WO2021147311A1 - 一种考虑速度因素的激光雷达测距的快速数值仿真方法 - Google Patents
一种考虑速度因素的激光雷达测距的快速数值仿真方法 Download PDFInfo
- Publication number
- WO2021147311A1 WO2021147311A1 PCT/CN2020/110859 CN2020110859W WO2021147311A1 WO 2021147311 A1 WO2021147311 A1 WO 2021147311A1 CN 2020110859 W CN2020110859 W CN 2020110859W WO 2021147311 A1 WO2021147311 A1 WO 2021147311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- lidar
- laser
- simulation
- distance
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005070 sampling Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 description 10
- 230000009466 transformation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 238000009877 rendering Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/006—Theoretical aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Definitions
- the invention relates to the field of numerical simulation of laser radar ranging, in particular to a fast numerical simulation method of laser radar ranging considering speed factors.
- Lidar simulation methods there are many Lidar simulation methods.
- Huang Xi proposed a ray tracing-based Lidar scene simulation method in the CN104268323A Invention Patent Application Publication. This method generates physical reality simulation imaging by simulating the reflection trajectory of laser rays;
- Su Hu proposed a vehicle-mounted lidar simulation method based on depth rendering. This method periodically performs depth rendering of the sector area of the test scene to obtain simulation data images.
- these methods are not precise enough to simulate the movement and scanning process of the lidar itself, as well as the movement of the objects in the scene.
- the laser light emitted by the lidar in all directions during a period of time is considered to be emitted simultaneously at a certain moment.
- all objects in the scene remain stationary relative to the lidar during this period. This is inconsistent with the actual working principle of lidar, which will cause simulation errors.
- the purpose of the present invention is to provide a fast numerical simulation method for lidar ranging considering the speed factor in view of the shortcomings of the prior art.
- the method considers the movement of environmental objects relative to the laser and the scanning and rotation mode of the laser itself in the simulation.
- the method of sampling and dynamically updating the scene maintains the high efficiency of the calculation process, and well balances the simulation accuracy and the simulation efficiency.
- a fast numerical simulation method of lidar ranging considering the speed factor including the following steps:
- a fast numerical simulation method of lidar ranging considering the speed factor including the following steps:
- Lidar has NL laser transmitters, which emit laser rays synchronously at frequency f, and each laser transmitter A laser beam is emitted, the starting point of which is the same point on Lidar. This point is called the reference point. All laser transmitters rotate around a straight line passing the reference point on a fixed axis. The line is called the axis of rotation, which is perpendicular to The plane of the axis of rotation is the reference plane.
- the NL rays emitted by the laser transmitter are located in a plane perpendicular to the reference plane.
- the direction of the optional axis is the direction of the axis of rotation.
- the vertical projections are all coincident with a ray emitted by the reference point, which is called the reference line.
- the rotational angular velocity of the sensor, after the end of the scanning period, the laser transmitter returns to the position and attitude at the beginning of the scanning cycle;
- the maximum detection distance of Lidar is D max ;
- the positions and attitudes of the reference point, reference line, reference plane and shaft on the Lidar are all Defined in the object coordinate system fixed in Lidar;
- step (3.3.2) When i is 0, proceed directly to step (3.3.2); when i is greater than 0, calculate and update the position of Lidar and its surrounding objects that can reflect laser light at t k +i ⁇ f -1 attitude;
- d1 is the first preset threshold
- d2 is the second preset threshold
- Q jj is the sequence ⁇ Q 0 ,Q 1 ,Q 2 ,...,Q NL-1 ⁇ closest to q(q) Value
- jj is the serial number of the value in the sequence
- step 3 If the simulation does not reach the termination condition, perform step 3); otherwise, end the simulation process.
- each point in the point set B k generated in the step (3.2) contains the position coordinates of the point in the object coordinate system of the object, and the object used to directly or indirectly obtain the object to which the point belongs Information about the position and posture of the coordinate system.
- the update criteria as follows: If C k [ i,jj] is the invalid value set during initialization, then C k [i,jj] is set as the distance from the reference point to point q; if C k [i,jj] is not the invalid value set during initialization and the reference The distance between point and point q is less than C k [i,jj], then C k [i,jj] is set as the distance between the reference point and point q; if C k [i,jj] is not a valid value set during initialization And the distance between the reference point and point q is greater than or equal to C k [i,jj], then it is checked whether the next point q meets the condition (I) (II).
