WO2021147452A1 - 接近传感器、电子皮肤、制作方法以及接近感应方法 - Google Patents
接近传感器、电子皮肤、制作方法以及接近感应方法 Download PDFInfo
- Publication number
- WO2021147452A1 WO2021147452A1 PCT/CN2020/126377 CN2020126377W WO2021147452A1 WO 2021147452 A1 WO2021147452 A1 WO 2021147452A1 CN 2020126377 W CN2020126377 W CN 2020126377W WO 2021147452 A1 WO2021147452 A1 WO 2021147452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- proximity sensor
- robot
- capacitive proximity
- electronic skin
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/007—Means or methods for designing or fabricating manipulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/14—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
Definitions
- This application relates to the field of robotics, in particular to a proximity sensor, an electronic skin, a manufacturing method, and a proximity sensing method.
- Proximity sensing refers to close-range non-contact sensing for external objects.
- proximity sensing technology is widely used, for example, it can be applied to automatic control, smart terminals, robots, etc.
- the accuracy of current proximity sensing is low.
- proximity sensor system applied to robots.
- the visual pattern recognition is supported by the pattern database, the camera is used to capture the object and the distance between the object and the object is calculated according to the size ratio.
- Optical and acoustic ranging uses the phenomenon that waves propagate in space and reflect when they encounter an object.
- Laser ranging and ultrasonic ranging calculate the distance of the object by measuring the emission time or the phase change of the reflected wave.
- the proximity sensor system in the related art has low accuracy in sensing changes in the position of an object.
- the vision sensor system requires a camera device, and the parameters of the sensing object need to be recorded in advance. Therefore, the accuracy of the proximity sensing depends on the accuracy of the entered parameters and the number and quality of the camera device cannot be guaranteed; for example, optical and Ultrasonic distance measurement requires a complex light wave or sound wave emission and reception system.
- the entire system is large in size and cannot be arranged in large numbers, thus reducing the accuracy of the robot's sensitivity to changes in the position of external objects.
- a proximity sensor an electronic skin, a manufacturing method, and a proximity sensing method are provided.
- the embodiment of the present application provides a flexible single-electrode capacitive proximity sensor, including one electrode; wherein the electrode forms an electric field in space, and when the target object approaches the single-electrode capacitive proximity sensor, the electric field The change senses the change of the position of the target object.
- An embodiment of the application provides an electronic skin for a robot, including: at least one flexible single-electrode capacitive proximity sensor;
- the single-electrode capacitive proximity sensor forms an electric field in space, and when the target object approaches the single-electrode capacitive proximity sensor, the electric signal of the change in the electric field is transmitted to the robot, so that the robot is based on the The electrical signal induces the change in the position of the target object.
- An embodiment of the present application provides a robot, the outer surface of the robot is attached with the above-mentioned electronic skin; wherein the electronic skin is electrically connected to the robot;
- the single-electrode capacitive proximity sensor forms an electric field in space, and when the target object approaches the single-electrode capacitive proximity sensor, the single-electrode capacitive proximity sensor transmits the electric signal of the electric field change to the robot;
- the robot is used to sense a change in the position of the target object according to the electrical signal.
- the embodiment of the present application provides a proximity sensing method, which is suitable for a robot, and the outer surface of the robot is attached with the electronic skin provided in any of the embodiments of the present application; the method includes:
- the change in the position of the target object is sensed according to the received electrical signal.
- the embodiment of the present application provides a method for manufacturing an electronic skin of a robot, including:
- At least one flexible single-electrode capacitive proximity sensor is used to make the electronic skin of the robot.
- the proximity sensing device provided by the embodiment of the present application is suitable for a robot, and the outer surface of the robot is attached with the electronic skin provided by any one of the embodiments of the present application; the proximity sensing device includes:
- a receiving unit for receiving electrical signals transmitted by a single-electrode capacitive proximity sensor in the electronic skin
- the sensing unit is used to sense the change in the position of the target object according to the received electrical signal.
- This embodiment also provides one or more non-volatile storage media storing computer-readable instructions.
- the computer-readable instructions When executed by one or more processors, the one or more processors perform the aforementioned proximity sensing. method.
- An embodiment of the present application also provides a robot, including a memory and a processor.
- the memory stores computer-readable instructions, and when the computer-readable instructions are executed by the processor, the processor executes the aforementioned proximity sensing. method.
- the embodiment of the application provides a flexible single-electrode capacitive proximity sensor, including one electrode; wherein the electrode forms an electric field in space, and when the target object approaches the single-electrode capacitive proximity sensor, Changes in the electric field induce changes in the position of the object.
- the single-electrode capacitive proximity sensor uses electric field changes to sense changes in the position of an object. Compared with the prior art, it can improve the accuracy of approaching feelings.
- the single-electrode capacitive proximity sensor is flexible, it can be attached to various parts of the application object such as the robot, which realizes the omnidirectional sensing of the application object such as the robot to the external object, and greatly improves the application object's sensitivity to the change of the position of the external object. Accuracy.
- Figure 1a is a schematic diagram of a single-electrode electric field provided by an embodiment of the present application
- Fig. 1b is a schematic structural diagram of a single-electrode capacitive proximity sensor provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a scene of an electronic skin provided by an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an electronic skin of a robot provided by an embodiment of the present application.
- FIG. 4 is another schematic structural diagram of a single-electrode capacitive proximity sensor provided by an embodiment of the present application.
- Figure 5a is a schematic diagram of a square electrode provided by an embodiment of the present application.
- Figure 5b is a physical diagram of a square electrode provided by an embodiment of the present application.
- Fig. 6a is a schematic diagram of a frame electrode provided by an embodiment of the present application.
- Figure 6b is a physical diagram of a frame electrode provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of performance testing of a single-electrode capacitive proximity sensor provided by an embodiment of the present application.
- FIG. 8 is a schematic diagram of a performance stability test of a single-electrode capacitive proximity sensor provided by an embodiment of the present application.
- FIG. 9 is a schematic diagram of a comparison test of the sensing performance of a single-electrode capacitive proximity sensor at different positions according to an embodiment of the present application.
- FIG. 10 is a schematic diagram of a sensing test of a single-electrode capacitive proximity sensor attached to a curved surface of a robot provided by an embodiment of the present application;
- FIG. 11 is a schematic structural diagram of a proximity sensor array provided by an embodiment of the present application.
- FIG. 12 is a flowchart of a proximity sensing method provided by an embodiment of the present application.
- FIG. 13 is a schematic flowchart of a method for manufacturing an electronic skin provided by an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of a proximity sensing device provided by an embodiment of the present application.
- FIG. 15a is an optional structural diagram of the distributed system 100 provided by an embodiment of the present application applied to a blockchain system;
- Figure 15b is an optional schematic diagram of a block structure provided by an embodiment of the present application.
- AI Artificial Intelligence
- a comprehensive technology of computer science which attempts to understand the essence of intelligence and produce a new kind of intelligent machine that can react in a similar way to human intelligence.
- Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
- Artificial intelligence technology is a comprehensive discipline, covering a wide range of fields, including both hardware-level technology and software-level technology.
- Basic artificial intelligence technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing technologies, operation/interaction systems, and mechatronics.
- An AI robot is a machine device that automatically performs work. It is generally composed of an actuator, a driving device (drive), a detection device (sensor), and a control system (controller). ) And complex machinery. It can accept human commands, run pre-arranged programs, or act according to operating rules formulated with artificial intelligence technology. Its task is to assist or replace human work, such as enterprise production, construction, or dangerous operations. It is the product of advanced integrated cybernetics, mechanical mechanics, mechatronics, intelligent mechanical engineering, computers, artificial intelligence engineering, materials and bionics.
- the robot may include industrial robots such as robotic arms and special robots.
- industrial robots are multi-joint manipulators or multi-degree-of-freedom robots oriented to the industrial field.
- special robots are various advanced robots used in non-manufacturing industries and serving humans, including: service robots, underwater robots, entertainment robots, military robots, agricultural robots, roboticized machines, etc.
- service robots underwater robots, military robots, and micro-manipulation robots.
- the embodiment of the present application provides a flexible single-electrode capacitive proximity sensor 11, which may include: one electrode 111, that is, including a single electrode, the single-electrode capacitive proximity sensor 11 is flexible and has The ability to bend, stretch, etc.
- the electrode 111 can form an electric field in space.
- the target object refers to an object other than the single-electrode capacitive proximity sensor 11, that is, an external object corresponding to the robot.
- the object can be a non-biological body or a biological body, the non-biological body can be a conductor or an insulator, and the biological body can be a human. Or animals.
- the single electrode 111 in the single-electrode capacitive proximity sensor 11 can form a nearly parallel electric field in the electrode axis.
- the electric field will be restrained, which will cause the increase of capacitance.
- the electrode capacitive proximity sensor 11 can sense the change of the position of the target object through the change of the electric field, for example, sense the change information of the distance between the target object and the sensor.
- the single-electrode capacitive proximity sensor 11 may further include a substrate 110 and a package body 112; the electrode 111 is provided on the substrate 110, and the package body 113 is provided with the electrode 111 Above, the electrode 111 is packaged. Referring to FIG. 4, in an embodiment, the package body 112 can also package the electrode 111 and the substrate 110 at the same time. In addition, in other embodiments, the single-electrode capacitive proximity sensor 11 may also have no substrate and package body, and only the electrode 111.
- the single-electrode capacitive proximity sensor 11 can be implemented in various ways for flexibility.
- the single-electrode capacitive proximity sensor 11 may include a flexible structural unit, which is a structural unit made of a flexible material, for example, It includes at least one of a flexible substrate and a flexible electrode.
- the bottom surface of the substrate 110 may be attached.
- the pattern of the electrode 111 can be set according to actual needs, for example, it can be a frame type, a non-frame type, etc., for example, refer to FIG. 5a and FIG. 5b.
