WO2021147560A1 - 信号传输方法及装置 - Google Patents

信号传输方法及装置 Download PDF

Info

Publication number
WO2021147560A1
WO2021147560A1 PCT/CN2020/135792 CN2020135792W WO2021147560A1 WO 2021147560 A1 WO2021147560 A1 WO 2021147560A1 CN 2020135792 W CN2020135792 W CN 2020135792W WO 2021147560 A1 WO2021147560 A1 WO 2021147560A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
energy
saving
terminal
reference signal
Prior art date
Application number
PCT/CN2020/135792
Other languages
English (en)
French (fr)
Inventor
王加庆
杨美英
罗晨
郑方政
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021147560A1 publication Critical patent/WO2021147560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to signal transmission methods and devices.
  • the current working state of the terminal (User Equipment, UE) is divided into three types: idle state (RRC_IDLE), inactive state (RRC_Inactive), and connected state (RRC_Connected).
  • RRC_IDLE idle state
  • RRC_Inactive inactive state
  • RRC_Connected connected state
  • PDCCH physical downlink control channels
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the UE In the RRC_Connected state, the UE needs to continuously monitor the physical downlink control channel PDCCH (such as the PDCCH scrambled by the C-RNTI) to learn the downlink PDSCH transmission information.
  • PDCCH physical downlink control channel
  • the packet-based data flow is usually bursty. There is data transmission for a period of time, but there is no data transmission for a long period of time. Continuous monitoring of the PDCCH will inevitably lead to rapid power consumption of the UE. Therefore, when there is no data transmission, the power consumption can be reduced by stopping receiving the PDCCH (the blind PDCCH detection will be stopped at this time). Therefore, the design of 3GPP is to achieve the purpose of power saving through DRX (Discontinuous Reception) mechanism, as shown in Figure 1.
  • DRX Continuous Reception
  • the UE In the DRX cycle, the UE only monitors the PDCCH during the reception on period (On duration), and during the discontinuous reception time (Opportunity for DRX), that is, the DRX deactivation period (DRX OFF), the UE does not receive the PDCCH to reduce power consumption To enter sleep mode.
  • NR Rel-16 introduces the group common PDCCH as the energy-saving signal before the DRX activation period (DRX ON).
  • the PDCCH is transmitted in the DRX OFF and uses the energy-saving wireless network temporary identification (Power saving RNTI, PS-RNTI) With scrambling, only when the energy-saving signal carries the UE wake-up indication, the UE will wake up the receiver in the subsequent DRX cycle, otherwise the Rel-16 UE will continue to sleep.
  • Power saving RNTI Power saving RNTI
  • DCI Downlink Control Information
  • the UE decodes the energy-saving signal before the DRX activation cycle (DRX ON) cycle, the receiver wakes up and performs PDCCH monitoring (monitoring) in the next DRX cycle, otherwise, it performs PDCCH monitoring in the subsequent DRX cycle.
  • the sleep operation is performed in the cycle.
  • the UE cannot perform channel state information (CSI) reporting (report) and send sounding reference signals (Sounding Reference Signal, SRS), causing the UE to fail to feedback Link quality, link adaptation to energy-saving signals is not possible, uplink timing information cannot be obtained in the initial stage of DRX ON, and fast uplink synchronization cannot be performed.
  • CSI channel state information
  • SRS Sounding Reference Signal
  • the Rel-16 processing method is that the UE does not perform CSI report and its SRS transmission by default in DRX OFF, unless high-level signaling configures the UE to perform CSI report and its SRS transmission in DRX OFF, but once high-level signaling is configured in this way, it will cause The UE has to wake up every DRX OFF period, which will greatly lose power saving performance. At the same time, the UE is in a sleep state for multiple consecutive DRX cycles, which may also have a destructive impact on the UE's received beam accuracy and the maintenance performance of the radio resource management (Radio Resource Management, RRM) measurement link.
  • Radio Resource Management, RRM Radio Resource Management
  • the embodiments of the present application provide a signal transmission method and device to make full use of the useless DCI bits indicating that the terminal is sleeping, thereby improving the terminal's reception quality and link maintenance performance.
  • a signal transmission method provided in an embodiment of the present application includes:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes Second indication information indicating that the terminal enters a sleep state, and second energy saving information corresponding to the second indication information;
  • the energy-saving signal that needs to be sent is determined; wherein the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal
  • the signal includes second indication information for instructing the terminal to enter the sleep state, and second energy-saving information corresponding to the second indication information; sending the energy-saving signal to the terminal, so as to make full use of the useless DCI bits instructing the terminal to sleep, Improved terminal reception quality and link maintenance performance.
  • the energy-saving signal is sent in the discontinuous reception DRX deactivation period.
  • the first energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the second energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the method further includes:
  • the configuration information of the first energy saving information and/or the second energy saving information is sent through high-layer signaling.
  • a signal transmission method provided in an embodiment of the present application includes:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes an indication for instructing the terminal to enter Second indication information of the sleep state, and second energy saving information corresponding to the second indication information;
  • the method further includes:
  • performing an energy-saving operation according to the energy-saving signal instruction specifically includes:
  • the energy-saving signal carries first indication information for instructing the terminal to enter the wake-up state
  • the first energy-saving information is further parsed according to the configuration information of the first energy-saving information obtained in advance; if the energy-saving signal is Carrying second indication information for instructing the terminal to enter the sleep state, then further analyzing the second energy saving information according to the configuration information of the second energy saving information obtained in advance.
  • the method further includes:
  • the receiving beam is updated according to the beam indication information.
  • a signal transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes Second indication information indicating that the terminal enters a sleep state, and second energy saving information corresponding to the second indication information;
  • the energy-saving signal is sent in the discontinuous reception DRX deactivation period.
  • the first energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the second energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the processor is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • the configuration information of the first energy saving information and/or the second energy saving information is sent through high-layer signaling.
  • a signal transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes an indication for instructing the terminal to enter Second indication information of the sleep state, and second energy saving information corresponding to the second indication information;
  • the processor is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • performing an energy-saving operation according to the energy-saving signal instruction specifically includes:
  • the energy-saving signal carries the first indication information for instructing the terminal to enter the wake-up state
  • the first energy-saving information is further parsed according to the configuration information of the first energy-saving information obtained in advance; if the energy-saving signal is Carrying second indication information for instructing the terminal to enter the sleep state, then further analyzing the second energy saving information according to the configuration information of the second energy saving information obtained in advance.
  • the processor is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • the receiving beam is updated according to the beam indication information.
  • another signal transmission device provided by an embodiment of the present application includes:
  • the determining unit is configured to determine the energy-saving signal that needs to be sent; wherein the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or The energy-saving signal includes second indication information for instructing the terminal to enter a sleep state, and second energy-saving information corresponding to the second indication information;
  • the sending unit is used to send the energy saving signal to the terminal.
