WO2021149143A1 - Reflector antenna device and communication device - Google Patents

Reflector antenna device and communication device Download PDF

Info

Publication number
WO2021149143A1
WO2021149143A1 PCT/JP2020/001905 JP2020001905W WO2021149143A1 WO 2021149143 A1 WO2021149143 A1 WO 2021149143A1 JP 2020001905 W JP2020001905 W JP 2020001905W WO 2021149143 A1 WO2021149143 A1 WO 2021149143A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna device
reflecting surface
reflector antenna
reflector
Prior art date
Application number
PCT/JP2020/001905
Other languages
French (fr)
Japanese (ja)
Inventor
宏昌 中嶋
山本 伸一
道生 瀧川
修次 縫村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021560841A priority Critical patent/JP6995260B2/en
Priority to PCT/JP2020/001905 priority patent/WO2021149143A1/en
Publication of WO2021149143A1 publication Critical patent/WO2021149143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • H01Q15/20Collapsible reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system

Definitions

  • the present disclosure relates to a reflector antenna device including a primary radiator and a communication device including a reflector antenna device.
  • the following Patent Document 1 discloses a reflect array antenna.
  • the reflect array antenna includes a dielectric substrate, a plurality of conductor patches formed on the dielectric substrate, and a primary radiation antenna.
  • the dielectric substrate on which a plurality of conductor patches are formed is a flat plate-shaped substrate. Therefore, the path length of the radio wave when the radio wave radiated from the primary radiation antenna is reflected near the center of the dielectric substrate (hereinafter referred to as the first path length) and the vicinity of the end portion of the dielectric substrate The path length of the radio wave when it is reflected (hereinafter referred to as the second path length) is different.
  • the phase of the radio wave reflected near the center of the dielectric substrate and the phase of the radio wave reflected near the edge of the dielectric substrate are different. Therefore, if the conductor is simply uniformly applied to the radio wave reflecting surface of the dielectric substrate, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the edge of the dielectric substrate The radiation direction of the radio waves reflected in the vicinity is different.
  • a plurality of conductor patches are formed instead of uniformly applying conductors to the reflecting surface of radio waves on the dielectric substrate.
  • each conductor patch is used in order to align the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the radio wave reflected near the edge of the dielectric substrate. The size etc. have been adjusted.
  • the first path length and the second path length are different. Therefore, when the frequency of the radio wave radiated from the primary radiation antenna is switched after the size of the conductor patch is adjusted, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the dielectric substrate The radiation direction of the radio waves reflected near the end will not be aligned. That is, in the reflect array antenna, if the frequency of the radio wave radiated from the primary radiation antenna is switched after the size of the conductor patch is adjusted, there is a problem that the radiation direction of the radio wave varies. ..
  • the present disclosure has been made in order to solve the above-mentioned problems, and it is possible to suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector.
  • the purpose is to obtain a capable reflector antenna device.
  • the reflector antenna device includes a primary radiator that emits radio waves, a first substrate on which a plurality of conductor patches are arranged on a reflecting surface that reflects radio waves emitted from the primary radiator, and a first substrate.
  • a second substrate on which a plurality of conductor patches are arranged is provided on a reflecting surface which is arranged around the first substrate and reflects radio waves radiated from a primary radiator, and a reflecting surface in the first substrate.
  • the angle formed by the normal vector of the above and the normal vector of the reflecting surface on the second substrate is larger than 0 degrees and smaller than 90 degrees.
  • the angle between the normal vector of the reflective surface on the first substrate and the normal vector of the reflective surface on the second substrate is larger than 0 degrees and smaller than 90 degrees.
  • a reflector antenna device was constructed. Therefore, the reflector antenna device according to the present disclosure can suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector.
  • FIG. It is a perspective view which shows the reflector antenna device 3 which concerns on Embodiment 1.
  • FIG. It is a top view which shows the reflection surface 12a of the 1st substrate 12 in the reflector antenna device 3 which concerns on Embodiment 1.
  • FIG. It is a side view which shows the 1st substrate 12 in the reflector antenna device 3 which concerns on Embodiment 1.
  • FIG. It is a side view which shows the 2nd substrate 13 in the reflector antenna device 3 which concerns on Embodiment 1.
  • FIG. It is a side view which shows the 2nd substrate 13 in the reflector antenna device 3 which concerns on Embodiment 1.
  • FIG. It is a side view which shows the 2nd substrate 13 in the reflector antenna device 3 which concerns on
  • FIG. 7A is an explanatory diagram showing a state in which the second substrate 13 is superposed on the first substrate 12
  • FIG. 7B is an explanatory diagram showing a state in which the second substrate 13 is in the process of being opened
  • FIG. 7C is an explanatory diagram.
  • FIG. 10A is an explanatory view showing circular conductor patches 21 and 23
  • FIG. 10B is an explanatory view showing rectangular frame-shaped conductor patches 21 and 23
  • FIG. 10C is an explanatory view showing ring-shaped conductor patches 21 and 23
  • FIG. 10D is an explanatory view showing conductor patches 21 and 23 having a + shape. It is a perspective view which shows the reflector antenna device 3 which concerns on Embodiment 2.
  • FIG. 12A, 12B, and 12C are explanatory views showing a state in which the angle ⁇ between the reflecting surface 12a and the reflecting surface 13a is switched by the movable mechanism 30. It is explanatory drawing which shows the simulation result of the radiation characteristic of the reflector antenna device 3. It is a side view which shows the reflector antenna device 3 which concerns on Embodiment 3. FIG. It is explanatory drawing which shows the normal vector v 12 of the reflection surface 12a, the normal vector v 13 of the reflection surface 13a, the reflection direction of the radio wave by the reflection surface 12a, and the reflection direction of the radio wave by the reflection surface 13a. It is a side view which shows the reflector antenna device 3 which concerns on Embodiment 4. FIG.
  • FIG. 1 is a configuration diagram showing a communication device including the reflector antenna device 3 according to the first embodiment.
  • the signal transmission unit 1 outputs a transmission signal to the reflector antenna device 3.
  • the signal receiving unit 2 receives the received signal output from the reflector antenna device 3.
  • the reflector antenna device 3 radiates radio waves related to the transmission signal output from the signal transmission unit 1 into the air. Further, the reflector antenna device 3 receives a radio wave and outputs a received signal related to the received radio wave to the signal receiving unit 2.
  • FIG. 2 is a perspective view showing the reflector antenna device 3 according to the first embodiment.
  • FIG. 3 is a plan view showing a reflecting surface 12a of the first substrate 12 in the reflecting mirror antenna device 3 according to the first embodiment.
  • FIG. 4 is a side view showing the first substrate 12 in the reflector antenna device 3 according to the first embodiment.
  • FIG. 5 is a plan view showing a reflecting surface 13a of the second substrate 13 in the reflecting mirror antenna device 3 according to the first embodiment.
  • FIG. 6 is a side view showing the second substrate 13 in the reflector antenna device 3 according to the first embodiment.
  • FIG. 7 is an explanatory view showing a development example of the first substrate 12 and the second substrate 13 in the reflector antenna device 3 according to the first embodiment.
  • FIG. 7A shows a state in which the second substrate 13 is superposed on the first substrate 12, and
  • FIG. 7B shows a state in which the second substrate 13 is in the process of being opened.
  • FIG. 7C shows a state in which the second substrate 13 has been completely
  • the primary radiator 11 is realized by a backfire antenna.
  • the primary radiator 11 radiates radio waves related to the transmission signal output from the signal transmission unit 1 toward the reflection surface 12a of the first substrate 12 and the reflection surface 13a of the second substrate 13, respectively.
  • the first substrate 12 is realized by, for example, a dielectric substrate or a foam plate.
  • the reflecting surface 12a of the first substrate 12 is a surface that reflects radio waves radiated from the primary radiator 11, and a plurality of conductor patches 21 are arranged on the reflecting surface 12a.
  • the back surface 12b of the first substrate 12 is a surface opposite to the reflection surface 12a, and the conductor 22 is arranged on the entire back surface 12b.
  • the second substrate 13 is realized by, for example, a dielectric substrate or a foam plate.
  • the second substrate 13 is arranged around the first substrate 12.
  • the reflecting surface 13a of the second substrate 13 is a surface that reflects radio waves radiated from the primary radiator 11, and a plurality of conductor patches 23 are arranged on the reflecting surface 13a.
  • the back surface 13b of the second substrate 13 is a surface opposite to the reflecting surface 13a, and the conductor 24 is arranged on the entire back surface 13b.
  • the hinge 14 is a connecting member that connects the first substrate 12 and the second substrate 13.
  • the normal vector v 13 of the reflecting surface 13a of the second substrate 13 are inclined with respect to the normal vector v 12 of the reflective surface 12a of the first substrate 12 .
  • FIG. 8 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
  • the normal vector v 12 of the reflective surface 12a of the first substrate 12 the angle ⁇ between normal vector v 13 of the reflecting surface 13a of the second substrate 13, Greater than 0 degrees and less than 90 degrees.
  • the reflector antenna device 3 shown in FIG. 2 four second substrates 13 are arranged around the first substrate 12. However, it is sufficient that one or more second substrates 13 are arranged around the first substrate 12, and the second substrate 13 arranged around the first substrate 12, for example, is 1. It may be one or three. In the reflector antenna device 3 shown in FIG. 2, the first substrate 12 and the second substrate 13 are connected by a hinge 14. However, this is only an example, the first substrate 12 and the second substrate 13 are not connected, and there may be a gap between the first substrate 12 and the second substrate 13. ..
  • the conductor patch 21 is a conductor applied to the reflecting surface 12a of the first substrate 12.
  • the phase of the radio wave reflected by the reflecting surface 12a can be changed by adjusting the size of each of the plurality of conductor patches 21 applied to the reflecting surface 12a or the arrangement of each of the plurality of conductor patches 21. Is possible.
  • the conductor 22 is a conductor provided on the entire back surface 12b of the first substrate 12.
  • the conductor patch 23 is a conductor applied to the reflecting surface 13a of the second substrate 13.
  • the phase of the radio wave reflected by the reflecting surface 13a can be changed by adjusting the size of each of the plurality of conductor patches 23 applied to the reflecting surface 13a or the arrangement of each of the plurality of conductor patches 23. Is possible.
  • the conductor 24 is a conductor provided on the entire back surface 13b of the second substrate 13.
  • a plurality of conductors are aligned so that the direction of reflection of radio waves by the reflection surface 12a of the first substrate 12 and the direction of reflection of radio waves by the reflection surface 13a of the second substrate 13 are aligned.
  • the size of each of the patches 21 and 23, or the arrangement of each of the plurality of conductor patches 21 and 23 is adjusted.
  • the arrows indicate the direction of reflection of radio waves.
  • the fact that the direction of reflection of radio waves by the reflecting surface 12a and the direction of reflection of radio waves by the reflecting surface 13a are not limited to those in which both reflection directions are exactly aligned, and both are within a range where there is no practical problem. The ones with different reflection directions are also included.
  • the reflector antenna device 3 When the reflector antenna device 3 is not in use, as shown in FIG. 7A, the second substrate 13 is superposed on the first substrate 12 to reduce the size of the reflector antenna device 3 and to reduce the size of the reflector antenna device 3. It is possible to improve the storability.
  • the reflector antenna device 3 As shown in FIG. 7C, the reflector antenna device 3 is used in a state where the second substrate 13 is open. When the second substrate 13 is open, the shape of the reflector antenna device 3 is a three-dimensional shape, and the shape of the reflector antenna device 3 is similar to the shape of a known parabolic antenna. Since the shape of the parabolic antenna remains a three-dimensional shape even when not in use, the parabolic antenna has poor storability.
  • the reflector antenna device 3 is more storable than the parabolic antenna because the second substrate 13 can be superposed on the first substrate 12 when not in use.
  • the signal transmission unit 1 outputs the transmission signal to the reflector antenna device 3.
  • the primary radiator 11 of the reflector antenna device 3 receives the transmission signal from the signal transmission unit 1, as shown in FIGS. 2 and 8, the radio wave related to the transmission signal is transmitted to the reflection surface 12a and the second substrate 12 of the first substrate 12. It radiates toward each of the reflecting surfaces 13a of the substrate 13 of 2.
  • the reflecting surface 12a of the first substrate 12 When the reflecting surface 12a of the first substrate 12 receives the radio wave radiated from the primary radiator 11, the reflecting surface 12a reflects the radio wave as shown in FIGS. 2 and 8.
  • the first substrate 12 is arranged parallel to the xy plane in the xyz coordinate axes.
  • the direction of reflection of radio waves by the reflecting surface 12a is a direction parallel to the z-axis.
  • 11a is a radio wave emission port in the primary radiator 11, and the radiation port 11a corresponds to a radio wave source.
  • the reflecting surface 13a of the second substrate 13 receives the radio wave radiated from the primary radiator 11, the reflecting surface 13a reflects the radio wave as shown in FIGS. 2 and 8.
  • the direction of reflection of radio waves by the reflection surface 13a is a direction parallel to the z-axis.
  • FIG. 9 shows the direction of reflection of radio waves by the dielectric substrate when the reflection surface of the radio waves is only the reflection surface of the flat plate-shaped dielectric substrate, similar to the reflect array antenna disclosed in Patent Document 1. It is explanatory drawing. As shown in FIG. 9, the flat plate-shaped dielectric substrate is arranged parallel to the xy plane in the xyz coordinate axes. When the reflecting surface of the radio wave is only the reflecting surface of the flat plate-shaped dielectric substrate, as shown in FIG. 9, the path length of the radio wave reflected near the center of the dielectric substrate (hereinafter, "first path length"). ”) And the path length of the radio wave reflected near the end of the dielectric substrate (hereinafter referred to as the“ second path length ”).
  • the difference between the first path length and the second path length is large, if a conductor is simply provided on the entire reflective surface of the dielectric substrate, the radio wave reflected near the center of the electric body substrate.