- the single-electrode capacitive proximity sensor 11 senses the change in the position of the target object in the manner of electric field change, and can improve the proximity sensing accuracy compared with the prior art. Moreover, because the single-electrode capacitive proximity sensor is flexible, it can be attached to various parts of the application object such as the robot, which realizes the omnidirectional sensing of the application object such as the robot to the external object, and greatly improves the application object's sensitivity to the change of the position of the external object. Accuracy.
- the single-electrode capacitive proximity sensor 11 provided by the embodiment of the application can be applied to any object that needs proximity sensing, that is, the application object.
- it can be applied to unmanned aerial vehicles, unmanned vehicles, electric vehicles, robots, and detectors (such as aviation Detectors, etc.) and so on.
- a single-electrode capacitive proximity sensor 11 can be used to make an electronic skin of the robot, and the electronic skin can assist the robot to sense changes in the position of external objects.
- This embodiment of the application will take an industrial robot or a household service robot as an example to introduce the electronic skin of the robot.
- an embodiment of the present application provides an electronic skin 10 for a robot.
- the electronic skin 10 can be attached to the surface of the robot 20 to help the robot sense the surrounding working environment and avoid the robot and external objects such as operators. , Or a collision with the service object, etc., causing losses.
- the electronic skin 10 may include at least one flexible single-electrode capacitive proximity sensor 11, for example, may include one flexible single-electrode capacitive proximity sensor 11, or at least two flexible single-electrode capacitive proximity sensors 11.
- the single-electrode capacitive proximity sensor 11 may be a capacitive proximity sensor including a single electrode.
- the capacitive proximity sensor can form an electric field in space.
- the electric field is reduced.
- the changed electric signal is transmitted to the robot, so that the robot senses the change in the position of the target object according to the electric signal.
- the robot can analyze and judge the proximity of external objects based on changes in electrical signals.
- the single electrode of the single-electrode capacitive proximity sensor 11 of the electronic skin 10 can form a nearly parallel electric field in the axial direction of the electrode in the space.
- the electric field will be restrained, which will cause capacitance.
- the single-electrode capacitive proximity sensor 11 transmits the electric signal of the electric field change to the robot 20, and the robot 20 senses the position change information of the target object according to the received electric signal, for example, the distance between the target object and the robot Change information.
- the electronic skin 10 is made with the flexible single-electrode capacitive proximity sensor 11, the electronic skin 10 is also flexible as a whole and has a certain bending and deformation ability (refer to FIG. 2). Therefore, the electronic skin can be It is well attached to the outer surface of the robot to better help the robot 20 to sense the approach of external objects, avoid the robot from colliding with it, and make the robot make corresponding actions such as avoiding or braking, which greatly improves the accuracy of proximity sensing.
- the electronic skin 10 can be attached to the exoskeleton of the robot, such as the cylindrical outer wall of the robot arm, the front chest or the back of the robot trunk;
- the electronic skin is attached to the key parts of the robot, such as the joints of the robot, and some parts with more complicated shapes, so that certain parts can accurately sense changes in the position of external objects and respond accordingly.
- the flexible single-electrode capacitive proximity sensor 11 in the embodiment of the present application may have various structures.
- the flexible single-electrode capacitive proximity sensor 11 may include a substrate 110, an electrode 111, and a package body 112; the electrode 111 is disposed on the substrate 110, and the The package body 113 is provided on the electrode 111 and encapsulates the electrode 111.
- the substrate 110 may be a substrate made of a flexible material, that is, a flexible substrate.
- the substrate 110 may be a substrate made of a flexible insulating material.
- it may include a flexible material film, that is, a film made of a flexible material.
- the flexible substrate 110 may include a polymer film.
- the polymer film may include PET (Polyethylene terephthalate) film, PI (Polyimide Film, polyimide film), and so on.
- all single-electrode capacitive proximity sensors 11 in the electronic skin share a flexible substrate.
- the flexible substrate shared by all single-electrode capacitive proximity sensors 11 can be used as the substrate of the electronic skin 10 for attaching the electronic skin to the outer surface of the robot.
- the common flexible substrate can be directly attached to the outer surface of the robot.
- each single-electrode capacitive proximity sensor 11 has There are respective flexible substrates 110.
- At least one single-electrode capacitive proximity sensor 11 constitutes the electronic skin 10.
- a flexible electronic skin substrate may be provided, and all single-electrode capacitive proximity sensors 11 may be arranged on the electronic skin substrate (such as pasting) to form the electronic skin 10.
- the electronic skin substrate can be attached to the outer surface of the robot.
- at least one unipolar capacitive proximity sensor 11 can be directly attached to the outer surface of the machine and used as the electronic skin 10 directly.
- the electrode 111 may be an electrode made of a conductive material, that is, a conductive material of the electrode material, for example, it may be an electrode made of a conductive material such as a metal electrode and a conductive carbon cloth.
- the electrode 111 may be a flexible electrode, for example, an electrode made of a flexible conductive material.
- the electrode 111 may be an electrode made of conductive carbon cloth with bending properties, and so on.
- the shape of the electrode 111 may be any shape, for example, the pattern of the electrode 111 may be a square circle or any polygon.
- the electrode 111 may be a square electrode, and FIG. 5b is an actual square electrode.
- the electrode 111 on the flexible substrate 110 in FIG. 5b may include a square electrode body 1110 and a signal lead 1111.
- the signal lead 1111 is used to transmit electrical signals.
- the pattern of the electrode 111 may be any frame shape, for example, a triangular frame shape, a circular ring frame shape, a square frame shape or an arbitrary polygon frame shape.
- the electrode 111 may be a square frame electrode
- Fig. 6b is an actual square electrode.
- the electrode 111 on the flexible substrate 110 in Fig. 6b may include a frame electrode body 1110 and a signal lead 1111.
- the signal lead 1111 is used for Transmit electrical signals.
- the size of the electrode 11 is not fixed and can be set according to actual needs, for example, it can be selected in the range of micrometers to meters.
- the bottom surface of the flexible substrate 110 has adhesion properties.
- the flexible substrate 110 may include a top surface and a bottom surface, and the electrode 11 is provided on the top surface, The bottom surface has adhesion properties.
- the bottom surface of the flexible substrate 110 of the single-electrode capacitive proximity sensor 10 can be attached to the outer surface of the robot.
- the bottom surface of the flexible substrate has adhesive properties, the bottom surface can be attached to the outer surface of the robot as an electronic skin. Due to the flexibility and adhesion of the flexible substrate, it can be well attached to the outer surface of any part of the robot in practical applications.
- the package body 112 is used to package the electrode 111 to form a single-electrode capacitive proximity sensor.
- the package body 112 has a protective effect to prevent the electrode 111 from contacting the external environment; wherein the package body 112 can wrap the electrode 111 .
- the package body 112 in order to better protect the electrode 111, can also package the electrode 111 and the substrate 110 at the same time, and the package body 112 can wrap the electrode 111 and the substrate 110.
- the package body 112 may include a tape, a film, and other packages; for example, the package body 112 may include a PDMS (polydimethylsiloxane film) or the like.
- PDMS polydimethylsiloxane film
- the proximity sensing performance of the single-electrode capacitive proximity sensor designed in the embodiments of the present application is stronger than that of current sensors, and the sensing accuracy of the robot's external objects is very high.
- FIG. 7 the performance of the single-electrode capacitive proximity sensor with frame-shaped and square-shaped electrodes in the embodiment of the present application under different sensing distances (sensing distance) in actual tests.
- the left side is the sensor performance of the frame-shaped electrode
- the right side is The performance of the square electrode sensor, where the performance index may be sensing intensity.
- the single-electrode capacitive proximity sensor designed in the embodiment of the application has stronger performance stability.
- FIG. 8 shows that the single-electrode capacitive proximity sensor with frame-shaped electrode operates at different sensing distances in the actual test.
- curve 1 represents the sensing performance when the object is far away
- curve 2 represents the sensing performance when the object is close.
- the two curves in Figure 8 completely overlap, showing good stability of sensor performance.
- the single-electrode capacitive proximity sensor designed in the embodiment of the present application has little difference in sensing performance for external objects at different positions, and is extremely stable.
- Figure 9 it is a comparison of the sensing performance of a single-electrode capacitive proximity sensor with a frame-shaped electrode for different locations in the surrounding area in the actual test. Specifically, in the actual test, for the five positions of the frame-shaped electrode (ie The sensing performance of upper left, middle left, lower left, upper middle, and middle) is compared. It can be seen from Fig. 9 that the sensing performances at these five positions have little fluctuation, and the stability is strong. Among them, k1 in the third graph in FIG. 9 represents a sensing distance (sensing distance), and k2 represents a response amplitude (rensponse amplitude).
- the single-electrode capacitive proximity sensor designed in the embodiment of the present application is attached to the outer surface of the robot, its sensing performance does not change much, and it has extremely strong stability.
- Fig. 10 for the sensing performance of the single-electrode capacitive proximity sensor attached to the curved surface of the robot in the actual test.
- the present application may use a flexible capacitive proximity sensor array to form the electronic skin 10, that is, the electronic skin 10 may include at least two ( Two or more) flexible single-electrode capacitive proximity sensors 11, at least two flexible single-electrode capacitive proximity sensors 11 can form a proximity sensor array; for example, the flexible single-electrode capacitive proximity sensor 11 is based on actual conditions Arranged in an array to form a proximity sensor array. For example, referring to FIG. 2, the single-electrode capacitive proximity sensors 11 on the electronic skin 10 are arranged in an array to form a proximity sensor array.
- all flexible single-electrode capacitive proximity sensors in the proximity sensor array share a flexible substrate and package.
- the single-electrode capacitive proximity sensor 11 in the proximity sensor array can share a large-area flexible substrate, that is, a proximity sensor array is fabricated on a large-area flexible substrate. That is, the flexible substrate shared by the single-electrode capacitive proximity sensor 11 is the substrate of the electronic skin 10.
- the single-electrode capacitive proximity sensor 11 in the proximity sensor array may not share the flexible substrate. You can choose according to actual needs.
- the proximity sensor array 30 may include a large-area flexible substrate 113, an electrode array 114, and a package body 115; the electrodes 114 are disposed on the flexible substrate 113, and the package body 115 is disposed on the On the electrode 111 and the flexible substrate 113, the electrode array 114 and the flexible substrate 113 are packaged.
