WO2021147208A1 - Methods and systems for monitoring an on-board equipment - Google Patents

Methods and systems for monitoring an on-board equipment Download PDF

Info

Publication number
WO2021147208A1
WO2021147208A1 PCT/CN2020/088970 CN2020088970W WO2021147208A1 WO 2021147208 A1 WO2021147208 A1 WO 2021147208A1 CN 2020088970 W CN2020088970 W CN 2020088970W WO 2021147208 A1 WO2021147208 A1 WO 2021147208A1
Authority
WO
WIPO (PCT)
Prior art keywords
board equipment
threshold
relevant parameter
resistor
monitoring
Prior art date
Application number
PCT/CN2020/088970
Other languages
French (fr)
Inventor
Xiaoming TIAN
Shuo Zhao
Original Assignee
Beijing Didi Infinity Technology And Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Didi Infinity Technology And Development Co., Ltd. filed Critical Beijing Didi Infinity Technology And Development Co., Ltd.
Publication of WO2021147208A1 publication Critical patent/WO2021147208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for

Definitions

  • the present disclosure relates to the field of on-board equipment monitoring, and more particularly, relates to methods and systems for monitoring an on-board equipment.
  • a driving recorder may be installed on a vehicle to record images and sounds during vehicle driving.
  • a vehicle alarm device may also be installed to prevent the vehicle from being stolen or destroyed.
  • these on-board equipments usually need to be connected to the vehicle battery for power supply. If an on-board equipment is in an abnormal working state for a long time, it may quickly exhaust the power of the vehicle battery. As a result, the vehicle battery needs to be timely charged. If the above-mentioned abnormal working state continues to occur, the loss of the vehicle battery may increase, which accelerates the aging speed of the battery and shortens the service life of the battery.
  • the purpose of the present disclosure embodiment is to provide methods and systems for monitoring an on-board equipment, a monitoring device of an on-board equipment and an on-board equipment, to solve the problem that the real-time monitoring of the abnormal working state of the on-board equipment cannot be achieved in the prior art.
  • the embodiments of the present disclosure may adopt the following technical solutions:
  • An aspect of the present disclosure provides a method for monitoring an on-board equipment implemented on a computing device including at least one processor and at least one storage medium.
  • the method may include acquiring a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment; and determining an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  • the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
  • the acquiring the relevant parameter of the on-board equipment may include acquiring the voltage across a resistor in series with the on-board equipment; and determining a corresponding current based on a resistance of the resistor and the voltage across the resistor, the current reflecting a working current flowing through the on-board equipment.
  • an error of the resistance may be less than or equal to 1%.
  • the resistance of the resistor may be less than or equal to 1 ohm.
  • the acquiring the relevant parameter of the on-board equipment may include detecting the temperature of the on-board equipment via a temperature sensor.
  • the preset threshold may include a reference threshold, when the relevant parameter is greater than the reference threshold, determining the operation instruction information as an instruction of power off operation, wherein the power off operation may include cutting off power transmission between a vehicle battery and the on-board equipment.
  • the preset threshold may further include a reference threshold and first threshold, and the first threshold is larger than the reference threshold, when the relevant parameter exceeds the reference threshold and is within the first threshold, determining the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
  • the preset threshold may also include a reference threshold, a first threshold, and a second threshold, the second threshold is larger than the reference threshold and smaller than the first threshold, when the relevant parameter exceeds the reference threshold and is within the second threshold, determining the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determining the operation instruction information as an instruction of power management operation; and when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
  • the system may include a storage device storing a set of instructions, and one or more processors in communication with the storage device.
  • the one or more processors may be configured to cause the system to acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting the working state of the on-board equipment.
  • the one or more processors may also be configured to cause the system to determine an operation instruction information related to the on-board equipment based on the relevant parameter the a preset threshold.
  • the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
  • the one or more processors may be configured to cause the system to acquire a voltage across the resistor in serial with the on-board equipment, and determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, wherein the current may reflect the working current flowing through the on-board equipment.
  • the error of the resistance may be less than or equal to 1%.
  • the resistance of the resistor may be less than or equal to 1 ohm.
  • the one or more processors may be configured to detect the temperature of the on-board equipment via a temperature sensor.
  • the preset threshold may include a reference threshold
  • the one or more processors may be configured to cause the system to, when the relevant parameter is greater than the reference threshold, determine the operation instruction information as an instruction of power off operation; wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
  • the preset threshold may further include a reference threshold and a first threshold, the first threshold is greater than the reference threshold, and the one or more processors may be configured to cause the system to, when the relevant parameter exceeds the reference threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  • the preset threshold may further include a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, and the one or more processors may be configured to cause the system to, when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power management operation; when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  • the system may include an acquisition module, configured to acquire a relevant parameter of the on-board equipment, wherein the relevant parameter may reflect the working state of the on-board equipment; and a determination module, configured to, determine an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  • the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
  • the acquisition module may be configured to: acquire a voltage across a resistor in series with the on-board equipment; and determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, the current reflecting the working current flowing through the on-board equipment.
  • an error of the resistance may be less than or equal to 1%.
  • the resistance of the resistor may less than or equal to 1 ohm.
  • the acquisition module is configured to detect the temperature of the on-board equipment via a temperature sensor.
  • the preset threshold may include a reference threshold
  • the determination module is configured to when the relevant parameter is greater than reference threshold, determine the operation instruction information as an instruction of power off operation, wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
  • the preset threshold may further include a reference threshold and a first threshold, the first threshold is greater than the reference threshold, and the determination module is configured to, when the relevant parameter exceeds the reference threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, it is determined that the operation instruction information is the power off operation indication.
  • the preset threshold further includes a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, and the determination module is configured to, when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power management operation; and when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  • Another aspect of the present disclosure also provides a monitoring device of an on-board equipment including a processor to perform the method for monitoring the on-board equipment as mentioned above.
  • Another aspect of the present disclosure also provides a computer-readable storage medium storing computer instructions.
  • the computer may execute the method for monitoring an on-board equipment as described above.
  • the monitoring device may include a monitoring unit for monitoring a relevant parameter of an on-board equipment, and the relevant parameter may reflect a working state of the on-board equipment.
  • the monitoring unit may include a current monitoring unit or a temperature monitoring unit.
  • the current monitoring unit may be configured to monitor a working current of the on-board equipment.
  • the temperature monitoring unit may be configured to monitor a temperature of the on-board equipment.
  • the temperature monitoring unit may include a divider resistor, one end of the divider resistor is connected to a power supply of the on-board equipment, and another end of the divider resistor is connected to a second processing unit; a thermal resistor, connected in series with the divider resistor; a second acquisition unit, configured to acquire a voltage across the thermal resistor or a voltage across the divider resistor or a voltage between the divider resistor and the thermal resistor; and the second processing unit is connected to the second acquisition unit and configured to determine a temperature change of the on-board equipment according to an acquisition result of the second acquisition unit.
  • the current monitoring unit may include a sampling resistor, one end of the sampling resistor is connected to a power supply of the on-board equipment, and another end of the sampling resistor is connected to a processing unit; an acquisition unit, an input end of the acquisition unit is connected to both ends of the sampling resistor, an output end of the acquisition unit is connected to the processing unit, and the acquisition unit is configured to acquire a voltage across the sampling resistor; and the processing unit, configured to determine a working current of the on-board equipment based on the voltage across the sampling resistor.
  • an error of a resistance of the sampling resistor is less than or equal to 1%.
  • a resistance of the sampling resistor is less than or equal to 1 ohm.
  • the acquisition unit is an analog-to-digital converter.
  • a first input end of the acquisition unit is connected to one end of a first protection resistor, another end of the first protection resistor is connected to one end of the sampling resistor, the second input end of the acquisition unit is connected to one end of a second protection resistor, and another end of the second protection resistor is connected to another end of the sampling resistor.
  • the processing unit is further configured to cut off the power supply of the on-board equipment when the working current is greater than a rated current of the on-board equipment.
  • the monitoring device may further include a conversion circuit, one end of the conversion circuit is connected to a vehicle power supply, another end is connected to the power supply of the on-board equipment, and the conversion circuit is configured to convert an output voltage of the vehicle power supply to the rated voltage of the on-board equipment.
  • the conversion circuit may at least include a DC step-down converter, one end of the DC step-down converter is connected to the vehicle power supply, and another of the DC step-down converter end is connected to the power supply of the on-board equipment.
  • the processing unit may be further configured to control the conversion circuit to stop outputting voltage when the working current is greater than the rated current of the on-board equipment.
  • Another aspect of the present disclosure also provides an on-board equipment which may at least include a monitoring device as described above.
  • a sampling resistor is provided between the power supply of the on-board equipment and the processing unit that actually implements the function of the on-board equipment.
  • the voltage value across the sampling resistor is measured in real time as a basis for determining the working current of the on-board equipment. And for users, they may know the working current of on-board equipment in a timely manner, and process it in time when the on-board equipment is in an abnormal working state, so as to prevent the abnormal power consumption of the on-board equipment from damaging the vehicle battery.
  • FIG. 1 is a schematic diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure
  • FIG. 2 is a flowchart illustrating an exemplary process for monitoring an on-board equipment according to some embodiments of the present disclosure
  • FIG. 3 is a block diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an exemplary connection between a vehicle battery and a power supply of an on-board equipment according to some embodiments of the present disclosure
  • FIG. 6 is another schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic circuit diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
  • system, ” “device, ” “unit, ” and/or “module” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, if other words may achieve the same purpose, the words may be replaced by other expressions.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It should be noted that the foregoing or the following operations may not be performed in the order accurately. Instead, the steps can be processed in reverse order or simultaneously. Besides, one or more other operations may be added to the flow charts, or one or more operations may be omitted from the flow chart.
  • Some embodiments of the present disclosure provide methods and systems for monitoring an on-board equipment, which may be applied in different types of vehicles, including those used on the land, in the ocean, in the aerospace, etc.
  • exemplary vehicle includes a land vehicle, including a taxi, a private car, a sharing car, a bus, a truck, a lorry, a load-bearing car, etc.
  • the on-board equipment may be different types of electronic devices with additional functions applied to vehicles.
  • the on-board equipment may include driving recorders, car stereos, car display devices, car GPSs, car WIFIs, car alarm systems, and other electronic devices.
  • the method and system are mainly applied to on-board equipment mounted on a vehicle such as a driving recorder. It should be understood that application scenarios of the system and method disclosed herein are only some examples or embodiments of the present disclosure. Those skilled in the art, without further creative efforts, may apply the present disclosure to other similar scenarios according to these drawings.
  • an on-board equipment may usually need to be connected to the vehicle’s battery for power supply.
  • the power consumption of the on-board equipment in a normal working state may be at most within 1A.
  • the on-board equipment may reduce its power consumption to limit its current to 20mA or less.
  • the on-board equipment may continue to consume power with the current of 1A after the vehicle is turned off.
  • the vehicle battery capacity as 50Ah as an example, the vehicle battery may be exhausted in about 50 hours in this case. If the battery is exhausted several times, the damage to the vehicle battery may be very large, which may accelerate the aging speed and shorten the service life of the vehicle battery.
  • a protection-related mechanism may be triggered when the on-board equipment is in an abnormal working state, thereby reducing the loss of the vehicle battery, and increasing the service life of the vehicle battery.
  • a sampling resistor may be provided in the on-board equipment and a working current of the on-board equipment may be determined by measuring the voltage across the sampling resistor, thereby reflecting the working state of the on-board equipment.
  • the working state of the on-board equipment may also be directly determined by measuring the voltage across the sampling resistor in the on-board equipment.
  • a temperature sensor may be provided in the on-board equipment and thus the temperature of the on-board equipment may be measured by the temperature sensor, thereby reflecting the working state of the on-board equipment.
  • FIG. 1 is a schematic diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure.
  • the on-board equipment monitoring system 100 may monitor the working state of the on-board equipment and determine an operation information related to the on-board equipment based on the working state.
  • the on-board equipment monitoring system 100 may include a server 110, a network 120, an on-board equipment 130, a user terminal 140, and a storage device 150.
  • the working state may mainly include the following three types: a normal working state, used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use; a low power consumption state, used to characterize the state that the on-board equipment works with lower power consumption after the vehicle is turned off; an abnormal working state, used to characterize the working state that a working current of the on-board equipment is greater than a rated working current.
  • a normal working state used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use
  • a low power consumption state used to characterize the state that the on-board equipment works with lower power consumption after the vehicle is turned off
  • an abnormal working state used to characterize the working state that a working current of the on-board equipment is greater than a rated working current.
  • the abnormal working state of the on-board equipment may include two situations: the abnormal working state of the on-board equipment when the vehicle is not turned off, for example, the working current of the on-board equipment is greater than a rated working current corresponding to the turned-on state of the vehicle; and the abnormal working state of the on-board equipment when the vehicle is turned off, for example, the working current of the on-board equipment is greater than another rated working current corresponding to the turned-off state of the vehicle.
  • the on-board equipment when the on-board equipment is in a normal working state, it may be understood that the on-board equipment is in normal use of the vehicle battery, that is, the power consumption of the on-board equipment does not cause dramatic loss to the capacity of the vehicle battery.
  • the on-board equipment When the on-board equipment is in a low power consumption state after the vehicle is turned off, the on-board equipment may be considered to be in the normal working state.
  • the normal working state of the on-board equipment in one or more embodiments of this specification may include the normal working state of the on-board equipment when the vehicle is working normally, for example, the working current of the on-board equipment is within a preset rated working current (e.g., within the rated working current corresponding to the turned-on state of the vehicle) ; and the normal working state of the on-board equipment when the vehicle is turned off, for example, the working current of the on-board equipment is within another preset rated working current (e.g., the rated working current corresponding to the turned-off state of the vehicle) .
  • a preset rated working current e.g., within the rated working current corresponding to the turned-on state of the vehicle
  • the working current of the on-board equipment when the vehicle is turned off for example, the working current of the on-board equipment is within another preset rated working current (e.g., the rated working current corresponding to the turned-off state of the vehicle) .
  • the rated working current may be understood as a preset current value.
  • the rated working current of the on-board equipment may include the corresponding rated working current when the vehicle is work normally (e.g., turned on) and the corresponding rated working current when the vehicle is turned off.
  • the corresponding rated working currents of the on-board equipment may be different.
  • the specific value of the rated working currents of different on-board equipments when the vehicle normally works and the specific value of the rated working current when the vehicle is turned off may be configured according to different situations, which is not limited herein.
  • the corresponding rated working currents may also be different.
  • the rated working current of an on-board equipment in the normal working state of the vehicle may be in the range of 50mA ⁇ 1A, and the rated working current of the on-board equipment after the vehicle is turned off (e.g., when the on-board equipment is in the low power consumption working state) may be less than 50mA.
  • an on-board equipment stays in the abnormal working state for a long time, it may accelerate the aging speed of the vehicle battery. Therefore, by monitoring the working state of the on-board equipment and performing targeted follow-up operations on the on-board equipment in the abnormal working state, the use of the vehicle battery may be protected and the shortening of the service life of the vehicle battery due to abnormal use of the on-board equipment may be avoided.
  • different operations on the on-board equipment may be performed accordingly, e.g., a reminder operation or a power off operation, etc.
  • the server 110 may process data and/or information from at least one component of the on-board equipment monitoring system 100.
  • the on-board equipment 130 may acquire a relevant parameter that reflects the working state of the on-board equipment 130 and send the relevant parameter to the server 110.
  • the server 110 may process the relevant parameter, determine the working state of the on-board equipment 130, and further determine the operation instruction information related to the on-board equipment 130 according to the working state of the on-board equipment 130. For example, by comparing the relevant parameter with a corresponding preset threshold, the server 110 may determine the operation instruction information as a reminder operation or power management operation.
  • the server 110 may also send the operation instruction information to the on-board equipment 130 or the user terminal 140 according to the determined operation instruction information.
  • the server 110 may acquire the voltage across the resistor in series with the on- board equipment 130, and determine the corresponding current to reflect the working current flowing through the on-board equipment 130 based on the voltage across the resistor.
  • the server 110 may be a single server or a server group.
  • the server group may be a centralized server group connected to the network 120 via an access point, or a distributed server group respectively connected to the network 120 via at least one access point.
  • the server 110 may be locally connected to the network 120 or remotely connected to the network 120.
  • the server 110 may access information and/or data stored in the on-board equipment 130, the user terminal 140, and/or the storage device 150 via the network 120.
  • the storage device 150 may be used as the back-end data storage of the server 110.
  • the server 110 may be implemented on a cloud platform.
  • the cloud platform may be a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the server 110 may include a processing device 112.
