WO2021147333A1 - 利用人工神经网络生成牙科正畸治疗效果的图像的方法 - Google Patents

利用人工神经网络生成牙科正畸治疗效果的图像的方法 Download PDF

Info

Publication number
WO2021147333A1
WO2021147333A1 PCT/CN2020/113789 CN2020113789W WO2021147333A1 WO 2021147333 A1 WO2021147333 A1 WO 2021147333A1 CN 2020113789 W CN2020113789 W CN 2020113789W WO 2021147333 A1 WO2021147333 A1 WO 2021147333A1
Authority
WO
WIPO (PCT)
Prior art keywords
orthodontic treatment
neural network
patient
tooth
digital model
Prior art date
Application number
PCT/CN2020/113789
Other languages
English (en)
French (fr)
Inventor
杨令晨
Original Assignee
杭州朝厚信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州朝厚信息科技有限公司 filed Critical 杭州朝厚信息科技有限公司
Publication of WO2021147333A1 publication Critical patent/WO2021147333A1/zh
Priority to US17/531,708 priority Critical patent/US20220084653A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • G06V40/171Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present application generally relates to a method for generating images of the effects of orthodontic treatment using artificial neural networks.
  • One aspect of the present application provides a method for generating images of orthodontic treatment effects by using artificial neural networks, including: obtaining toothy facial photos of patients before orthodontic treatment; extracting deep neural networks using trained features, from Extracting the mouth region mask and the first set of tooth contour features from the toothy facial photos of the patient before orthodontic treatment; obtaining a first three-dimensional digital model representing the patient’s original tooth layout and representing the patient’s target tooth layout
  • the second three-dimensional digital model of the based on the first set of tooth profile features and the first three-dimensional digital model, the first pose of the first three-dimensional digital model is obtained; based on the first pose of the A second three-dimensional digital model to obtain a second set of tooth contour features; and use the trained pictures to generate a deep neural network, based on the toothless face photos of the patient before the orthodontic treatment, the mask, and the second set
  • the tooth contour feature generates the toothless face image of the patient after orthodontic treatment.
  • the picture generation deep neural network may be a CVAE-GAN network.
  • the sampling method adopted by the CVAE-GAN network may be a differentiable sampling method.
  • the feature extraction deep neural network may be a U-Net network.
  • the first pose is obtained based on the first set of tooth contour features and the first three-dimensional digital model using a nonlinear projection optimization method
  • the second set of tooth contour features is based on The second three-dimensional digital model of the first pose is obtained by projection.
  • the method for generating an image of the effect of orthodontic treatment by using an artificial neural network may further include: using a face key point matching algorithm to capture a toothless face photo of the patient before the orthodontic treatment The first mouth area picture, wherein the mouth area mask and the first group of tooth contour features are extracted from the first mouth area picture.
  • the toothless face photo of the patient before orthodontic treatment may be a complete front face photo of the patient.
  • the edge contour of the mask is consistent with the inner edge contour of the lips in the toothless facial photo of the patient before orthodontic treatment.
  • the first set of tooth contour features includes the edge contour lines of the teeth visible in the toothless facial photos of the patient before orthodontic treatment
  • the second set of tooth contour features includes the second three-dimensional The edge contour line of the tooth when the digital model is in the first posture.
  • the tooth contour feature may be a tooth edge feature map.
  • FIG. 1 is a schematic flowchart of a method for generating an appearance image of a patient after orthodontic treatment by using an artificial neural network in an embodiment of the application;
  • Figure 2 is a picture of the first mouth area in an embodiment of the application
  • FIG. 3 is a mask generated based on the first mouth region picture shown in FIG. 2 in an embodiment of the application;
  • FIG. 4 is a first tooth edge feature map generated based on the first mouth region picture shown in FIG. 2 in an embodiment of the application;
  • FIG. 5 is a structural diagram of a feature extraction deep neural network in an embodiment of this application.
  • FIG. 5A schematically shows the structure of the convolutional layer of the feature extraction deep neural network shown in FIG. 5 in an embodiment of the present application
  • FIG. 5B schematically shows the structure of the deconvolution layer of the feature extraction deep neural network shown in FIG. 5 in an embodiment of the present application
  • Fig. 6 is a feature diagram of the second tooth edge in an embodiment of the application.
  • FIG. 7 is a structural diagram of a deep neural network used to generate pictures in an embodiment of this application.
  • Fig. 8 is a picture of the second mouth area in an embodiment of the application.
  • the inventor of the present application has discovered through a lot of research work that with the rise of deep learning technology, in some fields, the adversarial generation network technology has been able to generate fake and real pictures. However, in the field of orthodontics, there is still a lack of robust image generation technology based on deep learning. After a lot of design and experimental work, the inventor of the present application has developed a method of using artificial neural networks to generate an image of the patient's appearance after orthodontic treatment.
  • FIG. 1 is a schematic flowchart of a method 100 for generating an appearance image of a patient after orthodontic treatment by using an artificial neural network in an embodiment of the application.
  • the toothless face photo of the patient before the orthodontic treatment may be a complete frontal photo of the patient's toothy smile, such a photo Can more clearly reflect the difference before and after orthodontic treatment.
  • the photo of the toothy face of the patient before the orthodontic treatment can also be a photo of a part of the face, and the angle of the photo can also be other angles than the front.
  • the face key point matching algorithm is used to intercept the first mouth region picture from the toothless face photo of the patient before the orthodontic treatment.
  • the mouth area picture has fewer features, and the subsequent processing based on the mouth area picture only can simplify the calculation, make the artificial neural network easier to learn, and make the artificial neural network more robust.
  • the key point matching algorithm for face can refer to the "Displaced Dynamic Expression Regression for Real-Time Facial Tracking and Animation” published in 2014 by Chen Cao, Qiming Hou and Kun Zhou. ACM Transactions on Graphics (TOG) 33, 4 (2014), 43 “, and "One Millisecond Face Alignment with an Ensemble of Regression Trees” published by Vahid Kazemi and Josephine Sullivan in Proceedings of the IEEE conference on computer vision and pattern recognition, 1867--1874, 2014.
  • Fig. 2 is a picture of a patient's mouth area before orthodontic treatment in an embodiment of this application.
  • the picture of the mouth area in FIG. 2 includes a part of the nose and a part of the chin, as mentioned above, the mouth area can be reduced or expanded according to specific needs.
  • the trained feature extraction deep neural network is used to extract the mouth region mask and the first set of tooth contour features based on the first mouth region picture.
  • the range of the mouth area mask may be defined by the inner edge of the lips.
  • the mask may be a black and white bitmap, and the undesired part of the picture can be removed through the mask operation.
  • FIG. 3 is a mouth area mask obtained based on the mouth area picture of FIG. 2 in an embodiment of this application.
  • the tooth contour feature may include the contour line of each tooth visible in the picture, which is a two-dimensional feature.
  • the tooth contour feature may be a tooth contour feature map, which only includes the contour information of the tooth.
  • the tooth contour feature may be a tooth edge feature map, which not only includes the contour information of the tooth, but also the edge feature inside the tooth, for example, the edge line of the spot on the tooth. Please refer to FIG. 4, which is a tooth edge feature map obtained based on the mouth region image of FIG. 2 in an embodiment of this application.
  • the feature extraction neural network may be a U-Net network. Please refer to FIG. 5, which schematically shows the structure of the feature extraction neural network 200 in an embodiment of the present application.
  • the feature extraction neural network 200 may include a 6-layer convolution 201 (downsampling) and a 6-layer deconvolution 203 (upsampling).
  • each layer of convolution 2011 may include a convolution layer 2013 (conv), a ReLU activation function 2015, and a maximum pooling layer 2017 (max pool).
  • each layer of deconvolution 2031 may include a sub-pixel convolution layer 2033 (sub-pixel), a convolution layer 2035 (conv), and a ReLU activation function 2037.
  • the training atlas used to train the feature extraction neural network can be obtained as follows: obtain multiple toothy facial photos; intercept oral region pictures from these facial photos; based on these oral region pictures, Use the PhotoShop cable annotation tool to generate their respective mouth area masks and tooth edge feature maps. These mouth region pictures and corresponding mouth region masks and tooth edge feature maps can be used as training atlases for training feature extraction neural networks.
  • the training atlas can also be augmented, including Gaussian smoothing, rotation, and horizontal flipping.
  • a first three-dimensional digital model representing the patient's original tooth layout is obtained.
  • the patient's original tooth layout is the tooth layout before orthodontic treatment.
  • a three-dimensional digital model representing the original tooth layout of the patient can be obtained by directly scanning the jaw of the patient.
  • a solid model of the patient's jaw such as a plaster model, can be scanned to obtain a three-dimensional digital model representing the patient's original tooth layout.
  • the impression of the patient's jaw can be scanned to obtain a three-dimensional digital model representing the patient's original tooth layout.
  • the projection optimization algorithm is used to calculate the first pose of the first three-dimensional digital model matching the contour features of the first group of teeth.
  • the optimization goal of the nonlinear projection optimization algorithm can be expressed by equation (1):
  • the correspondence between the points of the first three-dimensional digital model and the first group of tooth profile features can be calculated based on the following equation (2):
  • t i and t j represent the tangent vectors at the two points p i and p j , respectively.
  • a second three-dimensional digital model representing the target tooth layout of the patient is obtained.
  • the method for obtaining a three-dimensional digital model representing the target tooth layout of the patient based on the three-dimensional digital model representing the patient's original tooth layout is well known in the industry, and will not be repeated here.
  • the second three-dimensional digital model in the first pose is projected to obtain the second set of tooth contour features.
  • the second set of tooth contour features includes the edge contour lines of all teeth when the complete upper and lower jaw dentition is in the target tooth layout and in the first posture.
  • FIG. 6 is a feature diagram of the second tooth edge in an embodiment of this application.
  • the CVAE-GAN network can be used as a deep neural network for generating pictures.
  • FIG. 7 schematically shows the structure of a deep neural network 300 for generating pictures in an embodiment of the present application.
  • the deep neural network 300 for generating pictures includes a first sub-network 301 and a second sub-network 303.
  • a part of the first sub-network 301 is responsible for processing shapes
  • the second sub-network 303 is responsible for processing textures. Therefore, the toothless face photo of the patient before orthodontic treatment or the part of the mask area in the first mouth region picture can be input into the second sub-network 303, so that the deep neural network 300 used to generate the image can be used for orthodontic treatment
  • the mask area generates texture; and the mask and the second tooth edge feature map are input to the first sub-network 301, so that the deep neural network 300 used to generate the picture can be used for orthodontic treatment.
  • the part of the mask area in the patient's toothy face picture is divided into areas, that is, which part is the teeth, which part is the gum, which part is the tooth gap, which part is the tongue (when the tongue is visible), and so on.
  • the first sub-network 301 includes a 6-layer convolution 3011 (downsampling) and a 6-layer deconvolution 3013 (upsampling).
  • the second sub-network 303 includes a 6-layer convolution 3031 (downsampling).
  • the deep neural network 300 used to generate pictures may adopt a differentiable sampling method to facilitate end-to-end training.
  • sampling methods please refer to "Auto-Encoding Variational Bayes" published on ICLR 12 2013 by Diederik Kingma and Max Welling.
  • the training of the deep neural network 300 for generating pictures may be similar to the training of the feature extraction neural network 200 described above, and will not be repeated here.
  • networks such as cGAN, cVAE, MUNIT, and CycleGAN can also be used as networks for generating pictures.
  • the part of the mask area in the toothless face photo of the patient before orthodontic treatment can be input to the deep neural network 300 used to generate the picture to generate the toothless face image of the patient after orthodontic treatment. Then, based on the toothy face photo of the patient before orthodontic treatment and the part of the masked area in the toothy face image of the patient after orthodontic treatment, the toothy face of the patient after orthodontic treatment is synthesized image.
  • the part of the mask area in the first mouth area picture may be input to the deep neural network 300 used to generate the picture to generate the mask area in the toothy facial image of the patient after orthodontic treatment. Then, based on the first mouth area picture and the part of the mask area in the patient’s toothy face image after orthodontic treatment, the second mouth area picture is synthesized, and then based on the patient’s toothy face before orthodontic treatment Photographs and pictures of the second mouth area are combined to synthesize the toothy facial image of the patient after orthodontic treatment.
  • FIG. 8 is a picture of the second oral region in an embodiment of this application.
  • the toothless face pictures of the patient after orthodontic treatment produced by the method of the present application are very close to the actual effect, and have high reference value. With the help of the patient's toothy face pictures after orthodontic treatment, it can effectively help patients build confidence in the treatment, and at the same time promote the communication between orthodontists and patients.
  • the various diagrams may show exemplary architectures or other configurations of the disclosed methods and systems, which are helpful in understanding the features and functions that can be included in the disclosed methods and systems.
  • the claimed content is not limited to the exemplary architecture or configuration shown, and the desired features can be implemented with various alternative architectures and configurations.
  • the order of the blocks given here should not be limited to the various embodiments that are implemented in the same order to perform the functions, unless clearly indicated in the context .