  • the phase of the radio wave reflected near the edge of the dielectric substrate is different. Therefore, the reflection direction of the radio wave reflected near the center of the electric body substrate and the reflection direction of the radio wave reflected near the edge of the dielectric substrate are different.
  • the radio wave reflected near the center of the electric body substrate can be obtained by adjusting the size of each of the plurality of conductor patches. It is possible to compensate for the difference between the phase of the radio wave and the phase of the radio wave reflected near the edge of the dielectric substrate. Therefore, even if the difference between the first path length and the second path length is large, by compensating for the phase difference, the reflection direction of the radio wave reflected near the center of the electric body substrate and the reflection direction of the dielectric substrate It is possible to align the reflection direction of the radio wave reflected near the end in substantially the same direction.
  • the frequency of the radio wave radiated from the primary radiator 11 may be switched. Since the first path length and the second path length are different, when the frequency of the radio wave radiated from the primary radiator 11 is switched, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the radio wave are determined. The radiation direction of the radio waves reflected near the edge of the dielectric substrate will not be aligned. That is, in the reflector antenna device shown in FIG. 9, if the frequency of the radio wave radiated from the primary radiator 11 is switched after the size of the conductor patch or the like is adjusted, the radiation direction of the radio wave will vary. .. Further, in the reflector antenna device shown in FIG. 9, among the radio waves radiated from the primary radiator 11, radio waves that are not reflected by the reflecting surface of the dielectric substrate and are unnecessarily radiated into the space are generated. The gain of the antenna may decrease.
  • the normal vector v 13 of the reflection surface 13a on the second substrate 13 is tilted with respect to the normal vector v 12 of the reflection surface 12a on the first substrate 12. .. That is, the normal vector v 12 of the reflecting surface 12a is in a direction parallel to the z-axis, whereas the normal vector v 13 of the reflecting surface 13a is in a direction different from the direction parallel to the z-axis, and the reflecting surface 13a
  • the normal vector v 13 of the above is tilted with respect to the normal vector v 12 of the reflecting surface 12a.
  • the reflector antenna device 3 shown in FIG. 8 Since the angle ⁇ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a is larger than 0 degrees and smaller than 90 degrees, the reflector antenna device 3 shown in FIG. 8 is , The difference between the first path length and the second path length is smaller than that of the reflector antenna device shown in FIG.
  • the reflector antenna device 3 since the difference between the first path length and the second path length is small, the radio waves radiated from the primary radiator 11 after the size of the conductor patches 21 and 23 are adjusted. Even if the frequency is switched, the variation in the radiation direction of the radio wave can be suppressed as compared with the reflector antenna device shown in FIG. In the reflector antenna device 3, since the normal vector v 13 of the reflection surface 13a is tilted with respect to the normal vector v 12 of the reflection surface 12a, the reflector antenna device 3 is the reflector antenna shown in FIG. Compared to the device, the proportion of radio waves that are unnecessarily radiated into the space is reduced, and the gain of the antenna is improved.
  • the conductor patches 21 and 23 have a rectangular shape.
  • the shape of the conductor patches 21 and 23 may be circular as shown in FIG. 10A, or may be a rectangular frame shape as shown in FIG. 10B.
  • the shape of the conductor patches 21 and 23 may be a ring shape as shown in FIG. 10C or a + shape as shown in FIG. 10D.
  • 10A shows circular conductor patches 21 and 23, and
  • FIG. 10B shows rectangular frame-shaped conductor patches 21 and 23.
  • FIG. 10C shows ring-shaped conductor patches 21 and 23, and FIG. 10D shows + -shaped conductor patches 21 and 23.
  • the shapes of the plurality of conductor patches 21 may be the same or different from each other.
  • the shapes of the plurality of conductor patches 23 may be the same or different from each other.
  • Each arrangement in the plurality of conductor patches 21 may be periodic or aperiodic. Further, each arrangement in the plurality of conductor patches 23 may be periodic or aperiodic.
  • the operation when the reflector antenna device 3 is used as a transmitting antenna is described.
  • the operation when the reflector antenna device 3 is used as a receiving antenna is reversible to the operation when it is used as a transmitting antenna.
  • the first substrate 12 in which a plurality of conductor patches 21 are arranged on the primary radiator 11 that emits radio waves and the reflecting surface 12a that reflects the radio waves emitted from the primary radiator 11.
  • the angle formed by the normal vector of the reflecting surface 12a on the first substrate 12 and the normal vector of the reflecting surface 13a on the second substrate 13 is larger than 0 degrees and smaller than 90 degrees.
  • the mirror antenna device 3 was configured. Therefore, the reflector antenna device 3 can suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector.
  • Embodiment 2 In the reflector antenna device 3 shown in FIG. 2, the angle ⁇ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a in the state where the second substrate 13 is completely opened is , The hinge 14 keeps it constant. In the second embodiment, it is possible to switch the angle ⁇ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a in the state where the second substrate 13 is completely opened. The reflector antenna device 3 will be described.
  • FIG. 11 is a perspective view showing the reflector antenna device 3 according to the second embodiment.
  • the movable mechanism 30 is realized by a hinge or the like capable of switching the angle ⁇ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a. That is, as shown in FIG. 12, the movable mechanism 30 is realized by a hinge or the like capable of switching the angle ⁇ between the reflecting surface 12a and the reflecting surface 13a.
  • ⁇ .
  • the movable mechanism 30 moves the second substrate 13 in order to switch the angle ⁇ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a.
  • 12A, 12B, and 12C are explanatory views showing a state in which the angle ⁇ between the reflecting surface 12a and the reflecting surface 13a is switched by the movable mechanism 30.
  • the angle ⁇ in FIG. 12A is about 10 degrees
  • the angle ⁇ in FIG. 12B is about 25 degrees
  • the angle ⁇ in FIG. 12B is about 35 degrees.
  • the movable mechanism 30 switches the angle ⁇ between the reflecting surface 12a and the reflecting surface 13a, the phase of the radio wave by the reflecting surface 13a changes, and the reflecting direction of the radio wave changes. Therefore, after the size of the conductor patches 21 and 23 is adjusted, the frequency of the radio wave radiated from the primary radiator 11 is switched, so that even if the radiation direction of the radio wave varies, the reflection surface 12a and the reflection surface 12a are reflected. By switching the angle ⁇ with the surface 13a, it is possible to suppress variations in the radiation direction of radio waves.
  • FIG. 13 is an explanatory diagram showing a simulation result of the radiation characteristics of the reflector antenna device 3.
  • the horizontal axis of the graph shown in FIG. 13 indicates the radiation direction of the radio wave radiated from the reflector antenna device 3, and the vertical axis of the graph shown in FIG. 13 is the gain of the radio wave radiated from the reflector antenna device 3. Is shown. In the example of FIG.
  • the beam having a gain of 10 [dB] The width has changed from an angle of 4.8 degrees to an angle of 7.6 degrees.
  • the reflector antenna device 3 shown in FIG. 11 in order to switch the normal vector v 12 of the reflective surface 12a of the first substrate 12, the angle ⁇ between normal vector v 13 of the reflecting surface 13a of the second substrate 13,
  • the reflector antenna device 3 shown in FIG. 11 is configured so as to include a movable mechanism 30 that can move the second substrate 13. Therefore, the reflector antenna device 3 shown in FIG. 11 can further suppress variations in the radiation direction of radio waves as compared with the reflector antenna device 3 shown in FIG.
  • Embodiment 3 In the reflector antenna device 3 shown in FIG. 2, a backfire antenna is used as the primary radiator 11. In the third embodiment, as shown in FIG. 14, a reflector antenna device 3 using a horn antenna as the primary radiator 41 will be described.
  • FIG. 14 is a side view showing the reflector antenna device 3 according to the third embodiment.
  • the primary radiator 41 is realized by a horn antenna. Similar to the primary radiator 11 shown in FIG. 2, the primary radiator 41 transmits radio waves related to the transmission signal output from the signal transmission unit 1 to the reflection surface 12a of the first substrate 12 and the reflection surface of the second substrate 13. It radiates toward each of 13a.
  • the primary radiator 41 is applied to the reflector antenna device 3 shown in FIG.
  • FIG. 15 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
  • the reflector antenna device 3 shown in FIG. 14 similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13
  • the angle ⁇ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees. Therefore, the reflector antenna device 3 shown in FIG. 14 also emits radio waves as a reflector, as compared with the reflect array antenna provided with only one flat plate-shaped dielectric substrate, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
  • FIG. 16 is a side view showing the reflector antenna device 3 according to the fourth embodiment.
  • the primary radiator 51 is realized by a horn antenna.
  • the primary radiator 51 radiates radio waves related to the transmission signal output from the signal transmission unit 1 toward the secondary reflector 52.
  • the secondary reflector 52 reflects the radio waves radiated from the primary radiator 51 toward the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13, respectively.
  • the primary radiator 51 and the secondary reflector 52 are applied to the reflector antenna device 3 shown in FIG.
  • FIG. 17 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
  • the reflector antenna device 3 shown in FIG. 16 similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13
  • the angle ⁇ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees. Therefore, the reflector antenna device 3 shown in FIG. 16 also emits radio waves more than the reflect array antenna provided with only one flat plate-shaped dielectric substrate as the reflector, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
  • the reflector antenna device 3 shown in FIG. 16 uses a ring-focused Gregorian secondary reflector as the secondary reflector 52, in which the central portion of the reflecting surface of the radio wave is recessed from the peripheral portion of the reflecting surface.
  • the reflector antenna device 3 has a ring focus Cassegrain in which, for example, as shown in FIG. 18, the central portion of the reflecting surface of radio waves is more convex than the peripheral portion of the reflecting surface.
  • the sub-reflector 53 of the above may be provided.
  • FIG. 18 is a side view showing another reflector antenna device 3 according to the fourth embodiment.
  • the same reference numerals as those in FIGS. 2 and 16 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the sub-reflecting mirror 53 transmits the radio waves radiated from the primary radiator 51 to the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13, respectively. Reflect toward.
  • the primary radiator 51 and the secondary reflector 53 are applied to the reflector antenna device 3 shown in FIG.
  • the primary radiator 51 and the secondary reflector 53 may be applied to the reflector antenna device 3 shown in FIG.
  • the sub-reflector included in the reflector antenna device 3 is not limited to the ring-focus Gregorian sub-reflector 52 or the ring-focus Cassegrain sub-reflector 53, and any shape of the sub-reflector may be used. Can be done.
  • the reflecting mirror antenna device 3 has a plurality of conductor patches 55 arranged on the reflecting surface 54a of the radio waves as a secondary reflecting mirror that reflects the radio waves radiated from the primary radiator 51, for example.
  • the third substrate 54 may be provided.
  • FIG. 19 is a side view showing another reflector antenna device 3 according to the fourth embodiment.
  • the same reference numerals as those in FIGS. 2 and 16 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • FIG. 20 is a plan view showing the reflection surface 54a of the third substrate 54 in the other reflector antenna device 3 according to the fourth embodiment.
  • FIG. 21 is a side view showing a third substrate 54 in the other reflector antenna device 3 according to the fourth embodiment.
  • the third substrate 54 is realized, for example, by a dielectric substrate or a foam plate.
  • the reflecting surface 54a of the third substrate 54 is a surface that reflects the radio waves radiated from the primary radiator 11 toward each of the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13. Yes, a plurality of conductor patches 55 are arranged on the reflecting surface 54a.
  • the back surface 54b of the third substrate 54 is a surface opposite to the reflecting surface 54a, and the conductor 56 is arranged on the entire back surface 54b.
  • the conductor patch 55 is a conductor applied to the reflecting surface 54a of the third substrate 54.
  • the phase of the radio wave reflected by the reflecting surface 54a can be changed by adjusting the size of each of the plurality of conductor patches 55 applied to the reflecting surface 54a or the arrangement of each of the plurality of conductor patches 55. Is possible.
  • the conductor 56 is a conductor provided on the entire back surface 54b of the third substrate 54.
  • the reflector antenna device 3 shown in FIG. 19 similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13
  • the angle ⁇ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees. Therefore, the reflector antenna device 3 shown in FIG. 19 also emits radio waves more than the reflect array antenna provided with only one flat plate-shaped dielectric substrate as the reflector, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
  • the present disclosure is suitable for reflector antenna devices with a primary radiator. Further, the present disclosure is suitable for a communication device including a reflector antenna device.
  • 1 signal transmitter, 2 signal receiver, 3 reflector antenna device 11 primary radiator, 11a emission port, 12 first substrate, 12a reflecting surface, 12b back surface, 13 second substrate, 13a reflecting surface, 13b back surface , 14 hinges, 21 conductor patches, 22 conductors, 23 conductor patches, 24 conductors, 30 movable mechanisms, 41 primary radiators, 51 primary radiators, 52, 53 secondary reflectors, 54 third substrates, 54a reflective surfaces, 54b Back, 55 conductor patch, 56 conductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A reflector antenna device (3) is configured to comprise: a primary radiator (11) that radiates radio waves; a first base plate (12) in which a plurality of conductor patches (21) are arranged on a reflective surface (12a) for reflecting the radio waves radiated from the primary radiator (11); and second base plates (13) that are arranged on the periphery of the first base plate (12) and in each of which a plurality of conductor patches (23) are arranged on a reflective surface (13a) for reflecting the radio waves radiated from the primary radiator (11), wherein the angle formed between a normal vector of the reflective surface (12a) in the first base plate (12) and a normal vector of the reflective surface (13a) in each second base plate (13) is greater than zero and less than 90 degrees.