  • the processing device 112 may process information and/or data related to at least one function described in the present disclosure. In some embodiments, the processing device 112 may perform the main functions of the on-board equipment monitoring system 100. In some embodiments, the processing device 112 may also be disposed or partially disposed on the on-board equipment 130. In some embodiments, the processing device 112 may process the relevant parameter that reflects the working state of the on-board equipment 130 to determine the operation instruction information related to the on-board equipment 130. In some embodiments, the processing device 112 may perform other functions related to the methods and systems described in the present disclosure.
  • the processing device 112 may include at least one processing unit (e.g., a single-core processing device or a multi-core processing device) .
  • the processing device 112 includes a central processing unit (CPU) , an application specific integrated circuit (ASIC) , a dedicated application instruction set processor (ASIP) , a graphics processing unit (GPU) , a physical processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • ASIP dedicated application instruction set processor
  • GPU graphics processing unit
  • PPU physical processing unit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • controller a microcontroller unit, a reduced instruction set
  • the network 120 may facilitate the exchange of information and/or data.
  • at least one component in the on-board equipment monitoring system 100 e.g., the server 110, the on-board equipment 130, the user terminal 140, and the storage device 150
  • the processing device 112 may receive a preset threshold corresponding to the relevant parameter from the storage device 150 via the network 120.
  • the processing device 112 may send the operation instruction information to the user terminal 140 via the network 120.
  • the network 120 may be any type of wired or wireless network, or combination thereof.
  • the network 120 may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PTSN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network 120 may include at least one network access point.
  • the network 120 may include wired or wireless network access points, such as base stations and/or internet exchange points 120-1, 120-2, ..., through which at least one component of the on-board equipment monitoring system 100 may be connected to the network 120 to exchange data and/or information.
  • wired or wireless network access points such as base stations and/or internet exchange points 120-1, 120-2, ...
  • the on-board equipment 130 may be an electronic system or device that can be used on a vehicle to increase the functionality of the vehicle.
  • the electronic system or device may usually use a vehicle battery on the vehicle for power supply.
  • the on-board equipment may include a camera installed in the vehicle (e.g., a driving recorder) , a camera mounted outside the vehicle (e.g., a camera mounted on the body of the vehicle) , a car audio, and a car display, a car GPS, a car navigation, a car WIFI, a car charger, an refrigerator, a car computer, a car alarm system, or the like, or any combination thereof.
  • part of the relevant parameter (s) of an on-board equipment may reflect the working state of the on-board equipment, and the working state may include a normal working state, a low power consumption state, and an abnormal working state.
  • the relevant parameter of an on-board equipment may be acquired through a monitoring device.
  • the monitoring device of the on-board equipment 130 may acquire the working current of the on-board equipment using a sampling resistor.
  • the monitoring device of the on-board equipment 130 may detect the temperature of the on-board equipment using a temperature sensor.
  • the on-board equipment 130 may also include at least part of the processing device 112 for performing related operations according to the operation instruction information related to the on-board equipment.
  • a reminder operation instruction, a power management operation instruction or a power off operation instruction may be executed.
  • the processing device 112 (or part of) inside the on-board equipment 130 may perform related functions of the server 110 and process related data.
  • a vehicle user may connect to the server 110 and then the on-board equipment 130 through the user terminal 140, or directly connect to on-board equipment 130 through the user terminal 140 to assist in the realization of related functions of the on-board equipment 130.
  • the vehicle user may acquire information, working state, etc. related to the on-board equipment 130 through the user terminal 140.
  • the user terminal 140 may also receive reminder operation information sent by the server 110 or the on-board equipment 130.
  • a vehicle user may receive text reminders, voice reminders, and other forms of reminder information through the user terminal 140 to remind the vehicle user that the on-board equipment 130 may be in an abnormal working state.
  • the user terminal 140 may include a mobile device 140-1, a tablet computer 140-2, a laptop computer 140-3, etc., or any combination thereof.
  • the mobile device 140-1 may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof.
  • the smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof.
  • the wearable device may include a smart bracelet, a smart footgear, a smart glass, a smart helmet, a smart watch, a smart clothing, a smart backpack, a smart accessory, or the like, or any combination thereof.
  • the smart mobile device may include a smartphone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, or the like, or any combination thereof.
  • the virtual reality device and/or augmented virtual reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patches, augmented reality helmets, augmented reality glasses, augmented reality patches or the like, or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include GoogleGlass TM , OculusRift TM , Hololens TM , GearVR TM , or the like.
  • the storage device 150 may store data and/or instructions. For example, the preset threshold of a relevant parameter may be stored. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 112 may execute, and the server 110 may use the data and/or instructions to implement the exemplary methods described by the present disclosure. In some embodiments, the storage device 150 may include a mass storage, a removable storage, a volatile read-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-write memory may include a random access memory (RAM) .
  • RAM may include a dynamic random access memory (DRAM) , a double data rate synchronous dynamic random access memory (DDRSDRAM) , a static random access memory (SRAM) , a thyristor random access memory (T-RAM) , and a zero capacitance Random access memory (Z-RAM) , etc.
  • DRAM dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • SRAM static random access memory
  • T-RAM thyristor random access memory
  • Z-RAM zero capacitance Random access memory
  • Exemplary read-only memory may include a mask-type read-only memory (MROM) , a programmable read-only memory (PROM) , an erasable programmable read-only memory (EPROM) , an electrically erasable programmable read-only memory (EEPROM) , a CD-ROM and a digital multi-function disk read-only memory, etc.
  • the storage device 150 may be implemented on a cloud platform.
  • the cloud platform may be a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • on-board equipment monitoring system 100 is merely provided for the purpose of illustration, and is not intended to limit the scope of the present disclosure.
  • multiple variations or modifications may be made to the on-board equipment monitoring system 100 under the teachings of the present disclosure.
  • those variations and modifications do not depart from the scope of the present disclosure.
  • FIG. 2 is a flowchart illustrating an exemplary process for monitoring an on-board equipment according to some embodiments of the present disclosure.
  • one or more steps in the process 200 may be implemented by a processing device in the server 110 or set on the on-board equipment 130.
  • the processing device may acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment.
  • the on-board equipment may be different types of electronic devices with additional functions applied to vehicles.
  • the on-board equipment may include a driving recorder, a car audio, a car display device, a car GPS, a car WIFI, a car alarm system, etc.
  • the on-board equipment may include a normal working state and an abnormal working state, including the normal working state and the abnormal working state of the on-board equipment when the vehicle is work normally, and the low power consumption state (which is another normal working state) and another abnormal working state of the on-board equipment when the vehicle is turned off. Relevant descriptions about the working states of an on-board equipment may be found in other parts of this specification, and is not be repeated here.
  • a relevant parameter of an on-board equipment may reflect the working state of the on-board equipment. By simply processing the relevant parameter, the working state of the on-board equipment may be determined.
  • the relevant parameter of an on-board equipment may include the working current of the on-board equipment and/or the temperature of the on-board equipment.
  • the working currents of the on-board equipment may be different. For example, the working current of an on-board equipment in the normal working state may be 1A, and the working current in the abnormal working state may be 1.5A. Therefore, the working state of an on-board equipment may be determined by monitoring the working current.
  • the temperature of an on-board equipment when the temperature of an on-board equipment is high, the working current through the on-board equipment may be large too. Therefore, the temperature of an on-board equipment may reflect the working current or the working state of the on-board equipment to a certain extent.
  • the relevant parameter may also include other data that can reflect the working state of an on-board equipment, for example, the power consumption speed of the vehicle battery, etc.
  • the working state of the on-board equipment may be determined by acquiring the working current of the on-board equipment.
  • the working current of the on-board equipment may be acquired by acquiring a voltage across the on-board equipment and a resistor of the on-board equipment.
  • the working current of the on-board equipment may be acquired by acquiring a voltage across a resistor connected in series with the on-board equipment, and based on the resistance of the resistor and the voltage across the resistor, a corresponding current may be determined, which may reflect the working current of the on-board equipment.
  • a specific solution may include setting a sampling resistor in a monitoring device of the on-board equipment.
  • the sampling resistor may be connected in series with the power supply of the on-board equipment.
  • the current flowing through the sampling resistor may be the working current of the on-board equipment.
  • the sampling resistor in order to ensure the consistency of the data acquired in different on-board equipment, may be a high-precision resistor with a resistance error less than 5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 4.5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 4%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 3.5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 3%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 2.5%.
  • the sampling resistor may also be a high-precision resistor with a resistance error less than 2%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 1.5%. In some embodiments, the sampling resistor may preferably be a high precision resistor with a resistance error less than or equal to 1%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 0.5%.
  • the resistance within the resistance error range the consistency of the data acquired by the on-board equipment may be guaranteed to a certain extent. For example, if a high-precision resistor with a resistance error within 1%is used, the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent.
  • the sampling resistor with a resistance within 1 ohm may be selected.
  • the sampling resistor may be with a resistance of 0.1 ⁇ 0.5 ohm.
  • the sampling resistor may be with a resistor of 0.05 ⁇ 0.1 ohm.
  • a high-precision resistor of 0.1 ohm or 0.056 ohm may preferably selected.
  • the acquiring the relevant parameter of the on-board equipment may include detecting the temperature of the on-board equipment by a temperature sensor. If an on-board equipment is in the abnormal working state for a long time, the working current may be greater than the rated working current. Therefore, the temperature of the on-board equipment may gradually increase, thus reflecting the working state of the on-board equipment to a certain extent.
  • the temperature of the on-board equipment may be detected by a temperature sensor in the monitoring device of the on-board equipment.
  • a thermal resistor may be set in the on-board equipment, and the resistance of the thermal resistor may vary with temperature.
  • the temperature of the on-board equipment may be obtained by detecting the change of a certain parameter (for example, a change of the voltage value, a change of the resistance value, etc. ) of the thermal resistor. In some embodiments, when the detected temperature reaches a certain preset value, related subsequent operations may be performed. For example, the processing device may cut off the power supply of the on-board equipment.
  • a certain parameter for example, a change of the voltage value, a change of the resistance value, etc.
  • a sampling period may be set to acquire a relevant parameter of an on-board equipment.
  • the sampling period may be understood as the interval between two acquisitions of the voltage across a sampling period or the temperature of the on-board equipment.
  • a relevant parameter of an on-board equipment may be acquired in real time.
  • the sampling period may be set to be over 1 second.
  • the sampling period may be a monitoring period in seconds (from 1 second to 60 seconds) , for example, 5 seconds, 10 seconds, 20 seconds, etc.
  • the sampling period may be a monitoring period in minutes (from 1 minute to 60 minutes) , for example, 5 minutes, 10 minutes, 30 minutes, etc.
  • the sampling period may be set according to factors such as different usage scenarios, different vehicle models, different time periods, or other factors.
  • the sampling period may be a fixed value or be automatically adjusted according to usage conditions. For example, when the power of the vehicle battery is low, the sampling period may be shorter (e.g., in seconds) , and when the power of the vehicle battery is large, the sampling period may be slightly longer (e.g., in minutes) .
  • the sampling period may not be too long, preferably not more than 1 hour.
  • a relevant parameter of an on-board equipment may also be acquired in real time, that is to say, real-time monitoring the voltage across the sampling resistor or the temperature of the on-board equipment.
  • the voltage across the sampling resistor may be acquired in real time, and the current (that is, the working current of on-board equipment) flowing through the sampling resistor may be calculated in real time.
  • the temperature of the on-board equipment may be monitored in real time via a temperature sensor or a thermal resistor.
  • a relevant parameter of an on-board equipment in real time may reflect the working state of the on-board equipment in real time, and when the on-board equipment is at an abnormal working state, corresponding measures may be taken in time to reduce the power consumption of the vehicle battery.
  • the processing device may determine operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  • a preset threshold corresponding to the relevant parameter may be preset to determine the working state of the on-board equipment.
  • the preset threshold corresponding to the relevant parameter when the relevant parameter is a working current of an on-board equipment, the preset threshold corresponding to the relevant parameter may be a certain current value, and when the relevant parameter is a temperature of the on-board equipment, the preset threshold corresponding to the relevant parameter may be a certain temperature value.
  • the preset threshold may be a certain current value or a temperature value, or be a ratio threshold that exceeds the current value or temperature value when the on-board equipment is in the normal working state.
  • the preset threshold may also be a ratio of 10%, 30%, 50%, etc.
  • the preset threshold may be the data measured by a designer (or a manufacturer, etc. ) of the on-board equipment in a laboratory, and may be updated according to situations during subsequent use. In some embodiments, the preset threshold corresponding to different usage scenarios, different vehicle models, and different time periods may be set as different values, and may be updated according to usage conditions.
  • the preset threshold may include a plurality of different thresholds to judge the abnormality of an on-board equipment.
  • the on-board equipment may execute the corresponding operation instruction information.
  • the preset threshold may include a reference threshold, a first threshold, a second threshold, a third threshold, etc., which are generally greater than the value when an on-board equipment is in the normal working state.
  • the preset threshold may include a reference threshold.
  • the operation instruction information may be determined as an instruction of power off operation.
  • the power off operation may includes cutting off power transmission between a vehicle battery and the on-board equipment.
  • the preset threshold may only include a reference threshold, and the reference threshold may be set to exceed 0%or more than 0%of the value in the normal working state of the on-board equipment. In some embodiments, the reference threshold may be set to exceed 10% ⁇ 100%of the value in the normal working state of the on-board equipment. In some embodiments, the reference threshold may be set to exceed 10% ⁇ 50%of the value in the normal working state of the on-board equipment, or other applicable values. For example, the reference threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment.
  • the power off operation instruction may be executed.
  • a power supply of an on-board equipment may need to be powered by a vehicle battery. Since the voltage of the vehicle battery does not match the rated input voltage of the power supply of the on-board equipment, the voltage of the vehicle battery may need to be converted by a conversion circuit.
  • the power off operation instruction may include operations such as turning off the output of the conversion circuit to power off the power supply of the on-board equipment or directly turning off on-board equipment, etc.
  • the server 110 may issue an instruction to the vehicle through the network to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130.
  • the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit through the connection with the vehicle, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be turned off automatically.
  • the preset threshold may further include a first threshold, and the first threshold is larger than the reference threshold.
  • the operation instruction information may be determined as an instruction of reminder operation.
  • the operation instruction information may be determined as an instruction of power off operation.
  • the preset threshold may include the reference threshold and the first threshold, wherein the first threshold may be larger than the reference threshold.
  • both the reference threshold and the first threshold may be set to exceed 0%and above, e.g., 0% ⁇ 100%, 10% ⁇ 50%of the value in the normal working state of the on-board equipment, or other applicable values, provided that the first threshold is greater than the reference threshold.
  • the reference threshold may be set to exceed 20%of the value in the normal working state of the on-board equipment
  • the first threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment.
  • the reminder operation instruction may be executed.
  • the power off operation instruction may be executed.
  • the reminder operation instruction may include reminding the vehicle user that the on-board equipment may be in an abnormal working state via the on-board equipment 130 or a user terminal 140.
  • the remaindering may include text reminders, voice reminders, or other kinds of forms.
  • the server 110 may turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130.
  • the server 110 may issue instructions to the on-board equipment 130 to remind the vehicle user in various ways via the network.
  • the server 110 may also send information to the user terminal via the network to remind the vehicle user.
  • the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be directly turned off automatically.
  • the on-board equipment 130 may directly remind the vehicle user in various ways.
  • the preset threshold may further include a second threshold, and the second threshold may be larger than the reference threshold and smaller than the first threshold.
  • the operation instruction information may be determined as an instruction of reminder operation.
  • the operation instruction information may be determined as an instruction of power management operation.
  • the operation instruction information may be determined as an instruction of power off operation.
  • the preset threshold may include a reference threshold, a first threshold and a second threshold, wherein the first threshold may be greater than the reference threshold, the second threshold may be greater than the reference threshold and smaller than the first threshold.
  • the reference threshold, the first threshold and the second threshold may all be set to exceed 0%and above, e.g., 0% ⁇ 100%, 10% ⁇ 50%of the value in the normal working state of the on-board equipment, or other applicable values, provided that the first threshold is greater than the reference threshold, and the second threshold is greater than the reference threshold and smaller than the first threshold.
  • the reference threshold may be set to exceed 10%of the value in the normal working state of the on-board equipment
  • the first threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment
  • the second threshold may be set to exceed 20%of the value in the normal working state of the on-board equipment.
  • the power management operation instruction may include managing some unnecessary programs in the vehicle or in the on-board equipment (e.g., closing some application programs to reduce the power consumption of the vehicle or the on-board equipment) .
  • the server 110 may turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130.
  • the server 110 may issue instructions to the on-board equipment to close unnecessary applications to reduce power consumption.
  • the server 110 may issue instructions to the on-board equipment to remind the vehicle user in various ways.
  • the server 110 may also send information to the user terminal via the network to remind the vehicle user.
  • the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be directly turned off automatically.
  • the on-board equipment 130 when the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the second threshold and is within the first threshold, the on-board equipment 130 may close unnecessary applications to reduce unnecessary power consumption itself. In some embodiments, when the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the reference threshold and is within the second threshold, the on-board equipment 130 may directly remind the vehicle user in various ways.
