WO2021147399A1 - 日光温室蓄放热系统及一种蓄放热方法 - Google Patents

日光温室蓄放热系统及一种蓄放热方法 Download PDF

Info

Publication number
WO2021147399A1
WO2021147399A1 PCT/CN2020/122280 CN2020122280W WO2021147399A1 WO 2021147399 A1 WO2021147399 A1 WO 2021147399A1 CN 2020122280 W CN2020122280 W CN 2020122280W WO 2021147399 A1 WO2021147399 A1 WO 2021147399A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar greenhouse
soil
heat
temperature
heat storage
Prior art date
Application number
PCT/CN2020/122280
Other languages
English (en)
French (fr)
Inventor
卜崇兴
Original Assignee
上海孙桥溢佳农业技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010076134.7A external-priority patent/CN111108983A/zh
Priority claimed from CN202020145648.9U external-priority patent/CN212324910U/zh
Application filed by 上海孙桥溢佳农业技术股份有限公司 filed Critical 上海孙桥溢佳农业技术股份有限公司
Publication of WO2021147399A1 publication Critical patent/WO2021147399A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the invention relates to the field of agricultural facilities, in particular to a solar greenhouse heat storage and release system and a heat storage and release method.
  • Solar greenhouse is a unique type of greenhouse in northern my country, and it is a greenhouse that uses solar energy as its main energy source.
  • the solar greenhouse accumulates the heat of sunlight during the day, and maintains the temperature required for the growth and development of the plants in the greenhouse at night through the strict insulation measures of the greenhouse.
  • the solar greenhouse is mainly composed of a back wall, a back slope, and gables on both sides of the back wall built on the ground soil. Sunlight shines into the sunlight greenhouse during the day.
  • the greenhouse absorbs solar energy through the soil, back wall, back slope and gable to achieve heat storage, so as to maintain a certain temperature level in the greenhouse at night to meet the normal growth of plants, vegetables and other crops. .
  • the existing solar greenhouses all have the above shortcomings.
  • the purpose of the present invention is to overcome the problems existing in the prior art and provide a solar greenhouse heat storage and release system and a heat storage and release method.
  • a solar greenhouse heat storage and release system including a solar greenhouse built on the soil, a heat pump unit and pipelines, the heat pump unit is arranged in the solar greenhouse, and the soil is laid under the cultivated layer There is the pipeline for accommodating water, and the heat pump unit is connected with the pipeline to increase the temperature of the water in the pipeline for heating the cultivated layer of the soil.
  • a central control device is also provided in the solar greenhouse, and the heat pump unit is electrically connected to the central control device.
  • the heat pump unit adopts an air source heat pump.
  • the air heat source pump is a user-type small unit.
  • it further includes a water supply pipe, and the water supply pipe is connected and communicated with the pipeline.
  • the pipeline adopts a floor heating coil.
  • a ventilation system is also provided in the solar greenhouse.
  • Another aspect of the present invention provides a heat storage and release method.
  • the heat pump unit When the temperature in the solar greenhouse rises to between 20°C and 40°C, the heat pump unit is turned on, and the heat pump unit is used to heat the heat pump unit.
  • the temperature of the water in the pipeline and the temperature of the soil enable the soil to accumulate thermal energy; when the temperature in the solar greenhouse drops to a suitable temperature, the heat pump unit is turned off, and the accumulated thermal energy is naturally released through the soil .
  • the solar greenhouse heat storage and release system and the heat storage and release method of the present invention place the heat pump unit in the solar greenhouse.
  • the temperature inside the greenhouse is high during the day (for example, 20°C-40°C)
  • it can be used in fine weather.
  • the excess heat energy in the solar greenhouse heats the soil and accumulates the heat energy in the soil.
  • the temperature drops at night the heat energy accumulated in the soil is naturally released to maintain the air temperature in the solar greenhouse; by improving the heat storage and release capacity of the soil.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
  • the present invention includes a solar greenhouse 1, a heat pump unit 2 and pipes 3 built on the soil.
  • the heat pump unit 2 is arranged in the solar greenhouse 1.
  • the soil cultivation layer 4 is covered with the The pipe 3, the heat pump unit 2 is connected to the pipe 3, so that the water in the pipe 3 is heated up for heating the cultivated layer 4 of the soil.
  • the farming layer 4 refers to a soil surface layer formed by long-term farming, and usually refers to a soil layer with a depth of 30 cm to 40 cm below the ground surface.
  • the heat pump unit 2 can be an existing heat pump unit capable of achieving heat-upgrading effects.
  • the working principle of the heat pump unit is a mechanical device that forces heat to flow from a low-temperature medium to a high-temperature medium in a reverse cycle.
  • the heat pump unit When working, the heat pump unit itself needs to consume a small part of the electric energy but can be removed from the environmental medium ( Water, air, soil, etc.) extract about 2-7 times the thermal energy of the electric energy consumption.
  • the multiple of thermal energy is related to the temperature in the environment. The higher the ambient temperature, the greater the increase. This is also the place the heat pump unit is placed in the solar greenhouse. The reason within.
  • the daytime temperature in the solar greenhouse is suitable, such as between 20°C and 40°C, preferably, when the temperature is between 25°C and 30°C, that is, when the temperature in the solar greenhouse is at least elevated
  • the heat pump unit 2 can be turned on.
  • the heat pump unit 2 is provided with an air inlet and an air outlet, and the air at a higher room temperature in the solar greenhouse 1 enters through the air inlet