  • another signal transmission device provided by an embodiment of the present application includes:
  • the receiving unit is configured to receive an energy-saving signal; wherein the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes Second indication information used to indicate that the terminal enters a sleep state, and second energy saving information corresponding to the second indication information;
  • the execution unit is configured to perform energy saving operations according to the energy saving signal instructions.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • FIG. 1 is a schematic diagram of a DRX cycle (cycle) provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a signal transmission method on the network side according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of a signal transmission method on the terminal side according to an embodiment of the application
  • FIG. 4 is a schematic structural diagram of a signal transmission device on the network side according to an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a signal transmission device on the terminal side according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of another signal transmission device on the network side according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of another signal transmission device on the terminal side according to an embodiment of the application.
  • the embodiments of the present application provide a signal transmission method and device to make full use of the useless DCI bits indicating that the terminal is sleeping, thereby improving the terminal's reception quality and link maintenance performance.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called a user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal device, for example, it can be a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in the 5G network architecture (next generation system), or home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in the 5G network architecture next generation system
  • HeNB home evolved node B
  • relay node relay node
  • Femto home
  • a signal transmission method provided in an embodiment of the present application includes:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the awake state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes a first indication for instructing the terminal to enter the sleep state.
  • the energy-saving signal in the embodiment of the present application includes indication information used to instruct the terminal to enter the sleep or wake-up state, and energy-saving information corresponding to the indication information, wherein, when the indication information is used to instruct the terminal to enter When the indication information of the wake-up state, the energy-saving information corresponding to the indication information includes the first energy-saving information configured when the terminal is in the awake state; when the indication information is the indication information for indicating that the terminal enters the sleep state, the indication The energy-saving information corresponding to the information includes second energy-saving information configured when the terminal is in a sleep state;
  • DRX OFF duration is also called the deactivation period.
  • Both the first energy-saving information and the second energy-saving information are sent during the DRX OFF, that is, the deactivation period. It’s just that the R16power saving signal is standardized.
  • a DCI based on the UE group that is, the energy-saving information of multiple UEs is carried in one DCI. It is assumed that the first UE corresponds to 5-bit energy-saving information, and the second UE corresponds to 4-bit energy-saving information. The three UEs correspond to 6 bits of energy-saving information, and the base station cascades these 5, 4, and 6 bits together to form DCI. For each UE, the first bit of the energy-saving information is called a wake-up indicator.
  • the UE For example, its value is 1 to wake up the UE in the subsequent DRX cycle, and its value is 0 to indicate that the UE will not wake up in the subsequent DRX cycle.
  • the position for transmitting the energy-saving signal is within the deactivation period before each DRX cycle, that is, within the DRX OFF of the previous DRX cycle.
  • the first bit in the m-bit energy-saving information corresponding to the UE, that is, the wake-up indicator is 0, and the remaining m-1 bits are also zero (garbage bits). Since the UE is instructed to sleep, save energy The information does not carry any energy saving information except for the wake-up indication.
  • the remaining m-1 bits when the UE is instructed to wake up, the remaining m-1 bits represent Scell dormancy (secondary cell sleep) information, and when the UE is instructed to sleep, the remaining m-1 bits are used to indicate other information to make it change. For useful information.
  • the base station may use high-layer signaling to configure energy-saving information for the UE, including first energy-saving information and second energy-saving information, where the first energy-saving information includes configuring energy-saving information for the UE when it is indicated to wake up; and the second energy-saving information It includes configuring the information carried by the UE when the UE is instructed to sleep, that is, information other than the sleep indication information carried by the energy-saving signal.
  • the energy-saving signal may be, for example, the PDCCH sent during the DRX OFF period.
  • the method also includes:
  • the base station sends the configuration information of the first energy saving information and/or the second energy saving information through high-layer signaling. For example, the base station configures the location of the first energy-saving information and/or the second energy-saving information in the group common energy-saving signal and the corresponding energy-saving information type for the UE through high-layer signaling.
  • the base station must send the energy-saving signal through the physical layer energy-saving signal, such as sending the energy-saving signal through the physical layer PDCCH.
  • the base station uses an energy-saving signal (such as a physical layer energy-saving signal or a channel (such as PDCCH)) to carry energy-saving information, that is, the first energy-saving information.
  • the first energy-saving information includes at least one of the following content-related information item:
  • UE receives beam information or base station sends beam information
  • Timing RS Channel tracking reference signal
  • CSI report Channel state information report
  • SRS Sounding reference signal
  • the above-mentioned content-related information may be the above-mentioned content itself, or may be the instruction information or configuration information of the above-mentioned content.
  • RSRP Reference Signal Receive Power
  • the base station uses an energy-saving signal (for example, a physical layer energy-saving signal or a channel (for example, PDCCH)) to carry configuration information when the UE is indicated to sleep, that is, the aforementioned second energy-saving information.
  • an energy-saving signal for example, a physical layer energy-saving signal or a channel (for example, PDCCH)
  • the information that the UE is configured to carry during sleep includes at least one of the following content-related information:
  • UE receives beam information or base station sends beam information
  • the above-mentioned content-related information may be the above-mentioned content itself, or may be the instruction information or configuration information of the above-mentioned content.
  • a signal transmission method provided by an embodiment of the present application includes:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the awake state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes a first indication for instructing the terminal to enter the sleep state.
  • S202 Perform an energy saving operation according to the energy saving signal instruction.
  • the method further includes:
  • performing an energy-saving operation according to an energy-saving signal instruction includes: if the energy-saving signal carries first indication information for instructing the terminal to enter the wake-up state, further analyzing the first energy-saving information; if the energy-saving signal If it carries second indication information for instructing the terminal to enter the sleep state, the second energy saving information is further analyzed. That is, if the UE detects the energy saving signal and is awakened, it will wake up the receiver in the subsequent DRX cycle to perform the PDCCH monitoring (monitoring) operation; otherwise, the UE will continue to sleep in the subsequent DRX cycle without performing the PDCCH monitoring operation.
  • the UE first decodes the energy-saving signal (the energy-saving signal can be a sequence or a PDCCH channel. Decoding the PDCCH is to decode the energy-saving signal. The information carried by the energy-saving signal is called energy-saving information.
  • the DCI is parsed from the PDCCH, that is, the energy-saving information is parsed) If the wake-up indication information indicates that the UE wakes up, the UE parses the energy-saving information corresponding to the wake-up state (that is, the first energy-saving information) according to the high-level instruction; if the wake-up indication information indicates that the UE enters the sleep state, the UE parses the indication information corresponding to the sleep state according to the high-level instruction ( That is, the second energy saving information).
  • the UE updates the receiving beam according to the transmission beam indication information carried by the energy-saving signal in subsequent signal or channel reception.
  • the energy saving information (which may be the first energy saving information or the second energy saving information) may also carry a TRS indication.
  • Rel-16 currently standardizes the energy-saving signal based on the group common PDCCH, and the energy-saving signal carries a serial concatenation of multiple UE energy-saving information packets.