  • the on-board equipment since the on-board equipment includes two normal working states: when the vehicle is work normally and when the vehicle is turned off, it may be necessary to set corresponding preset thresholds according to the two normal working states, respectively.
  • one or more preset thresholds may also be selected according to the current working state of the vehicle (for example, whether the vehicle is working normally or is turned off) to judge the working state of the on-board equipment.
  • the current working state of the vehicle may be determined through external input of the user, and then a corresponding preset threshold may be selected to determine the working state of the on-board equipment.
  • the user may determine whether the vehicle is working normally or is turned off through button selection on the on-board equipment.
  • it may also possible to only detect whether the on-board equipment is in a normal state when the vehicle is in turned off, that is, a low power consumption state of the on-board equipment, and only a preset threshold corresponding to this scene may need to be set at this time.
  • FIG. 3 is a block diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure. As shown in FIG. 3, the system may include an acquisition module 310 and a determination module 320.
  • the acquisition module 310 may be configured to acquire a relevant parameter of an on-board equipment, and the relevant parameter may reflect the working state of the on-board equipment.
  • the relevant parameter of the on-board equipment may include the working current of the on-board equipment and/or the temperature of the on-board equipment.
  • the acquisition module 310 may be configured to acquire a voltage across a resistor in series with the on-board equipment, and determine a corresponding current based on the resistance of the resistor and the voltage across the resistor. The current may reflect the working current flowing through the on-board equipment.
  • the acquisition module 310 may be configured to detect the temperature of the on-board equipment via a temperature sensor.
  • the determination module 320 may be configured to determine an operation instruction information related to the on-board equipment based on the relevant parameter and the corresponding preset threshold.
  • the preset threshold may include a reference threshold, and the determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter is greater than a reference threshold.
  • the power off operation may include cutting off power transmission between a vehicle battery and the on-board equipment.
  • the preset threshold may further include a first threshold, and the first threshold may be greater than the reference threshold.
  • the determination module 320 may be configured to determine the operation instruction information as an instruction of reminder operation when the relevant parameter exceeds the reference threshold and is within the first threshold.
  • the determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter exceeds the first threshold.
  • the preset threshold may further include a second threshold, and the second threshold may be greater than the reference threshold and less than the first threshold.
  • the determination module 320 may be configured to determine the operation instruction information as an instruction of reminder operation when the relevant parameter exceeds the reference threshold and is within the second threshold.
  • the determination module 320 may be configured to determine the operation instruction information as an instruction of power management operation when the relevant parameter exceeds the second threshold and is within the first threshold.
  • the determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter exceeds the first threshold.
  • system and its modules shown in FIG. 3 may be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part may be implemented using dedicated logic.
  • the software may be stored in a storage and may be implemented by an appropriate instruction executing system (e.g., a microprocessor, a dedicated design hardware, etc. ) .
  • an appropriate instruction executing system e.g., a microprocessor, a dedicated design hardware, etc.
  • the above methods and systems may be implemented by computer-executable instructions and/or embedding in control codes of a processor.
  • control codes may be provided by a medium such as a disk, a CD or a DVD-ROM, a programmable memory device such as read-only memory (e.g., firmware) , or a data carrier such as an optical or electric signal carrier.
  • a programmable memory device such as read-only memory (e.g., firmware)
  • a data carrier such as an optical or electric signal carrier.
  • the system and the module in the present disclosure may be implemented not only by a hardware circuit in a programmable hardware device in a ultra large scale integrated circuit, a gate array chip, a semiconductor such a logic chip or a transistor, a field programmable gate array, or a programmable logic device, but also by a software performed by various processors, and further also by a combination of the hardware and the software above (e.g., firmware) .
  • the acquisition module 310 and the determination module 320 disclosed in FIG. 3 may be different modules in a system, or be a module that implements the functions of the two modules.
  • each module may share a single storage module, or each module may have its own storage module. All such modifications are within the protection scope of the present disclosure.
  • Some embodiments of the present disclosure may also provide a monitoring device capable of monitoring the working state of an on-board equipment and an on-board equipment with the above monitoring device.
  • the monitor device may be mainly used in an on-board equipment assembled in vehicles.
  • the on-board equipment may be various types of equipment with extended functions, including a driving recorder, a car navigation, a vehicle alarm system, etc., which are assembled on vehicles.
  • the on- board equipment may include a normal working state and an abnormal working state, including the normal working state and the abnormal working state of the on-board equipment when the vehicle is work normally, and the low power consumption state (which is another normal working state) and another abnormal working state of the on-board equipment when the vehicle is turned off. Relevant descriptions about the working status of an on-board equipment may be found in other parts of this specification, and may not be repeated here.
  • the monitoring device may include a monitoring unit for monitoring a relevant parameter of the on-board equipment, and the relevant parameter may reflect the working state of the on-board equipment.
  • the monitoring unit may include a current monitoring unit and/or a temperature monitoring unit. The current monitoring unit may be configured to monitor the working current of the on-board equipment, and the temperature monitoring unit may be configured to monitor the temperature of the on-board equipment.
  • the temperature monitoring unit when the monitoring unit includes a temperature monitoring unit, may include a divider resistor, a thermal resistor, a second acquisition unit, and a second processing unit.
  • One end of the divider resistor may be connected to a power supply of the on-board equipment, and another end of the divider resistor may be connected to the second processing unit.
  • the thermal resistor may be connected in series with the divider resistor.
  • the second acquisition unit may be configured to acquire a voltage across the thermal resistor or a voltage across the divider resistor or a voltage between the divider resistor and the thermal resistor.
  • the second processing unit may be connected to the second acquisition unit and be configured to determine a temperature change of the on-board equipment according to the acquisition result of the acquisition unit.
  • the divider resistor may be a resistor with a fixed resistance
  • the thermal resistor may be a resistor whose resistance varies with temperature, and there may be a certain variation rule between the resistance and the temperature.
  • the second processing unit may determine a ratio between the voltage across the divider resistor and the voltage across the thermal resistor. Since the thermal resistor is connected in series with the divider resistor, the second processing unit may calculate the resistance of thermal resistor according to the resistance of the divider resistor and the above ratio. In some embodiments, according to the calculated resistance of the thermal resistor and the rule of the thermal resistor changing with temperature, the second processing unit may process and obtain the temperature of the on-board equipment.
  • an acquisition unit may also be set to directly detect the voltage across the thermal resistor and the current of the thermal resistor, thereby calculating the resistance of the thermal resistor.
  • the thermal resistor may be disposed beside the component that is most likely to generate heat in an on-board equipment, so that the heat change of the on-board equipment may be acquired in time.
  • the component may include a circuit board, and specifically, the thermal resistor may be disposed near the processing chip on the circuit board.
  • the current monitoring unit when the monitoring unit includes a current monitoring unit, the current monitoring unit may include a sampling resistor and an acquisition unit. One end of the sampling resistor may be connected to the power supply of the on-board equipment, and another end of the sampling resistor may be connected to a processing unit. An input end of the acquisition unit may be connected to both ends of the sampling resistor, and an output end may be connected to the processing unit.
  • the acquisition unit may be configured to acquire a voltage across the sampling resistor
  • the processing unit may be configured to determine the working current of the on-board equipment based on the voltage across the sampling resistor.
  • FIG. 4 is a schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating an exemplary connection between a vehicle battery and a power supply of an on-board equipment according to some embodiments of the present disclosure.
  • FIG. 6 is another schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic circuit diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
  • a monitoring device of an on-board equipment may include a power supply of the on-board equipment 10, a sampling resistor 20, an acquisition unit 30, and a processing unit 40.
  • the power supply of the on-board equipment 10 may be used for powering the internal structure of the on-board equipment, including the sampling resistor 20, the acquisition unit 30 and the processing unit 40.
  • the sampling resistor 20 may be a resistor provided between the power supply of the on-board equipment 10 and the processing unit 40. The current through the sampling resistor may be calculated by measuring the voltage value of the sampling resistor 20.
  • the processing unit 40 may be the core processor of an on-board equipment, configured to implement different functions of the on-board equipment, and may be connected in series with the sampling resistor.
  • the acquisition unit 30 may be a measurement unit connected in parallel at both ends of the sampling resistor 20, and may be used to measure the voltage value across the sampling resistor 20.
  • the power supply of the on-board equipment 10 is powered by a vehicle battery 500.
  • the supply voltage of the vehicle battery 500 does not match the rated input voltage of the power supply of the on-board equipment 10. Therefore, a conversion circuit 50 may be provided between the vehicle battery 500 and the power supply of the on-board equipment 10, used to convert the supply voltage of the vehicle battery 500 to the rated input voltage of the power supply of the on-board equipment 10.
  • VIN is the supply voltage of the vehicle battery.
  • the output voltage to the on-board equipment is VCC, which is the input voltage of the power supply of the on-board equipment.
  • different types of vehicle batteries have different supply voltage values.
  • the standard voltage may be generally 12V or 24V. Due to factors such as the manufacturer, the supply voltage may also have a certain error, but usually be kept within the range of 12V ⁇ 0.5V or 24V ⁇ 1V. In some embodiments, due to different states of the vehicle, such as an engine start, the supply voltage of the vehicle battery may deviate more from the standard voltage. In some embodiments, the rated input voltage of the power supply of the on-board equipment 10 may be generally within 5V, which may be 4.0V, 4.2V, 4.5V, etc. In some embodiments, as shown in FIG.
  • the output end of the vehicle battery 500 (that is, the vehicle's power supply) may be connected to a conversion circuit 50, and the voltage of 12V or 24V may be output as the rated input voltage (for example, 4.2V) of the power supply of the on-board equipment 10 through the conversion circuit 50 to prevent malfunction caused by overloading of the input voltage over the on-board equipment.
  • the supply voltage VIN of the vehicle battery in FIG. 7 may be 12V.
  • the converted voltage VCC may be 4.2V, which can be used as the input voltage of the power supply of the on-board equipment.
  • the capacity of a vehicle battery may be greater than 50Ah.
  • the current when the on-board equipment is in the normal working state may be within 1A.
  • the normal working on-board equipment may reduce its power consumption to be, for example, within 20mA.
  • the on-board equipment may continue to consume power at a current of near 1A after the vehicle is turned off.
  • the battery capacity as 50Ah as an example, the battery may be exhausted in about 50 hours in theory. If the battery is exhausted several times, the damage to the vehicle battery may be very dramatic, which may accelerate the aging speed and shorten the service life of the vehicle battery.
  • the input voltage (for example, 4.2V) of the power supply of the on-board equipment 10 may be converted to VBAT through a sampling resistor 20, and may be used to directly power the processing unit 40 and other components of the on-board equipment.
  • VBAT may be the voltage supplied to other components of the on-board equipment except the sampling resistor, and the current flowing through the sampling resistor 20 may be the working current of the on-board equipment.
  • the power input voltage of the on-board equipment may be VCC, and the supply voltage to other components of the on-board equipment may be VBAT.
  • the acquired voltage and the calculated current may be different.
  • the sampling resistor 20 may be a high-precision resistor with a resistance error less than 5%. In some embodiments, the sampling resistor 20 may preferably be a high-precision resistor with a resistance error less than or equal to 1%, so that the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent. In some embodiments, the sampling resistor 20 may also select other high precision resistors with higher precision. Further, in order to ensure that the use of the sampling resistor does not bring additional increase of the power consumption to the vehicle battery, the sampling resistor with a resistance within 1 ohm may be selected.
  • the acquisition unit 30 may be configured to acquire the voltage across the sampling resistor 20 in real time.
  • the input end may be connected to both ends of the sampling resistor 20, and the output end may be connected to the processing unit 40 to output the acquired voltage to the processing unit 40 to be further processed.
  • the acquisition unit 30 may use an analog-to-digital converter (ADC, Analog to Digital Converter) .
  • ADC Analog to Digital Converter
  • the voltage across the sampling resistor 20 may be acquired at a preset sampling period during use, which may be converted from an analog signal to a digital signal, and output to the processing unit 40 for processing.
  • the sampling period may be an interval between two acquisitions of the voltage across the sampling resistor.
  • a relevant parameter of an on-board equipment may be acquired in real time.
  • the sampling period may be set to be over 1 second.
  • the sampling period may be a monitoring period in seconds (from 1 second to 60 seconds) , for example, 5 seconds, 10 seconds, 20 seconds, etc.
  • the sampling period may be a monitoring period in minutes (from 1 minute to 60 minutes) , for example, 5 minutes, 10 minutes, 30 minutes, etc.
  • the sampling period may be set according to factors such as different usage scenarios, different vehicle models, different time periods, or other factors. The sampling period may be a fixed value or be automatically adjusted according to usage conditions.
  • the sampling period when the power of the vehicle battery is low, the sampling period may be shorter (e.g., in seconds) , while when the power of the vehicle battery is large, the sampling period may be slightly longer (e.g., in minutes) .
  • the time of sampling period in order to avoid the power of vehicle battery being exhausted or most of the power being consumed by an on-board equipment in the abnormal working state, the time of sampling period may not be too long, preferably not more than 1 hour.
  • a relevant parameter of an on-board equipment may also be acquired in real time, which means a real-time monitoring of the voltage across the sampling resistor or the temperature of the on-board equipment.
  • the voltage across the sampling resistor may be acquired in real time, and the current (that is, the working current of on-board equipment) flowing through the sampling resistor may be calculated in real time.
  • the temperature of the on-board equipment may be monitored in real time via a temperature sensor or a thermal resistor.
  • acquiring a relevant parameter of an on-board equipment in real time may reflect the working state of the on-board equipment in real time, and when the vehicle is detected at an abnormal working state, corresponding measures may be taken in time to reduce the power consumption of the vehicle battery.
  • a first input end of the acquisition unit 30 may be connected to one end of a first protection resistor 301, and another end of the first protection resistor 301 may be connected to one end of sampling resistor 20.
  • a second input end of the acquisition unit 30 may be connected to one end of a second protection resistor 302, and another end of the second protection resistor 302 may be connected to another end of the sampling resistor 20 to protect the monitoring device, or the first protection resistor 301 and the second protection resistor 302 may be replaced with anti-interference components to improve the anti-interference ability of the monitoring device.
  • the anti-interference elements NC33 and NC34 may be provided at both ends of the sampling resistor.
  • the processing unit 40 may directly use an on-chip system (SOC, System on Chip) of the on-board equipment, or a separate processing chip or processor, as long as the voltage value in the form of a digital signal may be received and the working current of the on-board equipment may be subsequently calculated.
  • SOC System on Chip
  • a SOC of an on-board equipment may be preferably used as the processing unit 40.
  • subsequent control may be further implemented. For example, in order to protect the vehicle battery, the processing unit 40 may calculate and determine the working current of the on-board equipment, compare its working current and the rated current of the on-board equipment in the normal working state.
  • the power of the on-board equipment may be turned off to prevent the vehicle battery from over-discharging consumption.
  • the rated current of the on-board equipment shall be only a few tens of milliamps. If the real-time working current monitored is 1A, the working current may be much larger than the rated current and the processed unit 40 may need to turn off the power supply of the on-board equipment to prevent excessive consumption of the vehicle battery, so as not to cause accelerated battery aging.
  • the conversion circuit 50 may include at least one DC step-down converter (DCDC, also referred to as high-voltage (low-voltage) DC power supply converted to low-voltage (high-voltage) DC power supply) .
  • DCDC DC step-down converter
  • One end of the DC step-down converter may be connected to the vehicle battery, and the other end may be connected to the power supply of the on-board equipment 10.
  • the DC step-down converter may be used to convert the 12V voltage output of the vehicle battery into the 4.2V voltage of the rated input of the on-board equipment.
  • VIN is the output voltage of the vehicle battery (12V) , and may be converted through U5 to obtain a VCC of 4.2V, which may be used as the power supply voltage of the on-board equipment.
  • DC step-down converter for the conversion between high voltage and low voltage is only a preferred implementation proposed in this embodiment.
  • other devices or other forms of conversion circuit may be selected according to the actual situation, as long as the conversion between high voltage and low voltage can be realized, and it is not intended to limit.
  • the processing unit 40 may issue a control command to control the DC step-down converter to stop outputting voltage when the working current is monitored to be greater than the rated current of the on-board equipment.
  • the vehicle battery may be protected by turning off the DCDC output to prevent the excessive consumption of the power of the vehicle battery, so as not to cause accelerated battery aging.
  • the vehicle battery when the monitored working current is greater than the rated current of the on-board equipment, the vehicle battery may also be protected by turning off the power supply of the on-board equipment.
  • a plurality of preset threshold may be set to determine the corresponding operation that may be performed. For example, when the relevant parameter is greater than the reference threshold, a power off operation may be executed.
  • a reminder operation may be executed.
  • a power management operation may be executed.