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Multimedia (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Human Computer Interaction (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Physical Education & Sports Medicine (AREA)

Abstract

一种利用人工神经网络生成牙科正畸治疗效果的图像的方法,包括:获取正畸治疗前患者的露齿脸部照片;利用经训练的特征提取深度神经网络,从所述正畸治疗前患者的露齿脸部照片中提取口部区域掩码以及第一组牙齿轮廓特征;获取表示所述患者原始牙齿布局的第一三维数字模型和表示所述患者目标牙齿布局的第二三维数字模型;基于所述第一组牙齿轮廓特征以及所述第一三维数字模型,获得所述第一三维数字模型的第一位姿;基于处于所述第一位姿的所述第二三维数字模型,获得第二组牙齿轮廓特征;以及利用经训练的图片生成深度神经网络,基于所述正畸治疗前患者的露齿脸部照片、所述掩码以及所述第二组牙齿轮廓特征,生成正畸治疗后所述患者的露齿脸部图像。

Description

利用人工神经网络生成牙科正畸治疗效果的图像的方法 技术领域
本申请总体上涉及利用人工神经网络生成牙科正畸治疗效果的图像的方法。
背景技术
当今,越来越多的人开始了解到,牙科正畸治疗不仅利于健康,还能提升个人形象。对于不了解牙科正畸治疗的患者,如果能够在治疗前向其展示治疗完成时牙齿和面部的外观,就可以帮助其建立对治疗的信心,同时促进正畸医生与患者之间的沟通。
目前还没有类似的可以预测牙科正畸治疗效果的图像技术,而传统的利用三维模型纹理贴图的技术往往不能满足高质量逼真效果的呈现。因此,有必要提供一种用于产生牙科正畸治疗后患者外观图像的方法。
发明内容
本申请的一方面提供了一种利用人工神经网络生成牙科正畸治疗效果的图像的方法,包括:获取正畸治疗前患者的露齿脸部照片;利用经训练的特征提取深度神经网络,从所述正畸治疗前患者的露齿脸部照片中提取口部区域掩码以及第一组牙齿轮廓特征;获取表示所述患者原始牙齿布局的第一三维数字模型和表示所述患者目标牙齿布局的第二三维数字模型;基于所述第一组牙齿轮廓特征以及所述第一三维数字模型,获得所述第一三维数字模型的第一位姿;基于处于所述第一位姿的所述第二三维数字模型,获得第二组牙齿轮廓特征;以及利用经训练的图片生成深度神经网络,基于所述正畸治疗前患者的露齿脸部照片、所述掩码以及所述第二组牙齿轮廓特征,生成正畸治疗后所述患者的露齿脸部图像。
在一些实施方式中,所述图片生成深度神经网络可以是CVAE-GAN网络。
在一些实施方式中,所述CVAE-GAN网络所采用的采样方法可以是可微的采样方法。
在一些实施方式中,所述特征提取深度神经网络可以是U-Net网络。
在一些实施方式中,所述第一位姿是基于所述第一组牙齿轮廓特征和所述第一三维数字模型,利用非线性投影优化方法获得,所述第二组牙齿轮廓特征是基于处于所述第一位姿的所述第二三维数字模型,通过投影获得。
在一些实施方式中,所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法还可以包括:利用人脸关键点匹配算法,从所述正畸治疗前患者的露齿脸部照片截取第一口部区域图片,其中,所述口部区域掩码以及第一组牙齿轮廓特征是从所述第一口部区域图片中提取。
在一些实施方式中,所述正畸治疗前患者的露齿脸部照片可以是所述患者的完整的正脸照片。
在一些实施方式中,所述掩码的边缘轮廓与所述正畸治疗前患者的露齿脸部照片中唇部的内侧边缘轮廓相符。
在一些实施方式中,所述第一组牙齿轮廓特征包括所述正畸治疗前患者的露齿脸部照片中可见牙齿的边缘轮廓线,所述第二组牙齿轮廓特征包括所述第二三维数字模型处于所述第一位姿时牙齿的边缘轮廓线。
在一些实施方式中,所述牙齿轮廓特征可以是牙齿边缘特征图。
附图说明
通过下面说明书和所附的权利要求书并与附图结合,将会更加充分地清楚理解本公开内容的上述和其他特征。应当理解,这些附图仅描绘了本公开内容的若 干实施方式,因此不应认为是对本公开内容范围的限定,通过采用附图,本公开内容将会得到更加明确和详细地说明。
图1为本申请一个实施例中利用人工神经网络产生牙科正畸治疗后患者外观图像的方法的示意性流程图;
图2为本申请一个实施例中的第一口部区域图片;
图3为本申请一个实施例中基于图2所示的第一口部区域图片而产生的掩码;
图4为本申请一个实施例中基于图2所示的第一口部区域图片而产生的第一牙齿边缘特征图;
图5为本申请一个实施例中特征提取深度神经网络的结构图;
图5A示意性地展示了本申请一个实施例中图5所示特征提取深度神经网络的卷积层的结构;
图5B示意性地展示了本申请一个实施例中图5所示特征提取深度神经网络的反卷积层的结构;
图6为本申请一个实施例中的第二牙齿边缘特征图;
图7为本申请一个实施例中用于生成图片的深度神经网络的结构图;以及
图8为本申请一个实施例中的第二口部区域图片。
具体实施方式
在下面的详细描述中,参考了构成其一部分的附图。在附图中,类似的符号通常表示类似的组成部分,除非上下文另有说明。详细描述、附图和权利要求书中描述的例示说明性实施方式不意在限定。在不偏离本文所述的主题的精神或范围的情况下,可以采用其他实施方式,并且可以做出其他变化。应该很容易理解, 可以对本文中一般性描述的、在附图中图解说明的本公开内容的各个方面进行多种不同构成的配置、替换、组合,设计,而所有这些都在明确设想之中,并构成本公开内容的一部分。
本申请的发明人经过大量的研究工作发现,随着深度学习技术的兴起,在一些领域,对抗生成网络技术已经能够生成以假乱真的图片。然而,在牙科正畸领域,还缺乏基于深度学习的生成图像的鲁棒技术。经过大量的设计和实验工作,本申请的发明人开发出了一种利用人工神经网络产生牙科正畸治疗后患者外观图像的方法。
请参图1,为本申请一个实施例中的利用人工神经网络产生牙科正畸治疗后患者外观图像的方法100的示意性流程图。
在101中,获取牙科正畸治疗前患者的露齿脸部照片。
由于人们通常比较在意露齿微笑时的形象,因此,在一个实施例中,牙科正畸治疗前患者露齿的脸部照片可以是患者露齿微笑时的完整的脸部正面照片,这样的照片能够比较清楚地体现正畸治疗前后的差别。在本申请的启示下,可以理解,牙科正畸治疗前患者露齿的脸部照片也可以是部分脸部的照片,照片的角度也可以是除正面外的其他角度。
在103中,利用人脸关键点匹配算法,从牙科正畸治疗前患者的露齿脸部照片中截取第一口部区域图片。
相较于完整人脸照片,口部区域图片特征较少,仅基于口部区域图片进行后续处理,能够简化运算,使人工神经网络更容易学习,同时使得人工神经网络更加鲁棒。
人脸关键点匹配算法可以参考由Chen Cao、Qiming Hou以及Kun Zhou发表于2014.ACM Transactions on Graphics(TOG)33,4(2014),43的《Displaced Dynamic Expression Regression for Real-Time Facial Tracking and Animation》,以及由Vahid Kazemi与Josephine Sullivan发表于Proceedings of the IEEE conference  on computer vision and pattern recognition,1867--1874,2014.的《One Millisecond Face Alignment with an Ensemble of Regression Trees》。