Description

反射鏡アンテナ装置及び通信装置Reflector antenna device and communication device
 本開示は、一次放射器を備える反射鏡アンテナ装置と、反射鏡アンテナ装置を備える通信装置とに関するものである。 The present disclosure relates to a reflector antenna device including a primary radiator and a communication device including a reflector antenna device.
 以下の特許文献1には、リフレクトアレーアンテナが開示されている。当該リフレクトアレーアンテナは、誘電体基板と、誘電体基板に形成された複数の導体パッチと、一次放射アンテナとを備えている。
 当該リフレクトアレーアンテナでは、複数の導体パッチが形成されている誘電体基板が平板状の基板である。このため、一次放射アンテナから放射された電波が、誘電体基板の中央付近で反射されるときの電波の経路長(以下、第1の経路長と称する)と、誘電体基板の端部付近で反射されるときの電波の経路長(以下、第2の経路長と称する)とが異なる。
 第1の経路長と、第2の経路長とが異なるため、誘電体基板の中央付近で反射された電波の位相と、誘電体基板の端部付近で反射された電波の位相とが異なる。したがって、誘電体基板における電波の反射面に、単に、導体が一様に施されているだけであれば、誘電体基板の中央付近で反射された電波の放射方向と、誘電体基板の端部付近で反射された電波の放射方向とが異なる。
 当該リフレクトアレーアンテナでは、誘電体基板における電波の反射面に、導体を一様に施す代わりに、複数の導体パッチが形成されている。そして、当該リフレクトアレーアンテナでは、誘電体基板の中央付近で反射された電波の放射方向と、誘電体基板の端部付近で反射された電波の放射方向とを揃えるために、それぞれの導体パッチの大きさ等が調整されている。
The following Patent Document 1 discloses a reflect array antenna. The reflect array antenna includes a dielectric substrate, a plurality of conductor patches formed on the dielectric substrate, and a primary radiation antenna.
In the reflect array antenna, the dielectric substrate on which a plurality of conductor patches are formed is a flat plate-shaped substrate. Therefore, the path length of the radio wave when the radio wave radiated from the primary radiation antenna is reflected near the center of the dielectric substrate (hereinafter referred to as the first path length) and the vicinity of the end portion of the dielectric substrate The path length of the radio wave when it is reflected (hereinafter referred to as the second path length) is different.
Since the first path length and the second path length are different, the phase of the radio wave reflected near the center of the dielectric substrate and the phase of the radio wave reflected near the edge of the dielectric substrate are different. Therefore, if the conductor is simply uniformly applied to the radio wave reflecting surface of the dielectric substrate, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the edge of the dielectric substrate The radiation direction of the radio waves reflected in the vicinity is different.
In the reflect array antenna, a plurality of conductor patches are formed instead of uniformly applying conductors to the reflecting surface of radio waves on the dielectric substrate. Then, in the reflect array antenna, in order to align the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the radio wave reflected near the edge of the dielectric substrate, each conductor patch is used. The size etc. have been adjusted.
特開平6-77726号公報Japanese Unexamined Patent Publication No. 6-77726
 特許文献1に開示されているリフレクトアレーアンテナでは、第1の経路長と、第2の経路長とが異なっている。このため、導体パッチの大きさ等が調整された後に、一次放射アンテナから放射される電波の周波数が切り替えられると、誘電体基板の中央付近で反射される電波の放射方向と、誘電体基板の端部付近で反射される電波の放射方向とが揃わなくなってしまう。つまり、当該リフレクトアレーアンテナでは、導体パッチの大きさ等が調整された後に、一次放射アンテナから放射される電波の周波数が切り替えられると、電波の放射方向にバラツキが生じてしまうという課題があった。 In the reflect array antenna disclosed in Patent Document 1, the first path length and the second path length are different. Therefore, when the frequency of the radio wave radiated from the primary radiation antenna is switched after the size of the conductor patch is adjusted, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the dielectric substrate The radiation direction of the radio waves reflected near the end will not be aligned. That is, in the reflect array antenna, if the frequency of the radio wave radiated from the primary radiation antenna is switched after the size of the conductor patch is adjusted, there is a problem that the radiation direction of the radio wave varies. ..
 本開示は、上記のような課題を解決するためになされたもので、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる反射鏡アンテナ装置を得ることを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and it is possible to suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector. The purpose is to obtain a capable reflector antenna device.
 本開示に係る反射鏡アンテナ装置は、電波を放射する一次放射器と、一次放射器から放射された電波を反射する反射面に、複数の導体パッチが配置されている第1の基板と、第1の基板の周囲に配置されており、一次放射器から放射された電波を反射する反射面に、複数の導体パッチが配置されている第2の基板とを備え、第1の基板における反射面の法線ベクトルと、第2の基板における反射面の法線ベクトルとのなす角度が、0度よりも大きく、90度よりも小さいものである。 The reflector antenna device according to the present disclosure includes a primary radiator that emits radio waves, a first substrate on which a plurality of conductor patches are arranged on a reflecting surface that reflects radio waves emitted from the primary radiator, and a first substrate. A second substrate on which a plurality of conductor patches are arranged is provided on a reflecting surface which is arranged around the first substrate and reflects radio waves radiated from a primary radiator, and a reflecting surface in the first substrate. The angle formed by the normal vector of the above and the normal vector of the reflecting surface on the second substrate is larger than 0 degrees and smaller than 90 degrees.
 本開示によれば、第1の基板における反射面の法線ベクトルと、第2の基板における反射面の法線ベクトルとのなす角度が、0度よりも大きく、90度よりも小さいように、反射鏡アンテナ装置を構成した。したがって、本開示に係る反射鏡アンテナ装置は、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる。 According to the present disclosure, the angle between the normal vector of the reflective surface on the first substrate and the normal vector of the reflective surface on the second substrate is larger than 0 degrees and smaller than 90 degrees. A reflector antenna device was constructed. Therefore, the reflector antenna device according to the present disclosure can suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector.
実施の形態1に係る反射鏡アンテナ装置3を含む通信装置を示す構成図である。It is a block diagram which shows the communication device which includes the reflector antenna device 3 which concerns on Embodiment 1. FIG. 実施の形態1に係る反射鏡アンテナ装置3を示す斜視図である。It is a perspective view which shows the reflector antenna device 3 which concerns on Embodiment 1. FIG. 実施の形態1に係る反射鏡アンテナ装置3における第1の基板12の反射面12aを示す平面図である。It is a top view which shows the reflection surface 12a of the 1st substrate 12 in the reflector antenna device 3 which concerns on Embodiment 1. FIG. 実施の形態1に係る反射鏡アンテナ装置3における第1の基板12を示す側面図である。It is a side view which shows the 1st substrate 12 in the reflector antenna device 3 which concerns on Embodiment 1. FIG. 実施の形態1に係る反射鏡アンテナ装置3における第2の基板13の反射面13aを示す平面図である。It is a top view which shows the reflection surface 13a of the 2nd substrate 13 in the reflector antenna device 3 which concerns on Embodiment 1. FIG. 実施の形態1に係る反射鏡アンテナ装置3における第2の基板13を示す側面図である。It is a side view which shows the 2nd substrate 13 in the reflector antenna device 3 which concerns on Embodiment 1. FIG. 図7Aは、第2の基板13が第1の基板12に重ね合わされている状態を示す説明図、図7Bは、第2の基板13が開いている途中の状態を示す説明図、図7Cは、第2の基板13が開き終わった状態を示す説明図である。7A is an explanatory diagram showing a state in which the second substrate 13 is superposed on the first substrate 12, FIG. 7B is an explanatory diagram showing a state in which the second substrate 13 is in the process of being opened, and FIG. 7C is an explanatory diagram. , It is explanatory drawing which shows the state which the 2nd substrate 13 has finished opening. 反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。It is explanatory drawing which shows the normal vector v 12 of the reflection surface 12a, the normal vector v 13 of the reflection surface 13a, the reflection direction of the radio wave by the reflection surface 12a, and the reflection direction of the radio wave by the reflection surface 13a. 特許文献1に開示されているリフレクトアレーアンテナと同様に、電波の反射面が、平板状の誘電体基板の反射面のみである場合の、誘電体基板による電波の反射方向を示す説明図である。Similar to the reflect array antenna disclosed in Patent Document 1, it is explanatory drawing which shows the reflection direction of the radio wave by the dielectric substrate in the case where the reflection surface of a radio wave is only the reflection surface of a flat plate-shaped dielectric substrate. .. 図10Aは、円形の導体パッチ21,23を示す説明図、図10Bは、矩形の枠形状の導体パッチ21,23を示す説明図、図10Cは、リング形の導体パッチ21,23を示す説明図、図10Dは、+形の形状の導体パッチ21,23を示す説明図である。10A is an explanatory view showing circular conductor patches 21 and 23, FIG. 10B is an explanatory view showing rectangular frame- shaped conductor patches 21 and 23, and FIG. 10C is an explanatory view showing ring- shaped conductor patches 21 and 23. FIG. 10D is an explanatory view showing conductor patches 21 and 23 having a + shape. 実施の形態2に係る反射鏡アンテナ装置3を示す斜視図である。It is a perspective view which shows the reflector antenna device 3 which concerns on Embodiment 2. FIG. 図12A、図12B及び図12Cのそれぞれは、可動機構30によって、反射面12aと反射面13aとの角度αが切り替えられた状態を示す説明図である。12A, 12B, and 12C are explanatory views showing a state in which the angle α between the reflecting surface 12a and the reflecting surface 13a is switched by the movable mechanism 30. 反射鏡アンテナ装置3の放射特性のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the radiation characteristic of the reflector antenna device 3. 実施の形態3に係る反射鏡アンテナ装置3を示す側面図である。It is a side view which shows the reflector antenna device 3 which concerns on Embodiment 3. FIG. 反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。It is explanatory drawing which shows the normal vector v 12 of the reflection surface 12a, the normal vector v 13 of the reflection surface 13a, the reflection direction of the radio wave by the reflection surface 12a, and the reflection direction of the radio wave by the reflection surface 13a. 実施の形態4に係る反射鏡アンテナ装置3を示す側面図である。It is a side view which shows the reflector antenna device 3 which concerns on Embodiment 4. FIG. 反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。It is explanatory drawing which shows the normal vector v 12 of the reflection surface 12a, the normal vector v 13 of the reflection surface 13a, the reflection direction of the radio wave by the reflection surface 12a, and the reflection direction of the radio wave by the reflection surface 13a. 実施の形態4に係る他の反射鏡アンテナ装置3を示す側面図である。It is a side view which shows the other reflector antenna device 3 which concerns on Embodiment 4. FIG. 実施の形態4に係る他の反射鏡アンテナ装置3を示す側面図である。It is a side view which shows the other reflector antenna device 3 which concerns on Embodiment 4. FIG. 実施の形態4に係る他の反射鏡アンテナ装置3における第3の基板54の反射面54aを示す平面図である。It is a top view which shows the reflection surface 54a of the 3rd substrate 54 in the other reflector antenna device 3 which concerns on Embodiment 4. FIG. 実施の形態4に係る他の反射鏡アンテナ装置3における第3の基板54を示す側面図である。It is a side view which shows the 3rd substrate 54 in the other reflector antenna device 3 which concerns on Embodiment 4. FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described with reference to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る反射鏡アンテナ装置3を含む通信装置を示す構成図である。
 図1において、信号送信部1は、送信信号を反射鏡アンテナ装置3に出力する。
 信号受信部2は、反射鏡アンテナ装置3から出力された受信信号を受信する。
 反射鏡アンテナ装置3は、信号送信部1から出力された送信信号に係る電波を空中に放射する。
 また、反射鏡アンテナ装置3は、電波を受信して、受信した電波に係る受信信号を信号受信部2に出力する。
Embodiment 1.
FIG. 1 is a configuration diagram showing a communication device including the reflector antenna device 3 according to the first embodiment.
In FIG. 1, the signal transmission unit 1 outputs a transmission signal to the reflector antenna device 3.
The signal receiving unit 2 receives the received signal output from the reflector antenna device 3.
The reflector antenna device 3 radiates radio waves related to the transmission signal output from the signal transmission unit 1 into the air.
Further, the reflector antenna device 3 receives a radio wave and outputs a received signal related to the received radio wave to the signal receiving unit 2.
 図2は、実施の形態1に係る反射鏡アンテナ装置3を示す斜視図である。
 図3は、実施の形態1に係る反射鏡アンテナ装置3における第1の基板12の反射面12aを示す平面図である。
 図4は、実施の形態1に係る反射鏡アンテナ装置3における第1の基板12を示す側面図である。
 図5は、実施の形態1に係る反射鏡アンテナ装置3における第2の基板13の反射面13aを示す平面図である。
 図6は、実施の形態1に係る反射鏡アンテナ装置3における第2の基板13を示す側面図である。
 図7は、実施の形態1に係る反射鏡アンテナ装置3における第1の基板12と第2の基板13との展開例を示す説明図である。
 図7Aは、第2の基板13が第1の基板12に重ね合わされている状態を示しており、図7Bは、第2の基板13が開いている途中の状態を示している。図7Cは、第2の基板13が開き終わった状態を示している。
FIG. 2 is a perspective view showing the reflector antenna device 3 according to the first embodiment.
FIG. 3 is a plan view showing a reflecting surface 12a of the first substrate 12 in the reflecting mirror antenna device 3 according to the first embodiment.
FIG. 4 is a side view showing the first substrate 12 in the reflector antenna device 3 according to the first embodiment.
FIG. 5 is a plan view showing a reflecting surface 13a of the second substrate 13 in the reflecting mirror antenna device 3 according to the first embodiment.
FIG. 6 is a side view showing the second substrate 13 in the reflector antenna device 3 according to the first embodiment.
FIG. 7 is an explanatory view showing a development example of the first substrate 12 and the second substrate 13 in the reflector antenna device 3 according to the first embodiment.