  • a sampling resistor may be set between the power supply of an on-board equipment 20 and the processing unit of the on-board equipment.
  • the voltage across the sampling resistor 20 may be measured in real time as the basis for determining the working current of the on-board equipment, which is further analyzed for users to know the working state of the on-board equipment in time.
  • the on-board equipment When the on-board equipment is in an abnormal working state, it may be processed in time to prevent the abnormal power consumption of the on-board equipment from causing damage to the vehicle battery.
  • a display unit may be used to display relevant information that needs to be displayed to vehicle users, such as reminder information or warning information, etc.
  • the communication unit may be used to communicate with the user terminal 140.
  • the alarm unit may be used to warn the abnormal working state of the on-board equipment. In some embodiments, if the current working current detected by the processing unit is greater than the rated current, it may be determined that the on-board equipment is currently in an abnormal working state.
  • the processing unit may turn off the power input and simultaneously display the corresponding alarm information on the display unit, and remind the user that the working current of the on-board equipment is too large through the alarm unit in the form of sound or warning light flashing, which prompts the user to promptly replace or repair the on-board equipment.
  • the manner of performing other functions through the display unit, the communication unit, or the alarm unit may be determined according to the comparison of the working current of the on-board equipment and the preset threshold.
  • the driving recorder installed on the vehicle may still at the working state.
  • the user may not get the alarm information in time if prompted by the display unit or the alarm unit, because the user is not in the car. Therefore the alarm information may be sent to the mobile terminal set by the user in advance through the communication unit, so that even if the user is not in the vehicle, the abnormal working state of the on-board equipment may be obtained in time to achieve timely replacement or maintenance of the on-board equipment.
  • Some embodiments of the present disclosure also provide an on-board equipment, which may be used for various devices with extended functions, such as a driving recorder, a car navigation system, a vehicle alarm system, etc. These on-board equipment are installed on the vehicle to provide more convenient driving functions for vehicles and vehicle owners.
  • the on-board equipment may be relatively close to the description included in the priority specification.
  • the working status of an on-board equipment may mainly include the following three types: a normal working status, used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use, and the rated working current of the on-board equipment may be usually 1A at this time; a low power state, used to ensure that the on-board equipment works with lower power consumption after the vehicle is turned off, and the rated working current of the on-board equipment in this case may only be tens of milliamps; an abnormal working state, used to characterize the working state that the working current of the on-board equipment is greater than the rated working current.
  • a normal working status used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use, and the rated working current of the on-board equipment may be usually 1A at this time
  • a low power state used to ensure that the on-board equipment works with lower power consumption after the vehicle is turned off, and the rated working current of the on-board equipment in this case
  • the existing on-board equipment may usually need to be connected to a vehicle battery for power supply, and its power consumption in a normal working state may be at most within 1A.
  • the on-board equipment may reduce its power consumption to limit its current to 20mA or less. If the on-board equipment is in an abnormal working state, the on-board equipment may continue to consume power with the current of 1A after the vehicle is turned off.
  • the vehicle battery capacity as 50Ah as an example, the vehicle battery may be exhausted in about 50 hours in this case. If the battery is exhausted several times, the damage to the vehicle battery may be very large, which may accelerate the aging speed and shorten the service life of the vehicle battery.
  • the monitoring device provided in some embodiments of the present disclosure may be at least installed. That is to say, a sampling resistor may be set between the power supply of an on-board equipment and the processing unit of the on-board equipment. The voltage across the sampling resistor may be measured in real time as the basis for determining the working current of the on-board equipment, which is further analyzed for users to know the working state of the on-board equipment in time. When the on-board equipment is in an abnormal working state, it may be processed in time to prevent the abnormal power consumption of the on-board equipment from causing damage to the vehicle battery.
  • the sampling resistor may preferably be a high-precision resistor with a resistance error less than or equal to 1%, so that the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent.
  • the sampling resistor may be a high-precision resistor with a resistance error less than 5%, 4%, 3%, 2%, 1%, etc.
  • the sampling resistor with a resistance within 1 ohm may be selected in the embodiment.
  • the sampling resistor may be a resistance within a range of 1 ohm, 0.1 to 0.5 ohm, 0.05 to 0.1 ohm, etc. For details, please refer to the description in FIG. 2 of the present disclosure.
  • the acquisition unit may be configured to acquire the voltage across the sampling resistor in real time.
  • the input end may be connected to both ends of the sampling resistor, and the output end may be connected to the processing unit to output the acquired voltage to the processing unit 40 to be further processed.
  • the acquisition unit may use an analog-to-digital converter (ADC, Analog to Digital Converter) .
  • ADC Analog to Digital Converter
  • the voltage across the sampling resistor may be acquired at a preset sampling period during use, which may be converted from an analog signal to a digital signal, and output to the processing unit 40 for processing.
  • the monitoring device of the on-board equipment may further include a monitoring unit for detecting temperature of the on-board equipment.
  • the monitoring unit may directly set a temperature sensor to detect the temperature of the on-board equipment.
  • a thermal resistor may be set in the on-board equipment, and its resistance may vary with temperature. The temperature of the on-board equipment may be obtained by detecting the change of a certain parameter (for example, a change of the voltage value, a change of the resistance value, etc. ) of the thermal resistor. If an on-board equipment is in the abnormal working state for a long time, the working current may be greater than the rated working current.
  • the temperature of on-board equipment may gradually increase, and the temperature of the on-board equipment may reflect the working state of the on-board equipment to a certain extent.
  • related subsequent operations similar to the situation of monitoring working current of on-board equipment
  • the processing device may cut off the power supply of the on-board equipment, reminding vehicle users or other operations.
  • the processing unit 40 may directly use a SOC of the on-board equipment, or a separate processing chip or processor, as long as the voltage value in the form of a digital signal may be received and the working current of the on-board equipment may be subsequently calculated.
  • a SOC of an on-board equipment may be preferably used as the processing unit.
  • subsequent control may be further implemented. For example, in order to protect the vehicle battery, the processing unit may calculate and determine the working current of the on-board equipment, compare its working current and the rated current of the on-board equipmet in the normal working state. When the working current is greater than the rated current, the power of the on-board equipment may be turned off to prevent the vehicle battery from over-discharging consumption.
  • the rated current of the on-board equipment shall be only a few tens of milliamps. If the real-time working current monitored is 1A, the working current may be much larger than the rated current and the processed unit may need to turn off the power supply of the on-board equipment to prevent excessive consumption of the vehicle battery, so as not to cause accelerated battery aging.
  • the conversion circuit may include at least one DC step-down converter DCDC, one end of DC step-down converter is connected to a vehicle power source, and the other end is connected to the power source of the on-board equipment to convert the 12V voltage output of the vehicle battery into the 4.2V voltage of the rated input of the on-board equipment.
  • DCDC DC step-down converter
  • the use of the DC step-down converter for the conversion between high voltage and low voltage is only a preferred implementation proposed in this embodiment.
  • other devices or other forms of conversion circuit may be selected according to the actual situation, as long as the conversion between high voltage and low voltage can be realized, and this embodiment is not intended to limit.
  • the processing unit may issue a control command to control the DC step-down converter to stop outputting voltage when the working current is monitored to be greater than the rated current of the on-board equipment.
  • the vehicle battery may be protected by turning off the DCDC output to prevent the excessive consumption of the power of the vehicle battery, so as not to cause accelerated battery aging.
  • a display unit For the convenience of vehicle users to monitor the working state of an on-board equipment, other functional units such as a display unit, a communication unit, and an alarm unit may also be installed in the monitoring device of the on-board equipment to realize corresponding functions.
  • the processing unit may turn off the power input and simultaneously display the corresponding alarm information on the display unit, and remind the user that the working current of the on-board equipment is too large through the alarm unit in the form of sound or warning light flashing, which prompts the user to promptly replace or repair the on-board equipment.
  • the driving recorder installed on the vehicle may still at the working state.
  • the user may not get the alarm information in time if prompted by the display unit or the alarm unit, because the user is not in the car. Therefore the alarm information may be sent to the mobile terminal set by the user in advance through the communication unit, so that even if the user is not in the vehicle, the abnormal working state of the on-board equipment may be obtained in time to achieve timely replacement or maintenance of the on-board equipment.
  • the possible benefits of the present disclosure embodiment include but are not limited to: (1) Monitoring the working state of an on-board equipment by monitoring a relevant parameter of the on-board equipment, determining whether the working state is abnormal, performing the corresponding processing operation according to the abnormal situation of the working state to protect the battery of the vehicle where the on-board equipment is located, and preventing abnormal power consumption of the on-board equipment from causing damage to the vehicle battery. (2) Monitoring the current of an on-board equipment by connecting a sampling resistor in series with the on-board equipment, and then determining the working state of the on-board equipment. The monitoring scheme and the monitoring circuit are simple. (3) Automatically determining the abnormality of an on-board equipment by setting different levels of thresholds, and providing corresponding reminder solutions or operation solutions for the different levels of abnormalities, which may improve the user experience.
  • the numbers expressing quantities of ingredients, properties, and so forth, used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially” . Unless otherwise stated, “about, ” “approximate, ” or “substantially” may indicate ⁇ 20%variation of the value it describes. Accordingly, in some embodiments, the numerical parameters set forth in the description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters configured to illustrate the broad scope of some embodiments of the present disclosure are approximations, the numerical values in specific examples may be as accurate as possible within a practical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The method for monitoring an on-board equipment (10,130) includes: acquiring a relevant parameter of the on-board equipment, the relevant parameter reflecting the working state of the on-board equipment; determining an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold. The system for monitoring an on-board equipment provides a sampling resistor (20) between the power supply of the on-board equipment and a processing unit (40) that actually implements the function of the on-board equipment. The voltage across the sampling resistor is measured in real time as a basis for determining the working current of the on-board equipment.

Description

METHODS AND SYSTEMS FOR MONITORING AN ON-BOARD EQUIPMENT
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority of Chinese Patent Application No. 202020132911.0 filed on January 20, 2020, the contents of which are hereby incorporated by reference.
TECHNICAL FIELD
The present disclosure relates to the field of on-board equipment monitoring, and more particularly, relates to methods and systems for monitoring an on-board equipment.
BACKGROUND
Nowadays vehicles are often equipped with on-board electronic devices to achieve various extended functions. For example, a driving recorder may be installed on a vehicle to record images and sounds during vehicle driving. A vehicle alarm device may also be installed to prevent the vehicle from being stolen or destroyed. However, these on-board equipments usually need to be connected to the vehicle battery for power supply. If an on-board equipment is in an abnormal working state for a long time, it may quickly exhaust the power of the vehicle battery. As a result, the vehicle battery needs to be timely charged. If the above-mentioned abnormal working state continues to occur, the loss of the vehicle battery may increase, which accelerates the aging speed of the battery and shortens the service life of the battery.
Thus, it is necessary to provide methods and systems for monitoring an on-board equipment to reduce the occurrence of the above-described problem and improve the service life of the vehicle battery.
SUMMARY
The purpose of the present disclosure embodiment is to provide methods and systems for monitoring an on-board equipment, a monitoring device of an on-board equipment and an on-board equipment, to solve the problem that the real-time monitoring of the abnormal working state of the on-board equipment cannot be achieved in the prior art.
In order to solve the above mentioned technical problem, the embodiments of the present disclosure may adopt the following technical solutions:
An aspect of the present disclosure provides a method for monitoring an on-board equipment implemented on a computing device including at least one processor and at least one storage medium. The method may include acquiring a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment; and determining an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
In some embodiments, the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
In some embodiments, when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the acquiring the relevant parameter of the on-board equipment may include acquiring the voltage across a resistor in series with the on-board equipment; and determining a corresponding current based on a resistance of the resistor and the voltage across the resistor, the current reflecting a working current flowing through the on-board equipment.
In some embodiments, an error of the resistance may be less than or equal to 1%.
In some embodiments, the resistance of the resistor may be less than or equal to 1 ohm.
In some embodiments, when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the acquiring the relevant parameter of the on-board equipment may include detecting the temperature of the on-board equipment via a temperature sensor.
In some embodiments, the preset threshold may include a reference threshold, when the relevant parameter is greater than the reference threshold, determining the operation instruction information as an instruction of power off operation, wherein the power off operation may include cutting off power transmission between a vehicle battery and the on-board equipment.
In some embodiments, the preset threshold may further include a reference threshold and first threshold, and the first threshold is larger than the reference threshold, when the  relevant parameter exceeds the reference threshold and is within the first threshold, determining the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
In some examples, the preset threshold may also include a reference threshold, a first threshold, and a second threshold, the second threshold is larger than the reference threshold and smaller than the first threshold, when the relevant parameter exceeds the reference threshold and is within the second threshold, determining the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determining the operation instruction information as an instruction of power management operation; and when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
Another aspect of the present disclosure also provides a system for monitoring an on-board equipment. The system may include a storage device storing a set of instructions, and one or more processors in communication with the storage device. When executing the set of instructions, the one or more processors may be configured to cause the system to acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting the working state of the on-board equipment. The one or more processors may also be configured to cause the system to determine an operation instruction information related to the on-board equipment based on the relevant parameter the a preset threshold.
In some embodiments, the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
In some embodiments, when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the one or more processors may be configured to cause the system to acquire a voltage across the resistor in serial with the on-board equipment, and determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, wherein the current may reflect the working current  flowing through the on-board equipment.
In some embodiments, the error of the resistance may be less than or equal to 1%.
In some embodiments, the resistance of the resistor may be less than or equal to 1 ohm.
In some embodiments, when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the one or more processors may be configured to detect the temperature of the on-board equipment via a temperature sensor.
In some embodiments, the preset threshold may include a reference threshold, and the one or more processors may be configured to cause the system to, when the relevant parameter is greater than the reference threshold, determine the operation instruction information as an instruction of power off operation; wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
In some embodiments, the preset threshold may further include a reference threshold and a first threshold, the first threshold is greater than the reference threshold, and the one or more processors may be configured to cause the system to, when the relevant parameter exceeds the reference threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
In some embodiments, the preset threshold may further include a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, and the one or more processors may be configured to cause the system to, when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power management operation; when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off  operation.
Another aspect of the present disclosure also provides a system for monitoring an on-board equipment. The system may include an acquisition module, configured to acquire a relevant parameter of the on-board equipment, wherein the relevant parameter may reflect the working state of the on-board equipment; and a determination module, configured to, determine an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
In some embodiments, the relevant parameter of the on-board equipment may include a working current of the on-board equipment and/or a temperature of the on-board equipment.
In some embodiments, when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the acquisition module may be configured to: acquire a voltage across a resistor in series with the on-board equipment; and determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, the current reflecting the working current flowing through the on-board equipment.
In some embodiments, an error of the resistance may be less than or equal to 1%.
In some embodiments, the resistance of the resistor may less than or equal to 1 ohm.
In some embodiments, when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the acquisition module is configured to detect the temperature of the on-board equipment via a temperature sensor.
In some embodiments, the preset threshold may include a reference threshold, and the determination module is configured to when the relevant parameter is greater than reference threshold, determine the operation instruction information as an instruction of power off operation, wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
In some embodiments, the preset threshold may further include a reference threshold and a first threshold, the first threshold is greater than the reference threshold, and the determination module is configured to, when the relevant parameter exceeds the reference  threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and when the relevant parameter exceeds the first threshold, it is determined that the operation instruction information is the power off operation indication.
In some embodiments, the preset threshold further includes a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, and the determination module is configured to, when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation; when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power management operation; and when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
Another aspect of the present disclosure also provides a monitoring device of an on-board equipment including a processor to perform the method for monitoring the on-board equipment as mentioned above.
Another aspect of the present disclosure also provides a computer-readable storage medium storing computer instructions. When a computer reads the computer instructions in the storage medium, the computer may execute the method for monitoring an on-board equipment as described above.
Another aspect of the present disclosure also provides a monitoring device of an on-board equipment. The monitoring device may include a monitoring unit for monitoring a relevant parameter of an on-board equipment, and the relevant parameter may reflect a working state of the on-board equipment.
In some embodiments, the monitoring unit may include a current monitoring unit or a temperature monitoring unit. The current monitoring unit may be configured to monitor a working current of the on-board equipment. The temperature monitoring unit may be configured to monitor a temperature of the on-board equipment.
In some embodiments, when the monitoring unit includes the temperature  monitoring unit, the temperature monitoring unit may include a divider resistor, one end of the divider resistor is connected to a power supply of the on-board equipment, and another end of the divider resistor is connected to a second processing unit; a thermal resistor, connected in series with the divider resistor; a second acquisition unit, configured to acquire a voltage across the thermal resistor or a voltage across the divider resistor or a voltage between the divider resistor and the thermal resistor; and the second processing unit is connected to the second acquisition unit and configured to determine a temperature change of the on-board equipment according to an acquisition result of the second acquisition unit.