在本申请的启示下,可以理解,口部区域的范围可以自由定义。请参图2,为本申请一个实施例中某患者正畸治疗前的口部区域图片。虽然图2的口部区域图片包括鼻子的一部分和下巴的一部分,但如前所述,可以根据具体需求缩小或者扩大口部区域的范围。
在105中,利用经训练的特征提取深度神经网络,基于第一口部区域图片,提取口部区域掩码以及第一组牙齿轮廓特征。
在一个实施例中,口部区域掩码的范围可以由嘴唇内边缘界定。
在一个实施例中,掩码可以是黑白位图,通过掩码运算,能够把图片中不希望显示的部分去除。请参图3,为本申请一个实施例中基于图2的口部区域图片获得的口部区域掩码。
牙齿轮廓特征可以包括图片中可见的每一颗牙齿的轮廓线,是二维特征。在一个实施例中,牙齿轮廓特征可以是牙齿轮廓特征图,其仅包括牙齿的轮廓信息。在又一实施例中,牙齿轮廓特征可以是牙齿边缘特征图,其不仅包括牙齿的轮廓信息,还可以包括牙齿内部的边缘特征,例如,牙齿上的斑点的边缘线。请参图4,为本申请一个实施例中基于图2的口部区域图片获得的牙齿边缘特征图。
在一个实施例中,特征提取神经网络可以是U-Net网络。请参图5,示意性地展示了本申请一个实施例中特征提取神经网络200的结构。
特征提取神经网络200可以包括6层卷积201(downsampling)和6层反卷积203(upsampling)。
请参图5A,每一层卷积2011(down)可以包括卷积层2013(conv)、ReLU激活函数2015以及最大池化层2017(max pool)。
请参图5B,每一层反卷积2031(up)可以包括子像素卷积层2033(sub-pixel)、 卷积层2035(conv)以及ReLU激活函数2037。
在一个实施例中,可以这样获得用于训练特征提取神经网络的训练图集:获取多张露齿的脸部照片;从这些脸部照片中截取口部区域图片;基于这些口部区域图片,以PhotoShop拉索标注工具,生成其各自的口部区域掩码及牙齿边缘特征图。可以把这些口部区域图片以及对应的口部区域掩码以及牙齿边缘特征图作为训练特征提取神经网络的训练图集。
在一个实施例中,为提升特征提取神经网络的鲁棒性,还可以把训练图集进行增广,包括高斯平滑,旋转和水平翻转等。
在107中,获取表示患者原始牙齿布局的第一三维数字模型。
患者的原始牙齿布局即进行牙科正畸治疗前的牙齿布局。
在一些实施方式中,可以通过直接扫描患者的牙颌,获得表示患者原始牙齿布局的三维数字模型。在又一些实施方式中,可以扫描患者牙颌的实体模型,例如石膏模型,获得表示患者原始牙齿布局的三维数字模型。在又一些实施方式中,可以扫描患者牙颌的印模,获得表示患者原始牙齿布局的三维数字模型。
在109中,利用投影优化算法计算得到与第一组牙齿轮廓特征匹配的第一三维数字模型的第一位姿。
在一个实施例中,非线性投影优化算法的优化目标可以方程式(1)表达:
Figure PCTCN2020113789-appb-000001
其中,
Figure PCTCN2020113789-appb-000002
代表第一三维数字模型上的采样点,p i代表与之对应的第一牙齿边缘特征图中牙齿轮廓线上的点。
在一个实施例中,可以基于以下方程式(2)来计算第一三维数字模型与第一组牙齿轮廓特征之间的点的对应关系:
Figure PCTCN2020113789-appb-000003
其中,t i和t j分别代表p i和p j两点处的切向量。
在111中,获取表示患者目标牙齿布局的第二三维数字模型。
基于表示患者原始牙齿布局的三维数字模型获得表示患者目标牙齿布局的三维数字模型的方法已为业界所熟知,此处不再赘述。
在113中,将处于第一位姿的第二三维数字模型进行投影得到第二组牙齿轮廓特征。
在一个实施例中,第二组牙齿轮廓特征包括完整的上、下颌牙列在处于目标牙齿布局下,且处于第一位姿时,所有牙齿的边缘轮廓线。
请参图6,为本申请一个实施例中的第二牙齿边缘特征图。
在115中,利用经训练的用于生成图片的深度神经网络,基于正畸治疗前患者的露齿脸部照片、掩码以及第二组牙齿轮廓特征图,正畸治疗后患者的露齿脸部图片。
在一个实施例中,可以采用CVAE-GAN网络作为用于生成图片的深度神经网络。请参图7,示意性地展示了本申请一个实施例中用于生成图片的深度神经网络300的结构。
用于生成图片的深度神经网络300包括第一子网络301和第二子网络303。其中,第一子网络301的一部分负责处理形状,第二子网络303负责处理纹理。因此,可以将正畸治疗前患者的露齿脸部照片或第一口部区域图片中掩码区域的部分输入第二子网络303,使得用于生成图片的深度神经网络300能够为正畸治疗后患者的露齿脸部图片中掩码区域部分产生纹理;而掩码以及第二牙齿边缘特征图则输入第一子网络301,使得用于生成图片的深度神经网络300能够为正畸治疗后患者的露齿脸部图片中掩码区域的部分划分区域,即哪部分为牙齿,哪部分为牙龈,哪部分为牙齿间隙,哪部分为舌头(在舌头可见的情况下)等。
第一子网络301包括6层卷积3011(downsampling)和6层反卷积3013 (upsampling)。第二子网络303包括6层卷积3031(downsampling)。
在一个实施例中,用于生成图片的深度神经网络300可以采用可微分的采样方法,以方便端到端训练(end to end training)。类似的采样方法请参由Diederik Kingma和Max Welling在2013年发表于ICLR 12 2013的《Auto-Encoding Variational Bayes》。
对用于生成图片的深度神经网络300的训练可以与前述对特征提取神经网络200的训练类似,此处不再赘述。
在本申请的启示下,可以理解,除了CVAE-GAN网络,还可以采用cGAN、cVAE、MUNIT以及CycleGAN等网络作为用于生成图片的网络。
在一个实施例中,可以把正畸治疗前患者的露齿脸部照片中掩码区域的部分输入用于生成图片的深度神经网络300,以生成正畸治疗后患者的露齿脸部图像中掩码区域的部分,然后,基于正畸治疗前患者的露齿脸部照片和正畸治疗后患者的露齿脸部图像中掩码区域的部分,合成正畸治疗后患者的露齿脸部图像。
在又一实施例中,可以把第一口部区域图片中掩码区域的部分输入用于生成图片的深度神经网络300,以生成正畸治疗后患者的露齿脸部图像中掩码区域的部分,然后,基于第一口部区域图片和正畸治疗后患者的露齿脸部图像中掩码区域的部分,合成第二口部区域图片,再基于正畸治疗前患者的露齿脸部照片和第二口部区域图片,合成正畸治疗后患者的露齿脸部图像。
请参图8,为本申请一个实施例中的第二口部区域图片。利用本申请的方法产生的牙科正畸治疗后患者的露齿脸部图片与实际效果非常接近,具有很高的参考价值。借助牙科正畸治疗后患者的露齿脸部图片,可以有效地帮助患者建立对治疗的信心,同时促进正畸医生与患者的沟通。
在本申请的启示下,可以理解,虽然,牙科正畸治疗后患者完整的脸部图片能够让患者较好地了解治疗效果,但这并不是必需的,一些情况下,牙科正畸治疗后患者的口部区域图片就足以让患者了解治疗效果。
尽管在此公开了本申请的多个方面和实施例,但在本申请的启发下,本申请的其他方面和实施例对于本领域技术人员而言也是显而易见的。在此公开的各个方面和实施例仅用于说明目的,而非限制目的。本申请的保护范围和主旨仅通过后附的权利要求书来确定。
同样,各个图表可以示出所公开的方法和系统的示例性架构或其他配置,其有助于理解可包含在所公开的方法和系统中的特征和功能。要求保护的内容并不限于所示的示例性架构或配置,而所希望的特征可以用各种替代架构和配置来实现。除此之外,对于流程图、功能性描述和方法权利要求,这里所给出的方框顺序不应限于以同样的顺序实施以执行所述功能的各种实施例,除非在上下文中明确指出。
除非另外明确指出,本文中所使用的术语和短语及其变体均应解释为开放式的,而不是限制性的。在一些实例中,诸如“一个或多个”、“至少”、“但不限于”这样的扩展性词汇和短语或者其他类似用语的出现不应理解为在可能没有这种扩展性用语的示例中意图或者需要表示缩窄的情况。