  • the heat pump unit 2 is used to heat the lower-temperature water in the pipeline 3 into high-temperature water.
  • a water pump can be additionally provided, which is used to pump high-temperature water into the pipe 3 faster, and heat the heat exchange unit 2 to heat the temperature of the water in the pipe 3 and At the time of soil temperature, the low-temperature water circulating in the pipe 3 flows back into the heat pump unit 2 at the same time. Specifically, the high-temperature water in the pipe 3 transfers heat energy to the soil and accumulates.
  • the heat pump unit 2 When the temperature of the water in the solar greenhouse drops below 40°C, it will circulate back to the heat pump unit 2 to realize the repeated circulation of heat energy, so that the temperature in the solar greenhouse is always maintained within a suitable temperature range for crop growth.
  • the air with a higher room temperature entered by the air inlet passes through the heat pump unit 2 and then becomes cold air to be blown out, which can be used to reduce the air temperature in the solar greenhouse 1.
  • the heat pump unit 2 can be turned off.
  • the heat pump unit 2 can finally accumulate the relatively high excess heat energy generated in the solar greenhouse 1 through the greenhouse effect in the daytime in the soil, so that the solar greenhouse has the advantages of energy saving and high efficiency.
  • the solar greenhouse 1 may also be provided with a ventilation system (not shown in the figure).
  • the ventilation system may use an existing ventilation system that can achieve the greenhouse ventilation effect. If the heat pump unit 2 is turned on to heat and cool During the process, when the temperature in the solar greenhouse 1 continues to rise to the high temperature limit, the ventilation system can be turned on to cool the solar greenhouse 1.
  • the excess heat energy in the sunny daylight greenhouse can be used to heat the low-temperature water in the pipeline 3 into high-temperature water through the heat pump unit 2.
  • the temperature of the high-temperature water is generally between 40°C and 55°C, and at the same time Because the pipe 3 is arranged under the cultivation layer 4 of the soil, the heat energy of the high-temperature water will be released and accumulated in the soil.
  • the soil temperature before heating is generally not higher than 20°C, and the soil can be heated when the temperature is continuously heated. At a temperature of 28°C and above, the heated soil can store a huge amount of heat energy. When the temperature of the soil rises, the heat energy will gradually continue to migrate to the bottom of the soil and to the surface of the soil.
  • a central control device (not shown in the figure) is further provided in the solar greenhouse 1, and the heat pump unit 2 is electrically connected to the central control device.
  • the central control device may use an existing central control device capable of achieving temperature adjustment effects, and the central control device may determine the heat storage or the temperature of the cultivation layer 4 by monitoring the ambient temperature in the solar greenhouse 1 and the temperature of the soil cultivation layer 4 Whether the auxiliary heating function is activated, specifically, when the daytime temperature in the solar greenhouse 1 is higher than the required temperature, such as 25°C, the central control system can automatically or manually activate the heat pump unit 2 to perform Heat exchange is used to increase the temperature of the soil. When the night temperature in the solar greenhouse is lower than the required temperature, such as 13°C, such as continuous rainy or snowy weather, the central control system can automatically or manually start the heat pump Unit 2 performs auxiliary heating to ensure the winter planting requirements in the solar greenhouse.
  • the heat pump unit 2 may adopt an air source heat pump.
  • Air source heat pumps are currently widely used in industry, agriculture and household life in our country.
  • the air source heat pump can also adopt a small user-type unit with a smaller capacity to further reduce the use cost of the equipment.
  • the solar greenhouse heat storage and release system may also include a water supplement pipe (not shown in the figure), and the water supplement pipe is connected to the pipeline. People can supplement the water in the pipeline 3 through the water supplement pipe according to actual usage.
  • the pipeline 3 can also use floor heating coils. Since the floor heating coils are usually ring-shaped, more can be buried in the soil. The floor heating coil makes the soil heat up faster and accumulates more heat energy.
  • the heat pump unit 2 can also be turned on. Through the reversing valve in the heat pump unit 2, the accumulated heat energy is directly extracted from the soil and then the hot air is blown out to heat the air in the solar greenhouse 1 to ensure that the crops are not damaged by freezing and chilling.
  • the present invention has the advantages of simple structure, low transformation cost, easy maintenance, convenient operation and wide practicability. It can be used in various types of greenhouses such as earth wall greenhouses, brick wall greenhouses and new thermal insulation materials greenhouses. It can also be used in new material solar greenhouses and plastic multi-span greenhouses that only have heat preservation but no heat storage performance.
  • greenhouses such as earth wall greenhouses, brick wall greenhouses and new thermal insulation materials greenhouses. It can also be used in new material solar greenhouses and plastic multi-span greenhouses that only have heat preservation but no heat storage performance.
  • the present invention is used, the excess heat generated by the greenhouse effect is used in sunny days, and the existing solar greenhouse usually emits huge heat outside the greenhouse through ventilation, and the soil is heated, so that the soil can accumulate huge heat. Any wall of the existing solar greenhouse, including the thick soil wall, has greater heat, and replaces the original thick soil wall with the heat preservation and heat storage function.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Greenhouses (AREA)