- the beneficial effect of the present invention is that the present invention fully considers the movement of the lidar itself and objects in the surrounding environment during the simulation process.
- the movement of the lidar itself includes not only the overall movement of the device, but also the rotational scanning movement of the laser.
- the accuracy of numerical simulation is provided, and the amount of calculation is simplified by introducing a set of sampling points, and the effect of using less calculation amount to improve the accuracy of simulation is achieved.
- This method is particularly suitable when the lidar itself and/or the surrounding objects are in a high-speed motion state in the scene. At this time, the simulation accuracy achieved by this method is significantly improved compared with the previous method.
- Figure 1 is a schematic diagram of a lidar object coordinate system
- Figure 2 is a schematic diagram of the mutual positional relationship between the lidar and the sampled points of the environmental object
- Figure 3 is a schematic diagram of data association among multiple types of texture images
- Fig. 4 is a schematic diagram of the effect of the Lidar simulation method proposed by the present invention.
- the present invention proposes a fast numerical simulation method for lidar ranging considering the speed factor, including the following steps: (1) Set the horizontal scanning lidar to be simulated as Lidar, as shown in Figures 1 and 2, set Its working mode and parameters are as follows: Lidar has a scanning period of 0.1 second; Lidar has 32 laser emitters, which simultaneously emit laser rays at a frequency f of 14400 Hz, and each laser emitter emits 1 laser ray, the starting point of which They are all the same point on Lidar, this point is the reference point, and all laser transmitters rotate around a straight line passing the reference point on a fixed axis, which is called the axis of rotation. The plane perpendicular to the axis of rotation is the reference plane.
- the 32 rays emitted by the laser at the same time are located in a plane perpendicular to the reference plane.
- the direction on the axis of rotation be the direction of the axis of rotation.
- Lidar The maximum detection distance D max 100 meters;
- the rigid body motion of Lidar is represented by the rigid body motion fixed in the object coordinate system of Lidar, and the
- a pixel in the texture image point set B k describes an object surface sampling point, and meets the following conditions:
- point q is the nearest intersection point between R(q) and the surface of the object that can reflect the laser light around Lidar
- R(q) is the ray starting from the reference point and passing through point q
- j(q) is R(q) at The angle between the projection on the reference plane and the reference line
- q(q) is the angle between R(q) and the direction of the axis of rotation.
- the object coordinate system position and posture information of the object is obtained through the serial number ID of the object to which the sampling point stored in the A channel belongs, and then the information stored in the texture image B k is consistent with The following conditions:
- Each point in the generated point set B k contains the position coordinates of the point in the object coordinate system of the object to which the point belongs, and information used to directly or indirectly obtain the position and posture of the object coordinate system of the object to which the point belongs.
- the model transformation matrix of the nth object is MF n .
- the N transform matrix corresponding to an object model stored in a texture image N columns E k 4 rows, pixel format E k is RGBA32, n E k of the pixel column, respectively row 0,1,2,3
- the four row vectors of MF n are stored.
- a lookup table VL of the object ID and the column position of the corresponding object transformation matrix in the texture image E k is established.
- the second preset threshold d2 is a tolerance of 2° between 32 laser rays. It can be verified that if the pixel p is not ignored, Then the sampling point position q corresponding to the pixel p meets the following conditions:
- d1 is the first preset threshold
- d2 is the second preset threshold
- Q jj is the sequence ⁇ Q 0 , Q 1 , Q 2 ,..., Q NL-1 ⁇ that is closest to q(q) Value
- jj is the serial number of the value in the sequence
- C k [i,jj] is the non-valid value set during initialization, set C k [i,jj] as the distance from the reference point to point q; if C k [i,jj] is not the non-valid value set during initialization Valid value, and if the distance between the reference point and point q is less than C k [i,jj], set C k [i,jj] as the distance between the reference point and point q; if C k [i,jj] is not initialized If the distance between the reference point and point q is greater than or equal to C k [i,jj], check whether the next point q meets the condition (I)(II).