- the electrode 114 includes at least two electrodes, and the at least two electrodes may be arranged in an array on the flexible substrate 113.
- the flexible substrate 113 may directly serve as the substrate of the electronic skin.
- the bottom surface of the flexible substrate 113 has adhesion properties.
- the flexible substrate 113 may include a top surface and a bottom surface, and the electrode array 114 is disposed on the top surface.
- the bottom surface has adhesion.
- the bottom surface of the flexible substrate 113 of the proximity sensor array 30 can be attached to the outer surface of the robot. Since the flexible substrate of the proximity sensor array 30 has flexibility (that is, has a certain bending deformation ability) and adherence, it can be well adhered to the outer surface of any part of the robot in practical applications.
- the package body 115 can package the electrode array 114.
- the electrode array 114 and the flexible substrate 113 can also be packaged at the same time.
- the package body 115 may include a tape, a film, and other packages; for example, the package body 115 may include a PDMS (polydimethylsiloxane film) or the like.
- a conductive film may be provided on the bottom surface of the single-electrode capacitive proximity sensor 11; specifically, a conductive film may be provided on the bottom surface of the substrate.
- a conductive film can be provided on the bottom surface of the flexible substrate of each single-electrode capacitive proximity sensor 11.
- a conductive film may be provided on the bottom surface of the common flexible substrate 113 of the single-electrode capacitive proximity sensor 11 in the proximity sensor array 30.
- the conductive film may include copper foil, aluminum foil, carbon cloth, and the like.
- the conductive film of the electronic skin 10 can be attached to the outer surface of the robot.
- the electronic skin designed in the embodiment of the present application can be attached to the outer surface of the robot, and the change of the position of the external object can be sensed through the change of the electric field, so that the robot can accurately sense the change of the position of the external object.
- the single-electrode capacitive proximity sensor can increase the sensing distance to more than 50cm, so that the robot has more reaction time and reduces the risk of collision.
- the electronic skin uses a flexible single-electrode capacitive proximity sensor, it can be attached to various parts of the robot, realizing the omnidirectional sensing of the machine to external objects, and greatly improving the accuracy of the robot's sensing of changes in the position of external objects.
- the electronic skin designed in the embodiments of the present application may include a high-density multilayer thin film sensor array fabricated on a large-area substrate, and the use of the electronic skin of the present application does not require additional sensing equipment.
- the sensor array is attached to the outer surface of the robot, which can realize the omni-directional sensing of all parts of the robot to external objects.
- the high-density array also helps the robot to accurately determine the specific position of the object close to it, so as to truly realize the completeness of the robot's work environment. Early warning to prevent collisions with objects.
- the flexible capacitive proximity sensor array provided by the embodiments of the present application can reduce the robot's sensing accuracy to the object to the millimeter level, and reduce the spatial resolution to the millimeter level, thereby achieving high-density sensing.
- the electronic skin designed in the embodiments of this application uses a flexible single-electrode capacitive proximity sensor such as a flexible single-electrode capacitive proximity sensor array.
- the electrode substrate uses a flexible material film, and the electrode can also choose a flexible conductive material and use a flexible film material to encapsulate.
- the overall flexibility of the sensor array has certain bending and deformation capabilities. It can be attached to the surface of the robot well.
- the flexible single-electrode capacitive proximity sensor provided by the embodiment of the present application is small in size and low in cost, and can be conveniently arranged in a large number of robots.
- the electronic skin provided in the embodiments of the present application can be applied to various robot proximity sensing scenarios, for example, in some scenarios, a smaller area proximity sensor application is realized.
- a single sensor or simple sensor array is designed for proximity sensing according to the specific situation. Help the robot to actively sense objects during operation and take braking or avoiding actions in time to prevent collisions in narrow or sharp parts during work.
- proximity sensors and arrays on the touch surface of the robot and the object (such as the position of the finger pad, the palm of the palm, etc.) to prompt the robot to grasp or touch the position and position of the object.
- the rough shape allows the robot to adjust its posture and speed, and make grasping or touching movements more smoothly.
- an embodiment of the present application also provides a proximity sensing method, which is suitable for a robot.
- the external surface of the robot is attached with the electronic skin as described above.
- the method can be executed by a processor in the robot.
- the method includes :
- S121 Receive an electrical signal transmitted by a single-electrode capacitive proximity sensor in the electronic skin.
- the single-electrode capacitive proximity sensor 11 can form an electric field in space, and when an object other than the robot approaches the single-electrode capacitive proximity sensor, the electric signal of the electric field change is transmitted to the robot.
- the electrical signal is transmitted to the robot 20 through the connection circuit between the electronic skin 10 and the robot 20.
- S122 Inducing a change in the position of the target object according to the received electrical signal.
- the change of the position of the robot to the external object can be analyzed and judged according to the change of the received electrical signal.
- the distance, position, shape and other information of external objects can be sensed according to the received electrical signals.
- the distance between the robot and the external object can be calculated according to the strength of the electric signal.
- the robot can sense changes in the position of external objects according to the electrical signals transmitted by each single-electrode capacitive proximity sensor 11 in the array, such as sensing the position and distance of the external objects.
- the embodiment of the present application can use an electronic skin made of a flexible single-electrode capacitive proximity sensor, attach the electronic skin to the outer surface of the robot, and the machine transmits electrical signals through the single-electrode capacitive proximity sensor in the electronic skin.
- the accuracy of proximity sensing can be improved.
- An embodiment of the present application also provides a method for making an electronic skin for a robot. As shown in FIG. 13, the method includes:
- the flexible substrate includes a flexible material film, such as a polymer film, which may specifically include: PET, PI, and so on.
- the number of electrodes can be determined according to the number of sensors to be fabricated. For example, when fabricating a sensor, one electrode can be formed on the flexible substrate; when n sensors are to be fabricated, n electrodes can be formed on the flexible substrate. Among them, n is a positive integer greater than 1.
- an electrode array may be formed on the flexible substrate.
- the electrode array includes at least two electrodes, and the at least two electrodes are arranged in an array.
- an electrode array on a flexible substrate.
- a conductive layer is formed on the flexible substrate; the conductive layer is processed for electrode production to form electrodes.
- the electrode array includes at least two electrodes arranged in an array.
- the conductive layer may be a layer made of conductive material, such as a metal layer, conductive carbon cloth, and the like.
- the metal layer may include a metal network layer, etc., which can be specifically set according to actual requirements. For example, a metal network layer formed by spraying silver nanowires on a substrate can be used.
- a conductive layer on the flexible substrate for example, evaporation, spraying, printing, etc. can be used.
- a metal layer of conductive metal can be vapor-deposited on a polymer (PET, PI, etc.) film, a metal layer printed on a thermoplastic polyurethane elastomer rubber (TPU) film; spraying on a polymer (PET, PI, etc.) film
- PET polymer
- PI thermoplastic polyurethane elastomer rubber
- Electrode fabrication processing on the conductive layer to form electrodes, which can be selected according to actual needs.
- conductive carbon cloth with bending properties is selected as the electrode material, and laser cutting is used to cut the carbon cloth into an electrode size to form an electrode array.
- the electrode material is a metal electrode made of conductive metal vapor-deposited on a polymer (PET, PI, etc.) film
- laser cutting can be used to cut the gold-plated electrode to the size of the electrode or directly use a mask for vapor deposition. ⁇ electrode array.
- thermoplastic polyurethane elastomer rubber (TPU) film when electrodes printed on a thermoplastic polyurethane elastomer rubber (TPU) film are used as electrodes, a mask is used to directly fabricate a flexible electrode array.
- TPU thermoplastic polyurethane elastomer rubber
- the electrode when the electrode uses a metal network electrode sprayed with silver nanowires on a polymer (PET, PI, etc.) film, the electrode array is sprayed directly using a mask to make a flexible electrode array.
- PET polymer
- PI polymer
- the specific shape and size of the electrode are not fixed, and can be in the range of micrometers to meters.
- the design of the single electrode is square, round or arbitrary polygon and arbitrary frame (including triangle frame, circular ring frame, square frame or arbitrary polygon frame).
- the electrodes in the electrode array are arranged in an array according to actual conditions.
- the method of forming an electrode array on the flexible substrate may further include fabricating electrodes first, and then attaching the electrodes to the flexible substrate; specifically, providing a conductive layer; fabricating electrodes on the conductive layer Processing to obtain at least two electrodes; attaching at least two electrodes to the flexible substrate according to a predetermined rule to form an electrode array on the flexible substrate, the electrode array including at least two electrodes arranged in an array .
- laser cutting is used to cut the carbon cloth into the size of an electrode, and then the electrode is attached to a polymer film to form an electrode array on a flexible substrate. That is
- S133 Use the package body to package the electrode to obtain at least one flexible single-electrode capacitive proximity sensor.
- the electrode and the flexible substrate can be packaged at the same time by using a package body.
- a package body can be used to encapsulate the electrode to obtain a single flexible single-electrode capacitive proximity sensor.
- the electrode array is packaged with a package body to obtain a proximity sensor array.
- the proximity sensor array includes at least two flexible single-electrode capacitive types that share a substrate. Proximity sensor.
- the package may include tape or PDMS film.
- the electrode when the electrode uses a metal network electrode sprayed with silver nanowires on a polymer (PET, PI, etc.) film, the electrode array is sprayed directly using a mask to make a flexible electrode array.
- a mask to make a flexible electrode array.
- Use tape or PDMS film to encapsulate the sensor on the upper layer to obtain a proximity sensor array.
- a conductive film may be formed on the bottom surface of the flexible substrate, that is, a conductive film on the entire surface, such as copper, is provided on the lower layer of the sensor or sensor array.
- S134 Use at least one flexible single-electrode capacitive proximity sensor to make the electronic skin of the robot.
- At least one flexible single-electrode capacitive proximity sensor can be used as the electronic skin; for example, the proximity sensor can be used as the electronic skin of a robot.
- at least one flexible single-electrode capacitive proximity sensor such as a sensor array is directly attached to the outer surface of the robot.