Abstract

一种日光温室蓄放热系统及一种蓄放热方法,所述日光温室蓄放热系统包括在土壤上建造的日光温室(1)、热泵机组(2)及管道(3),所述热泵机组(2)设置在所述日光温室(1)内,所述土壤的耕作层(4)下方铺设有用于容置水的所述管道(3),所述热泵机组(2)与所述管道(3)相连,以使所述管道(3)中的水升温用于加温所述土壤的所述耕作层(4)。通过将热泵机组(2)放置在日光温室(1)内,在白天温度高时,能够利用在晴好天气时日光温室(1)内多余的热能对土壤加温,将热能积蓄在土壤中,当夜晚降温时,积蓄在土壤中的热能自然释放以维持日光温室(1)内的空气温度;通过提高土壤的蓄放热能力,加之后墙体、后坡及山墙原有的保温能力,共同实现提高日光温室(1)内夜间地温和空气温度的效果,使种植的作物能够正常生长。

Description

日光温室蓄放热系统及一种蓄放热方法 技术领域
本发明涉及农业设施领域,具体地涉及一种日光温室蓄放热系统及一种蓄放热方法。
背景技术
日光温室是我国北方地区独有的一种温室类型,是一种以太阳能为主要能源的温室。日光温室在白天积蓄太阳光的热量,在夜间通过温室的严密保温措施来维持温室内植物生长发育所需要的温度。目前,日光温室主要由在地面土壤上建造的后墙体、后坡及后墙体两侧的山墙等组成。白天太阳光照射入日光温室内,温室通过土壤、后墙体、后坡及山墙对太阳能进行吸收实现蓄热,以在夜晚维持温室内一定的温度水平,满足植物、蔬菜等作物正常生长的需要。
但我国目前的日光温室还存在些许不足之处,例如,当地面土壤中种植的作物长大封行后,既随着种植的作物生长的越来越大,越来越高,相邻作物之间的行间空间就会变得越来越小,导致多行作物的枝叶相互交叉,行间几乎看不到空间。封行会导致太阳光很难再照射到日光温室的地面土壤上,因此土壤的蓄热升温作用会变得越来越有限,只能主要依靠后墙体、后坡及山墙实现日光温室内的蓄热及保温。虽然采用厚的土墙体其蓄热的作用能够更为明显,但是建造土墙体不但会破坏土壤,维护成本亦比较高昂。为了解决日光温室的蓄热能力问题,随着我国社会和科技的不断发展,人们曾经尝试将一些新的材料应用到日光温室的建设上,但是这些新材料均没有达到人们预期的蓄热效果,尽管日光温室通常均还有严密的保温措施,但是当外界温度持续下降时,尤其是在连阴雨雪天气或太阳 光照不充足时,日光温室的室内温度往往很低,这样的温度条件无法满足作物的正常生长需要。
而采用传统的用煤加热的方式因环保问题已经被逐步禁止,而采用天然气加温的方式在我国很多地方仍没有相应条件,采用燃油加热和电加温的方式成本很高又难以被人们承受。为了解决上述问题,人们又进一步尝试在日光温室外增加辅助加热装置,通过辅助加热装置在夜间直接送热风或通过风机盘管对日光温室内的空气进行加温,但这样的方式对日光温室内土壤的加温效果有限,整夜进行加温的使用成本也很高。同时,大多数日光温室应用于我国的北方地区,北方地区冬季白天阳光依然充足,在白天太阳光照射的光线通过日光温室顶部的棚膜等透明覆盖膜进入温室内后,通过温室效应,光能转化为热能,以提升温室内的温度,但当温度超过一定上限时,大多数是指超过25℃时又要保证日光温室内的通风降温,以减少高温对作物的影响,这样就导致冬季宝贵的热能又被白白排放而无法加以有效利用。造成日光温室白天有多余的热能但又被排放间接造成浪费,夜晚又需要额外补充热能。
现有的日光温室均存在以上的不足。
发明内容
本发明的目的是为了克服现有技术存在的问题,提供一种日光温室蓄放热系统及一种蓄放热方法。
本发明的一方面,提供一种日光温室蓄放热系统,包括在土壤上建造的日光温室、热泵机组及管道,所述热泵机组设置在所述日光温室内,所述土壤的耕作层下方铺设有用于容置水的所述管道,所述热泵机组与所述管道相连,以使所述管道中的水升温用于加温所述土壤的所述耕作层。