Claims (10)

  1. 一种利用人工神经网络生成牙科正畸治疗效果的图像的方法,包括:
    获取正畸治疗前患者的露齿脸部照片;
    利用经训练的特征提取深度神经网络,从所述正畸治疗前患者的露齿脸部照片中提取口部区域掩码以及第一组牙齿轮廓特征;
    获取表示所述患者原始牙齿布局的第一三维数字模型和表示所述患者目标牙齿布局的第二三维数字模型;
    基于所述第一组牙齿轮廓特征以及所述第一三维数字模型,获得所述第一三维数字模型的第一位姿;
    基于处于所述第一位姿的所述第二三维数字模型,获得第二组牙齿轮廓特征;以及
    利用经训练的图片生成深度神经网络,基于所述正畸治疗前患者的露齿脸部照片、所述掩码以及所述第二组牙齿轮廓特征,生成正畸治疗后所述患者的露齿脸部图像。
  2. 如权利要求1所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述图片生成深度神经网络是CVAE-GAN网络。
  3. 如权利要求2所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述CVAE-GAN网络所采用的采样方法是可微的采样方法。
  4. 如权利要求1所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述特征提取深度神经网络是U-Net网络。
  5. 如权利要求1所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述第一位姿是基于所述第一组牙齿轮廓特征和所述第一三维数字模型,利用非线性投影优化方法获得,所述第二组牙齿轮廓特征是基于处于所述第一位姿的所述第二三维数字模型,通过投影获得。
  6. 如权利要求1-5之一所述的利用人工神经网络生成牙科正畸治疗效果的 图像的方法,其特征在于,它还包括:利用人脸关键点匹配算法,从所述正畸治疗前患者的露齿脸部照片截取第一口部区域图片,其中,所述口部区域掩码以及第一组牙齿轮廓特征是从所述第一口部区域图片中提取。
  7. 如权利要求6所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述正畸治疗前患者的露齿脸部照片是所述患者的完整的正脸照片。
  8. 如权利要求6之一所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述掩码的边缘轮廓与所述正畸治疗前患者的露齿脸部照片中唇部的内侧边缘轮廓相符。
  9. 如权利要求8所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述第一组牙齿轮廓特征包括所述正畸治疗前患者的露齿脸部照片中可见牙齿的边缘轮廓线,所述第二组牙齿轮廓特征包括所述第二三维数字模型处于所述第一位姿时牙齿的边缘轮廓线。
  10. 如权利要求9所述的利用人工神经网络生成牙科正畸治疗效果的图像的方法,其特征在于,所述牙齿轮廓特征是牙齿边缘特征图。
PCT/CN2020/113789 2020-01-20 2020-09-07 利用人工神经网络生成牙科正畸治疗效果的图像的方法 WO2021147333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/531,708 US20220084653A1 (en) 2020-01-20 2021-11-19 Method for generating image of orthodontic treatment outcome using artificial neural network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010064195.1A CN113223140A (zh) 2020-01-20 2020-01-20 利用人工神经网络生成牙科正畸治疗效果的图像的方法
CN202010064195.1 2020-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/531,708 Continuation-In-Part US20220084653A1 (en) 2020-01-20 2021-11-19 Method for generating image of orthodontic treatment outcome using artificial neural network

Publications (1)

Publication Number Publication Date
WO2021147333A1 true WO2021147333A1 (zh) 2021-07-29

Family

ID=76992788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113789 WO2021147333A1 (zh) 2020-01-20 2020-09-07 利用人工神经网络生成牙科正畸治疗效果的图像的方法

Country Status (3)