  • the information grouping of each UE is composed of two parts, the first part: UE wake-up indication information, and the second part: SCells dormancy indication information.
  • the UE wake-up indication consists of 1 bit. The two states respectively indicate whether the UE is performing a wake-up operation or a sleep operation in the adjacent DRX cycle; the SCells dormancy indication information indicates that the UE performs PDCCH monitoring operations on those SCells after being awakened. .
  • the first part of the corresponding information packet for example, bit 0
  • the second part of the SCells dormancy indication information must be all zero bits. Therefore, when the UE is instructed to sleep, the energy-saving information group corresponding to the UE is all zero bits. Although these zero bits are of no use, they must be sent as overhead. Considering that the number of UEs awakened by energy-saving signals at the same time is often small, this undoubtedly leads to a huge waste of DCI.
  • the base station can further use the energy saving information, although the UE is indicated as a sleep state.
  • the base station uses high-level signaling, such as radio resource control (Radio Resource Control, RRC) signaling or media access control unit (MAC CE) to configure energy-saving information for the UE, and configure "energy-saving information indicated as wake-up" for the UE, that is The first energy-saving information, and/or, configure the UE with "information carried when the UE is instructed to sleep", that is, the second energy-saving information.
  • RRC Radio Resource Control
  • MAC CE media access control unit
  • the UE first decodes the energy-saving signal. If the wake-up indication information indicates that the UE is awake, the UE corresponds to the energy-saving information in the wake-up state analyzed according to the high-level instruction; if the wake-up indication information indicates that the UE is asleep, the UE corresponds to the energy-saving information in the sleep state analyzed according to the high-level instruction.
  • the base station does not configure the "information carried when the UE is instructed to sleep" for the UE, its default state is that the corresponding information bit group in the energy-saving signal DCI when the UE is sleeping is all zeros or NULL.
  • the energy-saving information group of the UE is pre-configured by RRC signaling.
  • the base station can configure the energy-saving information for the base station when the UE is instructed to wake up (that is, the first energy-saving information).
  • the wake-up indication itself is the energy-saving information.
  • the base station also configures other indication information (ie, the second energy saving information) for the UE whose energy saving information indicates that it is sleeping, because when the UE is indicated by the energy saving signal to wake up, the DRX ON timer (timer) starts, and when the UE is instructed to sleep In the DRX cycle configured by the UE, the DRX ON timer is not started.
  • the information carried by the energy-saving signal takes effect when the DRX ON timer is not started.
  • the UE does not perform the PDCCH monitoring operation, and the UE cannot obtain the transmit/receive beam update information.
  • the beam update information in Rel-15 and Rel-16 that is, the transmission configuration information (TCI) state, is configured to the UE through RRC signaling in the connected state, and then updated through MAC CE, but the UE When no data arrives, it will be instructed by the energy-saving signal to enter the sleep state in the subsequent DRX cycle.
  • the UE will not perform PDCCH detection during the sleep state, that is, during the inactive time (Active Time), and the base station cannot transmit MAC CE updates. Beam information. When the UE is instructed to be in the sleep state for multiple DRX cycles in a row, the transmit beam information and/or receive beam information cannot be updated. Since the energy-saving signal is for a group of UEs, some UEs in the group are in the sleep state and some are in the awake state.
  • the awake state may have been instructed by the base station to update the transmit beam information or receive beam information, and the UE in the sleep state Then the beam update information cannot be received, so when the base station has data to send to the UE, the UE will most likely not be able to correctly receive the energy-saving signal sent using the updated beam.
  • the beam information optionally refers to a control resource set (CORESET) transmission beam.
  • the base station notifies the UE of the configured CORESET transmission beam, and the terminal can use the corresponding reception beam to receive and transmit signals.
  • each transmission opportunity corresponds to a CORESET, but currently a UE is configured with a maximum of three CORESETs, and there is also a CORESET that sometimes needs to be configured to be dedicated to beam failure
  • the beam failure recovery process cannot be configured for the energy-saving signal; therefore, the base station needs to frequently update the transmission beam of the CORESET corresponding to the energy-saving signal during the active time, and the UE in the sleep state cannot receive the beam update.
  • the base station configures it through RRC signaling.
  • the corresponding energy-saving information packet contains the start of the transmitted/received beam information configured for the UE Location and size (the transmitting beam is viewed from the perspective of the base station, and the receiving beam is viewed from the perspective of the terminal).
  • the base station uses the physical layer energy-saving signal to carry transmit and/or receive beam information while instructing the UE to perform the sleep operation of the UE.
  • the transmit and/or receive beam information may include the transmit beam information corresponding to one or more CORESETs configured by the base station for the energy-saving signal .
  • the energy saving signal may also carry TRS, CSI report, L1-RSRP measurement, and SRS information.
  • the energy-saving signal triggers TRS (Tracking RS) during the sleep period of the UE.
  • TRS Track RS
  • the energy-saving signal can trigger the CSI-RS report during the sleep period of the UE, and the UE can perform the CSI-report when the DRX ON timer is not started, which is beneficial to the channel conditions of the base station or the energy-saving signal, thereby performing link adaptation to the energy-saving signal.
  • the energy-saving signal can trigger the periodic L1-RSRP measurement during the sleep period of the UE, and the UE can perform the periodic L1-RSRP measurement to perform the RRM measurement process when the DRX ON timer is not started.
  • the energy-saving signal can trigger SRS transmission during the sleep period of the UE, and the UE can send the SRS signal when the DRX ON timer is not started, which is beneficial to the uplink synchronization information of the base station or the UE.
  • the base station can carry link maintenance messages when instructing the UE to perform sleep operations, making full use of energy-saving signals.
  • the solution provided in the embodiments of this application does not exclude that the base station carries one or a combination of the following content-related information in the energy-saving signal when instructing the UE to wake up: UE receiving beam information or base station sending beam information, TRS sending, CSI report, L1-RSRP Measurement, SRS transmission.
  • the above-mentioned content-related information may be the above-mentioned content itself, or may be the instruction information or configuration information of the above-mentioned content.
  • the UE side receives the energy-saving signal, and performs energy-saving operations according to the energy-saving signal instruction.
  • the UE first decodes the energy-saving signal. If the wake-up indication information indicates that the UE is awake, the UE analyzes the energy-saving information corresponding to the wake-up state according to the high-level instruction; if the wake-up indication information indicates that the UE is asleep, the UE analyzes the indication information corresponding to the sleep state according to the high-level instruction.
  • the receiving beam is updated according to the new transmitting beam carried by the energy-saving signal in subsequent signal/channel reception.
  • the UE energy saving information also carries TRS or CSI report or L1-RSRP measurement or SRS transmission indication/configuration information, the UE will receive the TRS signal or execute the cycle according to the instructions of the energy saving signal in the subsequent DRX cycle when the DRX ON timer is not started.
  • the base station uses high-level signaling to configure energy-saving information for the UE.