- the final simulation result diagram is shown in Figure 4, the white point cloud in the scene is the radar scan simulation result of the vehicle in the middle of the screen.
- the truck on the left side of the screen and the vehicle in the middle are both in motion. It can be seen that there is a certain displacement deviation between the position of the white point cloud formed by the scanning of the truck and the actual position of the truck.
- This is the simulation result formed by considering the relative movement of the vehicle and the rotation of the laser, which is closer to the actual radar scanning process.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Claims (3)
- 一种考虑速度因素的激光雷达测距的快速数值仿真方法,其特征在于,包括以下步骤:(1)设待仿真的机械旋转式激光雷达器为Lidar,设定其工作方式和参数如下:Lidar具有NL个激光发射器,这些激光发射器以频率f同步发射激光射线,每个激光发射器发出1条激光射线,其起点均为Lidar上的同一个点,称该点为基准点,所有激光发射器围绕着过基准点的一根直线进行定轴旋转,称该直线为转轴,垂直于转轴的平面为基准面,同一时刻激光发射器发射的NL条射线位于垂直于基准面的平面内,任选转轴一侧方向为转轴方向,这NL条激光射线与转轴方向形成的夹角依次为Θ 0,Θ 1,Θ 2,...,Θ NL-1,满足Θ i<Θ j,0<=i<j<NL;Lidar每个扫描周期开始时刻射出的激光射线在基准面上的垂直投影都重合于由基准点发出的一条射线,该射线称为基准线,在一个扫描周期T时间内激光发射器所旋转过的角度为Φ max=ωT,ω为在扫描周期T内激光发射器的旋转角速度,在扫描周期结束后激光发射器回到扫描周期开始时的位置与姿态;Lidar的最大探测距离为D max;Lidar上的基准点、基准线、基准面和转轴位置与姿态均定义在固定于Lidar的物体坐标系中;(2)选择正整数K,将扫描角度范围[0,Φ max]分成为K个扫描角度区间[Φ 0,Φ 1],[Φ 1,Φ 2],...,[Φ K-1,Φ K],使得每个水平扫描角度区间小于180度,其中Φ 0=0,Φ K=Φ max;(3)开始Lidar一个水平扫描周期的测距仿真:设此时的仿真时刻为tn T,对每个仿真时刻t k=tn T+Φ k/ω,其中k∈{0,1,...K-1},进行如下处理:(3.1)计算更新在t k时刻Lidar以及Lidar周围可反射激光的物体的位置与姿态;(3.2)采样Lidar周围可反射激光的物体表面,计算生成点集B k,对于任意采样点q∈B k,点q满足 θ(q)∈[Θ 0,Θ NL-1]且基准点到点q距离小于等于D max;其中,点q为R(q)与Lidar周围可反射激光的物体表面相交的最近的一个交点,R(q)为从基准点出发经过点q的射线, 为R(q)在基准面上的投影与基准线的夹角,θ(q)为R(q)与转轴方向的夹角;(3.3)生成一个具有ML列NL行的二维数据结构C k,并将每个元素初始化为非有效值,其中ML为大于等于(Φ k+1-Φ k)f/ω的最小整数,对每个i∈{0,1,2...ML-1},采用如下步骤计算C k的第i列元素:(3.3.1)当i为0时,直接执行步骤(3.3.2);当i大于0时,计算更新在t k+i·f -1时刻Lidar和其周围可反射激光的物体的位置与姿态;(3.3.2)遍历B k中每个点q,根据点q所属物体的位置与姿态,计算更新在t k+i·f -1时刻点q的位置,并判断点q是否满足以下条件:(II)|θ(q)-Θ jj|≤δ2其中,δ1为第一预设阈值,δ2为第二预设阈值,Θ jj为序列{Θ 0,Θ 1,Θ 2,...,Θ NL-1}中与θ(q)最接近的值,jj是该值在序列中的序号;(3.3.3)若点q同时满足上述条件(I)(II),则用基准点与点q的距离来更新C k的第i列第jj行元素C k[i,jj];若点q没有同时满足上述条件(I)(II),则检验下一个点q是否满足条件(I)(II);(3.4)输出C 0,C 1,...C K-1,这些数据结构为当前扫描周期的Lidar的仿真测距结果,其中第k个数据结构C k的第i列元素所保存的数值是仿真时刻tn T+Φ k/ω+i·f -1的NL个激光发射器的仿真测距结果;(4)若仿真没有达到终止条件,执行步骤3);否则结束仿真过程。
- 根据权利要求1所述的考虑速度因素的激光雷达测距的快速数值仿真方法,其特征在于,所述步骤(3.2)中所生成的点集B k中的每个点包含该点在所属物体的物体坐标系内的位置坐标,以及用来直接或间接得到该点所属物体的物体坐标系位置与姿态的信息。
