南)科技有限公司 Anterior segment OCT image light beam detection and positioning tracking method and system
CN114359254B (en) * 2022-01-13 2023-12-19 视微影像(河南)科技有限公司 Method and system for detecting, positioning and tracking OCT (optical coherence tomography) image light column of anterior segment of eye

Also Published As

Publication number Publication date
JP7327521B2 (en) 2023-08-16
JPWO2021149173A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP6941696B2 (en) Imaging system with improved frequency domain interferometry
JP6805539B2 (en) Ophthalmic imaging device
RU2545452C2 (en) Imaging device and method for eye ground imaging by optical coherence tomography
US5975697A (en) Optical mapping apparatus with adjustable depth resolution
CN104640497B (en) Improvement in scanning laser ophthalmoscope or the improvement about scanning laser ophthalmoscope
JP4863381B2 (en) Spectral interferometry and spectral interferometer
US9016861B2 (en) Adaptive optics apparatus, adaptive optics method, and imaging apparatus
JP2018528830A (en) Coherence gate wavefront sensorless adaptive optics multi-photon microscopy and related systems and methods
AU2010243345A1 (en) Improvements in or relating to scanning ophthalmoscopes
US20170065169A1 (en) Imaging apparatus
JP6758900B2 (en) Ophthalmic imaging device
KR102044198B1 (en) Imaging device
WO2016178298A1 (en) Imaging apparatus
WO2021149173A1 (en) Optical coherence tomography apparatus and method for controlling same
JP2017029483A (en) Ophthalmologic imaging device
JP2014079464A (en) Ophthalmologic apparatus and wave front aberration correcting method for the same
CN113940623A (en) Binocular optical coherence tomography imaging system
JP2021153786A (en) Image processing device, image processing method and program
JP2017217312A (en) Optical coherence tomography device
JP2017148109A (en) Optical interference tomography apparatus
JP6584125B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914889

Country of ref document: EP

Kind code of ref document: A1