In some embodiments, when the monitoring unit includes a current monitoring unit, the current monitoring unit may include a sampling resistor, one end of the sampling resistor is connected to a power supply of the on-board equipment, and another end of the sampling resistor is connected to a processing unit; an acquisition unit, an input end of the acquisition unit is connected to both ends of the sampling resistor, an output end of the acquisition unit is connected to the processing unit, and the acquisition unit is configured to acquire a voltage across the sampling resistor; and the processing unit, configured to determine a working current of the on-board equipment based on the voltage across the sampling resistor.
In some embodiments, an error of a resistance of the sampling resistor is less than or equal to 1%.
In some embodiments, a resistance of the sampling resistor is less than or equal to 1 ohm.
In some embodiments, the acquisition unit is an analog-to-digital converter.
In some embodiments, a first input end of the acquisition unit is connected to one end of a first protection resistor, another end of the first protection resistor is connected to one end of the sampling resistor, the second input end of the acquisition unit is connected to one end of a second protection resistor, and another end of the second protection resistor is connected to another end of the sampling resistor.
In some embodiments, the processing unit is further configured to cut off the power supply of the on-board equipment when the working current is greater than a rated current of the on-board equipment.
In some embodiments, the monitoring device may further include a conversion circuit, one end of the conversion circuit is connected to a vehicle power supply, another end is connected to the power supply of the on-board equipment, and the conversion circuit is configured to convert an output voltage of the vehicle power supply to the rated voltage of the on-board equipment.
In some embodiments, the conversion circuit may at least include a DC step-down converter, one end of the DC step-down converter is connected to the vehicle power supply, and another of the DC step-down converter end is connected to the power supply of the on-board equipment.
In some embodiments, the processing unit may be further configured to control the conversion circuit to stop outputting voltage when the working current is greater than the rated current of the on-board equipment.
Another aspect of the present disclosure also provides an on-board equipment which may at least include a monitoring device as described above.
The beneficial effects of the present disclosure embodiment are that: a sampling resistor is provided between the power supply of the on-board equipment and the processing unit that actually implements the function of the on-board equipment. The voltage value across the sampling resistor is measured in real time as a basis for determining the working current of the on-board equipment. And for users, they may know the working current of on-board equipment in a timely manner, and process it in time when the on-board equipment is in an abnormal working state, so as to prevent the abnormal power consumption of the on-board equipment from damaging the vehicle battery.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly explain the present disclosure embodiments or the technical solutions in the prior art, the following will briefly introduce the drawings required in the embodiments or the description of the prior art. Obviously, the drawings in the following description are only some of the embodiments described in the present disclosure, for those skilled in the art, without paying any creative labor, other drawings can be obtained based on these drawings.
FIG. 1 is a schematic diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure;
FIG. 2 is a flowchart illustrating an exemplary process for monitoring an on-board equipment according to some embodiments of the present disclosure;
FIG. 3 is a block diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure;
FIG. 4 is a schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure;
FIG. 5 is a schematic diagram illustrating an exemplary connection between a vehicle battery and a power supply of an on-board equipment according to some embodiments of the present disclosure;
FIG. 6 is another schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure; and
FIG. 7 is a schematic circuit diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In order to illustrate the technical solutions related to the embodiments of the present disclosure, brief introduction of the drawings referred to the description of the embodiments is provided below. Obviously, drawings described below are only some examples or embodiments of the present disclosure. Those having ordinary skills in the art, without further creative efforts, may apply the present disclosure to other similar scenarios according to these drawings. Unless apparent from the locale or otherwise stated, like reference numerals represent similar structures or operation throughout the several views of the drawings.
It will be understood that the term “system, ” “device, ” “unit, ” and/or “module” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, if other words may achieve the same purpose, the words may be replaced by other expressions.
As used in the disclosure and the appended claims, the singular forms “a, ” “an, ” and “the” include plural referents unless the content clearly dictates otherwise. In general, the terms "comprise, " "comprises, " and/or "comprising, " "include, " "includes, " and/or "including, " merely prompt to include steps and elements that have been clearly identified, and these steps and elements do not constitute an exclusive listing. The methods or devices may also include other steps or elements.
The flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It should be noted that the foregoing or the following operations may not be performed in the order accurately. Instead, the steps can be processed in reverse order or simultaneously. Besides, one or more other operations may be added to the flow charts, or one or more operations may be omitted from the flow chart.
Various schemes and features of the present disclosure are described here with reference to the drawings. It should be understood that various modifications can be made to the embodiments applied herein. Therefore, the description should not be viewed as limiting, but merely as an example of an embodiment. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure. The drawings included in the specification and forming a part of the specification show embodiments of the present disclosure, and are used to explain the principle of the present disclosure together with the general description of the present disclosure given above and the detailed description of the embodiment given below. These and other features of the present disclosure will become apparent from the following description of preferred forms of embodiments given as non-limiting examples with reference to the drawings. It should also be understood that although the present disclosure has been described with reference to some specific examples, those skilled in the art can surely implement many other equivalent forms of the present disclosure, which have the features described in the claims and are therefore located within the scope of protection. When combined with the drawings, the above and other aspects, features and advantages of the present disclosure will become more apparent in view of the following detailed description. Hereinafter, specific embodiments of the present disclosure  are described with reference to the drawings. However, it should be understood that the embodiments applied are merely examples of the present disclosure, which can be implemented in various ways. Well-known and/or repetitive functions and structures have not been described in detail to avoid unnecessary or redundant details that obscure the present disclosure. Therefore, the specific structural and functional details applied herein are not intended to be limiting, but are merely used as a basis for claims and a representative basis for teaching those skilled in the art to use the substantially diverse structures of present disclosure.
Some embodiments of the present disclosure provide methods and systems for monitoring an on-board equipment, which may be applied in different types of vehicles, including those used on the land, in the ocean, in the aerospace, etc. Exemplary vehicle includes a land vehicle, including a taxi, a private car, a sharing car, a bus, a truck, a lorry, a load-bearing car, etc. The on-board equipment may be different types of electronic devices with additional functions applied to vehicles. The on-board equipment may include driving recorders, car stereos, car display devices, car GPSs, car WIFIs, car alarm systems, and other electronic devices. In some embodiments, the method and system are mainly applied to on-board equipment mounted on a vehicle such as a driving recorder. It should be understood that application scenarios of the system and method disclosed herein are only some examples or embodiments of the present disclosure. Those skilled in the art, without further creative efforts, may apply the present disclosure to other similar scenarios according to these drawings.
In some embodiments, an on-board equipment may usually need to be connected to the vehicle’s battery for power supply. The power consumption of the on-board equipment in a normal working state may be at most within 1A. When the vehicle is turned off, the on-board equipment may reduce its power consumption to limit its current to 20mA or less. If the on-board equipment is in an abnormal working state, the on-board equipment may continue to consume power with the current of 1A after the vehicle is turned off. Taking the vehicle battery capacity as 50Ah as an example, the vehicle battery may be exhausted in about 50 hours in this case. If the battery is exhausted several times, the damage to the  vehicle battery may be very large, which may accelerate the aging speed and shorten the service life of the vehicle battery. In some embodiments, by monitoring the relevant parameter (for example, a working current, a temperature, etc. ) of the on-board equipment and determining the working state of the on-board equipment, a protection-related mechanism may be triggered when the on-board equipment is in an abnormal working state, thereby reducing the loss of the vehicle battery, and increasing the service life of the vehicle battery. In some embodiments, a sampling resistor may be provided in the on-board equipment and a working current of the on-board equipment may be determined by measuring the voltage across the sampling resistor, thereby reflecting the working state of the on-board equipment. In some embodiments, the working state of the on-board equipment may also be directly determined by measuring the voltage across the sampling resistor in the on-board equipment. In some embodiments, a temperature sensor may be provided in the on-board equipment and thus the temperature of the on-board equipment may be measured by the temperature sensor, thereby reflecting the working state of the on-board equipment.
FIG. 1 is a schematic diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure.
The on-board equipment monitoring system 100 may monitor the working state of the on-board equipment and determine an operation information related to the on-board equipment based on the working state. The on-board equipment monitoring system 100 may include a server 110, a network 120, an on-board equipment 130, a user terminal 140, and a storage device 150.
For an on-board equipment, the working state may mainly include the following three types: a normal working state, used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use; a low power consumption state, used to characterize the state that the on-board equipment works with lower power consumption after the vehicle is turned off; an abnormal working state, used to characterize the working state that a working current of the on-board equipment is greater than a rated working current. The abnormal working state of the on-board equipment may include two situations: the abnormal working state of the on-board equipment when the  vehicle is not turned off, for example, the working current of the on-board equipment is greater than a rated working current corresponding to the turned-on state of the vehicle; and the abnormal working state of the on-board equipment when the vehicle is turned off, for example, the working current of the on-board equipment is greater than another rated working current corresponding to the turned-off state of the vehicle.
In some embodiments, when the on-board equipment is in a normal working state, it may be understood that the on-board equipment is in normal use of the vehicle battery, that is, the power consumption of the on-board equipment does not cause dramatic loss to the capacity of the vehicle battery. When the on-board equipment is in a low power consumption state after the vehicle is turned off, the on-board equipment may be considered to be in the normal working state. That is to say, the normal working state of the on-board equipment in one or more embodiments of this specification may include the normal working state of the on-board equipment when the vehicle is working normally, for example, the working current of the on-board equipment is within a preset rated working current (e.g., within the rated working current corresponding to the turned-on state of the vehicle) ; and the normal working state of the on-board equipment when the vehicle is turned off, for example, the working current of the on-board equipment is within another preset rated working current (e.g., the rated working current corresponding to the turned-off state of the vehicle) .
In some embodiments, the rated working current may be understood as a preset current value. When the working current of the on-board equipment is less than or equal to the preset current value, it may denote that the on-board equipment is in a normal working state. The rated working current of the on-board equipment may include the corresponding rated working current when the vehicle is work normally (e.g., turned on) and the corresponding rated working current when the vehicle is turned off. When the vehicle is work normally or turned off, the corresponding rated working currents of the on-board equipment may be different. The specific value of the rated working currents of different on-board equipments when the vehicle normally works and the specific value of the rated working current when the vehicle is turned off may be configured according to different situations, which is not limited herein.
Due to the different parameters of different types of on-board equipment, the corresponding rated working currents may also be different. In some situations, the rated working current of an on-board equipment in the normal working state of the vehicle may be in the range of 50mA~1A, and the rated working current of the on-board equipment after the vehicle is turned off (e.g., when the on-board equipment is in the low power consumption working state) may be less than 50mA.
If an on-board equipment stays in the abnormal working state for a long time, it may accelerate the aging speed of the vehicle battery. Therefore, by monitoring the working state of the on-board equipment and performing targeted follow-up operations on the on-board equipment in the abnormal working state, the use of the vehicle battery may be protected and the shortening of the service life of the vehicle battery due to abnormal use of the on-board equipment may be avoided. In addition, according to the abnormal situation of the on-board equipment, or the working state reflected by the relevant parameter of the on-board equipment, different operations on the on-board equipment may be performed accordingly, e.g., a reminder operation or a power off operation, etc.
The server 110 may process data and/or information from at least one component of the on-board equipment monitoring system 100. For example, the on-board equipment 130 may acquire a relevant parameter that reflects the working state of the on-board equipment 130 and send the relevant parameter to the server 110. The server 110 may process the relevant parameter, determine the working state of the on-board equipment 130, and further determine the operation instruction information related to the on-board equipment 130 according to the working state of the on-board equipment 130. For example, by comparing the relevant parameter with a corresponding preset threshold, the server 110 may determine the operation instruction information as a reminder operation or power management operation. As another example, the server 110 may also send the operation instruction information to the on-board equipment 130 or the user terminal 140 according to the determined operation instruction information. For another example, assuming that the relevant parameter of the on-board equipment include the working current of the on-board equipment, the server 110 may acquire the voltage across the resistor in series with the on- board equipment 130, and determine the corresponding current to reflect the working current flowing through the on-board equipment 130 based on the voltage across the resistor.
In some embodiments, the server 110 may be a single server or a server group. The server group may be a centralized server group connected to the network 120 via an access point, or a distributed server group respectively connected to the network 120 via at least one access point. In some embodiments, the server 110 may be locally connected to the network 120 or remotely connected to the network 120. For example, the server 110 may access information and/or data stored in the on-board equipment 130, the user terminal 140, and/or the storage device 150 via the network 120. As another example, the storage device 150 may be used as the back-end data storage of the server 110. In some embodiments, the server 110 may be implemented on a cloud platform. Merely by way of example, the cloud platform may be a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
In some embodiments, the server 110 may include a processing device 112. The processing device 112 may process information and/or data related to at least one function described in the present disclosure. In some embodiments, the processing device 112 may perform the main functions of the on-board equipment monitoring system 100. In some embodiments, the processing device 112 may also be disposed or partially disposed on the on-board equipment 130. In some embodiments, the processing device 112 may process the relevant parameter that reflects the working state of the on-board equipment 130 to determine the operation instruction information related to the on-board equipment 130. In some embodiments, the processing device 112 may perform other functions related to the methods and systems described in the present disclosure. In some embodiments, the processing device 112 may include at least one processing unit (e.g., a single-core processing device or a multi-core processing device) . Merely by way of example, the processing device 112 includes a central processing unit (CPU) , an application specific integrated circuit (ASIC) , a dedicated application instruction set processor (ASIP) , a graphics processing unit (GPU) , a physical processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a  reduced instruction set computer (RISC) , a microprocessor, or the like, or any combination thereof.
The network 120 may facilitate the exchange of information and/or data. In some embodiments, at least one component in the on-board equipment monitoring system 100 (e.g., the server 110, the on-board equipment 130, the user terminal 140, and the storage device 150) may send information and/or data to other components in the on-board equipment monitoring system 100 via the network 120. For example, the processing device 112 may receive a preset threshold corresponding to the relevant parameter from the storage device 150 via the network 120. As another example, after determining an operation instruction information, the processing device 112 may send the operation instruction information to the user terminal 140 via the network 120.
In some embodiments, the network 120 may be any type of wired or wireless network, or combination thereof. Merely by way of example, the network 120 may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PTSN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network 120 may include at least one network access point. For example, the network 120 may include wired or wireless network access points, such as base stations and/or internet exchange points 120-1, 120-2, ..., through which at least one component of the on-board equipment monitoring system 100 may be connected to the network 120 to exchange data and/or information.
The on-board equipment 130 may be an electronic system or device that can be used on a vehicle to increase the functionality of the vehicle. The electronic system or device may usually use a vehicle battery on the vehicle for power supply. In some embodiments, the on-board equipment may include a camera installed in the vehicle (e.g., a driving recorder) , a camera mounted outside the vehicle (e.g., a camera mounted on the body of the vehicle) , a car audio, and a car display, a car GPS, a car navigation, a car WIFI, a car charger,  an refrigerator, a car computer, a car alarm system, or the like, or any combination thereof. In some embodiments, part of the relevant parameter (s) of an on-board equipment may reflect the working state of the on-board equipment, and the working state may include a normal working state, a low power consumption state, and an abnormal working state. In some embodiments, the relevant parameter of an on-board equipment may be acquired through a monitoring device. For example, the monitoring device of the on-board equipment 130 may acquire the working current of the on-board equipment using a sampling resistor. As another example, the monitoring device of the on-board equipment 130 may detect the temperature of the on-board equipment using a temperature sensor. In some embodiments, the on-board equipment 130 may also include at least part of the processing device 112 for performing related operations according to the operation instruction information related to the on-board equipment. For example, when the relevant parameter is within a certain threshold, a reminder operation instruction, a power management operation instruction or a power off operation instruction may be executed. In some embodiments, when the on-board equipment 130 is offline, the processing device 112 (or part of) inside the on-board equipment 130 may perform related functions of the server 110 and process related data.
A vehicle user may connect to the server 110 and then the on-board equipment 130 through the user terminal 140, or directly connect to on-board equipment 130 through the user terminal 140 to assist in the realization of related functions of the on-board equipment 130. For example, the vehicle user may acquire information, working state, etc. related to the on-board equipment 130 through the user terminal 140. The user terminal 140 may also receive reminder operation information sent by the server 110 or the on-board equipment 130. For example, a vehicle user may receive text reminders, voice reminders, and other forms of reminder information through the user terminal 140 to remind the vehicle user that the on-board equipment 130 may be in an abnormal working state. The user terminal 140 may include a mobile device 140-1, a tablet computer 140-2, a laptop computer 140-3, etc., or any combination thereof. In some embodiments, the mobile device 140-1 may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof. In some embodiments,  the smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof. In some embodiments, the wearable device may include a smart bracelet, a smart footgear, a smart glass, a smart helmet, a smart watch, a smart clothing, a smart backpack, a smart accessory, or the like, or any combination thereof. In some embodiments, the smart mobile device may include a smartphone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, or the like, or any combination thereof. In some embodiments, the virtual reality device and/or augmented virtual reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patches, augmented reality helmets, augmented reality glasses, augmented reality patches or the like, or any combination thereof. For example, the virtual reality device and/or the augmented reality device may include GoogleGlass TM, OculusRift TM, Hololens TM, GearVR TM, or the like.