Country Link
US (1) US20220084653A1 (zh)
CN (1) CN113223140A (zh)
WO (1) WO2021147333A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11842484B2 (en) * 2021-01-04 2023-12-12 James R. Glidewell Dental Ceramics, Inc. Teeth segmentation using neural networks
US11606512B2 (en) * 2020-09-25 2023-03-14 Disney Enterprises, Inc. System and method for robust model-based camera tracking and image occlusion removal
US20220222814A1 (en) * 2021-01-14 2022-07-14 Motahare Amiri Kamalabad System and method for facial and dental photography, landmark detection and mouth design generation
CN116563475B (zh) * 2023-07-07 2023-10-17 南通大学 一种图像数据处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665533A (zh) * 2018-05-09 2018-10-16 西安增材制造国家研究院有限公司 一种通过牙齿ct图像和三维扫描数据重建牙列的方法
CN109528323A (zh) * 2018-12-12 2019-03-29 上海牙典软件科技有限公司 一种基于人工智能的正畸方法及装置
CN109729169A (zh) * 2019-01-08 2019-05-07 成都贝施美医疗科技股份有限公司 基于c/s架构的牙齿美化ar智能辅助方法
US20190350680A1 (en) * 2018-05-21 2019-11-21 Align Technology, Inc. Photo realistic rendering of smile image after treatment