- At least a flexible single-electrode capacitive proximity sensor can also be arranged on the electronic skin substrate to form an electronic skin.
- the electronic skin substrate is attached to the outer surface of the robot.
- This application designs a flexible single-electrode capacitive proximity-sensing electronic skin, which is mainly applied to the outer surface of the robot to help the robot sense the surrounding working environment and avoid losses caused by collisions between the robot and the operator or service object.
- a large-area proximity sensor array is attached to a larger area of the robot, such as the cylindrical outer wall of the arm and the front chest or back of the main body of the robot. To achieve high-density long-distance sensing of people over a large area, the high-density array enables the robot to more accurately sense the position of the object, thereby avoiding collisions between the robot and the person.
- the flexible capacitive proximity sensing array made by the present invention can realize high-density sensing.
- the single-electrode capacitive proximity sensor can increase the sensing distance to more than 50cm, so that the robot has more reaction time and reduces the risk of collision.
- the flexible sensor array can be easily attached to the surface of the robot to realize the omnidirectional sensing of the surrounding environment by the robot.
- an embodiment of the present application also provides a proximity sensing device, which can be integrated in a robot, and the outer surface of the robot is attached with the electronic skin as described above.
- the proximity sensing device may include a receiving unit 140 and a sensing unit 141, which are specifically as follows:
- the receiving unit 140 is configured to receive the electrical signal transmitted by the single-electrode capacitive proximity sensor in the electronic skin;
- the sensing unit 141 is configured to sense a change in the position of the target object according to the received electrical signal.
- the embodiment of the present application can use an electronic skin made of a flexible single-electrode capacitive proximity sensor, attach the electronic skin to the outer surface of the robot, and the machine transmits electrical signals through the single-electrode capacitive proximity sensor in the electronic skin To sense changes in the position of external objects; compared to existing proximity sensing solutions, the accuracy of proximity sensing can be improved.
- the proximity sensing system involved in the embodiments of the present application may be a distributed system formed by connecting clients and multiple nodes (robots of any form in the access network) through network communication.
- the sensing data of the robot can be stored in a distributed system such as a blockchain.
- FIG 15a is an optional structural schematic diagram of the distributed system 100 provided by an embodiment of the present application applied to the blockchain system.
- Multiple nodes access Any form of computing equipment in the network, such as servers, user terminals, and clients are formed, and the nodes form a peer-to-peer (P2P, Peer To Peer) network.
- the P2P protocol is a transmission control protocol (TCP, Transmission Control). Protocol)
- TCP Transmission Control
- Protocol Transmission Control
- the application layer protocol above the protocol.
- any machine such as a server, terminal, or intelligent robot can join and become a node.
- the node includes the hardware layer, the middle layer, the operating system layer, and the application layer.
- proximity sensing data and the like may be stored in the shared ledger of the blockchain system through nodes of the blockchain system, and a computer device (such as a terminal or server) may obtain proximity sensing data based on recorded data stored in the shared ledger.
- FIG 15b is an optional schematic diagram of a block structure (Block Structure) provided by an embodiment of the present application.
- Each block includes the hash value of the transaction record stored in the block (the hash value of the block). ), and the hash value of the previous block, each block is connected by the hash value to form a blockchain.
- the block may also include information such as the time stamp when the block was generated.
- Blockchain is essentially a decentralized database. It is a series of data blocks associated with cryptographic methods. Each data block contains relevant information to verify the validity of its information. (Anti-counterfeiting) and generate the next block.
- the embodiments of the present application further provide one or more non-volatile storage media storing computer-readable instructions.
- the computer-readable instructions are executed by one or more processors, the one or more processors
- the proximity sensing method in the above embodiment is executed.
- the non-volatile storage medium may include: read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
- An embodiment of the present application also provides a robot, including a memory and a processor.
- the memory stores computer-readable instructions, and when the computer-readable instructions are executed by the processor, the processor executes the above-mentioned embodiments. Proximity sensing method in.
- steps in the embodiments of the present application are not necessarily executed in sequence in the order indicated by the step numbers. Unless specifically stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least part of the steps in each embodiment may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. The execution of these sub-steps or stages The sequence is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Manipulator (AREA)