The storage device 150 may store data and/or instructions. For example, the preset threshold of a relevant parameter may be stored. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 112 may execute, and the server 110 may use the data and/or instructions to implement the exemplary methods described by the present disclosure. In some embodiments, the storage device 150 may include a mass storage, a removable storage, a volatile read-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-write memory may include a random access memory (RAM) . Exemplary RAM may include a dynamic random access memory (DRAM) , a double data rate synchronous dynamic random access memory (DDRSDRAM) , a static random access memory (SRAM) , a thyristor random access memory (T-RAM) , and a zero capacitance Random access memory (Z-RAM) , etc. Exemplary read-only memory may include a mask-type read-only memory (MROM) , a programmable read-only memory (PROM) , an erasable programmable read-only memory (EPROM) , an electrically erasable  programmable read-only memory (EEPROM) , a CD-ROM and a digital multi-function disk read-only memory, etc. In some embodiments, the storage device 150 may be implemented on a cloud platform. Merely by way of example, the cloud platform may be a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
It should be noted that the description of the on-board equipment monitoring system 100 is merely provided for the purpose of illustration, and is not intended to limit the scope of the present disclosure. For those skilled in the art, multiple variations or modifications may be made to the on-board equipment monitoring system 100 under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 2 is a flowchart illustrating an exemplary process for monitoring an on-board equipment according to some embodiments of the present disclosure. In some embodiments, one or more steps in the process 200 may be implemented by a processing device in the server 110 or set on the on-board equipment 130.
In 210, the processing device may acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment.
In some embodiments, the on-board equipment may be different types of electronic devices with additional functions applied to vehicles. The on-board equipment may include a driving recorder, a car audio, a car display device, a car GPS, a car WIFI, a car alarm system, etc. In some embodiments, the on-board equipment may include a normal working state and an abnormal working state, including the normal working state and the abnormal working state of the on-board equipment when the vehicle is work normally, and the low power consumption state (which is another normal working state) and another abnormal working state of the on-board equipment when the vehicle is turned off. Relevant descriptions about the working states of an on-board equipment may be found in other parts of this specification, and is not be repeated here.
In some embodiments, a relevant parameter of an on-board equipment may reflect the working state of the on-board equipment. By simply processing the relevant parameter,  the working state of the on-board equipment may be determined. In some embodiments, the relevant parameter of an on-board equipment may include the working current of the on-board equipment and/or the temperature of the on-board equipment. In some embodiments, when an on-board equipment is in different working states, the working currents of the on-board equipment may be different. For example, the working current of an on-board equipment in the normal working state may be 1A, and the working current in the abnormal working state may be 1.5A. Therefore, the working state of an on-board equipment may be determined by monitoring the working current. In some embodiments, when the temperature of an on-board equipment is high, the working current through the on-board equipment may be large too. Therefore, the temperature of an on-board equipment may reflect the working current or the working state of the on-board equipment to a certain extent. In some embodiments, the relevant parameter may also include other data that can reflect the working state of an on-board equipment, for example, the power consumption speed of the vehicle battery, etc.
In some embodiments, when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the working state of the on-board equipment may be determined by acquiring the working current of the on-board equipment. In some embodiments, the working current of the on-board equipment may be acquired by acquiring a voltage across the on-board equipment and a resistor of the on-board equipment. In some embodiments, the working current of the on-board equipment may be acquired by acquiring a voltage across a resistor connected in series with the on-board equipment, and based on the resistance of the resistor and the voltage across the resistor, a corresponding current may be determined, which may reflect the working current of the on-board equipment. In some embodiments, to determine the current of an on-board equipment, a specific solution may include setting a sampling resistor in a monitoring device of the on-board equipment. The sampling resistor may be connected in series with the power supply of the on-board equipment. When the on-board equipment is working, the current flowing through the sampling resistor may be the working current of the on-board equipment. By measuring the voltage across the sampling resistor, the current of the sampling resistor may  be directly calculated according to the calculation formula I=U/R.
In some embodiments, in order to ensure the consistency of the data acquired in different on-board equipment, the sampling resistor may be a high-precision resistor with a resistance error less than 5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 4.5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 4%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 3.5%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 3%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 2.5%. In some embodiments, the sampling resistor may also be a high-precision resistor with a resistance error less than 2%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 1.5%. In some embodiments, the sampling resistor may preferably be a high precision resistor with a resistance error less than or equal to 1%. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 0.5%. By using the resistance within the resistance error range, the consistency of the data acquired by the on-board equipment may be guaranteed to a certain extent. For example, if a high-precision resistor with a resistance error within 1%is used, the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent.
In some embodiments, in order to ensure that the use of the sampling resistor does not bring additional increase of the power consumption to the power supply of an on-board equipment, the sampling resistor with a resistance within 1 ohm may be selected. In some embodiments, the sampling resistor may be with a resistance of 0.1~0.5 ohm. In some embodiments, the sampling resistor may be with a resistor of 0.05~0.1 ohm. In some embodiments, a high-precision resistor of 0.1 ohm or 0.056 ohm may preferably selected. For example, if the resistance of the sampling resistor is less than 0.5 ohm, when the current flowing through the sampling resistor is 1A, the power consumption increased by this part of the circuit may be within 0.05W according to the power consumption calculation formula  W=I 2*R, and the power consumption may be basically negligible compared to the power consumption of the whole on-board equipment.
In some embodiments, when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the acquiring the relevant parameter of the on-board equipment may include detecting the temperature of the on-board equipment by a temperature sensor. If an on-board equipment is in the abnormal working state for a long time, the working current may be greater than the rated working current. Therefore, the temperature of the on-board equipment may gradually increase, thus reflecting the working state of the on-board equipment to a certain extent. In some embodiments, the temperature of the on-board equipment may be detected by a temperature sensor in the monitoring device of the on-board equipment. In some embodiments, a thermal resistor may be set in the on-board equipment, and the resistance of the thermal resistor may vary with temperature. The temperature of the on-board equipment may be obtained by detecting the change of a certain parameter (for example, a change of the voltage value, a change of the resistance value, etc. ) of the thermal resistor. In some embodiments, when the detected temperature reaches a certain preset value, related subsequent operations may be performed. For example, the processing device may cut off the power supply of the on-board equipment.
In some embodiments, a sampling period may be set to acquire a relevant parameter of an on-board equipment. The sampling period may be understood as the interval between two acquisitions of the voltage across a sampling period or the temperature of the on-board equipment. In some embodiments, a relevant parameter of an on-board equipment may be acquired in real time. When the relevant parameter includes a working current of the on-board equipment, in order to eliminate the situation caused by the transient current abnormality, the sampling period may be set to be over 1 second. In some embodiments, the sampling period may be a monitoring period in seconds (from 1 second to 60 seconds) , for example, 5 seconds, 10 seconds, 20 seconds, etc. In some embodiments, the sampling period may be a monitoring period in minutes (from 1 minute to 60 minutes) , for example, 5 minutes, 10 minutes, 30 minutes, etc. In some embodiments, the sampling period may be set according to factors such as different usage scenarios, different vehicle models, different  time periods, or other factors. The sampling period may be a fixed value or be automatically adjusted according to usage conditions. For example, when the power of the vehicle battery is low, the sampling period may be shorter (e.g., in seconds) , and when the power of the vehicle battery is large, the sampling period may be slightly longer (e.g., in minutes) . In some embodiments, in order to avoid the power of vehicle battery being exhausted or most of the power being consumed by an on-board equipment in the abnormal working state, the sampling period may not be too long, preferably not more than 1 hour. In some embodiments, in addition to setting a sampling period, a relevant parameter of an on-board equipment may also be acquired in real time, that is to say, real-time monitoring the voltage across the sampling resistor or the temperature of the on-board equipment. In some embodiments, the voltage across the sampling resistor may be acquired in real time, and the current (that is, the working current of on-board equipment) flowing through the sampling resistor may be calculated in real time. In some embodiments, the temperature of the on-board equipment may be monitored in real time via a temperature sensor or a thermal resistor. In some embodiments, a relevant parameter of an on-board equipment in real time may reflect the working state of the on-board equipment in real time, and when the on-board equipment is at an abnormal working state, corresponding measures may be taken in time to reduce the power consumption of the vehicle battery.
In 220, the processing device may determine operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
In some embodiments, a preset threshold corresponding to the relevant parameter may be preset to determine the working state of the on-board equipment. In some embodiments, when the relevant parameter is a working current of an on-board equipment, the preset threshold corresponding to the relevant parameter may be a certain current value, and when the relevant parameter is a temperature of the on-board equipment, the preset threshold corresponding to the relevant parameter may be a certain temperature value. In some embodiments, the preset threshold may be a certain current value or a temperature value, or be a ratio threshold that exceeds the current value or temperature value when the on-board equipment is in the normal working state. For example, the preset threshold may also  be a ratio of 10%, 30%, 50%, etc. In some embodiments, the preset threshold may be the data measured by a designer (or a manufacturer, etc. ) of the on-board equipment in a laboratory, and may be updated according to situations during subsequent use. In some embodiments, the preset threshold corresponding to different usage scenarios, different vehicle models, and different time periods may be set as different values, and may be updated according to usage conditions.
In some embodiments, the preset threshold may include a plurality of different thresholds to judge the abnormality of an on-board equipment. When the relevant parameter is judged within the range of a corresponding preset threshold, the on-board equipment may execute the corresponding operation instruction information. For example, the preset threshold may include a reference threshold, a first threshold, a second threshold, a third threshold, etc., which are generally greater than the value when an on-board equipment is in the normal working state.
In some embodiments, the preset threshold may include a reference threshold. When the relevant parameter is greater than the reference threshold, the operation instruction information may be determined as an instruction of power off operation. The power off operation may includes cutting off power transmission between a vehicle battery and the on-board equipment.
In some embodiments, the preset threshold may only include a reference threshold, and the reference threshold may be set to exceed 0%or more than 0%of the value in the normal working state of the on-board equipment. In some embodiments, the reference threshold may be set to exceed 10%~100%of the value in the normal working state of the on-board equipment. In some embodiments, the reference threshold may be set to exceed 10%~50%of the value in the normal working state of the on-board equipment, or other applicable values. For example, the reference threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment. When the detected value of the relevant parameter is greater than the reference threshold, the power off operation instruction may be executed. In some embodiments, a power supply of an on-board equipment may need to be powered by a vehicle battery. Since the voltage of the vehicle  battery does not match the rated input voltage of the power supply of the on-board equipment, the voltage of the vehicle battery may need to be converted by a conversion circuit. In some embodiments, the power off operation instruction may include operations such as turning off the output of the conversion circuit to power off the power supply of the on-board equipment or directly turning off on-board equipment, etc.
In some embodiments, when the method for monitoring the on-board equipment is executed by the server 110, the server 110 may issue an instruction to the vehicle through the network to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130. In some embodiments, when the method for monitoring the on-board equipment is executed by the on-board equipment 130, the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit through the connection with the vehicle, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be turned off automatically.
In some embodiments, the preset threshold may further include a first threshold, and the first threshold is larger than the reference threshold. When the relevant parameter exceeds the reference threshold and is within the first threshold, the operation instruction information may be determined as an instruction of reminder operation. When the relevant parameter exceeds the first threshold, the operation instruction information may be determined as an instruction of power off operation.
In some embodiments, the preset threshold may include the reference threshold and the first threshold, wherein the first threshold may be larger than the reference threshold. In some embodiments, both the reference threshold and the first threshold may be set to exceed 0%and above, e.g., 0%~100%, 10%~50%of the value in the normal working state of the on-board equipment, or other applicable values, provided that the first threshold is greater than the reference threshold. For example, the reference threshold may be set to exceed 20%of the value in the normal working state of the on-board equipment, and the first threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment. When the detected value of the relevant parameter exceeds 20%~50%of the value in the  normal working state of the on-board equipment, the reminder operation instruction may be executed. When the detected value of the relevant parameter exceeds 50%of the value in the normal working state of the on-board equipment, the power off operation instruction may be executed.
In some embodiments, the reminder operation instruction may include reminding the vehicle user that the on-board equipment may be in an abnormal working state via the on-board equipment 130 or a user terminal 140. The remaindering may include text reminders, voice reminders, or other kinds of forms. In some embodiments, assuming that the method for monitoring the on-board equipment is executed by the server 110, if the relevant parameter exceeds the first threshold, the server 110 may turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130. In some embodiments, assuming that the method for monitoring the on-board equipment is executed by the server 110, if the relevant parameter exceeds the reference threshold and is within the first threshold, the server 110 may issue instructions to the on-board equipment 130 to remind the vehicle user in various ways via the network. The server 110 may also send information to the user terminal via the network to remind the vehicle user. In some embodiments, assuming that the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the first threshold, the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be directly turned off automatically. In some embodiments, assuming that the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the reference threshold and is within the first threshold, the on-board equipment 130 may directly remind the vehicle user in various ways.
In some embodiments, the preset threshold may further include a second threshold, and the second threshold may be larger than the reference threshold and smaller than the first threshold. When the relevant parameter exceeds the reference threshold and is within the second threshold, the operation instruction information may be determined as an instruction  of reminder operation. When the relevant parameter exceeds the second threshold and is within the first threshold, the operation instruction information may be determined as an instruction of power management operation. When the relevant parameter exceeds the first threshold, the operation instruction information may be determined as an instruction of power off operation.
In some embodiments, the preset threshold may include a reference threshold, a first threshold and a second threshold, wherein the first threshold may be greater than the reference threshold, the second threshold may be greater than the reference threshold and smaller than the first threshold. In some embodiments, the reference threshold, the first threshold and the second threshold may all be set to exceed 0%and above, e.g., 0%~100%, 10%~50%of the value in the normal working state of the on-board equipment, or other applicable values, provided that the first threshold is greater than the reference threshold, and the second threshold is greater than the reference threshold and smaller than the first threshold. For example, the reference threshold may be set to exceed 10%of the value in the normal working state of the on-board equipment, the first threshold may be set to exceed 50%of the value in the normal working state of the on-board equipment, and the second threshold may be set to exceed 20%of the value in the normal working state of the on-board equipment. When the detected value of the relevant parameter exceeds 10%~20%of the value in the normal working state of the on-board equipment, the reminder operation instruction may be executed. When the detected value of the relevant parameter exceeds 20%~50%of the value in the normal working state of the on-board equipment, the power management operation instruction may be executed. When the detected value of the relevant parameter exceeds 50%of the value in the normal working state of the on-board equipment, the power off operation instruction may be executed.
In some embodiments, the power management operation instruction may include managing some unnecessary programs in the vehicle or in the on-board equipment (e.g., closing some application programs to reduce the power consumption of the vehicle or the on-board equipment) . In some embodiments, when the method for monitoring the on-board equipment is executed by the server 110, if the relevant parameter exceeds the first threshold,  the server 110 may turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the server 110 may issue a shutdown instruction to the on-board equipment 130. In some embodiments, when the method for monitoring the on-board equipment is executed by the server 110, if the relevant parameter exceeds the second threshold and is within the first threshold, the server 110 may issue instructions to the on-board equipment to close unnecessary applications to reduce power consumption. In some embodiments, when the method for monitoring the on-board equipment is executed by the server 110, if the relevant parameter exceeds the reference threshold and is within the second threshold, the server 110 may issue instructions to the on-board equipment to remind the vehicle user in various ways. The server 110 may also send information to the user terminal via the network to remind the vehicle user. In some embodiments, when the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the first threshold, the on-board equipment 130 may notify the vehicle to turn off the output of the conversion circuit, thereby cutting off the power supply of the on-board equipment, or the on-board equipment 130 may be directly turned off automatically. In some embodiments, when the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the second threshold and is within the first threshold, the on-board equipment 130 may close unnecessary applications to reduce unnecessary power consumption itself. In some embodiments, when the method for monitoring the on-board equipment is executed by the on-board equipment 130, if the relevant parameter exceeds the reference threshold and is within the second threshold, the on-board equipment 130 may directly remind the vehicle user in various ways.
In some embodiments, since the on-board equipment includes two normal working states: when the vehicle is work normally and when the vehicle is turned off, it may be necessary to set corresponding preset thresholds according to the two normal working states, respectively. In some embodiments, when different preset thresholds are set according to the two normal working states, one or more preset thresholds may also be selected according to the current working state of the vehicle (for example, whether the vehicle is working  normally or is turned off) to judge the working state of the on-board equipment. In some embodiments, the current working state of the vehicle may be determined through external input of the user, and then a corresponding preset threshold may be selected to determine the working state of the on-board equipment. For example, the user may determine whether the vehicle is working normally or is turned off through button selection on the on-board equipment. In some embodiments, it may also possible to only detect whether the on-board equipment is in a normal state when the vehicle is in turned off, that is, a low power consumption state of the on-board equipment, and only a preset threshold corresponding to this scene may need to be set at this time.