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463344B1 (en) * 2000-02-17 2002-10-08 Align Technology, Inc. Efficient data representation of teeth model
US20150305830A1 (en) * 2001-04-13 2015-10-29 Orametrix, Inc. Tooth positioning appliance and uses thereof
US7156655B2 (en) * 2001-04-13 2007-01-02 Orametrix, Inc. Method and system for comprehensive evaluation of orthodontic treatment using unified workstation
US8021147B2 (en) * 2001-04-13 2011-09-20 Orametrix, Inc. Method and system for comprehensive evaluation of orthodontic care using unified workstation
US7717708B2 (en) * 2001-04-13 2010-05-18 Orametrix, Inc. Method and system for integrated orthodontic treatment planning using unified workstation
US9412166B2 (en) * 2001-04-13 2016-08-09 Orametrix, Inc. Generating three dimensional digital dentition models from surface and volume scan data
US8029277B2 (en) * 2005-05-20 2011-10-04 Orametrix, Inc. Method and system for measuring tooth displacements on a virtual three-dimensional model
ES2690122T3 (es) * 2006-02-28 2018-11-19 Ormco Corporation Software y métodos para planificación de tratamiento dental
US10342638B2 (en) * 2007-06-08 2019-07-09 Align Technology, Inc. Treatment planning and progress tracking systems and methods
US8075306B2 (en) * 2007-06-08 2011-12-13 Align Technology, Inc. System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US20080306724A1 (en) * 2007-06-08 2008-12-11 Align Technology, Inc. Treatment planning and progress tracking systems and methods
DE102010002206B4 (de) * 2010-02-22 2015-11-26 Sirona Dental Systems Gmbh Bracketsystem und Verfahren zur Planung und Positionierung eines Bracketsystems zur Korrektur von Zahnfehlstellungen
US8417366B2 (en) * 2010-05-01 2013-04-09 Orametrix, Inc. Compensation orthodontic archwire design
EP2588021B1 (en) * 2010-06-29 2021-03-10 3Shape A/S 2d image arrangement
US8371849B2 (en) * 2010-10-26 2013-02-12 Fei Gao Method and system of anatomy modeling for dental implant treatment planning
EP2845171B1 (en) * 2012-05-02 2020-08-19 Cogent Design, Inc. dba Tops Software Systems and methods for consolidated management and distribution of orthodontic care data, including an interactive three-dimensional tooth chart model
US9414897B2 (en) * 2012-05-22 2016-08-16 Align Technology, Inc. Adjustment of tooth position in a virtual dental model
WO2016073792A1 (en) * 2014-11-06 2016-05-12 Matt Shane Three dimensional imaging of the motion of teeth and jaws
CN105769352B (zh) * 2014-12-23 2020-06-16 无锡时代天使医疗器械科技有限公司 用于产生牙齿矫治状态的直接分步法
US11850111B2 (en) * 2015-04-24 2023-12-26 Align Technology, Inc. Comparative orthodontic treatment planning tool
DE102015212806A1 (de) * 2015-07-08 2017-01-12 Sirona Dental Systems Gmbh System und Verfahren zum Scannen von anatomischen Strukturen und zum Darstellen eines Scanergebnisses
US9814549B2 (en) * 2015-09-14 2017-11-14 DENTSPLY SIRONA, Inc. Method for creating flexible arch model of teeth for use in restorative dentistry
WO2018022752A1 (en) * 2016-07-27 2018-02-01 James R. Glidewell Dental Ceramics, Inc. Dental cad automation using deep learning
US10945818B1 (en) * 2016-10-03 2021-03-16 Myohealth Technologies LLC Dental appliance and method for adjusting and holding the position of a user's jaw to a relaxed position of the jaw
CN113648088B (zh) * 2016-11-04 2023-08-22 阿莱恩技术有限公司 用于牙齿图像的方法和装置
US10695150B2 (en) * 2016-12-16 2020-06-30 Align Technology, Inc. Augmented reality enhancements for intraoral scanning
CA3059462A1 (en) * 2017-02-22 2018-08-30 Christopher John Ciriello Automated dental treatment system
US10828130B2 (en) * 2017-03-20 2020-11-10 Align Technology, Inc. Automated 2D/3D integration and lip spline autoplacement
AU2018254785A1 (en) * 2017-04-21 2019-12-05 Andrew S. MARTZ Fabrication of dental appliances
RU2652014C1 (ru) * 2017-09-20 2018-04-24 Общество с ограниченной ответственностью "Авантис3Д" Способ использования динамического виртуального артикулятора для имитационного моделирования окклюзии при выполнении проектирования стоматологических протезов для пациента и носитель информации
EP3459438B1 (en) * 2017-09-26 2020-12-09 The Procter & Gamble Company Device and method for determing dental plaque
CN114939001A (zh) * 2017-10-27 2022-08-26 阿莱恩技术有限公司 替代咬合调整结构
WO2019089989A2 (en) * 2017-11-01 2019-05-09 Align Technology, Inc. Automatic treatment planning
US10997727B2 (en) * 2017-11-07 2021-05-04 Align Technology, Inc. Deep learning for tooth detection and evaluation
US11403813B2 (en) * 2019-11-26 2022-08-02 Sdc U.S. Smilepay Spv Systems and methods for constructing a three-dimensional model from two-dimensional images
US10916053B1 (en) * 2019-11-26 2021-02-09 Sdc U.S. Smilepay Spv Systems and methods for constructing a three-dimensional model from two-dimensional images
EP3517071B1 (fr) * 2018-01-30 2022-04-20 Dental Monitoring Système pour l'enrichissement d'un modèle numérique dentaire
US10839578B2 (en) * 2018-02-14 2020-11-17 Smarter Reality, LLC Artificial-intelligence enhanced visualization of non-invasive, minimally-invasive and surgical aesthetic medical procedures
WO2019204520A1 (en) * 2018-04-17 2019-10-24 VideaHealth, Inc. Dental image feature detection
EP3566673A1 (fr) * 2018-05-09 2019-11-13 Dental Monitoring Procede d'evaluation d'une situation dentaire
US11553988B2 (en) * 2018-06-29 2023-01-17 Align Technology, Inc. Photo of a patient with new simulated smile in an orthodontic treatment review software
US11395717B2 (en) * 2018-06-29 2022-07-26 Align Technology, Inc. Visualization of clinical orthodontic assets and occlusion contact shape
US10835349B2 (en) * 2018-07-20 2020-11-17 Align Technology, Inc. Parametric blurring of colors for teeth in generated images
US20200066391A1 (en) * 2018-08-24 2020-02-27 Rohit C. Sachdeva Patient -centered system and methods for total orthodontic care management
US11151753B2 (en) * 2018-09-28 2021-10-19 Align Technology, Inc. Generic framework for blurring of colors for teeth in generated images using height map
JP6650996B1 (ja) * 2018-12-17 2020-02-19 株式会社モリタ製作所 識別装置、スキャナシステム、識別方法、および識別用プログラム
EP3671531A1 (en) * 2018-12-17 2020-06-24 Promaton Holding B.V. Semantic segmentation of non-euclidean 3d data sets using deep learning
US11321918B2 (en) * 2019-02-27 2022-05-03 3Shape A/S Method for manipulating 3D objects by flattened mesh
US20200306011A1 (en) * 2019-03-25 2020-10-01 Align Technology, Inc. Prediction of multiple treatment settings
US20220183792A1 (en) * 2019-04-11 2022-06-16 Candid Care Co. Dental aligners and procedures for aligning teeth
US10878566B2 (en) * 2019-04-23 2020-12-29 Adobe Inc. Automatic teeth whitening using teeth region detection and individual tooth location
WO2020223384A1 (en) * 2019-04-30 2020-11-05 uLab Systems, Inc. Attachments for tooth movements
US11238586B2 (en) * 2019-05-02 2022-02-01 Align Technology, Inc. Excess material removal using machine learning
CA3140069A1 (en) * 2019-05-14 2020-11-19 Align Technology, Inc. Visual presentation of gingival line generated based on 3d tooth model
US11189028B1 (en) * 2020-05-15 2021-11-30 Retrace Labs AI platform for pixel spacing, distance, and volumetric predictions from dental images
FR3096255A1 (fr) * 2019-05-22 2020-11-27 Dental Monitoring Procede de generation d’un modele d’une arcade dentaire
FR3098392A1 (fr) * 2019-07-08 2021-01-15 Dental Monitoring Procédé d’évaluation d’une situation dentaire à l’aide d’un modèle d’arcade dentaire déformé