Abstract
一种接近传感器(11)、电子皮肤(10)、制作方法以及接近感应方法;涉及到人工智能技术,具体涉及一种单电极电容式接近传感器(11),该接近传感器(11)包括一个电极(111),电极(111)在空间中形成电场,当目标对象接近单电极电容式接近传感器(11)时,通过电场变化感应目标对象位置的变化。
Description
本申请要求于2020年01月20日提交中国专利局,申请号为2020100652903,申请名称为“接近传感器、电子皮肤、制作方法以及接近感应方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及机器人技术领域,具体涉及一种接近传感器、电子皮肤、制作方法以及接近感应方法。
接近感应指的是针对外界对象的近距离的无接触感应。目前接近感应技术应用较为广泛,比如,可以应用到自动控制、智能终端、机器人等。然而,目前的接近感应的精度较低。
以机器人应用为例,目前随着智能机器人技术的发展和应用逐渐深化,无论是大型工业机器人还是智能家庭机器人都在给人们带来高效、便捷的服务。但与之相伴的问题是机器人程式化的动作无法感知到周围环境的变化,并因此发生与外界对象如人、物体的碰撞,造成受伤或损坏。
为了防止损害的发生,研究人员开发了应用于机器人的接近传感系统。机器人体系应用较多的接近传感系统主要有两种,一是基于视觉的物体图形识别测距,二是基于波传播的光学与声学测距。视觉的图形识别托于图形数据库,使用摄像头捕捉物体并按照尺寸比例计算得到与物体的间距。而光学与声学测距则是利用波在空间中传播并在遇到物体时发生反射的现象,激光测距和超声波测距通过测量发射时间或反射波的相位变化来计算物体的距离。
相关技术中的接近传感系统对对象位置的变化感应精度较低。比如,视觉传感体系需要摄像装置,并需要将传感物体的参数提前录入,因此接近感应精准度取决于录入参数的准确性和摄像装置的数量、质量等无法保证条件;又比 如,光学和超声波测距需要复杂的光波或声波发射和接收系统,整个系统的体积较大,无法大量排布,因此降低了机器人对外界对象位置的变化感应精度。
发明内容
根据本申请提供的各种实施例,提供一种接近传感器、电子皮肤、制作方法以及接近感应方法。
本申请实施例提供了一种柔性的单电极电容式接近传感器,包括一个电极;其中,所述电极在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,通过电场变化感应所述目标对象位置的变化。
本申请实施例提供一种机器人的电子皮肤,包括:至少一个柔性的单电极电容式接近传感器;
其中,所述单电极电容式接近传感器在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,将电场变化的电信号传输给机器人,以使得所述机器人根据所述电信号感应所述目标对象位置的变化。
本申请实施例提供了一种机器人,所述机器人的外表面贴附有上述所述的电子皮肤;其中,所述电子皮肤与所述机器人电性连接;
所述单电极电容式接近传感器在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,所述单电极电容式接近传感器将电场变化的电信号传输给机器人;
所述机器人,用于根据所述电信号感应所述目标对象位置的变化。
本申请实施例提供一种接近感应方法,适用于机器人,所述机器人的外表面贴附有本申请实施例任一提供的电子皮肤;该方法包括:
接收所述电子皮肤中单电极电容式接近传感器传输的电信号;
根据接收到的电信号感应所述目标对象位置的变化。
本申请实施例提供了一种机器人的电子皮肤制作方法,包括:
提供柔性衬底;
在所述柔性衬底上形成至少一个电极;
使用封装体对所述电极进行封装,得到至少一个柔性的单电极电容式接近传感器;
采用至少一个柔性的单电极电容式接近传感器制作机器人的电子皮肤。
本申请实施例提供的接近感应装置,适用于机器人,所述机器人的外表面贴附有本申请实施例任一提供的电子皮肤;接近感应装置包括:
接收单元,用于接收所述电子皮肤中单电极电容式接近传感器传输的电信号;
感应单元,用于根据接收到的电信号感应所述目标对象位置的变化。
本实施例还提供一个或多个存储有计算机可读指令的非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述接近感应方法。
本申请实施例还提供一种机器人,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行上述接近感应方法。
本申请实施例提供了一种柔性的单电极电容式接近传感器,包括一个电极;其中,所述电极在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感时,通过电场变化感应所述对象位置的变化。单电极电容式接近传感器采用电场变化的方式感觉对象位置的变化,相比现有技术,可以提升接近感情精度。并且,由于单电极电容式接近传感器是柔性的,可以贴附应用对象如机器人的各个部位,实现了应用对象如机器人对外界对象的全方位感应,大大提升了应用对象对外界对象位置的变化感应精度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本申请实施例提供的单电极电场示意图;
图1b是本申请实施例提供的单电极电容式接近传感器的结构示意图;
图2是本申请实施例提供的电子皮肤的场景示意图;
图3是本申请实施例提供的机器人的电子皮肤的结构示意图;
图4是本申请实施例提供的单电极电容式接近传感器的另一结构示意图;
图5a是本申请实施例提供的方形电极示意图;
图5b是本申请实施例提供的方形电极实物图;
图6a是本申请实施例提供的框型电极示意图;
图6b是本申请实施例提供的框型电极实物图;
图7是本申请实施例提供的单电极电容式接近传感器的性能测试示意图;
图8是本申请实施例提供的单电极电容式接近传感器的性能稳定测试示意图;
图9是本申请实施例提供的单电极电容式接近传感器在不同位置的传感性能对比测试示意图;
图10是本申请实施例提供的单电极电容式接近传感器贴附机器人曲面的传感测试示意图;
图11是本申请实施例提供的接近传感器阵列的结构示意图;
图12是本申请实施例提供的接近感应方法的流程图;
图13是本申请实施例提供的电子皮肤的制作方法的流程示意图;
图14是本申请实施例提供的接近感应装置的结构示意图;
图15a是本申请实施例提供的分布式系统100应用于区块链系统的一个可选的结构示意图;
图15b是本申请实施例提供的区块结构的一个可选的示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的方案如接近传感器、电子皮肤、制作方法以及接近感应方法,涉及到人工智能领域,人工智能(Artificial Intelligence,AI)是利用数字 计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个综合技术,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。
人工智能技术是一门综合学科,涉及领域广泛,既有硬件层面的技术也有软件层面的技术。人工智能基础技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理技术、操作/交互系统、机电一体化等技术。
本申请实施例的方案具体涉及人工智能的机器人相关领域,AI机器人(Robot)是自动执行工作的机器装置,一般由执行机构、驱动装置(驱动器)、检测装置(传感器)和控制系统(控制器)和复杂机械等组成。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的运行法则行动。它的任务是协助或取代人类的工作,例如企业生产、建筑或是危险的作业。它是高级整合控制论、机械力学、机械电子、智能机械工学、计算机、人工智能工学、材料和仿生学的产物。
比如,该机器人可以包括工业机器人如机器手臂、特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、娱乐机器人、军用机器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、军用机器人、微操作机器人等。
参考图1a至图11,本申请实施例提供了一种柔性的单电极电容式接近传感器11,可以包括:一个电极111,即包括单个电极,该单电极电容式接近传感器11是柔性的,具有弯曲、拉伸等能力。
参考图1a和图1b,其中,电极111可以在空间中形成电场,当目标对象接近所述单电极电容式接近传感11时,通过电场变化感应目标对象位置的变化。其中,目标对象指的是单电极电容式接近传感器11以外的对象,也就是机器人对应的外界对象,该对象可以是非生物体或者生物体,非生物体可以是导体或者 绝缘体,生物体可以是人或者动物。
比如,单电极电容式接近传感器11中单电极111可以在空间中形成电极轴向的近平行电场,当目标对象靠近电极到一定的距离就会束缚电场,会引起电容的增加,此时,单电极电容式接近传感器11会通过电场变化感应目标对象位置的变化,比如,感应目标对象与传感器的距离变化信息。
在一实施例中,参考图1a和图1b,单电极电容式接近传感器11还可以包括衬底110和封装体112;所述电极111设置在衬底110上,所述封装体113设置电极111上,对电极111封装。参考图4,在一实施例中封装体112还可以对电极111和衬底110同时封装。此外,在其他实施例中,单电极电容式接近传感器11也可以没有衬底和封装体,只有电极111。
其中,单电极电容式接近传感器11具有柔性的实现方式有多种,比如,该单电极电容式接近传感器11可以包含柔性结构单元,柔性结构单元即用柔性材料制成的结构单元,例如,可以包括柔性衬底和柔性电极中的至少一种。
在一实施例中,为了使得单电极电容式接近传感器可以在贴附在应用对象如机器人、智能手机、无人车辆等上,衬底110的底面可以具有贴附性。
在一实施例中,电极111的图案可以根据实际需求设定,比如,可以为框型、非框型等等,例如,参考图5a、图5b。
本申请实施例提供的单电极电容式接近传感器11采用电场变化的方式感觉目标对象位置的变化,相比现有技术,可以提升接近感应精度。并且,由于单电极电容式接近传感器是柔性的,可以贴附应用对象如机器人的各个部位,实现了应用对象如机器人对外界对象的全方位感应,大大提升了应用对象对外界对象位置的变化感应精度。
本申请实施例提供的单电极电容式接近传感器11可以应用任何需要接近感应的对象即应用对象上,比如,可以应用在无人机、无人驾驶车辆、电动车辆、机器人、探测器(如航空探测器等)等等。
例如,以应用在机器人上为例,可以采用单电极电容式接近传感器11制作出机器人的电子皮肤,通过电子皮肤辅助机器人实现感应外界对象位置的变化。
本申请实施例将以工业机器人或者家用服务机器人为例来介绍机器人的 电子皮肤等。
参考图2至图3,本申请实施例提供一种机器人的电子皮肤10,该电子皮肤10可以贴附在机器人20的表面,帮助机器人感应四周的工作环境,避免机器人与外界对象如与操作人员、或服务对象等发生碰撞造成损失。
其中,该电子皮肤10可以包括至少一个柔性的单电极电容式接近传感器11比如,可以包括一个柔性的单电极电容式接近传感器11,或者至少两个柔性的单电极电容式接近传感器11。在实际应用中,电子皮肤10中单电极电容式接近传感器11越多、密度越大,对外界对象位置的变化感应精度越高。
其中,所述单电极电容式接近传感器11可以为包括单个电极的电容式接近传感器,该电容式接近传感器可以在空间中形成电场,当所述目标对象接近单电极电容式接近传感器时,将电场变化的电信号传输给机器人,以使得所述机器人根据所述电信号感应目标对象位置的变化。比如,机器人可以根据电信号的变化分析判断外界物体的接近等。
例如,参考图3,电子皮肤10的单电极电容式接近传感器11中单电极可以在空间中形成电极轴向的近平行电场,当外界对象靠近电极到一定的距离就会束缚电场,会引起电容的增加,此时,单电极电容式接近传感器11会将电场变化的电信号传输给机器人20,机器人20根据接收到的电信号感应目标对象位置的变化信息,比如,感应目标对象与机器人的距离变化信息。
本申请实施例,由于采用柔性的单电极电容式接近传感器11制作电子皮肤10,那么电子皮肤10整体也具有柔性,并且具有一定的弯曲变形能力(参考图2),因此,可以使得电子皮肤能够良好的贴附在机器人的外表面,更好地帮助机器人20感应外界对象的靠近,避免机器人与其发生碰撞,使机器人做出相应的避让或制动等动作,大大提升接近感应精度。
例如,由于采用柔性的单电极电容式接近传感器11,因此,可以将电子皮肤10贴附在机器人的外骨骼上如机器人手臂的圆柱状外壁、机器人主干的前胸或背部;此外,还可以将电子皮肤贴附在机器人的关键部位,比如,机器人的关节部位、以及一些形状比较复杂的部位等,以便于某些部位可以精准地感应外界对象位置的变化,从而做出响应。