优选的,所述日光温室内还设置有中央控制装置,所述热泵机组与所 述中央控制装置电连接。
优选的,所述热泵机组采用空气源热泵。
优选的,所述空气热源泵采用户式小型机组。
优选的,还包括补水管,所述补水管与所述管道连接相通。
优选的,所述管道采用地暖盘管。
优选的,所述日光温室内还设置有通风系统。
本发明的另一方面,提供一种蓄放热方法,当所述日光温室内的温度升高到20℃至40℃之间时,开启所述热泵机组,通过所述热泵机组加温所述管道中水的温度和所述土壤的温度,使得所述土壤积蓄热能;当所述日光温室内的温度降低到适宜的温度下时,关闭所述热泵机组,通过所述土壤自然释放积蓄的热能。
通过上述技术方案,本发明的日光温室蓄放热系统及蓄放热方法,将热泵机组放置在日光温室内,在温室内部白天温度高时(例如20℃-40℃),能够利用在晴好天气时日光温室内多余的热能对土壤加温,将热能积蓄在土壤中,当夜晚降温时,积蓄在土壤中的热能自然释放以维持日光温室内的空气温度;通过提高土壤的蓄放热能力,加之后墙体、后坡及山墙原有的保温能力,共同实现提高日光温室内夜间地温和空气温度的效果,使种植的作物能够正常生长,亦大大降低了维护成本。
附图说明
图1是本发明的一种实施方式的结构示意图。
附图标记说明
1、日光温室         2、热泵机组
3、管道             4、耕作层。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、内、外”通常是指参考附图所示的上、下、内、外。
本发明包括在土壤上建造的日光温室1、热泵机组2及管道3,所述热泵机组2设置在所述日光温室1内,所述土壤的耕作层4下方铺设有用于容置水的所述管道3,所述热泵机组2与所述管道3相连,以使所述管道3中的水升温用于加温所述土壤的所述耕作层4。所述耕作层4指由长期耕作形成的土壤表层,通常是指深度在地表下30cm至40cm的土壤层。所述热泵机组2可以采用现有的能够实现热量提升效果的热泵机组。热泵机组的工作原理是以逆循环的方式迫使热量从低温介质流向高温介质的机械装置,实质上是一种热量提升装置,工作时,热泵机组本身需要消耗很少一部分电能却能从环境介质(水、空气、土壤等)中提取约2-7倍于消耗电能的热能,热能的倍数与环境中的温度相关,环境温度越高,提升的倍数越大,这也是将热泵机组放置在日光温室内的原因。在使用本发明时,当日光温室内白天的温度适宜时,如在20℃至40℃之间时,优选的,在25℃至30℃之间时,既当日光温室内的温度至少升高到作物适宜生长的温度时,可开启所述热泵机组2,优选的,所述热泵机组2设置有进风口和出风口,所述日光温室1内处于较高室温的空气由所述进风口进入所述热泵机组2,用于将所述管道3中的较低温度的水传热加温为高温水。更进一步的说,还可以另外设置水泵,所述水泵用于将高温水更快地打入到所述管道3中,通过所述热泵机组2换热加温所述管道3中水的温度和土壤温度时,同时将所述管道3 中循环出来的低温水反流回所述热泵机组2内,具体来说,所述管道3中的高温水将热能传递到土壤中积蓄后,所述管道中的水温降低到如40℃以下时,循环反流回到所述热泵机组2,实现热能的反复循环,使得日光温室内的温度始终维持在一个适宜作物生长的温度范围内,同时,由所述进风口进入的较高室温的空气通过所述热泵机组2换热后变成冷风吹出,可以用于降低所述日光温室1内的空气温度。当日光温室内的温度降低到适宜的温度下时,可以关闭所述热泵机组2。利用所述热泵机组2能够将白天所述日光温室1内通过温室效应产生的比较高的多余的热能最终积蓄到土壤里,使得日光温室兼具节能、高效的优点。所述日光温室1内还可以设置有通风系统(图中未示出),所述通风系统可以采用现有的能够实现温室通风效果的通风系统,如果在开启所述热泵机组2制热降温的过程中,所述日光温室1内的温度仍然持续上升到高温极限时,可以将所述通风系统开启,以对所述日光温室1内进行降温。