FIG. 7A shows a state in which the second substrate 13 is superposed on the first substrate 12, and FIG. 7B shows a state in which the second substrate 13 is in the process of being opened. FIG. 7C shows a state in which the second substrate 13 has been completely opened.
 一次放射器11は、バックファイアアンテナによって実現されている。
 一次放射器11は、信号送信部1から出力された送信信号に係る電波を第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて放射する。
 第1の基板12は、例えば、誘電体基板又は発泡板によって実現される。
 第1の基板12の反射面12aは、一次放射器11から放射された電波を反射する面であり、反射面12aには、複数の導体パッチ21が配置されている。
 第1の基板12の背面12bは、反射面12aと反対側の面であり、背面12bの全体に導体22が配置されている。
The primary radiator 11 is realized by a backfire antenna.
The primary radiator 11 radiates radio waves related to the transmission signal output from the signal transmission unit 1 toward the reflection surface 12a of the first substrate 12 and the reflection surface 13a of the second substrate 13, respectively.
The first substrate 12 is realized by, for example, a dielectric substrate or a foam plate.
The reflecting surface 12a of the first substrate 12 is a surface that reflects radio waves radiated from the primary radiator 11, and a plurality of conductor patches 21 are arranged on the reflecting surface 12a.
The back surface 12b of the first substrate 12 is a surface opposite to the reflection surface 12a, and the conductor 22 is arranged on the entire back surface 12b.
 第2の基板13は、例えば、誘電体基板又は発泡板によって実現される。
 第2の基板13は、第1の基板12の周囲に配置されている。
 第2の基板13の反射面13aは、一次放射器11から放射された電波を反射する面であり、反射面13aには、複数の導体パッチ23が配置されている。
 第2の基板13の背面13bは、反射面13aと反対側の面であり、背面13bの全体に導体24が配置されている。
The second substrate 13 is realized by, for example, a dielectric substrate or a foam plate.
The second substrate 13 is arranged around the first substrate 12.
The reflecting surface 13a of the second substrate 13 is a surface that reflects radio waves radiated from the primary radiator 11, and a plurality of conductor patches 23 are arranged on the reflecting surface 13a.
The back surface 13b of the second substrate 13 is a surface opposite to the reflecting surface 13a, and the conductor 24 is arranged on the entire back surface 13b.
 ヒンジ14は、第1の基板12と第2の基板13とを接続する接続部材である。
 ヒンジ14によって、第2の基板13における反射面13aの法線ベクトルv13が、図8に示すように、第1の基板12における反射面12aの法線ベクトルv12に対して傾けられている。
 図8は、反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。
 図2に示す反射鏡アンテナ装置3では、第1の基板12における反射面12aの法線ベクトルv12と、第2の基板13における反射面13aの法線ベクトルv13とのなす角度θが、0度よりも大きく、90度よりも小さい。
The hinge 14 is a connecting member that connects the first substrate 12 and the second substrate 13.
By a hinge 14, the normal vector v 13 of the reflecting surface 13a of the second substrate 13, as shown in FIG. 8, are inclined with respect to the normal vector v 12 of the reflective surface 12a of the first substrate 12 ..
FIG. 8 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
In reflector antenna apparatus 3 shown in FIG. 2, the normal vector v 12 of the reflective surface 12a of the first substrate 12, the angle θ between normal vector v 13 of the reflecting surface 13a of the second substrate 13, Greater than 0 degrees and less than 90 degrees.
 図2に示す反射鏡アンテナ装置3では、第1の基板12の周囲に、4つの第2の基板13が配置されている。しかし、1つ以上の第2の基板13が、第1の基板12の周囲に配置されていればよく、第1の基板12の周囲に配置されている第2の基板13が、例えば、1つであってもよいし、3つであってもよい。
 図2に示す反射鏡アンテナ装置3では、第1の基板12と第2の基板13とがヒンジ14によって接続されている。しかし、これは一例に過ぎず、第1の基板12と第2の基板13とが接続されておらず、第1の基板12と第2の基板13との間に、隙間があってもよい。
In the reflector antenna device 3 shown in FIG. 2, four second substrates 13 are arranged around the first substrate 12. However, it is sufficient that one or more second substrates 13 are arranged around the first substrate 12, and the second substrate 13 arranged around the first substrate 12, for example, is 1. It may be one or three.
In the reflector antenna device 3 shown in FIG. 2, the first substrate 12 and the second substrate 13 are connected by a hinge 14. However, this is only an example, the first substrate 12 and the second substrate 13 are not connected, and there may be a gap between the first substrate 12 and the second substrate 13. ..
 導体パッチ21は、第1の基板12における反射面12aに施されている導体である。
 反射面12aに施されている複数の導体パッチ21におけるそれぞれの大きさ、又は、複数の導体パッチ21におけるそれぞれの配置等を調整することによって、反射面12aによって反射される電波の位相を変えることが可能である。
 導体22は、第1の基板12における背面12bの全体に施されている導体である。
The conductor patch 21 is a conductor applied to the reflecting surface 12a of the first substrate 12.
The phase of the radio wave reflected by the reflecting surface 12a can be changed by adjusting the size of each of the plurality of conductor patches 21 applied to the reflecting surface 12a or the arrangement of each of the plurality of conductor patches 21. Is possible.
The conductor 22 is a conductor provided on the entire back surface 12b of the first substrate 12.
 導体パッチ23は、第2の基板13における反射面13aに施されている導体である。
 反射面13aに施されている複数の導体パッチ23におけるそれぞれの大きさ、又は、複数の導体パッチ23におけるそれぞれの配置等を調整することによって、反射面13aによって反射される電波の位相を変えることが可能である。
 導体24は、第2の基板13における背面13bの全体に施されている導体である。
The conductor patch 23 is a conductor applied to the reflecting surface 13a of the second substrate 13.
The phase of the radio wave reflected by the reflecting surface 13a can be changed by adjusting the size of each of the plurality of conductor patches 23 applied to the reflecting surface 13a or the arrangement of each of the plurality of conductor patches 23. Is possible.
The conductor 24 is a conductor provided on the entire back surface 13b of the second substrate 13.
 図2に示す反射鏡アンテナ装置3では、第1の基板12の反射面12aによる電波の反射方向と、第2の基板13の反射面13aによる電波の反射方向とが揃うように、複数の導体パッチ21,23におけるそれぞれの大きさ、又は、複数の導体パッチ21,23におけるそれぞれの配置等が調整される。図2中、矢印は、電波の反射方向を示している。
 反射面12aによる電波の反射方向と、反射面13aによる電波の反射方向とが揃うとは、双方の反射方向が厳密に揃っているものに限るものではなく、実用上問題のない範囲で、双方の反射方向が異なっているものも含まれる。
In the reflector antenna device 3 shown in FIG. 2, a plurality of conductors are aligned so that the direction of reflection of radio waves by the reflection surface 12a of the first substrate 12 and the direction of reflection of radio waves by the reflection surface 13a of the second substrate 13 are aligned. The size of each of the patches 21 and 23, or the arrangement of each of the plurality of conductor patches 21 and 23 is adjusted. In FIG. 2, the arrows indicate the direction of reflection of radio waves.
The fact that the direction of reflection of radio waves by the reflecting surface 12a and the direction of reflection of radio waves by the reflecting surface 13a are not limited to those in which both reflection directions are exactly aligned, and both are within a range where there is no practical problem. The ones with different reflection directions are also included.
 次に、図1に示す通信装置の動作について説明する。
 反射鏡アンテナ装置3の未使用時には、図7Aに示すように、第2の基板13を第1の基板12に重ね合わせることで、反射鏡アンテナ装置3を小型にして、反射鏡アンテナ装置3の収納性を高めることが可能である。
 反射鏡アンテナ装置3は、図7Cに示すように、第2の基板13が開いている状態で使用される。
 第2の基板13が開いている状態では、反射鏡アンテナ装置3の形状が立体的な形状であり、反射鏡アンテナ装置3の形状が、公知のパラボラアンテナの形状と類似の形状である。未使用時であっても、パラボラアンテナの形状は、立体的な形状のままであるため、パラボラアンテナは、収納性が悪い。
 反射鏡アンテナ装置3は、未使用時では、第2の基板13を第1の基板12に重ね合わせることが可能であるため、パラボラアンテナよりも収納性が高い。
Next, the operation of the communication device shown in FIG. 1 will be described.
When the reflector antenna device 3 is not in use, as shown in FIG. 7A, the second substrate 13 is superposed on the first substrate 12 to reduce the size of the reflector antenna device 3 and to reduce the size of the reflector antenna device 3. It is possible to improve the storability.
As shown in FIG. 7C, the reflector antenna device 3 is used in a state where the second substrate 13 is open.
When the second substrate 13 is open, the shape of the reflector antenna device 3 is a three-dimensional shape, and the shape of the reflector antenna device 3 is similar to the shape of a known parabolic antenna. Since the shape of the parabolic antenna remains a three-dimensional shape even when not in use, the parabolic antenna has poor storability.
The reflector antenna device 3 is more storable than the parabolic antenna because the second substrate 13 can be superposed on the first substrate 12 when not in use.
 信号送信部1は、送信信号を反射鏡アンテナ装置3に出力する。
 反射鏡アンテナ装置3の一次放射器11は、信号送信部1から送信信号を受けると、図2及び図8に示すように、送信信号に係る電波を第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて放射する。
The signal transmission unit 1 outputs the transmission signal to the reflector antenna device 3.
When the primary radiator 11 of the reflector antenna device 3 receives the transmission signal from the signal transmission unit 1, as shown in FIGS. 2 and 8, the radio wave related to the transmission signal is transmitted to the reflection surface 12a and the second substrate 12 of the first substrate 12. It radiates toward each of the reflecting surfaces 13a of the substrate 13 of 2.
 第1の基板12の反射面12aは、一次放射器11から放射された電波を受けると、図2及び図8に示すように、当該電波を反射させる。
 第1の基板12は、図8に示すように、xyz座標軸におけるx-y平面と平行に配置されている。図8の例では、反射面12aによる電波の反射方向は、z軸と平行な方向である。
 図8において、11aは、一次放射器11における電波の放射口であり、放射口11aは、電波の波源に相当する。
 第2の基板13の反射面13aは、一次放射器11から放射された電波を受けると、図2及び図8に示すように、当該電波を反射させる。図8の例では、反射面13aによる電波の反射方向は、z軸と平行な方向である。
When the reflecting surface 12a of the first substrate 12 receives the radio wave radiated from the primary radiator 11, the reflecting surface 12a reflects the radio wave as shown in FIGS. 2 and 8.
As shown in FIG. 8, the first substrate 12 is arranged parallel to the xy plane in the xyz coordinate axes. In the example of FIG. 8, the direction of reflection of radio waves by the reflecting surface 12a is a direction parallel to the z-axis.
In FIG. 8, 11a is a radio wave emission port in the primary radiator 11, and the radiation port 11a corresponds to a radio wave source.
When the reflecting surface 13a of the second substrate 13 receives the radio wave radiated from the primary radiator 11, the reflecting surface 13a reflects the radio wave as shown in FIGS. 2 and 8. In the example of FIG. 8, the direction of reflection of radio waves by the reflection surface 13a is a direction parallel to the z-axis.
 図9は、特許文献1に開示されているリフレクトアレーアンテナと同様に、電波の反射面が、平板状の誘電体基板の反射面のみである場合の、誘電体基板による電波の反射方向を示す説明図である。平板状の誘電体基板は、図9に示すように、xyz座標軸におけるx-y平面と平行に配置されている。
 電波の反射面が、平板状の誘電体基板の反射面のみである場合、図9に示すように、誘電体基板の中央付近で反射された電波の経路長(以下、「第1の経路長」と称する)と、誘電体基板の端部付近で反射された電波の経路長(以下、「第2の経路長」と称する)との差異が大きい。
 第1の経路長と第2の経路長との差異が大きいため、単に、誘電体基板の反射面の全体に導体が施されているとすれば、電体基板の中央付近で反射された電波の位相と、誘電体基板の端部付近で反射された電波の位相とが異なる。したがって、電体基板の中央付近で反射された電波の反射方向と、誘電体基板の端部付近で反射された電波の反射方向とが異なる。
FIG. 9 shows the direction of reflection of radio waves by the dielectric substrate when the reflection surface of the radio waves is only the reflection surface of the flat plate-shaped dielectric substrate, similar to the reflect array antenna disclosed in Patent Document 1. It is explanatory drawing. As shown in FIG. 9, the flat plate-shaped dielectric substrate is arranged parallel to the xy plane in the xyz coordinate axes.
When the reflecting surface of the radio wave is only the reflecting surface of the flat plate-shaped dielectric substrate, as shown in FIG. 9, the path length of the radio wave reflected near the center of the dielectric substrate (hereinafter, "first path length"). ”) And the path length of the radio wave reflected near the end of the dielectric substrate (hereinafter referred to as the“ second path length ”).
Since the difference between the first path length and the second path length is large, if a conductor is simply provided on the entire reflective surface of the dielectric substrate, the radio wave reflected near the center of the electric body substrate. The phase of the radio wave reflected near the edge of the dielectric substrate is different. Therefore, the reflection direction of the radio wave reflected near the center of the electric body substrate and the reflection direction of the radio wave reflected near the edge of the dielectric substrate are different.
 誘電体基板の反射面に導体が施される導体が、複数の導体パッチであれば、複数の導体パッチにおけるそれぞれの大きさ等を調整することで、電体基板の中央付近で反射された電波の位相と、誘電体基板の端部付近で反射された電波の位相との差異を補償することができる。
 したがって、第1の経路長と第2の経路長との差異が大きくても、位相の差異を補償することによって、電体基板の中央付近で反射された電波の反射方向と、誘電体基板の端部付近で反射された電波の反射方向とを概ね同じ方向に揃えることができる。
If the conductor to which the conductor is applied to the reflective surface of the dielectric substrate is a plurality of conductor patches, the radio wave reflected near the center of the electric body substrate can be obtained by adjusting the size of each of the plurality of conductor patches. It is possible to compensate for the difference between the phase of the radio wave and the phase of the radio wave reflected near the edge of the dielectric substrate.
Therefore, even if the difference between the first path length and the second path length is large, by compensating for the phase difference, the reflection direction of the radio wave reflected near the center of the electric body substrate and the reflection direction of the dielectric substrate It is possible to align the reflection direction of the radio wave reflected near the end in substantially the same direction.