- 根据权利要求1所述的考虑速度因素的激光雷达测距的快速数值仿真方法,其特征在于,所述步骤(3.3.3)中用基准点与点q的距离来更新C k的第i列第jj行元素C k[i,jj]时,采用如下更新准则:若C k[i,jj]为初始化时设置的非有效值,则将C k[i,jj]设置为基准点到点q的距离;若C k[i,jj]不是初始化时设置的非有效值且基准点与点q的距离小于C k[i,jj],则将C k[i,jj]设置为基准点与点q的距离;若C k[i,jj]不是初始化时设置的非有效值且基准点与点q的距离大于等于C k[i,jj],则检验下一个点q是否满足条件(I)(II)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/412,188 US20220035013A1 (en) | 2020-07-30 | 2021-08-25 | Fast numerical simulation method for laser radar ranging considering speed factor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010750633.XA CN111624583B (zh) | 2020-07-30 | 2020-07-30 | 一种考虑速度因素的激光雷达测距的快速数值仿真方法 |
CN202010750633.X | 2020-07-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/412,188 Continuation US20220035013A1 (en) | 2020-07-30 | 2021-08-25 | Fast numerical simulation method for laser radar ranging considering speed factor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147311A1 true WO2021147311A1 (zh) | 2021-07-29 |
Family
ID=72272968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110859 WO2021147311A1 (zh) | 2020-07-30 | 2020-08-24 | 一种考虑速度因素的激光雷达测距的快速数值仿真方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220035013A1 (zh) |
CN (1) | CN111624583B (zh) |
WO (1) | WO2021147311A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113866789A (zh) * | 2021-09-27 | 2021-12-31 | 鑫辉智云集团有限公司 | 无人机激光雷达点云数据处理系统 |
CN114895316B (zh) * | 2022-07-11 | 2022-10-28 | 之江实验室 | 一种多激光雷达测距的快速数值仿真方法和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104268323A (zh) * | 2014-09-17 | 2015-01-07 | 西安电子科技大学 | 基于光线跟踪的激光雷达场景仿真方法 |
CN107966693A (zh) * | 2017-12-05 | 2018-04-27 | 成都合纵连横数字科技有限公司 | 一种基于深度渲染的车载激光雷达仿真方法 |
CN108564615A (zh) * | 2018-04-20 | 2018-09-21 | 驭势(上海)汽车科技有限公司 | 模拟激光雷达探测的方法、装置、系统及存储介质 |
CN109814093A (zh) * | 2019-01-29 | 2019-05-28 | 北京奥特贝睿科技有限公司 | 一种基于cpu多核计算的激光雷达仿真方法以及装置 |
US10509947B1 (en) * | 2017-04-11 | 2019-12-17 | Zoox, Inc. | Converting multi-dimensional data for image analysis |
CN110809723A (zh) * | 2018-12-28 | 2020-02-18 | 深圳市大疆创新科技有限公司 | 雷达仿真方法、装置及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400003B (zh) * | 2013-07-22 | 2016-03-02 | 西安电子科技大学 | 基于gpu编程实现激光雷达场景仿真方法 |
CN104049259B (zh) * | 2014-07-01 | 2017-06-16 | 南京大学 | 基于虚拟仪器的激光雷达三维成像系统 |
CN108732556B (zh) * | 2018-08-17 | 2020-03-27 | 西南交通大学 | 一种基于几何体求交运算的车载激光雷达仿真方法 |
US20200074230A1 (en) * | 2018-09-04 | 2020-03-05 | Luminar Technologies, Inc. | Automatically generating training data for a lidar using simulated vehicles in virtual space |
CN110554407B (zh) * | 2019-09-25 | 2023-05-09 | 哈尔滨工程大学 | 一种模拟船用激光雷达三维点云成像方法 |
-
2020
- 2020-07-30 CN CN202010750633.XA patent/CN111624583B/zh active Active