其中,本申请实施例柔性的单电极电容式接近传感器11的结构可以有多种,具体可以参考上文实施例中关于柔性的单电极电容式接近传感器的描述。比如,在一实施例中,参考图1a和图1b,柔性的单电极电容式接近传感器11可以包括衬底110、电极111和封装体112;所述电极111设置在衬底110上,所述封装体113设置电极111上,对电极111封装。
其中,衬底110可以为柔性材料制作成的衬底,即柔性衬底。在一实施例中,该衬底110可以为采用柔性绝缘材料制作成的衬底。如可以包括柔性材料薄膜,即柔性材料制作成的薄膜,譬如,柔性衬底110可以包括聚合物薄膜。其中,聚合物薄膜可以包括PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)薄膜、PI(Polyimide Film,聚酰亚胺薄膜)等等。
在一实施例中,为了提升电子皮肤的安全性、稳定性和接近感应精度,电子皮肤中所有单电极电容式接近传感器11共用一个柔性衬底。在一实施例中,所有单电极电容式接近传感器11共用的柔性衬底,可以作为电子皮肤10的衬底,用于电子皮肤贴附在机器人的外表面。实际使用时,可以直接将共用的柔性衬底贴附在机器人的外表面。
在一实施例中,为了防止单电极电容式接近传感器11之间的干扰,电子皮肤中所有单电极电容式接近传感器11不共用一个柔性衬底,也即每个单电极电容式接近传感器11都有各自的柔性衬底110。将至少一个单电极电容式接近传感器11组成电子皮肤10。比如,在一实施例中,可以提供一柔性的电子皮肤衬底,可以将所有单电极电容式接近传感器11设置在电子皮肤衬底上(如粘贴等),以形成电子皮肤10。实际使用时,可以将电子皮肤衬底的贴附在机器人的外表面。又比如,在一实施例中,可以直接将至少一个单极电容式接近传感器11贴附在机器外表面直接作为电子皮肤10。
其中,电极111可以为导电材料制成的电极,也即电极的材料导电材料,比如,可以为金属电极、导电炭布等导电材料制成的电极。在一实施例中,为了传感器的柔性,进而便于电子皮肤更容易贴附在机器人外表面,电极111可以为柔性电极,比如,可以为柔性导电材料制成的电极。譬如,电极111可以为具有弯曲性能的导电炭布制作成的电极,等等。
本申请实施例中,电极111的形状可以为任意形状,比如,电极111的图案可以呈方形圆形或任意多边形。例如,参考图5a电极111可以为方形电极,图5b为方形电极实物,图5b中柔性衬底110上的电极111可以包括方形电极本体1110和信号引线1111,信号引线1111用于传递电信号。
在一实施例中,为了提升传感器的感应精度,电极111的图案可以为任意框型,比如,三角框型,圆环形框型,方形框型或者任意多边形框型。例如,参考图6a,电极111可以为方形框型电极,图6b为方形电极实物,图6b中柔性衬底110上的电极111可以包括框型电极本体1110和信号引线1111,信号引线1111用于传递电信号。
本申请实施例中,电极11的大小不固定可以根据实际需求设定,比如,可以在微米到米范围内选择。
在一实施例中,为了提升电子皮肤的贴附性,其中,柔性衬底110的底面具有贴附性,比如,柔性衬底110可以包括顶面和底面,电极11设置在所述顶面,该底面具有贴附性。譬如,在实际使用时,可以将单电极电容式接近传感器10的柔性衬底110底面贴附在机器人的外表面。
在一实施例中,当单电极电容式接近传感器10共用柔性衬底时,由于柔性衬底底面具有贴附性,可以将该底面贴附在机器人的外表面,作为电子皮肤。由于柔性衬底具有柔性和贴附性,实际应用时,可以良好地贴附在机器人任何部位的外表面。
本申请实施例中,封装体112用于对电极111封装,形成单电极电容式接近传感器,该封装体112具有保护作用,防止电极111与外界环境接触;其中,封装体112可以包裹住电极111。在一实施例中,为了更好地保护电极111,封装体112还可以同时对电极111与衬底110封装,封装体112可以包裹住电极111和衬底110。
其中,封装体112可以包括胶带、薄膜等封装体;比如,封装体112可以包括PDMS(聚二甲基硅氧烷薄膜)等。
本申请实施例设计的单电极电容式接近传感器的接近传感性能相比目前的传感器较强,对机器人外界对象的传感精度非常高。参考图7,为实际测试 中,本申请实施例框型和方形电极的单电极电容式接近传感器在不同感应距离(sensing distance)下的性能表现,左边为框型电极的传感器性能表现,右边为方形电极传感器的性能表现,其中,性能指标可以为感应强度(sensing intensity)。
本申请实施例设计的单电极电容式接近传感器相比现有传感器具有较强的性能稳定性,比如,参考图8,为实际测试中,框型电极的单电极电容式接近传感器在不同感应距离下的性能稳定性表现,其中,曲线1表示物体远离情况下的感应性能,曲线2表示物体靠近情况下的感应性能,图8中两个曲线完全重合,表现出传感器性能的良好稳定性。
本申请实施例设计的单电极电容式接近传感器对于不同位置上外界对象的传感性能相差不大,稳定性极强。例如,参考图9,为实际测试中,框型电极的单电极电容式接近传感器对于周边不同位置的传感性能对比,具体地,在实际测试中,对于框型电极的五个位置上(即左上、左中、左下、上中、中)的传感性能进行对比,从图9中可以看出对于这五个位置上的传感性能波动不大,稳定性较强。其中,图9中第三幅图中k1表示感应距离(sensing distance)、k2表示响应振幅(rensponse amplitude)。
此外,本申请实施例设计的单电极电容式接近传感器在贴附在机器人外表面后,其传感性能变化不大,具有极强的稳定性。比如,参考图10为实际测试中,单电极电容式接近传感器贴附机器人曲面后的传感性能。
在一实施例中,为了提升机器人对外界对象位置的变化感应精度、或者传感精度,本申请可以采用柔性电容接近传感阵列形成电子皮肤10,也即,电子皮肤10可以包括至少两个(两个或两个以上)的柔性的单电极电容式接近传感器11,至少两个柔性的单电极电容式接近传感器11可以组成接近传感器阵列;比如,柔性的单电极电容式接近传感器11按照实际情况呈阵列排布,以组成接近传感器阵列。例如,参考图2,电子皮肤10上的单电极电容式接近传感器11呈阵列排布形成了一接近传感器阵列。
在一实施例中,为了提升接近传感器阵列的性能以及稳定性,提升接近感应精确性,接近传感器阵列中所有柔性单电极电容式接近传感器共用一个柔性 衬底、以及封装体。具体地,接近传感器阵列中单电极电容式接近传感器11可以共用一个大面积的柔性衬底,也即在大面积柔性衬底上制作出接近传感器阵列。也即,单电极电容式接近传感器11共用的柔性衬底即为电子皮肤10的衬底。
应当理解的是:在其他实施例中,接近传感器阵列中单电极电容式接近传感器11也可以不共用柔性衬底。可以根据实际需求选择。
例如,参考图11,接近传感器阵列30可以包括大面积的柔性衬底113、电极阵列114和封装体115;所述电极114设置在所述柔性衬底113上,所述封装体115设置所述电极111和柔性衬底113上,对电极阵列114和柔性衬底113封装。电极114包括至少两个电极,至少两个电极可以在柔性衬底113上呈阵列排布。在一实施中,柔性衬底113可以直接作为电子皮肤的衬底。
在一实施例中,为了提升电子皮肤的贴附性,其中,柔性衬底113的底面具有贴附性,比如,柔性衬底113可以包括顶面和底面,电极阵列114设置在所述顶面,该底面具有贴附性。譬如,在实际使用时,可以将接近传感器阵列30的柔性衬底113底面贴附在机器人的外表面。由于接近传感器阵列30的柔性衬底具有柔性(即具有一定的弯曲变形能力)和贴附性,实际应用时,可以良好地贴附在机器人任何部位的外表面。
其中,封装体115可以将电极阵列114封装,在一实施例中,还可以将电极阵列114和柔性衬底113同时封装。封装体115可以包括胶带、薄膜等封装体;比如,封装体115可以包括PDMS(聚二甲基硅氧烷薄膜)等。
在一实施例中,为了屏蔽机器人内部的电场干扰,可以在单电极电容式接近传感器11的底面设置一层导电薄膜;具体地,可以在衬底的底面设置导电薄膜。
比如,在一实施例中,可以在单电极电容式接近传感器11不共用衬底的情况下,可以在每个单电极电容式接近传感器11的柔性衬底底面设置一层导电薄膜。
又比如,在一实施例中,接近传感器阵列30中单电极电容式接近传感器11共用柔性衬底113的底面可以设置一层导电薄膜。
其中,导电薄膜可以包括铜箔、铝箔、碳布等。
实际使用时,可以将电子皮肤10的导电薄膜贴附在机器人的外表面。
由上可知,本申请实施例设计的电子皮肤,可以贴附在机器人外表面上,通过电场变化感应外界对象位置的变化,能够实现机器人对外界对象位置的变化精准感应。单电极电容接近传感器能够提高传感距离达到50cm以上,使机器人有更多的反应时间,降低碰撞的风险。
并且,由于电子皮肤采用柔性的单电极电容式接近传感器,因此,可以贴附在机器人的各个部位,实现了机器对外界对象的全方位感应,大大提升了机器人对外界对象位置的变化感应精度。
进一步地,本申请实施例设计的电子皮肤可以包括在大面积的衬底上制作出高密度的多层薄膜传感器阵列,使用本申请的电子皮肤不需要额外的传感设备。传感阵列贴附在机器人外表面上,能够实现机器人各个部位对外界物体的全方位传感,高密度的阵列也帮助机器人精准判断出靠近物体的具体位置,真正做到机器人对工作环境的完全预警,防止与物体的碰撞。本申请实施例提供的柔性电容接近传感阵列能够将机器人对物体的传感精度达到毫米级级别,空间分辨率降低到毫米级,实现高密度的传感。
本申请实施例设计的电子皮肤采用柔性单电极电容式接近传感器如柔性单电极电容式接近传感器阵列,电极的衬底采用柔性材料薄膜,电极也可以选择柔性导电材料,使用柔性薄膜材料封装,实现传感阵列整体的柔性,具有一定的弯曲变形能力。能够良好的贴附在机器人表面。
此外,本申请实施例提供的柔性单电极电容式接近传感器体积较小,成本小,可以便于在机器人大量排布。
本申请实施例提供的电子皮肤可以应用在各种机器人的接近感应场景中,比如,在一些场景中,实现较小面积的接近传感器应用。在机器人的窄小或尖端部位上,如手指指尖等,根据具体情况设计单个传感器或简单传感阵列进行接近传感。帮助机器人在运行中主动感应物体并及时采取制动或避让动作,防止窄小或尖端部位在工作中发生碰撞。
又比如,在一些场景中,还可以在机器人与物体的触碰面(如手指指腹, 手掌掌心等位置)上进行接近传感器及阵列的排布,提示机器人待抓取或触碰物体的位置与大致形状,使机器人调整姿态和速度,更加平稳的进行抓取或触碰动作。
参考图12,本申请实施例还提供了一种接近感应方法,适用于机器人,机器人的外表面贴附有如上所述的电子皮肤,该方法具体可以由机器人内的处理器执行,该方法包括:
S121、接收所述电子皮肤中单电极电容式接近传感器传输的电信号。
其中,单电极电容式接近传感器11可以在空间中形成电场,当所述机器人以外的物体接近单电极电容式接近传感器时,将电场变化的电信号传输给机器人。
比如,电信号通过电子皮肤10与机器人20之间的连接电路传输给机器人20。
S122、根据接收到的电信号感应所述目标对象位置的变化。
比如,在一实施例中,可以根据接收到的电信号的变化分析判断机器人对外界对象位置的变化等。
比如,可以根据接收到的电信号感应外界对象的距离、位置、形状等信息。
其中,根据电信号感应的目标对象位置的变化方式有多种,比如,可以根据电信号的强度来计算机器人与外界对象的距离。
在电子皮肤采用传感器阵列的情况,机器人可以根据阵列中每个单电极电容式接近传感器11传递的电信号来感应外界对象位置的变化,如感应外界对象的位置、距离等等。
由上可知,本申请实施例可以采用柔性的单电极电容式接近传感器制作的电子皮肤,将该电子皮肤贴附在机器人的外表面,机器通过电子皮肤中单电极电容式接近传感器传递的电信号来感应外界对象位置的变化;相比现有接近感应方案,可以提升接近感应的精度。
本申请实施例还提供了一种机器人的电子皮肤制作方法,如图13所示,该方法包括:
S131、提供柔性衬底。
其中,柔性衬底包括柔性材料薄膜,比如聚合物薄膜,具体可以包括:PET、 PI等等。
S132、在柔性衬底上形成至少一个电极;
其中,电极的数量可以根据需要制作的传感器数量而定,比如,制作一个传感器时可以在柔性衬底上形成一个电极;要制作n个传感器时可以在柔性衬底上形成n个电极,其中,n为大于1的正整数。
在一实施例中,当需要制作接近传感器阵列时,可在所述柔性衬底上形成电极阵列,该电极阵列包括至少两个电极,至少两个电极呈阵列排布。
其中,在柔性衬底上形成电极阵列的方式可以有多种,比如,在一实施例中,在所述柔性衬底上形成一导电层;对所述导电层进行电极制作处理,以形成电极阵列,电极阵列包括至少两个呈阵列排布的电极。
其中,导电层可以为导电材料制作的层,比如包括金属层、导电炭布等。其中,金属层可以包括金属网络层等具体可以根据实际需求设定,比如,可以在通过在衬底上喷涂银纳米线形成的金属网络层。
其中,在柔性衬底上形成导电层的方式有多种,比如,可以采用蒸镀、喷涂、印刷等方式。
例如,可以在聚合物(PET、PI等)薄膜上蒸镀导电金属的金属层,在热塑性聚氨酯弹性体橡胶(TPU)薄膜上印刷的金属层;在聚合物(PET、PI等)薄膜上喷涂银纳米线的金属网络层等等。
其中,对所述导电层进行电极制作处理形成电极的方式也可以有多种,可以根据实际需求选择。比如,在一实施例中,电极材料选择具有弯曲性能的导电碳布,使用激光切割将碳布切割成电极大小形成电极阵列。