 導体パッチの大きさ等が調整された後に、一次放射器11から放射される電波の周波数が切り替えられることがある。
 第1の経路長と第2の経路長とが異なっているため、一次放射器11から放射される電波の周波数が切り替えられると、誘電体基板の中央付近で反射される電波の放射方向と、誘電体基板の端部付近で反射される電波の放射方向とが揃わなくなってしまう。つまり、図9に示す反射鏡アンテナ装置では、導体パッチの大きさ等が調整された後に、一次放射器11から放射される電波の周波数が切り替えられると、電波の放射方向にバラツキが生じてしまう。
 また、図9に示す反射鏡アンテナ装置では、一次放射器11から放射される電波のうち、誘電体基板の反射面に反射されずに、不要に空間中に放射されてしまう電波が発生し、アンテナの利得が低下することがある。
After adjusting the size of the conductor patch and the like, the frequency of the radio wave radiated from the primary radiator 11 may be switched.
Since the first path length and the second path length are different, when the frequency of the radio wave radiated from the primary radiator 11 is switched, the radiation direction of the radio wave reflected near the center of the dielectric substrate and the radiation direction of the radio wave are determined. The radiation direction of the radio waves reflected near the edge of the dielectric substrate will not be aligned. That is, in the reflector antenna device shown in FIG. 9, if the frequency of the radio wave radiated from the primary radiator 11 is switched after the size of the conductor patch or the like is adjusted, the radiation direction of the radio wave will vary. ..
Further, in the reflector antenna device shown in FIG. 9, among the radio waves radiated from the primary radiator 11, radio waves that are not reflected by the reflecting surface of the dielectric substrate and are unnecessarily radiated into the space are generated. The gain of the antenna may decrease.
 図8に示す反射鏡アンテナ装置3では、第2の基板13における反射面13aの法線ベクトルv13が、第1の基板12における反射面12aの法線ベクトルv12に対して傾けられている。即ち、反射面12aの法線ベクトルv12がz軸と平行な方向であるのに対して、反射面13aの法線ベクトルv13がz軸と平行な方向と異なる方向であり、反射面13aの法線ベクトルv13が、反射面12aの法線ベクトルv12に対して傾けられている。
 反射面12aの法線ベクトルv12と、反射面13aの法線ベクトルv13とのなす角度θが、0度よりも大きく、90度よりも小さいため、図8に示す反射鏡アンテナ装置3は、図9に示す反射鏡アンテナ装置よりも、第1の経路長と第2の経路長との差異が小さい。
In the reflector antenna device 3 shown in FIG. 8, the normal vector v 13 of the reflection surface 13a on the second substrate 13 is tilted with respect to the normal vector v 12 of the reflection surface 12a on the first substrate 12. .. That is, the normal vector v 12 of the reflecting surface 12a is in a direction parallel to the z-axis, whereas the normal vector v 13 of the reflecting surface 13a is in a direction different from the direction parallel to the z-axis, and the reflecting surface 13a The normal vector v 13 of the above is tilted with respect to the normal vector v 12 of the reflecting surface 12a.
Since the angle θ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a is larger than 0 degrees and smaller than 90 degrees, the reflector antenna device 3 shown in FIG. 8 is , The difference between the first path length and the second path length is smaller than that of the reflector antenna device shown in FIG.
 反射鏡アンテナ装置3は、第1の経路長と第2の経路長との差異が小さいため、導体パッチ21,23の大きさ等が調整された後に、一次放射器11から放射される電波の周波数が切り替えられても、図9に示す反射鏡アンテナ装置よりも、電波の放射方向のバラツキを抑えることができる。
 反射鏡アンテナ装置3では、反射面13aの法線ベクトルv13が、反射面12aの法線ベクトルv12に対して傾けられているため、反射鏡アンテナ装置3は、図9に示す反射鏡アンテナ装置よりも、不要に空間中に放射されてしまう電波の割合が減少し、アンテナの利得が向上する。
In the reflector antenna device 3, since the difference between the first path length and the second path length is small, the radio waves radiated from the primary radiator 11 after the size of the conductor patches 21 and 23 are adjusted. Even if the frequency is switched, the variation in the radiation direction of the radio wave can be suppressed as compared with the reflector antenna device shown in FIG.
In the reflector antenna device 3, since the normal vector v 13 of the reflection surface 13a is tilted with respect to the normal vector v 12 of the reflection surface 12a, the reflector antenna device 3 is the reflector antenna shown in FIG. Compared to the device, the proportion of radio waves that are unnecessarily radiated into the space is reduced, and the gain of the antenna is improved.
 反射鏡アンテナ装置3では、導体パッチ21,23の形状が矩形であるものを示している。しかし、これは一例に過ぎず、導体パッチ21,23の形状が、図10Aに示すように、円形であってもよいし、図10Bに示すように、矩形の枠形状であってもよい。
 また、導体パッチ21,23の形状が、図10Cに示すように、リング形であってもよいし、図10Dに示すように、+形の形状であってもよい。
 図10Aは、円形の導体パッチ21,23を示し、図10Bは、矩形の枠形状の導体パッチ21,23を示している。
 また、図10Cは、リング形の導体パッチ21,23を示し、図10Dは、+形の形状の導体パッチ21,23を示している。
In the reflector antenna device 3, the conductor patches 21 and 23 have a rectangular shape. However, this is only an example, and the shape of the conductor patches 21 and 23 may be circular as shown in FIG. 10A, or may be a rectangular frame shape as shown in FIG. 10B.
Further, the shape of the conductor patches 21 and 23 may be a ring shape as shown in FIG. 10C or a + shape as shown in FIG. 10D.
10A shows circular conductor patches 21 and 23, and FIG. 10B shows rectangular frame-shaped conductor patches 21 and 23.
Further, FIG. 10C shows ring-shaped conductor patches 21 and 23, and FIG. 10D shows + -shaped conductor patches 21 and 23.
 複数の導体パッチ21におけるそれぞれの形状は、同一形状であってもよいし、互いに異なる形状であってもよい。
 複数の導体パッチ23におけるそれぞれの形状は、同一形状であってもよいし、互いに異なる形状であってもよい。
 複数の導体パッチ21におけるそれぞれの配置は、周期的であってもよいし、非周期的であってもよい。
 また、複数の導体パッチ23におけるそれぞれの配置は、周期的であってもよいし、非周期的であってもよい。
The shapes of the plurality of conductor patches 21 may be the same or different from each other.
The shapes of the plurality of conductor patches 23 may be the same or different from each other.
Each arrangement in the plurality of conductor patches 21 may be periodic or aperiodic.
Further, each arrangement in the plurality of conductor patches 23 may be periodic or aperiodic.
 ここでは、反射鏡アンテナ装置3が、送信アンテナとして使用される場合の動作を説明している。反射鏡アンテナ装置3が受信アンテナとして使用される場合の動作は、送信アンテナとして使用される場合の動作と可逆的である。 Here, the operation when the reflector antenna device 3 is used as a transmitting antenna is described. The operation when the reflector antenna device 3 is used as a receiving antenna is reversible to the operation when it is used as a transmitting antenna.
 以上の実施の形態1では、電波を放射する一次放射器11と、一次放射器11から放射された電波を反射する反射面12aに、複数の導体パッチ21が配置されている第1の基板12と、第1の基板12の周囲に配置されており、一次放射器11から放射された電波を反射する反射面13aに、複数の導体パッチ23が配置されている第2の基板13とを備え、第1の基板12における反射面12aの法線ベクトルと、第2の基板13における反射面13aの法線ベクトルとのなす角度が、0度よりも大きく、90度よりも小さいように、反射鏡アンテナ装置3を構成した。したがって、反射鏡アンテナ装置3は、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる。 In the first embodiment described above, the first substrate 12 in which a plurality of conductor patches 21 are arranged on the primary radiator 11 that emits radio waves and the reflecting surface 12a that reflects the radio waves emitted from the primary radiator 11. And a second substrate 13 on which a plurality of conductor patches 23 are arranged on a reflecting surface 13a which is arranged around the first substrate 12 and reflects radio waves radiated from the primary radiator 11. , The angle formed by the normal vector of the reflecting surface 12a on the first substrate 12 and the normal vector of the reflecting surface 13a on the second substrate 13 is larger than 0 degrees and smaller than 90 degrees. The mirror antenna device 3 was configured. Therefore, the reflector antenna device 3 can suppress variations in the radiation direction of radio waves as compared with a reflect array antenna having only one flat plate-shaped dielectric substrate as a reflector.
実施の形態2.
 図2に示す反射鏡アンテナ装置3では、第2の基板13が開き終わった状態での、反射面12aの法線ベクトルv12と、反射面13aの法線ベクトルv13とのなす角度θが、ヒンジ14によって、一定に保たれる。
 実施の形態2では、第2の基板13が開き終わった状態での、反射面12aの法線ベクトルv12と、反射面13aの法線ベクトルv13とのなす角度θを切り替えることが可能な反射鏡アンテナ装置3について説明する。
Embodiment 2.
In the reflector antenna device 3 shown in FIG. 2, the angle θ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a in the state where the second substrate 13 is completely opened is , The hinge 14 keeps it constant.
In the second embodiment, it is possible to switch the angle θ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a in the state where the second substrate 13 is completely opened. The reflector antenna device 3 will be described.
 図11は、実施の形態2に係る反射鏡アンテナ装置3を示す斜視図である。図11において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 可動機構30は、反射面12aの法線ベクトルv12と、反射面13aの法線ベクトルv13とのなす角度θを切り替えることが可能なヒンジ等によって実現される。即ち、可動機構30は、図12に示すように、反射面12aと反射面13aとの角度αを切り替えることが可能なヒンジ等によって実現される。α=θである。
 可動機構30は、反射面12aの法線ベクトルv12と、反射面13aの法線ベクトルv13とのなす角度θを切り替えるために、第2の基板13を可動する。
 図12A、図12B及び図12Cのそれぞれは、可動機構30によって、反射面12aと反射面13aとの角度αが切り替えられた状態を示す説明図である。
 図12Aでの角度αが約10度、図12Bでの角度αが約25度、図12Bでの角度αが約35度である。
FIG. 11 is a perspective view showing the reflector antenna device 3 according to the second embodiment. In FIG. 11, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The movable mechanism 30 is realized by a hinge or the like capable of switching the angle θ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a. That is, as shown in FIG. 12, the movable mechanism 30 is realized by a hinge or the like capable of switching the angle α between the reflecting surface 12a and the reflecting surface 13a. α = θ.
The movable mechanism 30 moves the second substrate 13 in order to switch the angle θ formed by the normal vector v 12 of the reflecting surface 12a and the normal vector v 13 of the reflecting surface 13a.
12A, 12B, and 12C are explanatory views showing a state in which the angle α between the reflecting surface 12a and the reflecting surface 13a is switched by the movable mechanism 30.
The angle α in FIG. 12A is about 10 degrees, the angle α in FIG. 12B is about 25 degrees, and the angle α in FIG. 12B is about 35 degrees.
 可動機構30が、反射面12aと反射面13aとの角度αを切り替えることによって、反射面13aによる電波の位相が変化し、当該電波の反射方向が変化する。
 したがって、導体パッチ21,23の大きさ等が調整された後に、一次放射器11から放射される電波の周波数が切り替えられることによって、電波の放射方向にバラツキが生じても、反射面12aと反射面13aとの角度αを切り替えることによって、電波の放射方向のバラツキを抑えることができる。
When the movable mechanism 30 switches the angle α between the reflecting surface 12a and the reflecting surface 13a, the phase of the radio wave by the reflecting surface 13a changes, and the reflecting direction of the radio wave changes.
Therefore, after the size of the conductor patches 21 and 23 is adjusted, the frequency of the radio wave radiated from the primary radiator 11 is switched, so that even if the radiation direction of the radio wave varies, the reflection surface 12a and the reflection surface 12a are reflected. By switching the angle α with the surface 13a, it is possible to suppress variations in the radiation direction of radio waves.
 図13は、反射鏡アンテナ装置3の放射特性のシミュレーション結果を示す説明図である。
 図13において、実線は、角度α=30度であるときの放射特性であり、破線は、角度α=0度であるときの放射特性である。図13では、角度α=0度であるときの利得で、放射特性が規格化されている。
 図13が示すグラフの横軸は、反射鏡アンテナ装置3から放射される電波の放射方向を示しており、図13が示すグラフの縦軸は、反射鏡アンテナ装置3から放射される電波の利得を示している。
 図13の例では、可動機構30が、角度αを30度から0度に切り替えることによって、反射鏡アンテナ装置3から放射される電波が形成するビームのうち、利得が10[dB]のビームの幅が、4.8度の角度から、7.6度の角度に変化している。
FIG. 13 is an explanatory diagram showing a simulation result of the radiation characteristics of the reflector antenna device 3.
In FIG. 13, the solid line is the radiation characteristic when the angle α = 30 degrees, and the broken line is the radiation characteristic when the angle α = 0 degrees. In FIG. 13, the radiation characteristics are standardized by the gain when the angle α = 0 degrees.
The horizontal axis of the graph shown in FIG. 13 indicates the radiation direction of the radio wave radiated from the reflector antenna device 3, and the vertical axis of the graph shown in FIG. 13 is the gain of the radio wave radiated from the reflector antenna device 3. Is shown.
In the example of FIG. 13, among the beams formed by the radio waves radiated from the reflector antenna device 3 by the movable mechanism 30 switching the angle α from 30 degrees to 0 degrees, the beam having a gain of 10 [dB] The width has changed from an angle of 4.8 degrees to an angle of 7.6 degrees.
 以上の実施の形態2では、第1の基板12における反射面12aの法線ベクトルv12と、第2の基板13における反射面13aの法線ベクトルv13とのなす角度θを切り替えるために、第2の基板13を可動する可動機構30を備えるように、図11に示す反射鏡アンテナ装置3を構成した。したがって、図11に示す反射鏡アンテナ装置3は、図2に示す反射鏡アンテナ装置3よりも更に、電波の放射方向のバラツキを抑えることができる。 In the second above embodiment, in order to switch the normal vector v 12 of the reflective surface 12a of the first substrate 12, the angle θ between normal vector v 13 of the reflecting surface 13a of the second substrate 13, The reflector antenna device 3 shown in FIG. 11 is configured so as to include a movable mechanism 30 that can move the second substrate 13. Therefore, the reflector antenna device 3 shown in FIG. 11 can further suppress variations in the radiation direction of radio waves as compared with the reflector antenna device 3 shown in FIG.
実施の形態3.
 図2に示す反射鏡アンテナ装置3では、一次放射器11として、バックファイアアンテナを用いている。
 実施の形態3では、図14に示すように、一次放射器41として、ホーンアンテナを用いている反射鏡アンテナ装置3について説明する。