It should be noted that the above description regarding the process 200 is merely provided for the purpose of illustration, and is not intended to limit the scope of the present disclosure. For those skilled in the art, multiple variations and modifications may be made for the process 200 under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 3 is a block diagram illustrating an exemplary on-board equipment monitoring system according to some embodiments of the present disclosure. As shown in FIG. 3, the system may include an acquisition module 310 and a determination module 320.
The acquisition module 310 may be configured to acquire a relevant parameter of an on-board equipment, and the relevant parameter may reflect the working state of the on-board equipment.
In some embodiments, the relevant parameter of the on-board equipment may include the working current of the on-board equipment and/or the temperature of the on-board equipment. In some embodiments, when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the acquisition module 310 may be configured to acquire a voltage across a resistor in series with the on-board equipment, and determine a corresponding current based on the resistance of the resistor and the voltage across the resistor. The current may reflect the working current flowing through the on-board equipment. In some embodiments, when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the acquisition module  310 may be configured to detect the temperature of the on-board equipment via a temperature sensor.
The determination module 320 may be configured to determine an operation instruction information related to the on-board equipment based on the relevant parameter and the corresponding preset threshold.
In some embodiments, the preset threshold may include a reference threshold, and the determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter is greater than a reference threshold. The power off operation may include cutting off power transmission between a vehicle battery and the on-board equipment. In some embodiments, the preset threshold may further include a first threshold, and the first threshold may be greater than the reference threshold. The determination module 320 may be configured to determine the operation instruction information as an instruction of reminder operation when the relevant parameter exceeds the reference threshold and is within the first threshold. The determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter exceeds the first threshold. In some embodiments, the preset threshold may further include a second threshold, and the second threshold may be greater than the reference threshold and less than the first threshold. The determination module 320 may be configured to determine the operation instruction information as an instruction of reminder operation when the relevant parameter exceeds the reference threshold and is within the second threshold. The determination module 320 may be configured to determine the operation instruction information as an instruction of power management operation when the relevant parameter exceeds the second threshold and is within the first threshold. The determination module 320 may be configured to determine the operation instruction information as an instruction of power off operation when the relevant parameter exceeds the first threshold.
It should be understood that the system and its modules shown in FIG. 3 may be implemented in various ways. For example, in some embodiments, the system and its modules may be implemented by hardware, software, or a combination of software and  hardware. Among them, the hardware part may be implemented using dedicated logic. The software may be stored in a storage and may be implemented by an appropriate instruction executing system (e.g., a microprocessor, a dedicated design hardware, etc. ) . It will be appreciated by those skilled in the art that the above methods and systems may be implemented by computer-executable instructions and/or embedding in control codes of a processor. For example, the control codes may be provided by a medium such as a disk, a CD or a DVD-ROM, a programmable memory device such as read-only memory (e.g., firmware) , or a data carrier such as an optical or electric signal carrier. The system and the module in the present disclosure may be implemented not only by a hardware circuit in a programmable hardware device in a ultra large scale integrated circuit, a gate array chip, a semiconductor such a logic chip or a transistor, a field programmable gate array, or a programmable logic device, but also by a software performed by various processors, and further also by a combination of the hardware and the software above (e.g., firmware) .
It should be noted that the above description is only for the convenience of description, and the present disclosure is not intended to be limited to the scope of the illustrated embodiment. For persons having ordinary skills in the art, modules may be combined in various ways or connected with other modules as sub-systems, and various modifications and transformations may be conducted under the teachings of the present disclosure. For example, in some embodiments, the acquisition module 310 and the determination module 320 disclosed in FIG. 3 may be different modules in a system, or be a module that implements the functions of the two modules. For example, each module may share a single storage module, or each module may have its own storage module. All such modifications are within the protection scope of the present disclosure.
Some embodiments of the present disclosure may also provide a monitoring device capable of monitoring the working state of an on-board equipment and an on-board equipment with the above monitoring device. The monitor device may be mainly used in an on-board equipment assembled in vehicles. The on-board equipment may be various types of equipment with extended functions, including a driving recorder, a car navigation, a vehicle alarm system, etc., which are assembled on vehicles. In some embodiments, the on- board equipment may include a normal working state and an abnormal working state, including the normal working state and the abnormal working state of the on-board equipment when the vehicle is work normally, and the low power consumption state (which is another normal working state) and another abnormal working state of the on-board equipment when the vehicle is turned off. Relevant descriptions about the working status of an on-board equipment may be found in other parts of this specification, and may not be repeated here.
In some embodiments, the monitoring device may include a monitoring unit for monitoring a relevant parameter of the on-board equipment, and the relevant parameter may reflect the working state of the on-board equipment. In some embodiments, the monitoring unit may include a current monitoring unit and/or a temperature monitoring unit. The current monitoring unit may be configured to monitor the working current of the on-board equipment, and the temperature monitoring unit may be configured to monitor the temperature of the on-board equipment.
In some embodiments, when the monitoring unit includes a temperature monitoring unit, the temperature monitoring unit may include a divider resistor, a thermal resistor, a second acquisition unit, and a second processing unit. One end of the divider resistor may be connected to a power supply of the on-board equipment, and another end of the divider resistor may be connected to the second processing unit. The thermal resistor may be connected in series with the divider resistor. The second acquisition unit may be configured to acquire a voltage across the thermal resistor or a voltage across the divider resistor or a voltage between the divider resistor and the thermal resistor. The second processing unit may be connected to the second acquisition unit and be configured to determine a temperature change of the on-board equipment according to the acquisition result of the acquisition unit.
In some embodiments, the divider resistor may be a resistor with a fixed resistance, the thermal resistor may be a resistor whose resistance varies with temperature, and there may be a certain variation rule between the resistance and the temperature. In some embodiments, the second processing unit may determine a ratio between the voltage across  the divider resistor and the voltage across the thermal resistor. Since the thermal resistor is connected in series with the divider resistor, the second processing unit may calculate the resistance of thermal resistor according to the resistance of the divider resistor and the above ratio. In some embodiments, according to the calculated resistance of the thermal resistor and the rule of the thermal resistor changing with temperature, the second processing unit may process and obtain the temperature of the on-board equipment. In some embodiments, an acquisition unit may also be set to directly detect the voltage across the thermal resistor and the current of the thermal resistor, thereby calculating the resistance of the thermal resistor. In some embodiments, the thermal resistor may be disposed beside the component that is most likely to generate heat in an on-board equipment, so that the heat change of the on-board equipment may be acquired in time. In some embodiments, the component may include a circuit board, and specifically, the thermal resistor may be disposed near the processing chip on the circuit board.
In some embodiments, when the monitoring unit includes a current monitoring unit, the current monitoring unit may include a sampling resistor and an acquisition unit. One end of the sampling resistor may be connected to the power supply of the on-board equipment, and another end of the sampling resistor may be connected to a processing unit. An input end of the acquisition unit may be connected to both ends of the sampling resistor, and an output end may be connected to the processing unit. In some embodiments, the acquisition unit may be configured to acquire a voltage across the sampling resistor, and the processing unit may be configured to determine the working current of the on-board equipment based on the voltage across the sampling resistor.
FIG. 4 is a schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure. FIG. 5 is a schematic diagram illustrating an exemplary connection between a vehicle battery and a power supply of an on-board equipment according to some embodiments of the present disclosure. FIG. 6 is another schematic structural diagram illustrating an exemplary monitoring device of an on-board equipment according to some embodiments of the present disclosure. FIG. 7 is a schematic circuit diagram illustrating an exemplary monitoring  device of an on-board equipment according to some embodiments of the present disclosure.
As shown in FIG. 4, a monitoring device of an on-board equipment may include a power supply of the on-board equipment 10, a sampling resistor 20, an acquisition unit 30, and a processing unit 40. The power supply of the on-board equipment 10 may be used for powering the internal structure of the on-board equipment, including the sampling resistor 20, the acquisition unit 30 and the processing unit 40. The sampling resistor 20 may be a resistor provided between the power supply of the on-board equipment 10 and the processing unit 40. The current through the sampling resistor may be calculated by measuring the voltage value of the sampling resistor 20. The processing unit 40 may be the core processor of an on-board equipment, configured to implement different functions of the on-board equipment, and may be connected in series with the sampling resistor. The acquisition unit 30 may be a measurement unit connected in parallel at both ends of the sampling resistor 20, and may be used to measure the voltage value across the sampling resistor 20.
As shown in FIG. 5 and FIG. 7, the power supply of the on-board equipment 10 is powered by a vehicle battery 500. In some circumstances, the supply voltage of the vehicle battery 500 does not match the rated input voltage of the power supply of the on-board equipment 10. Therefore, a conversion circuit 50 may be provided between the vehicle battery 500 and the power supply of the on-board equipment 10, used to convert the supply voltage of the vehicle battery 500 to the rated input voltage of the power supply of the on-board equipment 10. As shown in FIG. 7, VIN is the supply voltage of the vehicle battery. After the conversion circuit, the output voltage to the on-board equipment is VCC, which is the input voltage of the power supply of the on-board equipment. In some embodiments, different types of vehicle batteries have different supply voltage values. For the present situation, the standard voltage may be generally 12V or 24V. Due to factors such as the manufacturer, the supply voltage may also have a certain error, but usually be kept within the range of 12V±0.5V or 24V±1V. In some embodiments, due to different states of the vehicle, such as an engine start, the supply voltage of the vehicle battery may deviate more from the standard voltage. In some embodiments, the rated input voltage of the power supply of the on-board equipment 10 may be generally within 5V, which may be 4.0V, 4.2V,  4.5V, etc. In some embodiments, as shown in FIG. 5, the output end of the vehicle battery 500 (that is, the vehicle's power supply) may be connected to a conversion circuit 50, and the voltage of 12V or 24V may be output as the rated input voltage (for example, 4.2V) of the power supply of the on-board equipment 10 through the conversion circuit 50 to prevent malfunction caused by overloading of the input voltage over the on-board equipment. For example, the supply voltage VIN of the vehicle battery in FIG. 7 may be 12V. After the voltage conversion circuit, the converted voltage VCC may be 4.2V, which can be used as the input voltage of the power supply of the on-board equipment.
In some embodiments, the capacity of a vehicle battery may be greater than 50Ah. The current when the on-board equipment is in the normal working state may be within 1A. When the vehicle is turned off, the normal working on-board equipment may reduce its power consumption to be, for example, within 20mA. If an on-board equipment is in an abnormal working state, the on-board equipment may continue to consume power at a current of near 1A after the vehicle is turned off. Taking the vehicle battery capacity as 50Ah as an example, the battery may be exhausted in about 50 hours in theory. If the battery is exhausted several times, the damage to the vehicle battery may be very dramatic, which may accelerate the aging speed and shorten the service life of the vehicle battery.
In some embodiments, the input voltage (for example, 4.2V) of the power supply of the on-board equipment 10 may be converted to VBAT through a sampling resistor 20, and may be used to directly power the processing unit 40 and other components of the on-board equipment. VBAT may be the voltage supplied to other components of the on-board equipment except the sampling resistor, and the current flowing through the sampling resistor 20 may be the working current of the on-board equipment. As shown in FIG. 7, the power input voltage of the on-board equipment may be VCC, and the supply voltage to other components of the on-board equipment may be VBAT. In some embodiments, even for different components of the same model, due to the deviation of the resistance, the acquired voltage and the calculated current may be different. In some embodiments, in order to ensure the consistency of the data acquired in different on-board equipment, the sampling resistor 20 may be a high-precision resistor with a resistance error less than 5%. In some  embodiments, the sampling resistor 20 may preferably be a high-precision resistor with a resistance error less than or equal to 1%, so that the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent. In some embodiments, the sampling resistor 20 may also select other high precision resistors with higher precision. Further, in order to ensure that the use of the sampling resistor does not bring additional increase of the power consumption to the vehicle battery, the sampling resistor with a resistance within 1 ohm may be selected. In some embodiments, the sampling resistor may be with a resistance of 0.1~0.5 ohm. In some embodiments, the sampling resistor may be with a resistor of 0.05~0.1 ohm. In some embodiments of the present disclosure, a high-precision resistor of 0.1 ohm or 0.056 ohm may preferably selected. For example, if the resistance of the sampling resistor is less than 0.05 ohm, when the current flowing through the sampling resistor 20 is 1A, the power consumption increased by this part of the circuit may be within 0.05W according to the power consumption calculation formula W=I 2*R, and the power consumption may be basically negligible compared to the power consumption of the whole on-board equipment.
The acquisition unit 30 may be configured to acquire the voltage across the sampling resistor 20 in real time. The input end may be connected to both ends of the sampling resistor 20, and the output end may be connected to the processing unit 40 to output the acquired voltage to the processing unit 40 to be further processed. In some embodiments, the acquisition unit 30 may use an analog-to-digital converter (ADC, Analog to Digital Converter) . The voltage across the sampling resistor 20 may be acquired at a preset sampling period during use, which may be converted from an analog signal to a digital signal, and output to the processing unit 40 for processing. The sampling period may be an interval between two acquisitions of the voltage across the sampling resistor. In some embodiments, a relevant parameter of an on-board equipment may be acquired in real time. When the relevant parameter includes a working current of the on-board equipment, in order to eliminate the situation caused by the transient current abnormality, the sampling period may be set to be over 1 second. In some embodiments, the sampling period may be a monitoring period in seconds (from 1 second to 60 seconds) , for example, 5 seconds, 10 seconds, 20  seconds, etc. In some embodiments, the sampling period may be a monitoring period in minutes (from 1 minute to 60 minutes) , for example, 5 minutes, 10 minutes, 30 minutes, etc. In some embodiments, the sampling period may be set according to factors such as different usage scenarios, different vehicle models, different time periods, or other factors. The sampling period may be a fixed value or be automatically adjusted according to usage conditions. For example, when the power of the vehicle battery is low, the sampling period may be shorter (e.g., in seconds) , while when the power of the vehicle battery is large, the sampling period may be slightly longer (e.g., in minutes) . In some embodiments, in order to avoid the power of vehicle battery being exhausted or most of the power being consumed by an on-board equipment in the abnormal working state, the time of sampling period may not be too long, preferably not more than 1 hour. In some embodiments, in addition to setting a sampling period, a relevant parameter of an on-board equipment may also be acquired in real time, which means a real-time monitoring of the voltage across the sampling resistor or the temperature of the on-board equipment. In some embodiments, the voltage across the sampling resistor may be acquired in real time, and the current (that is, the working current of on-board equipment) flowing through the sampling resistor may be calculated in real time. In some embodiments, the temperature of the on-board equipment may be monitored in real time via a temperature sensor or a thermal resistor. In some embodiments, acquiring a relevant parameter of an on-board equipment in real time may reflect the working state of the on-board equipment in real time, and when the vehicle is detected at an abnormal working state, corresponding measures may be taken in time to reduce the power consumption of the vehicle battery.
In some embodiments, as shown in FIG. 6, a first input end of the acquisition unit 30 may be connected to one end of a first protection resistor 301, and another end of the first protection resistor 301 may be connected to one end of sampling resistor 20. A second input end of the acquisition unit 30 may be connected to one end of a second protection resistor 302, and another end of the second protection resistor 302 may be connected to another end of the sampling resistor 20 to protect the monitoring device, or the first protection resistor 301 and the second protection resistor 302 may be replaced with anti-interference  components to improve the anti-interference ability of the monitoring device. For example, as shown in FIG. 7, the anti-interference elements NC33 and NC34 may be provided at both ends of the sampling resistor.
In some embodiments, the processing unit 40 may directly use an on-chip system (SOC, System on Chip) of the on-board equipment, or a separate processing chip or processor, as long as the voltage value in the form of a digital signal may be received and the working current of the on-board equipment may be subsequently calculated. In this embodiment, a SOC of an on-board equipment may be preferably used as the processing unit 40. When the computing capacity is guaranteed, subsequent control may be further implemented. For example, in order to protect the vehicle battery, the processing unit 40 may calculate and determine the working current of the on-board equipment, compare its working current and the rated current of the on-board equipment in the normal working state. When the working current is greater than the rated current, the power of the on-board equipment may be turned off to prevent the vehicle battery from over-discharging consumption. In particularly, when the vehicle has been turned off, the rated current of the on-board equipment shall be only a few tens of milliamps. If the real-time working current monitored is 1A, the working current may be much larger than the rated current and the processed unit 40 may need to turn off the power supply of the on-board equipment to prevent excessive consumption of the vehicle battery, so as not to cause accelerated battery aging.