又比如,在一实施例中,电极材料为在聚合物(PET、PI等)薄膜上蒸镀导电金属的金属电极时,可以使用激光切割将镀金电极切割成电极大小或直接使用掩模板蒸镀出电极阵列。
又比如,在一实施例中,电极使用印刷在热塑性聚氨酯弹性体橡胶(TPU)薄膜上印刷的电极时,使用掩模直接制作成柔性的电极阵列。
又比如,在一实施例中,电极使用在聚合物(PET、PI等)薄膜上喷涂银纳米线的金属网络电极时,直接使用掩模喷涂出电极阵列,制作成柔性的电极 阵列。
其中,电极的具体形状和大小不固定,可在微米到米范围。单电极的设计呈方形,圆形或任意多边形以及任意框型(包括三角框型,圆环形框型,方形框型或者任意多边形框型)。电极阵列中电极按照实际情况进行阵列排布。
在一实施例中,柔性衬底上形成电极阵列的方式还可以包括先制作电极,然后,将电极贴附在柔性衬底上;具体地,提供一导电层;对所述导电层进行电极制作处理,得到至少两个电极;将至少两个电极按照预定规则贴附在所述柔性衬底上,以在柔性衬底上形成电极阵列,所述电极阵列包括至少两个呈阵列排布的电极。
例如,电极材料选择具有弯曲性能的导电碳布时,使用激光切割将碳布切割成电极大小,然后将电极贴附在聚合物薄膜,实现在柔性衬底上形成电极阵列。也即
S133、使用封装体对电极进行封装,得到至少一个柔性的单电极电容式接近传感器。
在一实施例中,可以使用封装体同时对电极和柔性衬底封装。
比如,在一个电极情况下,可以使用一个封装体对该电极进行封装,得到单个柔性的单电极电容式接近传感器。
又比如,在多个电极如电极阵列情况下,使用封装体对所述电极阵列进行封装,得到接近传感器阵列,所述接近传感器阵列包括至少两个共用衬底的、且柔性的单电极电容式接近传感器。
其中,封装体可以包括胶带或PDMS薄膜等。
例如,电极使用在聚合物(PET、PI等)薄膜上喷涂银纳米线的金属网络电极时,直接使用掩模喷涂出电极阵列,制作成柔性的电极阵列。在上层使用胶带或PDMS薄膜封装传感器,即可得到接近传感器阵列。
在一实施例中,为了为屏蔽机器人内部的电场干扰,可以在所述柔性衬底的底面形成导电薄膜,也即在传感器或传感器阵列的下层设置如粘贴一层整面的导电薄膜,如铜箔、铝箔、碳布等。
S134、采用至少一个柔性的单电极电容式接近传感器制作机器人的电子皮 肤。
比如,在一实施例中,可以将至少一个柔性的单电极电容式接近传感器作为电子皮肤;譬如,将接近传感器作为机器人的电子皮肤。实际使用时,直接将至少一个柔性的单电极电容式接近传感器如传感器阵列贴附在机器人的外表面。
又比如,在一实施例中,还可以将至少柔性的单电极电容式接近传感器设置在电子皮肤衬底上,形成电子皮肤。实际使用时,将电子皮肤衬底贴附在机器人的外表面。
本申请设计了柔性的单电极电容式接近传感电子皮肤,主要应用于机器人的外表面,帮助机器人感应四周的工作环境,避免机器人与操作人员或服务对象发生碰撞造成损失。大面积的接近传感器阵列贴附在机器人较大面积的区域,如手臂的圆柱状外壁和机器人主干的前胸或背部。实现在较大面积上对人的高密度远距离传感,高密度阵列能够使机器人较准确的感应物体的位置,进而避免机器人与人的碰撞。
与现有技术相比,本发明的技术方案具有如下效果:
1.本发明制作的柔性电容接近传感阵列能够实现高密度的传感。
2.单电极的电容接近传感器能够提高传感距离达到50cm以上,使机器人有更多的反应时间,降低碰撞的风险。
3.柔性的传感阵列能够简便的贴附机器人表面,实现机器人对周围环境的全方位传感。
为了更好地实施以上方法,相应的,本申请实施例还提供一种接近感应装置,该接近感应装置可以集成在机器人中,所述机器人的外表面贴附有如上所述的电子皮肤。参考图14,该接近感应装置可以包括接收单元140、感应单元141,具体如下:
接收单元140,用于接收所述电子皮肤中单电极电容式接近传感器传输的电信号;
感应单元141,用于根据接收到的电信号感应所述目标对象位置的变化。
由上可知,本申请实施例可以采用柔性的单电极电容式接近传感器制作的 电子皮肤,将该电子皮肤贴附在机器人的外表面,机器通过电子皮肤中单电极电容式接近传感器传递的电信号来感应外界对象位置的变化;相比现有接近感应方案,可以提升接近感应的精度。
本申请实施例涉及的接近感应系统可以是由客户端、多个节点(接入网络中的任意形式的机器人)通过网络通信的形式连接形成的分布式系统。其中,机器人的感应数据可以存储至分布式系统如区块链中。
以分布式系统为区块链系统为例,参见图15a,图15a是本申请实施例提供的分布式系统100应用于区块链系统的一个可选的结构示意图,由多个节点(接入网络中的任意形式的计算设备,如服务器、用户终端)和客户端形成,节点之间形成组成的点对点(P2P,Peer To Peer)网络,P2P协议是一个运行在传输控制协议(TCP,Transmission Control Protocol)协议之上的应用层协议。在分布式系统中,任何机器如服务器、终端、智能机器人都可以加入而成为节点,节点包括硬件层、中间层、操作系统层和应用层。本实施例中,接近感应数据等可以通过区域链系统的节点被存储在区域链系统的共享账本中,计算机设备(例如终端或服务器)可以基于共享账本存储的记录数据获取接近感应数据。
参见图15b,图15b是本申请实施例提供的区块结构(Block Structure)一个可选的示意图,每个区块中包括本区块存储交易记录的哈希值(本区块的哈希值)、以及前一区块的哈希值,各区块通过哈希值连接形成区块链。另外,区块中还可以包括有区块生成时的时间戳等信息。区块链(Blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了相关的信息,用于验证其信息的有效性(防伪)和生成下一个区块。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例还提供一个或多个存储有计算机可读指令的非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个 处理器执行上述实施例中的接近感应方法。
其中,该非易失性存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
本申请实施例还提供一种机器人,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行上述实施例中的接近感应方法。
应该理解的是,本申请各实施例中的各个步骤并不是必然按照步骤标号指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,各实施例中至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上对本申请实施例所提供的一种机器人的电子皮肤、制作方法、以及接近感应方法和存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。
Claims (21)
- 一种柔性的单电极电容式接近传感器,包括一个电极;其中,所述电极在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,通过电场变化感应所述对象位置的变化。
- 根据权利要求1所述的单电极电容式接近传感器,其特征在于,所述电极为柔性电极。
- 根据权利要求1所述的单电极电容式接近传感器,其特征在于,还包括:衬底和封装体;所述电极设置在所述衬底上,所述封装体设置在所述电极上,对所述电极封装。
- 根据权利要求3所述的单电极电容式接近传感器,其特征在于,所述衬底为柔性衬底。
- 根据权利要求4所述的单电极电容式接近传感器,其特征在于,所述柔性衬底包括顶面和底面,所述电极设置在所述顶面上,且所述底面具有贴附性。
- 根据权利要求1-5任一项所述的单电极电容式接近传感器,其特征在于,所述电极的图案包括框型。
- 一种机器人的电子皮肤,包括:至少一个柔性的单电极电容式接近传感器;其中,所述单电极电容式接近传感器在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,将电场变化的电信号传输给机器人,以使得所述机器人根据所述电信号感应所述对象位置的变化。
- 根据权利要求7所述的电子皮肤,其特征在于,所述单电极电容式接近传感器包括:衬底、电极和封装体;所述电极设置在所述衬底上,所述封装体设置在所述电极上,对电极封装。
- 根据权利要求8所述的电子皮肤,其特征在于,所述衬底为柔性衬底。
- 根据权利要求7所述的电子皮肤,其特征在于,包括至少两个柔性的单电极电容式接近传感器;所述至少两个柔性的单电极电容式接近传感器组成接近传感器阵列。
- 根据权利要求10所述的电子皮肤,其特征在于,所述单电极电容式接近传感器包括:衬底、电极和封装体;所述电极设置在所述衬底上,所述封装体设置所述电极上,对电极封装;其中,所述至少两个单电极电容式接近传感器共用一个衬底、以及封装体。
- 根据权利要求8-11所述的电子皮肤,其特征在于,所述衬底包括顶面和底面,所述电极设置在所述顶面上,所述底面设置有导电薄膜。
- 一种机器人,所述机器人的外表面贴附有如权利要求6-10任一项所述的电子皮肤;其中,所述电子皮肤与所述机器人电性连接;所述单电极电容式接近传感器在空间中形成电场,当所述目标对象接近所述单电极电容式接近传感器时,所述单电极电容式接近传感器将电场变化的电信号传输给机器人;所述机器人,用于根据所述电信号感应所述对象位置的变化。
- 一种接近感应方法,适用于机器人,所述机器人的外表面贴附有如权利要求7-12任一项所述的电子皮肤;所述方法包括:接收所述电子皮肤中单电极电容式接近传感器传输的电信号;及根据接收到的电信号感应目标对象位置的变化。
- 一种机器人的电子皮肤制作方法,包括:提供柔性衬底;在所述柔性衬底上形成至少一个电极;使用封装体对所述电极进行封装,得到至少一个柔性的单电极电容式接近传感器;及采用至少一个柔性的单电极电容式接近传感器制作机器人的电子皮肤。
- 根据权利要求15所述的电子皮肤制作方法,其特征在于,在所述柔性衬底上形成至少一个电极,包括:在所述柔性衬底上形成电极阵列;使用封装体对所述电极进行封装,得到至少一个柔性的单电极电容式接近传感器,包括:使用封装体对所述电极阵列进行封装,得到接近传感器阵列,所述接近传感器阵列包括至少两个共用衬底的、且柔性的单电极电容式接近传感器;采用至少一个柔性的单电极电容式接近传感器制作机器人的电子皮肤,包括:采用接近传感器阵列制作机器人的电子皮肤。
- 根据权利要求16所述的电子皮肤制作方法,其特征在于,在所述柔性衬底上形成电极阵列,包括:在所述柔性衬底上形成一导电层;对所述导电层进行电极制作处理,以形成电极阵列,电极阵列包括至少两个呈阵列排布的电极。
- 根据权利要求16所述的电子皮肤制作方法,其特征在于,在所述柔性衬底上形成电极阵列,包括:提供一导电层;对所述导电层进行电极制作处理,得到至少两个电极;将至少两个电极按照预定规则贴附在所述柔性衬底上,以在柔性衬底上形成电极阵列,所述电极阵列包括至少两个呈阵列排布的电极。
- 一种接近感应装置,适用于机器人,所述机器人的外表面贴附有如权利要求7-12任一项所述的电子皮肤;所述接近感应装置包括:接收单元,用于接收所述电子皮肤中单电极电容式接近传感器传输的电信号;感应单元,用于根据接收到的电信号感应所述目标对象位置的变化。
- 一个或多个存储有计算机可读指令的非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行所述权利要求14所述的方法。
- 一种机器人,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行所述权利要求14所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010065290.3 | 2020-01-20 | ||
CN202010065290.3A CN111230928A (zh) | 2020-01-20 | 2020-01-20 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147452A1 true WO2021147452A1 (zh) | 2021-07-29 |
Family
ID=70868282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/126377 WO2021147452A1 (zh) | 2020-01-20 | 2020-11-04 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111230928A (zh) |
WO (1) | WO2021147452A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111230928A (zh) * | 2020-01-20 | 2020-06-05 | 腾讯科技(深圳)有限公司 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
CN112518716A (zh) * | 2020-11-23 | 2021-03-19 | 深圳市越疆科技有限公司 | 机器人的拖动示教触发方法、装置及机器人 |