  • it also configures the information carried by the UE when the UE is instructed to sleep. Make full use of the Rel-16 energy-saving signal to indicate the useless DCI bits when the UE sleeps to achieve the purpose of improving the reception quality and maintaining the link.
  • a signal transmission device provided in an embodiment of the present application includes:
  • the processor 500 is configured to read a program in the memory 520 and execute the following process:
  • the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes Second indication information indicating that the terminal enters a sleep state, and second energy saving information corresponding to the second indication information;
  • the energy saving signal is sent to the terminal through the transceiver 510.
  • the energy-saving signal is sent in the discontinuous reception DRX deactivation period.
  • the first energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the second energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the processor 500 is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • the transceiver 510 is used to send the configuration information of the first energy saving information and/or the second energy saving information through high-layer signaling.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • a signal transmission apparatus provided in an embodiment of the present application includes:
  • the processor 600 is configured to read a program in the memory 620, and execute the following process:
  • the energy-saving signal is received through the transceiver 610; wherein, the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal includes Second indication information indicating that the terminal enters a sleep state, and second energy saving information corresponding to the second indication information;
  • processor 600 is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • performing an energy-saving operation according to the energy-saving signal instruction specifically includes:
  • the energy-saving signal carries first indication information for instructing the terminal to enter the wake-up state
  • the first energy-saving information is further parsed according to the configuration information of the first energy-saving information obtained in advance; if the energy-saving signal is Carrying second indication information for instructing the terminal to enter the sleep state, then further analyzing the second energy saving information according to the configuration information of the second energy saving information obtained in advance.
  • processor 600 is further configured to call program instructions stored in the memory, and execute according to the obtained program:
  • the receiving beam is updated according to the beam indication information.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a CPU (central embedded device), ASIC (Application Specific Integrated Circuit, application-specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device) , Complex Programmable Logic Devices).
  • CPU central embedded device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device
  • Complex Programmable Logic Devices Complex Programmable Logic Devices
  • another signal transmission device provided in an embodiment of the present application includes:
  • the determining unit 11 is configured to determine the energy-saving signal that needs to be sent; wherein the energy-saving signal includes first indication information for instructing the terminal to enter the wake-up state, and first energy-saving information corresponding to the first indication information, or The energy-saving signal includes second indication information for instructing the terminal to enter a sleep state, and second energy-saving information corresponding to the second indication information;
  • the sending unit 12 is configured to send the energy saving signal to the terminal.
  • the energy-saving signal is sent in the discontinuous reception DRX deactivation period.
  • the first energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the second energy saving information specifically includes one or a combination of the following information:
  • the terminal receives the beam information or the base station sends the beam information;
  • the sending unit 12 is further configured to:
  • the configuration information of the first energy saving information and/or the second energy saving information is sent through high-layer signaling.
  • another signal transmission apparatus provided in an embodiment of the present application includes:
  • the receiving unit 21 is configured to receive an energy-saving signal; wherein the energy-saving signal includes first indication information for instructing the terminal to enter an awake state, and first energy-saving information corresponding to the first indication information, or the energy-saving signal Including second indication information for instructing the terminal to enter a sleep state, and second energy saving information corresponding to the second indication information;