通过本发明,可以利用晴天日光温室内多余的热能,通过所述热泵机组2将所述管道3中的低温水升温成为高温水,高温水的温度一般是在40℃至55℃之间,同时因为所述管道3设置在土壤的所述耕作层4下方,高温水的热能会释放并积蓄到土壤中,未加温前的土壤温度一般不高于20℃,当不断加温时土壤可加温到28℃及以上,加热后的土壤能够储存巨大的热能,当土壤的温度升高时热能也会逐渐向土壤的下方和土壤的表层继续迁移。当夜晚来临时,高于空气温度的土壤中的这部分热能能够自然释放到日光温室内,以维持适合作物生长的比较高的能够保证作物不受冻害、冷害以上的空气温度。同时,由于对土壤进行了加温,保持土壤温度在一个比较高的温度,这对作物根系的生长也十分有利,即便在连续的阴雨或下雪的天气,也能保持日光温室内比较适宜的温度。
更进一步的说,请参考图1所示,优选的,所述日光温室1内还设置有 中央控制装置(图中未示出),所述热泵机组2与所述中央控制装置电连接。所述中央控制装置可以采用现有的能够实现温度调节效果的中央控制装置,所述中央控制装置可以通过监测所述日光温室1内的环境温度及土壤的耕作层4的温度来判别蓄热或者辅助加温功能是否启动,具体来说,当所述日光温室1内白天的温度高于要求温度时,如25℃时,所述中央控制系统可以自动或者手动操作启动所述热泵机组2以进行热交换来提升土壤的温度,当日光温室内夜间的温度低于要求温度,如13℃时,例如遇到连续的阴雨或下雪天气,所述中央控制系统可以自动或者手动操作启动所述热泵机组2进行辅助加热,以保证日光温室内冬季种植的要求。
优选的,所述热泵机组2可以采用空气源热泵。空气源热泵在我国目前广泛应用于工业、农业及居家生活中。更进一步地说,根据日光温室的面积及使用要求,所述空气源热泵还可以采用容量较小的用户式小型机组,以进一步降低设备的使用成本。
另外,由于所述管道3中的高温水会因蒸发略有减少,所述日光温室蓄放热系统还可以包括补水管(图中未示出),所述补水管与所述管道连接相通,人们可以依据实际使用情况,通过所述补水管对所述管道3中的水进行补充。
更进一步地说,为了实现更好的土壤蓄热及对土壤进行加温的效果,所述管道3还可以采用地暖盘管,由于地暖盘管通常为环形,因此可以在土壤中埋设更多的地暖盘管,使得土壤的升温速度更快,积蓄的热能也更多。
另外,采用本发明的日光温室蓄放热系统,当遇到极端低温情况时,如连续阴雨或暴雪天气,所述日光温室内的气温下降到可能冻害植物时,也可以开启所述热泵机组2,通过所述热泵机组2内的换向阀,从土壤里直接提取积蓄的热能后吹出热风,以对所述日光温室1内的空气进行加温,保 证作物不受冻害和冷害。
综上所述,本发明同时具有结构简单、改造成本低、容易维护、方便操作及实用性广泛的优点。可以用于土墙温室、砖墙温室及新型保温材料温室等各种类型的温室中。还可以用于只有保温,没有蓄热性能的新材料日光温室及塑料连栋温室大棚中。使用本发明时,晴天时利用温室效应产生的多余热量,既现有使用日光温室时通常通过通风排放出温室室外的巨大热量,对土壤进行加温,使土壤积蓄巨大热量,土壤里可以积蓄比现有日光温室的任何墙体,包括很厚的土墙体更大的热量,代替原有厚的土墙体的保温蓄热功能。夜晚降温时,土壤能够将积蓄的热能持续的自然释放出来,以维持日光温室内合适的空气温度,这又是任何其他种的加温辅助装置都难以替代的;方便控制种植果树及蔬菜等的提早及延后上市。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (8)