Embodiment 3.
In the reflector antenna device 3 shown in FIG. 2, a backfire antenna is used as the primary radiator 11.
In the third embodiment, as shown in FIG. 14, a reflector antenna device 3 using a horn antenna as the primary radiator 41 will be described.
 図14は、実施の形態3に係る反射鏡アンテナ装置3を示す側面図である。図14において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 一次放射器41は、ホーンアンテナによって実現されている。
 一次放射器41は、図2に示す一次放射器11と同様に、信号送信部1から出力された送信信号に係る電波を第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて放射する。
 図14に示す反射鏡アンテナ装置3は、一次放射器41が、図2に示す反射鏡アンテナ装置3に適用されているものである。しかし、これは一例に過ぎず、一次放射器41が、図11に示す反射鏡アンテナ装置3に適用されていてもよい。
FIG. 14 is a side view showing the reflector antenna device 3 according to the third embodiment. In FIG. 14, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The primary radiator 41 is realized by a horn antenna.
Similar to the primary radiator 11 shown in FIG. 2, the primary radiator 41 transmits radio waves related to the transmission signal output from the signal transmission unit 1 to the reflection surface 12a of the first substrate 12 and the reflection surface of the second substrate 13. It radiates toward each of 13a.
In the reflector antenna device 3 shown in FIG. 14, the primary radiator 41 is applied to the reflector antenna device 3 shown in FIG. However, this is only an example, and the primary radiator 41 may be applied to the reflector antenna device 3 shown in FIG.
 図14に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、ヒンジ14によって、第2の基板13における反射面13aの法線ベクトルv13が、第1の基板12における反射面12aの法線ベクトルv12に対して傾けられている(図15を参照)。
 図15は、反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。
In the reflector antenna device 3 shown in FIG. 14, similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 13 of the reflection surface 13a on the second substrate 13 is changed to the first substrate 12 by the hinge 14. It is tilted with respect to the normal vector v 12 of the reflection surface 12a in (see FIG. 15).
FIG. 15 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
 図14に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、第1の基板12における反射面12aの法線ベクトルv12と、第2の基板13における反射面13aの法線ベクトルv13とのなす角度θが、0度よりも大きく、90度よりも小さい。
 したがって、図14に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる。
In the reflector antenna device 3 shown in FIG. 14, similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13 The angle θ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees.
Therefore, the reflector antenna device 3 shown in FIG. 14 also emits radio waves as a reflector, as compared with the reflect array antenna provided with only one flat plate-shaped dielectric substrate, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
実施の形態4.
 実施の形態4では、副反射鏡52を備えている反射鏡アンテナ装置3について説明する。
 図16は、実施の形態4に係る反射鏡アンテナ装置3を示す側面図である。図16において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 一次放射器51は、ホーンアンテナによって実現されている。
 一次放射器51は、信号送信部1から出力された送信信号に係る電波を副反射鏡52に向けて放射する。
 副反射鏡52は、一次放射器51から放射された電波を第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて反射させる。
 図16に示す反射鏡アンテナ装置3は、一次放射器51及び副反射鏡52が、図2に示す反射鏡アンテナ装置3に適用されているものである。しかし、これは一例に過ぎず、一次放射器51及び副反射鏡52が、図11に示す反射鏡アンテナ装置3に適用されていてもよい。
Embodiment 4.
In the fourth embodiment, the reflector antenna device 3 including the secondary reflector 52 will be described.
FIG. 16 is a side view showing the reflector antenna device 3 according to the fourth embodiment. In FIG. 16, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The primary radiator 51 is realized by a horn antenna.
The primary radiator 51 radiates radio waves related to the transmission signal output from the signal transmission unit 1 toward the secondary reflector 52.
The secondary reflector 52 reflects the radio waves radiated from the primary radiator 51 toward the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13, respectively.
In the reflector antenna device 3 shown in FIG. 16, the primary radiator 51 and the secondary reflector 52 are applied to the reflector antenna device 3 shown in FIG. However, this is only an example, and the primary radiator 51 and the secondary reflector 52 may be applied to the reflector antenna device 3 shown in FIG.
 図16に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、ヒンジ14によって、第2の基板13における反射面13aの法線ベクトルv13が、第1の基板12における反射面12aの法線ベクトルv12に対して傾けられている(図17を参照)。
 図17は、反射面12aの法線ベクトルv12及び反射面13aの法線ベクトルv13と、反射面12aによる電波の反射方向及び反射面13aによる電波の反射方向とを示す説明図である。
In the reflector antenna device 3 shown in FIG. 16, similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 13 of the reflection surface 13a on the second substrate 13 is changed to the first substrate 12 by the hinge 14. It is tilted with respect to the normal vector v 12 of the reflection surface 12a in (see FIG. 17).
FIG. 17 is an explanatory diagram showing the normal vector v 12 of the reflecting surface 12a, the normal vector v 13 of the reflecting surface 13a, the reflection direction of the radio wave by the reflecting surface 12a, and the reflecting direction of the radio wave by the reflecting surface 13a.
 図16に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、第1の基板12における反射面12aの法線ベクトルv12と、第2の基板13における反射面13aの法線ベクトルv13とのなす角度θが、0度よりも大きく、90度よりも小さい。
 したがって、図16に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる。
In the reflector antenna device 3 shown in FIG. 16, similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13 The angle θ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees.
Therefore, the reflector antenna device 3 shown in FIG. 16 also emits radio waves more than the reflect array antenna provided with only one flat plate-shaped dielectric substrate as the reflector, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
 図16に示す反射鏡アンテナ装置3は、副反射鏡52として、電波の反射面の中央部分が、反射面の周囲部分よりも凹んでいる、リングフォーカスグレゴリアンの副反射鏡を用いている。
 しかし、これは一例に過ぎず、反射鏡アンテナ装置3が、例えば、図18に示すように、電波の反射面の中央部分が、反射面の周囲部分よりも凸になっている、リングフォーカスカセグレンの副反射鏡53を備えていてもよい。
 図18は、実施の形態4に係る他の反射鏡アンテナ装置3を示す側面図である。図18において、図2及び図16と同一符号は同一又は相当部分を示すので説明を省略する。
 副反射鏡53は、図16に示す副反射鏡52と同様に、一次放射器51から放射された電波を第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて反射させる。
 図18に示す反射鏡アンテナ装置3は、一次放射器51及び副反射鏡53が、図2に示す反射鏡アンテナ装置3に適用されているものである。しかし、これは一例に過ぎず、一次放射器51及び副反射鏡53が、図11に示す反射鏡アンテナ装置3に適用されていてもよい。
 なお、反射鏡アンテナ装置3が備える副反射鏡としては、リングフォーカスグレゴリアンの副反射鏡52、又は、リングフォーカスカセグレンの副反射鏡53に限るものではなく、任意の形状の副反射鏡を用いることができる。
The reflector antenna device 3 shown in FIG. 16 uses a ring-focused Gregorian secondary reflector as the secondary reflector 52, in which the central portion of the reflecting surface of the radio wave is recessed from the peripheral portion of the reflecting surface.
However, this is only an example, and the reflector antenna device 3 has a ring focus Cassegrain in which, for example, as shown in FIG. 18, the central portion of the reflecting surface of radio waves is more convex than the peripheral portion of the reflecting surface. The sub-reflector 53 of the above may be provided.
FIG. 18 is a side view showing another reflector antenna device 3 according to the fourth embodiment. In FIG. 18, the same reference numerals as those in FIGS. 2 and 16 indicate the same or corresponding parts, and thus the description thereof will be omitted.
Similar to the sub-reflecting mirror 52 shown in FIG. 16, the sub-reflecting mirror 53 transmits the radio waves radiated from the primary radiator 51 to the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13, respectively. Reflect toward.
In the reflector antenna device 3 shown in FIG. 18, the primary radiator 51 and the secondary reflector 53 are applied to the reflector antenna device 3 shown in FIG. However, this is only an example, and the primary radiator 51 and the secondary reflector 53 may be applied to the reflector antenna device 3 shown in FIG.
The sub-reflector included in the reflector antenna device 3 is not limited to the ring-focus Gregorian sub-reflector 52 or the ring-focus Cassegrain sub-reflector 53, and any shape of the sub-reflector may be used. Can be done.
 また、反射鏡アンテナ装置3が、例えば、図19に示すように、一次放射器51から放射された電波を反射させる副反射鏡として、電波の反射面54aに、複数の導体パッチ55が配置されている第3の基板54を備えるようにしてもよい。
 図19は、実施の形態4に係る他の反射鏡アンテナ装置3を示す側面図である。図19において、図2及び図16と同一符号は同一又は相当部分を示すので説明を省略する。
 図20は、実施の形態4に係る他の反射鏡アンテナ装置3における第3の基板54の反射面54aを示す平面図である。
 図21は、実施の形態4に係る他の反射鏡アンテナ装置3における第3の基板54を示す側面図である。
Further, as shown in FIG. 19, the reflecting mirror antenna device 3 has a plurality of conductor patches 55 arranged on the reflecting surface 54a of the radio waves as a secondary reflecting mirror that reflects the radio waves radiated from the primary radiator 51, for example. The third substrate 54 may be provided.
FIG. 19 is a side view showing another reflector antenna device 3 according to the fourth embodiment. In FIG. 19, the same reference numerals as those in FIGS. 2 and 16 indicate the same or corresponding parts, and thus the description thereof will be omitted.
FIG. 20 is a plan view showing the reflection surface 54a of the third substrate 54 in the other reflector antenna device 3 according to the fourth embodiment.
FIG. 21 is a side view showing a third substrate 54 in the other reflector antenna device 3 according to the fourth embodiment.
 第3の基板54は、例えば、誘電体基板又は発泡板によって実現される。
 第3の基板54の反射面54aは、一次放射器11から放射された電波を、第1の基板12の反射面12a及び第2の基板13の反射面13aのそれぞれに向けて反射させる面であり、反射面54aには、複数の導体パッチ55が配置されている。
 第3の基板54の背面54bは、反射面54aと反対側の面であり、背面54bの全体に導体56が配置されている。
The third substrate 54 is realized, for example, by a dielectric substrate or a foam plate.
The reflecting surface 54a of the third substrate 54 is a surface that reflects the radio waves radiated from the primary radiator 11 toward each of the reflecting surface 12a of the first substrate 12 and the reflecting surface 13a of the second substrate 13. Yes, a plurality of conductor patches 55 are arranged on the reflecting surface 54a.
The back surface 54b of the third substrate 54 is a surface opposite to the reflecting surface 54a, and the conductor 56 is arranged on the entire back surface 54b.
 導体パッチ55は、第3の基板54における反射面54aに施されている導体である。
 反射面54aに施されている複数の導体パッチ55におけるそれぞれの大きさ、又は、複数の導体パッチ55におけるそれぞれの配置等を調整することによって、反射面54aにより反射される電波の位相を変えることが可能である。
 導体56は、第3の基板54における背面54bの全体に施されている導体である。
The conductor patch 55 is a conductor applied to the reflecting surface 54a of the third substrate 54.
The phase of the radio wave reflected by the reflecting surface 54a can be changed by adjusting the size of each of the plurality of conductor patches 55 applied to the reflecting surface 54a or the arrangement of each of the plurality of conductor patches 55. Is possible.
The conductor 56 is a conductor provided on the entire back surface 54b of the third substrate 54.
 図19に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、第1の基板12における反射面12aの法線ベクトルv12と、第2の基板13における反射面13aの法線ベクトルv13とのなす角度θが、0度よりも大きく、90度よりも小さい。
 したがって、図19に示す反射鏡アンテナ装置3でも、図2に示す反射鏡アンテナ装置3と同様に、反射板として、1つの平板状の誘電体基板のみを備えるリフレクトアレーアンテナよりも、電波の放射方向のバラツキを抑えることができる。
In the reflector antenna device 3 shown in FIG. 19, similarly to the reflector antenna device 3 shown in FIG. 2, the normal vector v 12 of the reflection surface 12a on the first substrate 12 and the reflection surface 13a on the second substrate 13 The angle θ formed by the normal vector v 13 of is larger than 0 degrees and smaller than 90 degrees.
Therefore, the reflector antenna device 3 shown in FIG. 19 also emits radio waves more than the reflect array antenna provided with only one flat plate-shaped dielectric substrate as the reflector, as in the reflector antenna device 3 shown in FIG. It is possible to suppress the variation in direction.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, it is possible to freely combine the embodiments, modify any component of each embodiment, or omit any component in each embodiment.
 本開示は、一次放射器を備える反射鏡アンテナ装置に適している。
 また、本開示は、反射鏡アンテナ装置を備える通信装置に適している。
The present disclosure is suitable for reflector antenna devices with a primary radiator.
Further, the present disclosure is suitable for a communication device including a reflector antenna device.
 1 信号送信部、2 信号受信部、3 反射鏡アンテナ装置、11 一次放射器、11a 放射口、12 第1の基板、12a 反射面、12b 背面、13 第2の基板、13a 反射面、13b 背面、14 ヒンジ、21 導体パッチ、22 導体、23 導体パッチ、24 導体、30 可動機構、41 一次放射器、51 一次放射器、52,53 副反射鏡、54 第3の基板、54a 反射面、54b 背面、55 導体パッチ、56 導体。 1 signal transmitter, 2 signal receiver, 3 reflector antenna device, 11 primary radiator, 11a emission port, 12 first substrate, 12a reflecting surface, 12b back surface, 13 second substrate, 13a reflecting surface, 13b back surface , 14 hinges, 21 conductor patches, 22 conductors, 23 conductor patches, 24 conductors, 30 movable mechanisms, 41 primary radiators, 51 primary radiators, 52, 53 secondary reflectors, 54 third substrates, 54a reflective surfaces, 54b Back, 55 conductor patch, 56 conductor.