  • the execution unit 22 is configured to execute an energy-saving operation according to the energy-saving signal instruction.
  • the receiving unit 21 is further configured to:
  • performing an energy-saving operation according to the energy-saving signal instruction specifically includes:
  • the energy-saving signal carries first indication information for instructing the terminal to enter the wake-up state
  • the first energy-saving information is further parsed according to the configuration information of the first energy-saving information obtained in advance; if the energy-saving signal is Carrying second indication information for instructing the terminal to enter the sleep state, then further analyzing the second energy saving information according to the configuration information of the second energy saving information obtained in advance.
  • execution unit 22 is further configured to:
  • the receiving beam is updated according to the beam indication information.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can be It has the ability to communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the steps of the above method are executed.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了信号传输方法及装置,用以充分利用指示终端睡眠时的无用DCI比特,从而改善终端的接收质量与链路维持性能。本申请提供的一种信号传输方法,包括:确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;发送所述节能信号给终端。

Description

信号传输方法及装置
相关申请的交叉引用
本申请要求在2020年01月22日提交中国专利局、申请号为202010074190.7、申请名称为“信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信号传输方法及装置。
背景技术
5G新的无线(New Radio,NR)系统中,目前终端(User Equipment,UE)的工作状态分为三种:空闲状态(RRC_IDLE)、非激活状态(RRC_Inactive)和连接状态(RRC_Connected)。只有处于RRC_Connected的UE才允许检测例如小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。鉴于NR终端在RRC_Connected模式(mode)的功耗对系统功耗具有决定影响,故NR版本16(Rel-16)对连接态的UE节能(power saving)进行了标准化。在RRC_Connected状态,UE需要持续的监听物理下行控制信道PDCCH(如C-RNTI加扰的PDCCH),以获知下行PDSCH的发送信息。而基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输,持续的监听PDCCH必然导致UE的快速耗电。故在没有数据传输的时候,可以通过停止接收PDCCH(此时会停止PDCCH盲检)来降低功耗。因此3GPP的设计是通过DRX(Discontinuous Reception,非连续接收)机制达到省电目的,如图1所示。在DRX周期内,UE只在接收打开周期(On duration)内监测PDCCH,在非连续接收时间(Opportunity for DRX)即DRX去激活周期(DRX OFF)时间内,UE不接收PDCCH,以减少功耗, 即进入睡眠模式。
NR Rel-16在DRX激活周期(DRX ON)之前引入基于组公共(group common)PDCCH作为节能信号,该PDCCH在DRX OFF内传输,且以节能无线网络临时标识(Power saving RNTI,PS-RNTI)加扰,只有节能信号中携带UE唤醒指示,UE才会在其后的DRX周期内唤醒接收机,否则Rel-16的UE将继续睡眠。需要指出的是,RRC-connected mode在DRX OFF内传输的基于group common PDCCH的节能信号,其下行控制信息(Downlink Control Information,DCI)格式重用了Rel-15中DCI格式(format)2_x(x=0,1,2,3)的设计,即组内每个UE的节能信息是分离的,每个UE节能信息占用一个分组,基站高层信令会通知UE分组的起点及其长度,多个UE对应的多个节能信息分组串行级联构成整个DCI。
根据Rel-16标准,如果UE在DRX激活周期(DRX ON)周期之前解出节能信号,则唤醒接收机在紧接着的DRX周期(cycle)内执行PDCCH检测(monitoring)操作,否则在后续的DRX cycle内执行睡眠操作。但是,如果连续多个DRX cycle,都没有数据传输,则UE无法执行信道状态信息(Channel State Information,CSI)报告(report),与发送探测参考信号(Sounding Reference Signal,SRS),导致UE无法反馈链路质量,无法对节能信号进行链路自适应,在DRX ON初期也无法获得上行定时信息,无法快速上行同步。Rel-16处理的方法是在DRX OFF内默认UE不执行CSI report及其SRS发送,除非高层信令配置UE在DRX OFF内执行CSI report及其SRS发送,但是一旦高层信令如此配置,将导致UE在每个DRX OFF周期都要醒来,将较大的损失节电性能。同时,连续多个DRX周期UE都处于睡眠状态,还可能会对UE的接收波束准确性及其无线资源管理(Radio Resource Management,RRM)测量链路维持性能造成破坏性影响。
发明内容
本申请实施例提供了信号传输方法及装置,用以充分利用指示终端睡眠 时的无用DCI比特,从而改善终端的接收质量与链路维持性能。
在网络侧,例如在基站侧,本申请实施例提供的一种信号传输方法包括:
确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
发送所述节能信号给终端。
通过该方法,确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;发送所述节能信号给终端,从而充分利用了指示终端睡眠时的无用DCI比特,改善了终端的接收质量与链路维持性能。
可选地,在非连续接收DRX去激活周期内发送所述节能信号。
可选地,所述第一节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述第二节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,该方法还包括:
通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
相应地,在终端侧,本申请实施例提供的一种信号传输方法,包括:
接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
根据节能信号指示执行节能操作。
可选地,该方法还包括:
通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
可选地,根据节能信号指示执行节能操作具体包括:
若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
可选地,该方法还包括:
当所述第一节能信息或第二节能信息中携带有波束指示信息时,按照所述波束指示信息更新接收波束。
在网络侧,本申请实施例提供的一种信号传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
发送所述节能信号给终端。
可选地,在非连续接收DRX去激活周期内发送所述节能信号。
可选地,所述第一节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述第二节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
在终端侧,本申请实施例提供的一种信号传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
根据节能信号指示执行节能操作。
可选地,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
可选地,根据节能信号指示执行节能操作具体包括:
若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
可选地,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
当所述第一节能信息或第二节能信息中携带有波束指示信息时,按照所述波束指示信息更新接收波束。
在网络侧,本申请实施例提供的另一种信号传输装置,包括:
确定单元,用于确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
发送单元,用于发送所述节能信号给终端。
在终端侧,本申请实施例提供的另一种信号传输装置,包括:
接收单元,用于接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
执行单元,用于根据节能信号指示执行节能操作。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的DRX周期(cycle)示意图;
图2为本申请实施例提供的网络侧的信号传输方法的流程示意图;
图3为本申请实施例提供的终端侧的信号传输方法的流程示意图;
图4为本申请实施例提供的网络侧的信号传输装置的结构示意图;
图5为本申请实施例提供的终端侧的信号传输装置的结构示意图;
图6为本申请实施例提供的网络侧的另一种信号传输装置的结构示意图;
图7为本申请实施例提供的终端侧的另一种信号传输装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了信号传输方法及装置,用以充分利用指示终端睡眠时的无用DCI比特,从而改善终端的接收质量与链路维持性能。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution, LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口 的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