- 2020-08-24 WO PCT/CN2020/110859 patent/WO2021147311A1/zh active Application Filing
-
2021
- 2021-08-25 US US17/412,188 patent/US20220035013A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104268323A (zh) * | 2014-09-17 | 2015-01-07 | 西安电子科技大学 | 基于光线跟踪的激光雷达场景仿真方法 |
US10509947B1 (en) * | 2017-04-11 | 2019-12-17 | Zoox, Inc. | Converting multi-dimensional data for image analysis |
CN107966693A (zh) * | 2017-12-05 | 2018-04-27 | 成都合纵连横数字科技有限公司 | 一种基于深度渲染的车载激光雷达仿真方法 |
CN108564615A (zh) * | 2018-04-20 | 2018-09-21 | 驭势(上海)汽车科技有限公司 | 模拟激光雷达探测的方法、装置、系统及存储介质 |
CN110809723A (zh) * | 2018-12-28 | 2020-02-18 | 深圳市大疆创新科技有限公司 | 雷达仿真方法、装置及系统 |
CN109814093A (zh) * | 2019-01-29 | 2019-05-28 | 北京奥特贝睿科技有限公司 | 一种基于cpu多核计算的激光雷达仿真方法以及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220035013A1 (en) | 2022-02-03 |
CN111624583A (zh) | 2020-09-04 |
CN111624583B (zh) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109493407B (zh) | 实现激光点云稠密化的方法、装置及计算机设备 | |
CN1215444C (zh) | 映射和渲染三维目标和活动的三维目标的基于图像的方法 | |
US8892358B2 (en) | System and method for distortion correction in three-dimensional environment visualization | |
US9098930B2 (en) | Stereo-aware image editing | |
WO2021147311A1 (zh) | 一种考虑速度因素的激光雷达测距的快速数值仿真方法 | |
TWI478096B (zh) | 三維圖形裁剪方法、三維圖形呈現方法及其圖形處理裝置 | |
CN106558017B (zh) | 球形显示图像处理方法及系统 | |
WO2021042960A1 (zh) | 体三维显示仿真方法、装置、设备及计算机可读存储介质 | |
WO2021190485A1 (zh) | 数据采集设备及数据校正方法、装置、电子设备 | |
WO2022048493A1 (zh) | 摄像头外参标定的方法与装置 | |
JP2023505987A (ja) | 人間関節を用いた無人航空機上のカメラの校正 | |
CN103544731B (zh) | 一种基于多相机的快速反射绘制方法 | |
CN115393496B (zh) | 一种多激光雷达仿真点云的快速绘制方法和装置 | |
US20230186575A1 (en) | Method and apparatus for combining an augmented reality object in a real-world image | |
CN103295260A (zh) | 一种基于旋转体三维显示器的实时体三维数据生成方法 | |
CN110889364A (zh) | 一种利用红外传感器和可见光传感器构建栅格地图的方法 | |
CN109389633A (zh) | 基于lsd-slam和激光雷达的深度信息估计方法 | |
JP2023077658A (ja) | 画像処理装置、画像処理方法、及びプログラム | |
CN114895316B (zh) | 一种多激光雷达测距的快速数值仿真方法和装置 | |
CN111325662A (zh) | 一种基于球面投影全景图生成3d空间户型模型的方法 | |
CN117274472B (zh) | 一种基于隐式三维表达的航空真正射影像生成方法和系统 | |
CN117333676B (zh) | 基于图表达的点云特征提取方法、点云视觉检测方法 | |
CN117372502B (zh) | 针对目标易损性分析的群目标投影面积计算方法及系统 | |
CN115496818B (zh) | 一种基于动态物体分割的语义图压缩方法和装置 | |
Zhang et al. | Virtual modeling of vision sensor on smart cars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20916049 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20916049 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20916049 Country of ref document: EP Kind code of ref document: A1 |