US20210022832A1 (en) * 2019-07-26 2021-01-28 SmileDirectClub LLC Systems and methods for orthodontic decision support
US11232573B2 (en) * 2019-09-05 2022-01-25 Align Technology, Inc. Artificially intelligent systems to manage virtual dental models using dental images
EP4025154A4 (en) * 2019-09-06 2023-12-20 Cyberdontics (USA), Inc. GENERATION OF THREE-DIMENSIONAL (3D) DATA FOR THE PREPARATION OF A PROSTHETIC CROWN OF A TOOTH
US11514694B2 (en) * 2019-09-20 2022-11-29 Samsung Electronics Co., Ltd. Teaching GAN (generative adversarial networks) to generate per-pixel annotation
DK180755B1 (en) * 2019-10-04 2022-02-24 Adent Aps Method for assessing oral health using a mobile device
RU2725280C1 (ru) * 2019-10-15 2020-06-30 Общество С Ограниченной Ответственностью "Доммар" Приспособления и методы планирования ортодонтического лечения
US11735306B2 (en) * 2019-11-25 2023-08-22 Dentsply Sirona Inc. Method, system and computer readable storage media for creating three-dimensional dental restorations from two dimensional sketches
US11810271B2 (en) * 2019-12-04 2023-11-07 Align Technology, Inc. Domain specific image quality assessment
US11723748B2 (en) * 2019-12-23 2023-08-15 Align Technology, Inc. 2D-to-3D tooth reconstruction, optimization, and positioning frameworks using a differentiable renderer
US11842484B2 (en) * 2021-01-04 2023-12-12 James R. Glidewell Dental Ceramics, Inc. Teeth segmentation using neural networks
WO2021163285A1 (en) * 2020-02-11 2021-08-19 Align Technology, Inc. At home progress tracking using phone camera
WO2021200392A1 (ja) * 2020-03-31 2021-10-07 ソニーグループ株式会社 データ調整システム、データ調整装置、データ調整方法、端末装置及び情報処理装置
US20210315669A1 (en) * 2020-04-14 2021-10-14 Chi-Ching Huang Orthodontic suite and its manufacturing method
US20210321872A1 (en) * 2020-04-15 2021-10-21 Align Technology, Inc. Smart scanning for intraoral scanners
US11960795B2 (en) * 2020-05-26 2024-04-16 3M Innovative Properties Company Neural network-based generation and placement of tooth restoration dental appliances
US20230190409A1 (en) * 2020-06-03 2023-06-22 3M Innovative Properties Company System to Generate Staged Orthodontic Aligner Treatment
US11978207B2 (en) * 2021-06-03 2024-05-07 The Procter & Gamble Company Oral care based digital imaging systems and methods for determining perceived attractiveness of a facial image portion
FR3111538B1 (fr) * 2020-06-23 2023-11-24 Patrice Bergeyron Procédé de fabrication d’un appareil orthodontique
WO2022003537A1 (en) * 2020-07-02 2022-01-06 Shiseido Company, Limited System and method for image transformation
JP2022020509A (ja) * 2020-07-20 2022-02-01 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム
WO2022020267A1 (en) * 2020-07-21 2022-01-27 Get-Grin Inc. Systems and methods for modeling dental structures
WO2022020638A1 (en) * 2020-07-23 2022-01-27 Align Technology, Inc. Systems, apparatus, and methods for dental care
KR102448395B1 (ko) * 2020-09-08 2022-09-29 주식회사 뷰노 치아 영상 부분 변환 방법 및 장치
US11880766B2 (en) * 2020-10-16 2024-01-23 Adobe Inc. Techniques for domain to domain projection using a generative model
US11521299B2 (en) * 2020-10-16 2022-12-06 Adobe Inc. Retouching digital images utilizing separate deep-learning neural networks
US20220148188A1 (en) * 2020-11-06 2022-05-12 Tasty Tech Ltd. System and method for automated simulation of teeth transformation
WO2022102589A1 (ja) * 2020-11-13 2022-05-19 キヤノン株式会社 患者の口腔内の状態を推定する画像処理装置およびその制御方法、プログラム
US20220180527A1 (en) * 2020-12-03 2022-06-09 Tasty Tech Ltd. System and method for image synthesis of dental anatomy transformation
US20240008955A1 (en) * 2020-12-11 2024-01-11 3M Innovative Properties Company Automated Processing of Dental Scans Using Geometric Deep Learning
US20220207355A1 (en) * 2020-12-29 2022-06-30 Snap Inc. Generative adversarial network manipulated image effects
EP4272129A1 (en) * 2020-12-29 2023-11-08 Snap Inc. Compressing image-to-image models
US20220202295A1 (en) * 2020-12-30 2022-06-30 Align Technology, Inc. Dental diagnostics hub
US11229504B1 (en) * 2021-01-07 2022-01-25 Ortho Future Technologies (Pty) Ltd System and method for determining a target orthodontic force
US11241301B1 (en) * 2021-01-07 2022-02-08 Ortho Future Technologies (Pty) Ltd Measurement device
US20220222814A1 (en) * 2021-01-14 2022-07-14 Motahare Amiri Kamalabad System and method for facial and dental photography, landmark detection and mouth design generation
US20220350936A1 (en) * 2021-04-30 2022-11-03 James R. Glidewell Dental Ceramics, Inc. Neural network margin proposal
US12020428B2 (en) * 2021-06-11 2024-06-25 GE Precision Healthcare LLC System and methods for medical image quality assessment using deep neural networks
US11759296B2 (en) * 2021-08-03 2023-09-19 Ningbo Shenlai Medical Technology Co., Ltd. Method for generating a digital data set representing a target tooth arrangement
US20230042643A1 (en) * 2021-08-06 2023-02-09 Align Technology, Inc. Intuitive Intraoral Scanning
US11423697B1 (en) * 2021-08-12 2022-08-23 Sdc U.S. Smilepay Spv Machine learning architecture for imaging protocol detector
US20230053026A1 (en) * 2021-08-12 2023-02-16 SmileDirectClub LLC Systems and methods for providing displayed feedback when using a rear-facing camera
EP4391958A1 (en) * 2021-08-25 2024-07-03 Aicad Dental Inc. System and method for augmented intelligence in dental pattern recognition
US20230068727A1 (en) * 2021-08-27 2023-03-02 Align Technology, Inc. Intraoral scanner real time and post scan visualizations
US11836936B2 (en) * 2021-09-02 2023-12-05 Ningbo Shenlai Medical Technology Co., Ltd. Method for generating a digital data set representing a target tooth arrangement
US20230093827A1 (en) * 2021-09-28 2023-03-30 Qualcomm Incorporated Image processing framework for performing object depth estimation
US20230131313A1 (en) * 2021-10-27 2023-04-27 Align Technology, Inc. Methods for planning ortho-restorative treatment procedures
WO2023091043A1 (en) * 2021-11-17 2023-05-25 SmileDirectClub LLC Systems and methods for automated 3d teeth positions learned from 3d teeth geometries
CN114219897B (zh) * 2021-12-20 2024-04-30 山东大学 一种基于特征点识别的牙齿正畸结果预测方法及系统
US20230210634A1 (en) * 2021-12-30 2023-07-06 Align Technology, Inc. Outlier detection for clear aligner treatment
US20230225831A1 (en) * 2022-01-20 2023-07-20 Align Technology, Inc. Photo-based dental appliance fit
US20230386045A1 (en) * 2022-05-27 2023-11-30 Sdc U.S. Smilepay Spv Systems and methods for automated teeth tracking
US20230390027A1 (en) * 2022-06-02 2023-12-07 Voyager Dental, Inc. Auto-smile design setup systems
US20240037995A1 (en) * 2022-07-29 2024-02-01 Rakuten Group, Inc. Detecting wrapped attacks on face recognition
WO2024030310A1 (en) * 2022-08-01 2024-02-08 Align Technology, Inc. Real-time bite articulation
US20240065815A1 (en) * 2022-08-26 2024-02-29 Exocad Gmbh Generation of a three-dimensional digital model of a replacement tooth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665533A (zh) * 2018-05-09 2018-10-16 西安增材制造国家研究院有限公司 一种通过牙齿ct图像和三维扫描数据重建牙列的方法
US20190350680A1 (en) * 2018-05-21 2019-11-21 Align Technology, Inc. Photo realistic rendering of smile image after treatment
CN109528323A (zh) * 2018-12-12 2019-03-29 上海牙典软件科技有限公司 一种基于人工智能的正畸方法及装置
CN109729169A (zh) * 2019-01-08 2019-05-07 成都贝施美医疗科技股份有限公司 基于c/s架构的牙齿美化ar智能辅助方法