参见图2,在网络侧,例如在基站侧,本申请实施例提供的一种信号传输方法包括:
S101、确定需要发送的节能信号;
其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
也就是说,本申请实施例中所述节能信号包括用于指示终端进入睡眠或唤醒状态的指示信息,以及所述指示信息对应的节能信息,其中,当所述指示信息为用于指示终端进入唤醒状态的指示信息时,所述指示信息对应的节能信息包括为终端处于唤醒状态时配置的第一节能信息;当所述指示信息为用于指示终端进入睡眠状态的指示信息时,所述指示信息对应的节能信息包括为终端处于睡眠状态时配置的第二节能信息;
S102、发送所述节能信号给终端。
具体说明如下:
首先明确如下概念:
Active Time:即DRX ON周期,即激活期;
outside Active Time:即DRX OFF duration也称为去激活期。
无论是第一节能信息还是第二节能信息,都是在DRX OFF即去激活期内发送的。只不过R16power saving信号标准化了,一个基于UE group的DCI,即多个UE的对应的节能信息在一个DCI中承载,假设第一UE对应5比特节能信息,第二UE对应4比特节能信息,第三UE对应6比特节能信息,基站将这5、4、6比特串行级联在一起构成DCI。对每个UE来说,节能信息的第一个比特称为唤醒指示,比如,其值为1表示在后续的DRX周期内唤醒该UE,其值为0表示在后续的DRX周期内,UE不唤醒接收机进行睡眠。传输节能信号的位置是在每个DRX cycle之前的去激活期即前一个DRX cycle的DRX OFF内。R16中当UE被指示为睡眠时,该UE对应的m比特节能信息中第一比特即唤醒指示为0,剩余的m-1比特也为零(垃圾比特),既然UE被指示睡眠,则节能信息不携带除了唤醒指示外的任何节能信息。而本申请实施例中,UE被指示为唤醒时,剩余的m-1比特表示Scell dormancy(辅小区睡眠)信息,而指示睡眠时,剩余的m-1比特用于指示其他信息,使其变为有用信息。
可选地,基站可以利用高层信令为UE配置节能信息,包括第一节能信息和第二节能信息,其中,第一节能信息包括为UE配置被指示为唤醒时的节能信息;第二节能信息包括为UE配置UE被指示睡眠时携带的信息,即节能信号携带的除了睡眠指示信息之外的信息,所述节能信号例如可以是在DRX OFF周期内发送的PDCCH,当UE被指示进入睡眠状态时,其对应的DCI比特仍然存在,只不过目前协议中为全零,也就是现有技术中对睡眠UE只指示睡眠指示信息,其他节能信息不携带,而本申请实施例中还通过DCI比特携带其他节能信息(即上述第二节能信息)。
也就是说,该方法还包括:
基站通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置 信息。例如:基站通过高层信令为UE配置所述第一节能信息和/或所述第二节能信息在group common节能信号中的位置及其对应的节能信息类型。例如基站在DRX ON内利用RRC信令为每个UE配置所述第一节能信息和/或所述第二节能信息在节能信号中的起点、长度、以及唤醒指示信息为唤醒状态时,后面m-1个比特对应的节能信息的类型;基站利用RRC信令为UE配置节能信息中,唤醒指示信息为睡眠状态时,剩余m-1个比特中所承载的信息的位置及其类型,例如:m=5,波束信息占据唤醒指示信息后紧接的2比特,而CSI-report指示信息占据波束指示信息后的一个比特,加上唤醒指示信息共4个比特,最后一个比特没有分配节能信息。以上只是举例说明,不排除其他配置方法。基站必须通过物理层节能信号发送节能信号,例如通过物理层PDCCH发送节能信号。
可选地,基站在DRX OFF时间内,利用节能信号(例如物理层节能信号或信道(例如PDCCH))携带节能信息,即第一节能信息,第一节能信息包括如下内容相关信息中的至少一项:
UE接收波束信息或基站发送波束信息;
信道跟踪参考信号(Tacking RS,TRS)发送;
信道状态信息上报(CSI report);
物理层RSRP测量(L1-RSRP measurement);
探测参考信号(SRS)发送;
其中,上述内容相关信息,可以是上述内容本身,也可以是上述内容的指示信息或配置信息。
其中,RSRP为参考信号接收功率(Reference Signal Receive Power)。
可选地,基站在DRX OFF时间内,通过节能信号(例如物理层节能信号或信道(例如PDCCH))携带UE被指示为睡眠时的配置信息,即上述第二节能信息。
可选地,所述的UE被配置为睡眠时携带的信息,即第二节能信息,包括如下内容相关信息中的至少一项:
UE接收波束信息或基站发送波束信息;
TRS发送;
CSI report;
L1-RSRP measurement;
SRS发送;
其中,上述内容相关信息,可以是上述内容本身,也可以是上述内容的指示信息或配置信息。
参见图3,在终端侧,本申请实施例提供的一种信号传输方法包括:
S201、接收节能信号;
其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
S202、根据节能信号指示执行节能操作。
可选地,该方法还包括:
通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
可选地,根据节能信号指示执行节能操作,例如包括:若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步解析所述第二节能信息。也就是说,如果UE检测到节能信号,且被唤醒,则在后续DRX周期内唤醒接收机执行PDCCH monitoring(监听)操作;否则UE在后面DRX周期继续保持睡眠状态,不执行PDCCH monitoring操作。
UE首先解码节能信号(节能信号可以是序列,也可以是一个PDCCH信道,解码PDCCH就是解码节能信号,节能信号所携带的信息称为节能信息,从PDCCH中解析出DCI,即解析出节能信息),如果唤醒指示信息指示UE唤醒,UE根据高层指示解析唤醒状态对应的节能信息(即第一节能信息); 如果唤醒指示信息指示UE进入睡眠状态,UE根据高层指示解析睡眠状态对应的指示信息(即第二节能信息)。
如果节能信息(可以是上述第一节能信息,也可以是上述第二节能信息)携带了波束指示信息,UE在后续信号或信道接收中按照节能信号携带的发送波束指示信息更新接收波束。
上述节能信息(可以是上述第一节能信息,也可以是上述第二节能信息)还可以携带TRS指示。
下面给出几个实施例的具体举例说明。
实施例1:
如前背景技术部分所述,目前Rel-16标准化了基于group common PDCCH的节能信号,节能信号中携带了多个UE节能信息分组的串行级联。Rel-16标准中每个UE的信息分组由两部分构成,第一部分:UE唤醒指示信息,第二部分:辅小区睡眠(SCells dormancy)指示信息。其中UE唤醒指示由1比特构成,两个状态分别表示UE在紧邻的DRX cycle内执行唤醒操作,还是睡眠操作;SCells dormancy指示信息则指示了UE在被唤醒后,在那些SCells上执行PDCCH monitoring操作。所以目前的标准,当UE没有被唤醒时,其对应的信息分组第一部分,例如为比特0,表示UE在后续DRX内不醒来,第二部分SCells dormancy指示信息一定是全零比特。所以,当UE被指示睡眠时,该UE对应的节能信息分组为全零比特,这些零比特虽然没有任何用处,但还是作为开销必须发送。考虑到同时被节能信号唤醒的UE个数往往较少,这无疑导致DCI的巨大浪费。
因此,本申请实施例中,基站可以进一步利用该节能信息,虽然UE被指示为睡眠状态。基站利用高层信令,例如无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制单元(MAC CE)为UE配置节能信息,为UE配置“被指示为唤醒时的节能信息”,即第一节能信息,和/或,为UE配置“UE被指示睡眠时携带的信息”,即第二节能信息。
相应地,UE侧的行为:
UE首先解码节能信号,如果唤醒指示信息指示UE为唤醒,UE根据高层指示解析的唤醒状态时对应节能信息;如果唤醒指示信息指示UE为睡眠,UE根据高层指示解析的睡眠状态时对应节能信息。
如果基站没有为UE配置“UE被指示睡眠时携带的信息”,其默认状态为UE睡眠时其对应的位于节能信号DCI中的信息比特分组为全零或者NULL。
实施例2:
如实施例1所述,UE的节能信息分组为RRC信令预先配置的,基站可以为基站配置UE被指示为唤醒时的节能信息(即第一节能信息),当然唤醒指示本身就是节能信息的一部分;基站还为节能信息指示为睡眠的UE配置其他指示信息(即第二节能信息),因为UE被节能信号指示为唤醒时,DRX ON定时器(timer)开始启动,而UE被指示睡眠时,UE配置的DRX cycle中DRX ON timer不启动,故此时上述UE被指示为睡眠状态时,节能信号携带的信息在DRX ON timer不启动时生效。在DRX ON timer不生效时UE不执行PDCCH monitoring操作,UE无法获得发送/接收波束更新信息。因为Rel-15与Rel-16中波束更新信息,即传输配置信息(transmission configuration information,TCI)状态(state),在连接态时通过RRC信令配置给UE,然后通过MAC CE进行更新,但是UE在没有数据到达时,会被节能信号指示在其后的DRX周期内进入睡眠状态,UE在睡眠状态内,即非激活时间(Active Time)内,不会执行PDCCH检测,基站无法传输MAC CE更新的波束信息。当连续多个DRX cycle,UE都被指示处于睡眠状态时,无法对发送波束信息和/或接收波束信息进行更新。由于节能信号是针对一组UE的,其中组内有的UE处于睡眠状态,有的处于唤醒状态,唤醒状态的UE可能已经被基站指示更新了发送波束信息或者接收波束信息,处于睡眠状态的UE则无法接收波束更新信息,所以当基站有数据向该UE发送时,该UE大概率都无法正确接收利用更新后波束发送的节能信号。所述波束信息,可选地是指控制资源集合(control resource set,CORESET)的发送波束,基站通知UE所配置的 CORESET发送波束,终端即可利用对应接收波束进行接收发送信号。在Rel-16节能信号设计中,虽然即使为UE配置多个发送机会,每个发送机会对应一个CORESET,但是目前一个UE最多配置三个CORESET,而且还有一个CORESET有时需要配置成专用于波束失败恢复(beam failure recovery)过程,不能配置给节能信号;因此基站在Active time需要经常更新节能信号对应的CORESET的发送波束,处于睡眠状态的UE会无法收到所述波束更新。可选地,当UE被配置了DRX,基站通过RRC信令配置,当UE被节能信号指示为睡眠时,所对应的节能信息分组中包含为该UE配置的发送/接收的波束信息的起始位置与大小(发送波束是从基站角度看,接收波束是从终端角度看)。基站利用物理层节能信号在指示UE执行UE睡眠操作的同时携带发送和/或接收波束信息,该发送和/或接收波束信息可以包含基站为节能信号配置的一个或者多个CORESET对应的发送波束信息。
节能信号指示UE处于睡眠状态时,节能信号还可以携带TRS、CSI report、L1-RSRP measurement、SRS信息。节能信号在UE睡眠期间触发TRS(Tracking RS),例如,可利用UE在DRX OFF内接收寻呼(paging)之前的精同步过程。节能信号可在UE睡眠期间触发CSI-RS report,UE可以在DRX ON timer不启动时进行CSI-report利于基站或者节能信号的信道状况,从而对节能信号进行链路自适应。节能信号可在UE睡眠期间触发周期的L1-RSRP measurement,UE可以在DRX ON timer不启动时进行周期的L1-RSRP measurement执行RRM测量过程。节能信号可在UE睡眠期间触发SRS发送,UE可以在DRX ON timer不启动时发送SRS信号,利于基站或者UE的上行同步信息。总之,基站指示UE执行睡眠操作时可以携带链路维持消息,充分利用节能信号。