  1. 一种日光温室蓄放热系统,其特征在于,所述日光温室蓄放热系统包括在土壤上建造的日光温室(1)、热泵机组(2)及管道(3),所述热泵机组(2)设置在所述日光温室(1)内,所述土壤的耕作层(4)下方铺设有用于容置水的所述管道(3),所述热泵机组(2)与所述管道(3)相连,以使所述管道(3)中的水升温用于加温所述土壤的所述耕作层(4)。
  2. 根据权利要求1所述的日光温室蓄放热系统,其特征在于,所述日光温室(1)内还设置有中央控制装置,所述热泵机组(2)与所述中央控制装置电连接。
  3. 根据权利要求1所述的日光温室蓄放热系统,其特征在于,所述热泵机组(2)采用空气源热泵。
  4. 根据权利要求3所述的日光温室蓄放热系统,其特征在于,所述空气热源泵采用户式小型机组。
  5. 根据权利要求1所述的日光温室蓄放热系统,其特征在于,还包括补水管,所述补水管与所述管道(3)连接相通。
  6. 根据权利要求1-5中任意一项所述的日光温室蓄放热系统,其特征在于,所述管道(3)采用地暖盘管。
  7. 根据权利要求1所述的日光温室蓄放热系统,其特征在于,所述日光温室(1)内还设置有通风系统。
  8. 一种应用权利要求1-7中任意一项所述的日光温室蓄放热系统的蓄放热方法,其特征在于,当所述日光温室(1)内的温度升高到20℃至40℃之间时,开启所述热泵机组(2),通过所述热泵机组(2)加温所述管道(3)中水的温度和所述土壤的温度,使得所述土壤积蓄热能;当所述日光温室(1) 内的温度降低到适宜的温度下时,关闭所述热泵机组(2),通过所述土壤自然释放积蓄的热能。
PCT/CN2020/122280 2020-01-23 2020-10-20 日光温室蓄放热系统及一种蓄放热方法 WO2021147399A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010076134.7A CN111108983A (zh) 2020-01-23 2020-01-23 日光温室蓄放热系统及一种蓄放热方法
CN202010076134.7 2020-01-23
CN202020145648.9 2020-01-23
CN202020145648.9U CN212324910U (zh) 2020-01-23 2020-01-23 日光温室蓄放热系统

Publications (1)