Also Published As

Publication number Publication date
CN113223140A (zh) 2021-08-06
US20220084653A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2021147333A1 (zh) 利用人工神经网络生成牙科正畸治疗效果的图像的方法
US11810271B2 (en) Domain specific image quality assessment
JP7458711B2 (ja) ディープラーニングを用いた歯科用cadの自動化
JP3288353B2 (ja) 顔イメージから開始して3d顔モデルを作る方法
US11517272B2 (en) Simulated orthodontic treatment via augmented visualization in real-time
KR20220104036A (ko) 2차원 스케치로부터 3차원 치아 복원물을 생성하기 위한 방법, 시스템 및 컴퓨터 판독가능 저장 매체
WO2017035966A1 (zh) 用于人脸图像处理的方法和装置
US20060023923A1 (en) Method and system for a three dimensional facial recognition system
EP2450852A1 (fr) Procédé et dispositif de simulation virtuelle d' une image
CN112308895B (zh) 一种构建真实感牙列模型的方法
US20220338966A1 (en) Method For Exporting A Three-Dimensional Esthetic Dental Design Model From An Augmented Reality Application To A Computer-Aided Design Application
CN114586069A (zh) 用于生成牙科图像的方法
CN107689077B (zh) 一种全冠桥桥体数字化生成方法
KR100918095B1 (ko) 한 대의 비디오 카메라를 이용한 3차원 얼굴 모델 및애니메이션 생성 시스템 및 방법
CN107481310A (zh) 一种图像渲染方法和系统
WO2022174747A1 (zh) 牙齿的计算机断层扫描图像的分割方法
Davy et al. Forensic facial reconstruction using computer modeling software
US20210074076A1 (en) Method and system of rendering a 3d image for automated facial morphing
US20220175491A1 (en) Method for estimating and viewing a result of a dental treatment plan
US11967178B2 (en) Progressive transformation of face information
JP2003141563A (ja) 顔3次元コンピュータグラフィック生成方法、そのプログラム及び記録媒体
US20230260238A1 (en) Method for Generating a Virtual 4D Head and Teeth
CN112017280B (zh) 一种生成具有颜色纹理信息的数字化牙齿模型的方法
EP4307229A1 (en) Method and system for tooth pose estimation
US20230401804A1 (en) Data processing device and data processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915778

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20915778

Country of ref document: EP

Kind code of ref document: A1