本申请实施例提供的方案并不排除基站在指示UE被唤醒时在节能信号中携带下列内容相关信息之一或组合:UE接收波束信息或基站发送波束信息、TRS发送、CSI report、L1-RSRP measurement、SRS发送。其中,上述内容相关信息,可以是上述内容本身,也可以是上述内容的指示信息或配置信息。
实施例3:
UE侧接收节能信号,根据节能信号指示执行节能操作。
UE首先解码节能信号,如果唤醒指示信息指示UE为唤醒,UE根据高层指示解析唤醒状态对应的节能信息;如果唤醒指示信息指示UE为睡眠,UE根据高层指示,解析睡眠状态对应的指示信息。
如果唤醒指示信息指示UE为睡眠对应的节能信息中携带了波束指示信息,后续信号/信道接收中按照节能信号携带的新的发送波束更新接收波束。如果UE节能信息还携带了TRS或CSI report或L1-RSRP measurement或SRS发送指示/配置信息,则UE在后续的DRX ON timer没有启动的DRX周期内,按照节能信号的指示接收TRS信号或者执行周期的CSI report或者执行周期的L1-RSRP measurement或者发送周期的SRS信号。
综上所述,本申请实施例中,基站利用高层信令为UE配置节能信息,除了为UE配置被指示为唤醒时的节能信息,还为UE配置UE被指示睡眠时携带的信息,从而可以充分利用Rel-16节能信号指示UE睡眠时的无用DCI比特达到改善接收质量与维持链路的目的。
参见图4,在网络侧,本申请实施例提供的一种信号传输装置,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
通过收发机510发送所述节能信号给终端。
可选地,在非连续接收DRX去激活周期内发送所述节能信号。
可选地,所述第一节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述第二节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述处理器500还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过高层信令利用收发机510发送所述第一节能信息和/或所述第二节能信息的配置信息。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图5,在终端侧,本申请实施例提供的一种信号传输装置,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
通过收发机610接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息, 或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
根据节能信号指示执行节能操作。
可选地,所述处理器600还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
可选地,根据节能信号指示执行节能操作具体包括:
若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
可选地,所述处理器600还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
当所述第一节能信息或第二节能信息中携带有波束指示信息时,按照所述波束指示信息更新接收波束。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
参见图6,在网络侧,本申请实施例提供的另一种信号传输装置,包括:
确定单元11,用于确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
发送单元12,用于发送所述节能信号给终端。
可选地,在非连续接收DRX去激活周期内发送所述节能信号。
可选地,所述第一节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,所述第二节能信息具体包括下列信息之一或组合:
终端接收波束信息或基站发送波束信息;
信道跟踪参考信号发送;
信道状态信息上报;
物理层参考信号接收功率RSRP测量;
探测参考信号发送。
可选地,发送单元12还用于:
通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
参见图7,在终端侧,本申请实施例提供的另一种信号传输装置,包括:
接收单元21,用于接收节能信号;其中,所述节能信号包括用于指示终 端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
执行单元22,用于根据节能信号指示执行节能操作。
可选地,接收单元21还用于:
通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
可选地,根据节能信号指示执行节能操作具体包括:
若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
可选地,执行单元22还用于:
当所述第一节能信息或第二节能信息中携带有波束指示信息时,按照所述波束指示信息更新接收波束。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存 储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍 式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种信号传输方法,其特征在于,该方法包括:
    确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
    发送所述节能信号给终端。
  2. 根据权利要求1所述的方法,其特征在于,在非连续接收DRX去激活周期内发送所述节能信号。
  3. 根据权利要求1所述的方法,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  4. 根据权利要求1所述的方法,其特征在于,所述第二节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  5. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
  6. 根据权利要求5所述的方法,其特征在于,通过高层信令发送所述第 一节能信息和/或所述第二节能信息的配置信息,包括:
    基站通过高层信令为UE配置所述第一节能信息和/或所述第二节能信息在group common节能信号中的位置及其对应的节能信息类型。
  7. 一种信号传输方法,其特征在于,该方法包括:
    接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
    根据节能信号指示执行节能操作。
  8. 根据权利要求7所述的方法,其特征在于,该方法还包括:
    通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
  9. 根据权利要求7所述的方法,其特征在于,根据节能信号指示执行节能操作具体包括:
    若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
  10. 根据权利要求7所述的方法,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  11. 根据权利要求7所述的方法,其特征在于,所述第二节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  12. 根据权利要求10或11所述的方法,其特征在于,该方法还包括:
    当所述第一节能信息或第二节能信息中携带有终端接收波束信息或基站发送波束信息时,按照所述终端接收波束信息或基站发送波束信息,更新接收波束或发送波束。
  13. 一种信号传输装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
    发送所述节能信号给终端。
  14. 根据权利要求13所述的装置,其特征在于,在非连续接收DRX去激活周期内发送所述节能信号。
  15. 根据权利要求13所述的装置,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  16. 根据权利要求13所述的装置,其特征在于,所述第二节能信息具体 包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  17. 根据权利要求13所述的装置,其特征在于,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息,包括:
    基站通过高层信令为UE配置所述第一节能信息和/或所述第二节能信息在group common节能信号中的位置及其对应的节能信息类型。
  19. 一种信号传输装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
    根据节能信号指示执行节能操作。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
  21. 根据权利要求19所述的装置,其特征在于,根据节能信号指示执行节能操作具体包括:
    若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则 进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
  22. 根据权利要求19所述的装置,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  23. 根据权利要求19所述的装置,其特征在于,所述第二节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    当所述第一节能信息或第二节能信息中携带有终端接收波束信息或基站发送波束信息时,按照所述终端接收波束信息或基站发送波束信息,更新接收波束或发送波束。
  25. 一种信号传输装置,其特征在于,包括:
    确定单元,用于确定需要发送的节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息,或者,所述节能信号包括用于指示终端进入睡眠状态的第二指 示信息,以及所述第二指示信息对应的第二节能信息;
    发送单元,用于发送所述节能信号给终端。
  26. 根据权利要求25所述的装置,其特征在于,在非连续接收DRX去激活周期内发送所述节能信号。
  27. 根据权利要求25所述的装置,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  28. 根据权利要求25所述的装置,其特征在于,所述第二节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  29. 根据权利要求25所述的装置,其特征在于,所述发送单元还用于:
    通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息。