Publication Number Publication Date
WO2021147399A1 true WO2021147399A1 (zh) 2021-07-29

Family

ID=76991923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122280 WO2021147399A1 (zh) 2020-01-23 2020-10-20 日光温室蓄放热系统及一种蓄放热方法

Country Status (1)

Country Link
WO (1) WO2021147399A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711067A (zh) * 2022-03-09 2022-07-08 北京市农林科学院智能装备技术研究中心 集成化温室热环境调控系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273389A (zh) * 2010-06-11 2011-12-14 中国农业科学院农业环境与可持续发展研究所 一种温室热能采集与热能提升方法及系统
JP2013215182A (ja) * 2012-04-09 2013-10-24 Soki:Kk 温室用の暖房装置
CN208490396U (zh) * 2018-05-02 2019-02-15 上海孙桥溢佳农业技术股份有限公司 一种温室大棚主动蓄热供热系统
KR101950880B1 (ko) * 2018-08-31 2019-02-21 (주)효성에너지 에너지 자립형 온실
CN110089317A (zh) * 2019-03-29 2019-08-06 塔里木大学 一种日光温室水幕集热地暖加温设施及其使用方法
CN111108983A (zh) * 2020-01-23 2020-05-08 上海孙桥溢佳农业技术股份有限公司 日光温室蓄放热系统及一种蓄放热方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273389A (zh) * 2010-06-11 2011-12-14 中国农业科学院农业环境与可持续发展研究所 一种温室热能采集与热能提升方法及系统
JP2013215182A (ja) * 2012-04-09 2013-10-24 Soki:Kk 温室用の暖房装置
CN208490396U (zh) * 2018-05-02 2019-02-15 上海孙桥溢佳农业技术股份有限公司 一种温室大棚主动蓄热供热系统
KR101950880B1 (ko) * 2018-08-31 2019-02-21 (주)효성에너지 에너지 자립형 온실
CN110089317A (zh) * 2019-03-29 2019-08-06 塔里木大学 一种日光温室水幕集热地暖加温设施及其使用方法
CN111108983A (zh) * 2020-01-23 2020-05-08 上海孙桥溢佳农业技术股份有限公司 日光温室蓄放热系统及一种蓄放热方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711067A (zh) * 2022-03-09 2022-07-08 北京市农林科学院智能装备技术研究中心 集成化温室热环境调控系统及方法

Similar Documents

Publication Publication Date Title
CN201319779Y (zh) 地源温室大棚热冷调节装置
CN103430795B (zh) 设施农业热泵系统
CN101411293A (zh) 主动式太阳能温室集热储热系统
CN110178601A (zh) 利用温室效应集热和水气膜换热的智能温室及环控方法
CN102986479A (zh) 一种温室大棚内能源综合利用系统
CN111108983A (zh) 日光温室蓄放热系统及一种蓄放热方法
CN110178600A (zh) 利用温室效应集热和风机盘管换热的智能温室及环控方法
CN202435897U (zh) 一种温室大棚内能源综合利用系统
CN110268882A (zh) 新型农业温室系统与太阳能蓄能供能系统
KR20060089428A (ko) 태양열 및 지열을 이용한 농업용 하우스의 난방시스템
CN103931442A (zh) 太阳能耦合空气能温室苗床水循环智能控温系统
KR100557460B1 (ko) 지열 히트펌프 시스템
CN105875278A (zh) 一种果蔬种植大棚
WO2021147399A1 (zh) 日光温室蓄放热系统及一种蓄放热方法
JP2003189745A (ja) 自然エネルギーを利用した栽培施設
CN203775790U (zh) 一种双向调温节能日光温室
CN101642034A (zh) 水封闭循环种植大棚
CN107896747B (zh) 日光温室内热能利用装置及方法
CN203478704U (zh) 设施农业热泵系统
CN212324910U (zh) 日光温室蓄放热系统
CN101347084A (zh) 温室水膜采光储热保温系统
CN109601207B (zh) 地面辅助增强型温室屋架太阳能集放热系统及调控方法
CN207083644U (zh) 一种土壤蓄热与热管对流换热的系统
CN207317071U (zh) 一种温室集蓄热装置
KR200362988Y1 (ko) 지열을 이용한 시설원예 냉난방 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915292

Country of ref document: EP

Kind code of ref document: A1