Claims (13)

  1.  電波を放射する一次放射器と、
     前記一次放射器から放射された電波を反射する反射面に、複数の導体パッチが配置されている第1の基板と、
     前記第1の基板の周囲に配置されており、前記一次放射器から放射された電波を反射する反射面に、複数の導体パッチが配置されている第2の基板とを備え、
     前記第1の基板における反射面の法線ベクトルと、前記第2の基板における反射面の法線ベクトルとのなす角度が、0度よりも大きく、90度よりも小さいことを特徴とする反射鏡アンテナ装置。
    A primary radiator that radiates radio waves and
    A first substrate on which a plurality of conductor patches are arranged on a reflecting surface that reflects radio waves radiated from the primary radiator, and
    A second substrate, which is arranged around the first substrate and has a plurality of conductor patches arranged on a reflecting surface that reflects radio waves radiated from the primary radiator, is provided.
    A reflector characterized in that the angle formed by the normal vector of the reflecting surface on the first substrate and the normal vector of the reflecting surface on the second substrate is larger than 0 degrees and smaller than 90 degrees. Antenna device.
  2.  前記第2の基板を複数備えたことを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein a plurality of the second substrates are provided.
  3.  前記第1の基板と、前記第2の基板とを接続するヒンジを備えたことを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, further comprising a hinge for connecting the first substrate and the second substrate.
  4.  前記第1の基板における反射面の法線ベクトルと、前記第2の基板における反射面の法線ベクトルとのなす角度を切り替えるために、前記第2の基板を可動する可動機構を備えたことを特徴とする請求項1記載の反射鏡アンテナ装置。 A movable mechanism for moving the second substrate is provided in order to switch the angle formed by the normal vector of the reflecting surface on the first substrate and the normal vector of the reflecting surface on the second substrate. The reflector antenna device according to claim 1.
  5.  前記一次放射器として、バックファイアアンテナを用いていることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein a backfire antenna is used as the primary radiator.
  6.  前記一次放射器として、ホーンアンテナを用いていることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein a horn antenna is used as the primary radiator.
  7.  前記一次放射器として、ホーンアンテナを用いており、
     前記ホーンアンテナから放射された電波を前記第1の基板の反射面及び前記第2の基板の反射面のそれぞれに向けて反射させる副反射鏡を備えたことを特徴とする請求項1記載の反射鏡アンテナ装置。
    A horn antenna is used as the primary radiator.
    The reflection according to claim 1, further comprising a secondary reflecting mirror that reflects radio waves radiated from the horn antenna toward each of the reflecting surface of the first substrate and the reflecting surface of the second substrate. Mirror antenna device.
  8.  前記副反射鏡として、
     前記ホーンアンテナから放射された電波を反射する反射面に、複数の導体パッチが配置されている第3の基板を用いていることを特徴とする請求項7記載の反射鏡アンテナ装置。
    As the secondary reflector
    The reflector antenna device according to claim 7, wherein a third substrate on which a plurality of conductor patches are arranged is used on a reflecting surface that reflects radio waves radiated from the horn antenna.
  9.  前記第1の基板の反射面及び前記第2の基板の反射面のそれぞれに配置される導体パッチの形状が、円形であることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein the conductor patches arranged on the reflective surface of the first substrate and the reflective surface of the second substrate are circular in shape.
  10.  前記第1の基板の反射面及び前記第2の基板の反射面のそれぞれに配置される導体パッチの形状が、矩形であることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein the conductor patches arranged on the reflective surface of the first substrate and the reflective surface of the second substrate are rectangular in shape.
  11.  前記第1の基板の反射面及び前記第2の基板の反射面のそれぞれに配置される導体パッチの形状が、リング形であることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein the conductor patches arranged on the reflective surface of the first substrate and the reflective surface of the second substrate are ring-shaped.
  12.  前記第1の基板の反射面及び前記第2の基板の反射面のそれぞれに配置される導体パッチの形状が、矩形の枠形状であることを特徴とする請求項1記載の反射鏡アンテナ装置。 The reflector antenna device according to claim 1, wherein the shape of the conductor patch arranged on each of the reflecting surface of the first substrate and the reflecting surface of the second substrate is a rectangular frame shape.
  13.  請求項1から請求項12のうちのいずれか1項記載の反射鏡アンテナ装置を備えた通信装置。 A communication device provided with the reflector antenna device according to any one of claims 1 to 12.
PCT/JP2020/001905 2020-01-21 2020-01-21 Reflector antenna device and communication device WO2021149143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560841A JP6995260B2 (en) 2020-01-21 2020-01-21 Reflector antenna device and communication device
PCT/JP2020/001905 WO2021149143A1 (en) 2020-01-21 2020-01-21 Reflector antenna device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001905 WO2021149143A1 (en) 2020-01-21 2020-01-21 Reflector antenna device and communication device