CN113103258B (zh) * | 2021-05-17 | 2023-03-28 | 浙江大学 | 一种可扩展且可重构的交互式柔性机器人皮肤 |
CN114571493A (zh) * | 2022-02-28 | 2022-06-03 | 深圳市越疆科技有限公司 | 用于机械臂末端或末端执行器的传感装置、机械臂和设备 |
CN114705226A (zh) * | 2022-03-30 | 2022-07-05 | 山东科技大学 | 一种接近-触觉双模态柔性传感器的制备方法及其传感器 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080202251A1 (en) * | 2007-02-27 | 2008-08-28 | Iee International Electronics & Engineering S.A. | Capacitive pressure sensor |
WO2015078466A1 (de) * | 2013-11-27 | 2015-06-04 | Physik Instrumente (Pi) Gmbh &. Co. Kg | Sensorsystem zur kapazitiven abstandsmessung |
CN104764481A (zh) * | 2015-04-08 | 2015-07-08 | 合肥工业大学 | 一种全柔性电容-电阻双模式接近觉传感器 |
CN104937379A (zh) * | 2013-01-23 | 2015-09-23 | 博泽哈尔施塔特汽车零件两合公司 | 电容式的接近传感器 |
CN109115376A (zh) * | 2018-09-28 | 2019-01-01 | 清华大学深圳研究生院 | 一种电容式柔性压力传感器及其制备方法 |
US10451505B1 (en) * | 2016-11-17 | 2019-10-22 | X Development Llc | Flexible sensor |
CN209820667U (zh) * | 2019-05-06 | 2019-12-20 | 北京他山科技有限公司 | 一种电容式触摸传感器、电子皮肤和智能机器人 |
CN110806223A (zh) * | 2020-01-08 | 2020-02-18 | 腾讯科技(深圳)有限公司 | 柔性传感系统、接近传感方法、装置、智能机器人及设备 |
CN111230928A (zh) * | 2020-01-20 | 2020-06-05 | 腾讯科技(深圳)有限公司 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
CN111251326A (zh) * | 2020-01-20 | 2020-06-09 | 腾讯科技(深圳)有限公司 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5530798B2 (ja) * | 2010-05-11 | 2014-06-25 | 東海ゴム工業株式会社 | 静電容量型センサおよびセンサ取付構造 |
CN102285634A (zh) * | 2011-07-23 | 2011-12-21 | 北京科技大学 | 一种ZnO微/纳米材料柔性应变传感器的构建方法 |
CN102867887B (zh) * | 2012-10-17 | 2014-12-31 | 青岛大学 | 一种二氧化钛纳米纤维紫外光敏电阻的制备方法 |
CN105067160B (zh) * | 2015-07-23 | 2017-10-03 | 东南大学 | 基于氧化石墨烯海绵的柔性压力传感器 |
CN107515065A (zh) * | 2016-06-16 | 2017-12-26 | 中兴通讯股份有限公司 | 传感器及确定力方向的方法 |
CN106946221A (zh) * | 2017-03-20 | 2017-07-14 | 中北大学 | 基于“v”型槽阵列电极的柔性压力传感器制作方法 |
CN107894293A (zh) * | 2017-11-09 | 2018-04-10 | 东南大学 | 一种高灵敏度的柔性无源无线压力传感器 |
JP7052308B2 (ja) * | 2017-11-15 | 2022-04-12 | セイコーエプソン株式会社 | センサー、およびロボット |
-
2020
- 2020-01-20 CN CN202010065290.3A patent/CN111230928A/zh active Pending
- 2020-11-04 WO PCT/CN2020/126377 patent/WO2021147452A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080202251A1 (en) * | 2007-02-27 | 2008-08-28 | Iee International Electronics & Engineering S.A. | Capacitive pressure sensor |
CN104937379A (zh) * | 2013-01-23 | 2015-09-23 | 博泽哈尔施塔特汽车零件两合公司 | 电容式的接近传感器 |
WO2015078466A1 (de) * | 2013-11-27 | 2015-06-04 | Physik Instrumente (Pi) Gmbh &. Co. Kg | Sensorsystem zur kapazitiven abstandsmessung |
CN104764481A (zh) * | 2015-04-08 | 2015-07-08 | 合肥工业大学 | 一种全柔性电容-电阻双模式接近觉传感器 |
US10451505B1 (en) * | 2016-11-17 | 2019-10-22 | X Development Llc | Flexible sensor |
CN109115376A (zh) * | 2018-09-28 | 2019-01-01 | 清华大学深圳研究生院 | 一种电容式柔性压力传感器及其制备方法 |
CN209820667U (zh) * | 2019-05-06 | 2019-12-20 | 北京他山科技有限公司 | 一种电容式触摸传感器、电子皮肤和智能机器人 |
CN110806223A (zh) * | 2020-01-08 | 2020-02-18 | 腾讯科技(深圳)有限公司 | 柔性传感系统、接近传感方法、装置、智能机器人及设备 |
CN111230928A (zh) * | 2020-01-20 | 2020-06-05 | 腾讯科技(深圳)有限公司 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
CN111251326A (zh) * | 2020-01-20 | 2020-06-09 | 腾讯科技(深圳)有限公司 | 接近传感器、电子皮肤、制作方法以及接近感应方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111230928A (zh) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021147456A1 (zh) | 接近传感器、电子皮肤、制作方法以及接近感应方法 | |
WO2021147452A1 (zh) | 接近传感器、电子皮肤、制作方法以及接近感应方法 | |
Kumra et al. | Antipodal robotic grasping using generative residual convolutional neural network | |
US7328196B2 (en) | Architecture for multiple interacting robot intelligences | |
US6697707B2 (en) | Architecture for robot intelligence | |
Hasegawa et al. | Net-structure proximity sensor: High-speed and free-form sensor with analog computing circuit | |
US12123713B2 (en) | Housing, housing assembly, mechanical arm, and robot of mechanical equipment | |
Ness et al. | Synergy between AI and robotics: A comprehensive integration | |
CN111238545B (zh) | 一种传感器、智能设备、传感方法及存储介质 | |
Koyama et al. | Integrated control of a multiple-degree-of-freedom hand and arm using a reactive architecture based on high-speed proximity sensing | |
Gupta et al. | Obstacle detection and collision avoidance using ultrasonic sensors for RC multirotors | |
Zakhar'eva et al. | Distributed control of multiple non-holonomic robots with sector vision and range-only measurements for target capturing with collision avoidance | |
Song et al. | Robot autonomous sorting system for intelligent logistics | |
WO2024082558A1 (zh) | 基于电磁定位的移动机器人跟随方法、装置及可读介质 | |
Cui et al. | Fast and accurate obstacle detection of manipulator in complex human–machine interaction workspace | |
Almoaili et al. | Path planning algorithm for unmanned ground vehicles (UGVs) in known static environments | |
Ansary et al. | A novel object slicing-based grasp planner for unknown 3D objects | |
Li et al. | Bioinspired electronic-skin for proximity and pressure detection in robot active sensing | |
CN112621795A (zh) | 机械臂末端执行器及其控制方法、机械臂和存储器 | |
Arita | A fast optical proximity sensor skin that contains an analog computing circuit and can cover an entire link | |
Chen et al. | Research on Door‐Opening Strategy Design of Mobile Manipulators Based on Visual Information and Azimuth | |
Guo et al. | Sensing Technology for Special Robots | |
Gowtham | Obstacle Detection and Avoidance Methods for Autonomous Mobile Robot | |
Freire et al. | Learning visuo-motor coordination for pointing without depth calculation. | |
Amr | Design and implementation of a 3 layered obstacle detection system with haptic feedback notification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/11/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915217 Country of ref document: EP Kind code of ref document: A1 |