  30. 根据权利要求29所述的装置,其特征在于,所述发送单元通过高层信令发送所述第一节能信息和/或所述第二节能信息的配置信息,包括:
    基站通过高层信令为UE配置所述第一节能信息和/或所述第二节能信息在group common节能信号中的位置及其对应的节能信息类型。
  31. 一种信号传输装置,其特征在于,包括:
    接收单元,用于接收节能信号;其中,所述节能信号包括用于指示终端进入唤醒状态的第一指示信息,以及所述第一指示信息对应的第一节能信息, 或者,所述节能信号包括用于指示终端进入睡眠状态的第二指示信息,以及所述第二指示信息对应的第二节能信息;
    执行单元,用于根据节能信号指示执行节能操作。
  32. 根据权利要求31所述的装置,其特征在于,所述接收单元还用于:
    通过高层信令获取所述第一节能信息和/或所述第二节能信息的配置信息。
  33. 根据权利要求31所述的装置,其特征在于,所述执行单元根据节能信号指示执行节能操作具体包括:
    若所述节能信号中携带用于指示终端进入唤醒状态的第一指示信息,则进一步根据预先获取的所述第一节能信息的配置信息,解析所述第一节能信息;若所述节能信号中携带用于指示终端进入睡眠状态的第二指示信息,则进一步根据预先获取的所述第二节能信息的配置信息,解析所述第二节能信息。
  34. 根据权利要求31所述的装置,其特征在于,所述第一节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  35. 根据权利要求31所述的装置,其特征在于,所述第二节能信息具体包括下列信息之一或组合:
    终端接收波束信息或基站发送波束信息;
    信道跟踪参考信号发送;
    信道状态信息上报;
    物理层参考信号接收功率RSRP测量;
    探测参考信号发送。
  36. 根据权利要求34或35所述的装置,其特征在于,所述执行单元还 用于:
    当所述第一节能信息或第二节能信息中携带有终端接收波束信息或基站发送波束信息时,按照所述终端接收波束信息或基站发送波束信息,更新接收波束或发送波束。
  37. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至6任一项所述的方法,或者执行权利要求7~12任一项所述的方法。
PCT/CN2020/135792 2020-01-22 2020-12-11 信号传输方法及装置 WO2021147560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074190.7 2020-01-22
CN202010074190.7A CN113163516B (zh) 2020-01-22 2020-01-22 信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021147560A1 true WO2021147560A1 (zh) 2021-07-29

Family

ID=76881592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135792 WO2021147560A1 (zh) 2020-01-22 2020-12-11 信号传输方法及装置

Country Status (2)

Country Link
CN (1) CN113163516B (zh)
WO (1) WO2021147560A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171106A1 (en) * 2023-02-16 2024-08-22 Lenovo (Singapore) Pte. Ltd. Main radio configuration indicator through low power wake up radio

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000493A1 (zh) * 2022-06-30 2024-01-04 Oppo广东移动通信有限公司 状态确定方法、装置、设备、存储介质及程序产品
CN117528720A (zh) * 2022-07-29 2024-02-06 大唐移动通信设备有限公司 小区服务控制、信号配置、信号发送方法、设备及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置
WO2019160271A1 (en) * 2018-02-14 2019-08-22 Lg Electronics Inc. Method for changing status of wus operation and device supporting the same
CN110300444A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN110536313A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 信号测量方法、设备及计算机可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010987A2 (en) * 1989-03-03 1990-09-20 Motorola, Inc. Energy saving protocol for a communication system
CN102457948B (zh) * 2010-10-21 2015-05-06 Lg电子株式会社 更新在睡眠模式下操作的终端的睡眠标识符的设备和方法
WO2014036692A1 (en) * 2012-09-04 2014-03-13 Broadcom Corporation Energy saving mode management for a network element
CN108738109B (zh) * 2017-04-19 2021-02-23 华为技术有限公司 一种站点唤醒方法及站点
CN109309949A (zh) * 2017-07-28 2019-02-05 珠海市魅族科技有限公司 无线局域网的通信方法、装置和通信设备
CN110536381A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 接收配置和控制方法、装置、终端、基站及存储介质
CN113873625B (zh) * 2018-08-13 2023-10-24 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
WO2020037667A1 (zh) * 2018-08-24 2020-02-27 北京小米移动软件有限公司 非连续接收drx参数的配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160271A1 (en) * 2018-02-14 2019-08-22 Lg Electronics Inc. Method for changing status of wus operation and device supporting the same
CN110300444A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN110536313A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 信号测量方法、设备及计算机可读存储介质
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Considerations on PDCCH-based power saving signal", 3GPP DRAFT; R1-1906819, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708855 *
QUALCOMM INCORPORATED: "Triggering Adaptation of UE Power Consumption Characteristics", 3GPP DRAFT; R1-1811283 TRIGGERING MECHANISM FOR ADAPTATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051518686 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171106A1 (en) * 2023-02-16 2024-08-22 Lenovo (Singapore) Pte. Ltd. Main radio configuration indicator through low power wake up radio

Also Published As

Publication number Publication date
CN113163516A (zh) 2021-07-23
CN113163516B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US20210378000A1 (en) Communication method, apparatus, and device
US20220022137A1 (en) Communication method and apparatus
US11871351B2 (en) Method of physical downlink control channel monitoring and related device
WO2021155742A1 (zh) 信号传输方法及装置
WO2021147560A1 (zh) 信号传输方法及装置
US11997597B2 (en) Method of monitoring physical downlink control channel for power saving signal and related device
WO2019233175A1 (zh) 信号传输方法及装置
WO2020220929A1 (zh) 物理下行控制信道的监听方法、装置及设备
WO2014161503A1 (zh) 监视寻呼信号的方法及装置
WO2021164409A1 (zh) 信道监听及其控制方法及装置
US11903082B2 (en) Discontinuous reception method, terminal device and network device
WO2021017603A1 (zh) 一种节能信号的传输方法、基站及终端设备
WO2020199791A1 (zh) 一种下行控制信息的发送、处理方法及装置
WO2020143747A1 (zh) 通信方法和装置
WO2022152200A1 (zh) 目标小区搜索空间集组的切换及其控制方法及装置
WO2020164143A1 (zh) 非连续接收的方法、终端设备和网络设备
CN111867013B (zh) 一种节能及其控制方法及装置
US20230300945A1 (en) Control of Inactivity Timer Triggering for NR UE
WO2022028094A1 (zh) 信息处理方法、装置、设备及存储介质
WO2024169463A1 (zh) 一种信号处理方法、设备及可读存储介质
CN115696512A (zh) 一种信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915402

Country of ref document: EP

Kind code of ref document: A1