Publications (1)

Publication Number Publication Date
WO2021149143A1 true WO2021149143A1 (en) 2021-07-29

Family

ID=76992236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001905 WO2021149143A1 (en) 2020-01-21 2020-01-21 Reflector antenna device and communication device

Country Status (2)

Country Link
JP (1) JP6995260B2 (en)
WO (1) WO2021149143A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020914A1 (en) * 2000-03-10 2001-09-13 Antoine Roederer Reflector antenna comprising a plurality of panels
JP2014165754A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Directional characteristic variable antenna
JP2018510559A (en) * 2015-02-24 2018-04-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン REFLECTOR WITH ELECTRONIC CIRCUIT AND ANTENNA DEVICE HAVING REFLECTOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020914A1 (en) * 2000-03-10 2001-09-13 Antoine Roederer Reflector antenna comprising a plurality of panels
JP2014165754A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Directional characteristic variable antenna
JP2018510559A (en) * 2015-02-24 2018-04-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン REFLECTOR WITH ELECTRONIC CIRCUIT AND ANTENNA DEVICE HAVING REFLECTOR

Also Published As

Publication number Publication date
JPWO2021149143A1 (en) 2021-07-29
JP6995260B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
RU2380802C1 (en) Compact multibeam mirror antenna
EP3419117B1 (en) Horn antenna
US4559540A (en) Antenna system with plural horn feeds
JP3813581B2 (en) Antenna device
JP2018507664A (en) Integrated transceiver with focusing antenna
JP2018137743A (en) Reflect array antenna
WO2021149143A1 (en) Reflector antenna device and communication device
CN108306111B (en) Gregory antenna based on super surface
JPH08288901A (en) Radio communication method
CN113131224B (en) Antenna beam propagation direction adjustment system
US4783664A (en) Shaped offset-fed dual reflector antenna
JP4579951B2 (en) Reflector antenna
JP3655191B2 (en) Mirror surface modification antenna
JP2001127537A (en) Lens antenna system
JP3491503B2 (en) Focused beam feeder
US20230282974A1 (en) Cavity-backed antenna having controllable beam width
EP3975334A1 (en) Antenna apparatus
KR20010036922A (en) Method and apparatus for controlling a sub-reflecter in an antenna
JPH09246855A (en) Spherical mirror antenna
WO2023097472A1 (en) Antenna and antenna system
JP3250815B2 (en) Rotating scanning antenna device
JP2003008344A (en) Antenna apparatus
JP3034262B2 (en) Aperture antenna device
JP2003204218A (en) Antenna device
JP2001339236A (en) Multifrequency band common-use antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915178

Country of ref document: EP

Kind code of ref document: A1