Further, in actual use, the conversion circuit 50 may include at least one DC step-down converter (DCDC, also referred to as high-voltage (low-voltage) DC power supply converted to low-voltage (high-voltage) DC power supply) . One end of the DC step-down converter may be connected to the vehicle battery, and the other end may be connected to the power supply of the on-board equipment 10. The DC step-down converter may be used to convert the 12V voltage output of the vehicle battery into the 4.2V voltage of the rated input of the on-board equipment. For example, as shown in FIG. 7, VIN is the output voltage of the vehicle battery (12V) , and may be converted through U5 to obtain a VCC of 4.2V, which may be used as the power supply voltage of the on-board equipment. It should be  understood that the use of the DC step-down converter for the conversion between high voltage and low voltage is only a preferred implementation proposed in this embodiment. In actual use, other devices or other forms of conversion circuit may be selected according to the actual situation, as long as the conversion between high voltage and low voltage can be realized, and it is not intended to limit.
When the conversion circuit 50 includes at least a DC step-down converter, the processing unit 40 may issue a control command to control the DC step-down converter to stop outputting voltage when the working current is monitored to be greater than the rated current of the on-board equipment. The vehicle battery may be protected by turning off the DCDC output to prevent the excessive consumption of the power of the vehicle battery, so as not to cause accelerated battery aging. In some embodiments, when the monitored working current is greater than the rated current of the on-board equipment, the vehicle battery may also be protected by turning off the power supply of the on-board equipment. In some embodiments, a plurality of preset threshold may be set to determine the corresponding operation that may be performed. For example, when the relevant parameter is greater than the reference threshold, a power off operation may be executed. As another example, when the relevant parameter exceeds the reference threshold and is within the first threshold, a reminder operation may be executed. As another example, when the relevant parameter exceeds the second threshold and is within the first threshold, a power management operation may be executed. For details on how to determine the operation instruction information related to the on-board equipment based on the relevant parameter and corresponding preset threshold, please refer to the description in FIG. 2 of the present disclosure. In summary, in some embodiments of the present disclosure, a sampling resistor may be set between the power supply of an on-board equipment 20 and the processing unit of the on-board equipment. The voltage across the sampling resistor 20 may be measured in real time as the basis for determining the working current of the on-board equipment, which is further analyzed for users to know the working state of the on-board equipment in time. When the on-board equipment is in an abnormal working state, it may be processed in time to prevent the abnormal power consumption of the on-board equipment from causing damage to the  vehicle battery.
In some embodiments, for the convenience of vehicle users to monitor the working state of an on-board equipment, other functional units such as a display unit, a communication unit, and an alarm unit may also be installed in the monitoring device of the on-board equipment to realize corresponding functions. The display unit may be used to display relevant information that needs to be displayed to vehicle users, such as reminder information or warning information, etc. The communication unit may be used to communicate with the user terminal 140. The alarm unit may be used to warn the abnormal working state of the on-board equipment. In some embodiments, if the current working current detected by the processing unit is greater than the rated current, it may be determined that the on-board equipment is currently in an abnormal working state. At this time, the processing unit may turn off the power input and simultaneously display the corresponding alarm information on the display unit, and remind the user that the working current of the on-board equipment is too large through the alarm unit in the form of sound or warning light flashing, which prompts the user to promptly replace or repair the on-board equipment. In some embodiments, the manner of performing other functions through the display unit, the communication unit, or the alarm unit may be determined according to the comparison of the working current of the on-board equipment and the preset threshold. In some embodiments, when the user is not driving the vehicle, for example, after parking the vehicle in the parking space at night, the driving recorder installed on the vehicle may still at the working state. At this time, the user may not get the alarm information in time if prompted by the display unit or the alarm unit, because the user is not in the car. Therefore the alarm information may be sent to the mobile terminal set by the user in advance through the communication unit, so that even if the user is not in the vehicle, the abnormal working state of the on-board equipment may be obtained in time to achieve timely replacement or maintenance of the on-board equipment.
Some embodiments of the present disclosure also provide an on-board equipment, which may be used for various devices with extended functions, such as a driving recorder, a car navigation system, a vehicle alarm system, etc. These on-board equipment are installed  on the vehicle to provide more convenient driving functions for vehicles and vehicle owners. The on-board equipment may be relatively close to the description included in the priority specification. It should be understood that the working status of an on-board equipment may mainly include the following three types: a normal working status, used to characterize the state that the on-board equipment works at a rated power when the vehicle is in normal use, and the rated working current of the on-board equipment may be usually 1A at this time; a low power state, used to ensure that the on-board equipment works with lower power consumption after the vehicle is turned off, and the rated working current of the on-board equipment in this case may only be tens of milliamps; an abnormal working state, used to characterize the working state that the working current of the on-board equipment is greater than the rated working current.
The existing on-board equipment may usually need to be connected to a vehicle battery for power supply, and its power consumption in a normal working state may be at most within 1A. When the vehicle is turned off, the on-board equipment may reduce its power consumption to limit its current to 20mA or less. If the on-board equipment is in an abnormal working state, the on-board equipment may continue to consume power with the current of 1A after the vehicle is turned off. Taking the vehicle battery capacity as 50Ah as an example, the vehicle battery may be exhausted in about 50 hours in this case. If the battery is exhausted several times, the damage to the vehicle battery may be very large, which may accelerate the aging speed and shorten the service life of the vehicle battery.
Therefore, the on-board equipment in this embodiment, in addition to the devices required to implement various functions in the original device, the monitoring device provided in some embodiments of the present disclosure may be at least installed. That is to say, a sampling resistor may be set between the power supply of an on-board equipment and the processing unit of the on-board equipment. The voltage across the sampling resistor may be measured in real time as the basis for determining the working current of the on-board equipment, which is further analyzed for users to know the working state of the on-board equipment in time. When the on-board equipment is in an abnormal working state, it may be processed in time to prevent the abnormal power consumption of the on-board  equipment from causing damage to the vehicle battery.
Specifically, in order to ensure the consistency of the data acquired in different on-board equipments, the sampling resistor may preferably be a high-precision resistor with a resistance error less than or equal to 1%, so that the error of the acquired voltage and the final calculated working current may also be within 1%in the condition that the input voltage is consistent. In some embodiments, the sampling resistor may be a high-precision resistor with a resistance error less than 5%, 4%, 3%, 2%, 1%, etc. For details, please refere to the description in FIG. 2 of the present disclosure. Further, in order to ensure that the use of the sampling resistor does not bring additional increase of the power consumption to the vehicle battery, the sampling resistor with a resistance within 1 ohm may be selected in the embodiment. When the current flowing through the sampling resistor is 1A, the power consumption increased by this part of the circuit may be 0.1W or 0.56W according to the power consumption calculation formula W=I 2*R, and the power consumption may be basically negligible compared to the power consumption of the whole on-board equipment. In some embodiments, the sampling resistor may be a resistance within a range of 1 ohm, 0.1 to 0.5 ohm, 0.05 to 0.1 ohm, etc. For details, please refer to the description in FIG. 2 of the present disclosure.
The acquisition unit may be configured to acquire the voltage across the sampling resistor in real time. The input end may be connected to both ends of the sampling resistor, and the output end may be connected to the processing unit to output the acquired voltage to the processing unit 40 to be further processed. In some embodiments, the acquisition unit may use an analog-to-digital converter (ADC, Analog to Digital Converter) . The voltage across the sampling resistor may be acquired at a preset sampling period during use, which may be converted from an analog signal to a digital signal, and output to the processing unit 40 for processing.
In some embodiments, the monitoring device of the on-board equipment may further include a monitoring unit for detecting temperature of the on-board equipment. In some embodiments, the monitoring unit may directly set a temperature sensor to detect the temperature of the on-board equipment. In some embodiments, a thermal resistor may be  set in the on-board equipment, and its resistance may vary with temperature. The temperature of the on-board equipment may be obtained by detecting the change of a certain parameter (for example, a change of the voltage value, a change of the resistance value, etc. ) of the thermal resistor. If an on-board equipment is in the abnormal working state for a long time, the working current may be greater than the rated working current. Therefore, the temperature of on-board equipment may gradually increase, and the temperature of the on-board equipment may reflect the working state of the on-board equipment to a certain extent. In some embodiments, when the detected temperature reaches a certain preset value, related subsequent operations (similar to the situation of monitoring working current of on-board equipment) may be performed. For example, the processing device may cut off the power supply of the on-board equipment, reminding vehicle users or other operations.
The processing unit 40 may directly use a SOC of the on-board equipment, or a separate processing chip or processor, as long as the voltage value in the form of a digital signal may be received and the working current of the on-board equipment may be subsequently calculated. In this embodiment, a SOC of an on-board equipment may be preferably used as the processing unit. When the computing capacity is guaranteed, subsequent control may be further implemented. For example, in order to protect the vehicle battery, the processing unit may calculate and determine the working current of the on-board equipment, compare its working current and the rated current of the on-board equipmet in the normal working state. When the working current is greater than the rated current, the power of the on-board equipment may be turned off to prevent the vehicle battery from over-discharging consumption. In particularly, when the vehicle has been turned off, the rated current of the on-board equipment shall be only a few tens of milliamps. If the real-time working current monitored is 1A, the working current may be much larger than the rated current and the processed unit may need to turn off the power supply of the on-board equipment to prevent excessive consumption of the vehicle battery, so as not to cause accelerated battery aging.
Further, in actual use, the conversion circuit may include at least one DC step-down converter DCDC, one end of DC step-down converter is connected to a vehicle power source,  and the other end is connected to the power source of the on-board equipment to convert the 12V voltage output of the vehicle battery into the 4.2V voltage of the rated input of the on-board equipment. It should be understood that the use of the DC step-down converter for the conversion between high voltage and low voltage is only a preferred implementation proposed in this embodiment. In actual use, other devices or other forms of conversion circuit may be selected according to the actual situation, as long as the conversion between high voltage and low voltage can be realized, and this embodiment is not intended to limit. In the case that the conversion circuit includes at least a DC step-down converter, the processing unit may issue a control command to control the DC step-down converter to stop outputting voltage when the working current is monitored to be greater than the rated current of the on-board equipment. The vehicle battery may be protected by turning off the DCDC output to prevent the excessive consumption of the power of the vehicle battery, so as not to cause accelerated battery aging.
For the convenience of vehicle users to monitor the working state of an on-board equipment, other functional units such as a display unit, a communication unit, and an alarm unit may also be installed in the monitoring device of the on-board equipment to realize corresponding functions. For example, when the display unit, the communication unit, and the alarm unit are installed in the on-board equipment, if the working current detected by the processing unit is greater than the rated current, it may be determined that the on-board equipment is currently in an abnormal working state. At this time, the processing unit may turn off the power input and simultaneously display the corresponding alarm information on the display unit, and remind the user that the working current of the on-board equipment is too large through the alarm unit in the form of sound or warning light flashing, which prompts the user to promptly replace or repair the on-board equipment. When the user is not driving the vehicle, for example, after parking the vehicle in the parking space at night, the driving recorder installed on the vehicle may still at the working state. At this time, the user may not get the alarm information in time if prompted by the display unit or the alarm unit, because the user is not in the car. Therefore the alarm information may be sent to the mobile terminal set by the user in advance through the communication unit, so that even if  the user is not in the vehicle, the abnormal working state of the on-board equipment may be obtained in time to achieve timely replacement or maintenance of the on-board equipment.
The possible benefits of the present disclosure embodiment include but are not limited to: (1) Monitoring the working state of an on-board equipment by monitoring a relevant parameter of the on-board equipment, determining whether the working state is abnormal, performing the corresponding processing operation according to the abnormal situation of the working state to protect the battery of the vehicle where the on-board equipment is located, and preventing abnormal power consumption of the on-board equipment from causing damage to the vehicle battery. (2) Monitoring the current of an on-board equipment by connecting a sampling resistor in series with the on-board equipment, and then determining the working state of the on-board equipment. The monitoring scheme and the monitoring circuit are simple. (3) Automatically determining the abnormality of an on-board equipment by setting different levels of thresholds, and providing corresponding reminder solutions or operation solutions for the different levels of abnormalities, which may improve the user experience.
It should be noted that different embodiments may have different beneficial effects. In different embodiments, the possible beneficial effects may be any of the above or the like, or any combination thereof, or any other beneficial effects that may be obtained.
The basic concepts have been described above. Obviously, for those skilled in the art, the detailed disclosure is merely by way of example, and does not constitute a limitation on the present disclosure. Although not explicitly stated here, those skilled in the art may make various modifications, improvements and amendments to the present disclosure. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present  disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment, ” “one embodiment, ” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. In addition, certain features, structures, or characteristics in one or more embodiments of the present disclosure may be appropriately combined.
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software only solution, e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various embodiments. However, this disclosure method does not mean that the present disclosure object requires more features than the features mentioned in the claims. Rather, claimed subject matter may lie in less than all features of a single foregoing disclosed embodiment.
In some embodiments, the numbers expressing quantities of ingredients, properties, and so forth, used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially” . Unless otherwise stated, “about, ” “approximate, ” or “substantially” may indicate ±20%variation of the value it describes. Accordingly, in some embodiments, the numerical parameters set forth in the description and attached claims are approximations that  may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters configured to illustrate the broad scope of some embodiments of the present disclosure are approximations, the numerical values in specific examples may be as accurate as possible within a practical scope.
Each patent, patent application, patent application publication and other materials cited herein, such as articles, books, instructions, publications, documents, etc., are hereby incorporated by reference in their entirety. In addition to the application history documents that are inconsistent or conflicting with the contents of the present disclosure, the documents that may limit the widest range of the claim of the present disclosure (currently or later attached to this application) is excluded from the present disclosure. It should be noted that if the description, definition, and/or terms used in the appended application of the present disclosure is inconsistent or conflicting with the content described in the present disclosure, the use of the description, definition and/or terms of the present disclosure shall prevail.
At last, it should be understood that the embodiments described in the present disclosure are merely illustrative of the principles of the embodiments of the present disclosure. Other modifications may be within the scope of the present disclosure. Accordingly, by way of example, and not limitation, alternative configurations of embodiments of the present disclosure may be considered to be consistent with the teachings of the present disclosure. Accordingly, the embodiments of the present disclosure are not limited to the embodiments explicitly described and described by the present disclosure.

Claims (42)

  1. A method for monitoring an on-board equipment, implemented on a computing device including at least one processor and at least one storage medium, the method comprising:
    acquiring a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment; and
    determining an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  2. The method of claim 1, wherein the relevant parameter of the on-board equipment includes a working current of the on-board equipment and/or a temperature of the on-board equipment.
  3. The method of claim 2, wherein when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the acquiring the relevant parameter of the on-board equipment comprises:
    acquiring a voltage across a resistor in series with the on-board equipment; and
    determining a corresponding current based on a resistance of the resistor and the voltage across the resistor, the current reflecting a working current flowing through the on-board equipment.
  4. The method of claim 3, wherein an error of the resistance is less than or equal to 1%.
  5. The method of claim 3, wherein the resistance of the resistor is less than or equal to 1 ohm.
  6. The method of claim 2, wherein when the relevant parameter of the on-board equipment includes the temperature of the on-board equipment, the acquiring the relevant parameter of the on-board equipment comprises:
    detecting the temperature of the on-board equipment via a temperature sensor.
  7. The method of claim 1, wherein the preset threshold includes a reference threshold, the method further comprises:
    when the relevant parameter is greater than the reference threshold, determining the operation instruction information as an instruction of power off operation, wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
  8. The method of claim 1, wherein the preset threshold further includes a reference threshold and a first threshold, and the first threshold is greater than the reference threshold, wherein the method further comprises:
    when the relevant parameter exceeds the reference threshold and is within the first threshold, determining the operation instruction information as an instruction of reminder operation; and
    when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
  9. The method of claim 1, wherein the preset threshold further includes a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, wherein the method further comprises:
    when the relevant parameter exceeds the reference threshold and is within the second threshold, determining the operation instruction information as an instruction of reminder operation;
    when the relevant parameter exceeds the second threshold and is within the first threshold, determining the operation instruction information as an instruction of power management operation; and
    when the relevant parameter exceeds the first threshold, determining the operation instruction information as an instruction of power off operation.
  10. A system for monitoring an on-board equipment, comprising:
    a storage device storing a set of instructions; and
    one or more processors in communication with the storage device, wherein when executing the set of instructions, the one or more processors are configured to cause the system to:
    acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment; and
    determine an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  11. The system of claim 10, wherein the relevant parameter of the on-board equipment includes a working current of the on-board equipment and/or a temperature of the on-board equipment.
  12. The system of claim 11, wherein when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the one or more processors are configured to cause the system to:
    acquire a voltage across a resistor in series with the on-board equipment; and
    determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, and the current reflecting the working current flowing through the on-board equipment.
  13. The system of claim 12, wherein an error of the resistance is less than or equal to 1%.
  14. The system of claim 12, wherein the resistance of the resistor is less than or equal to 1 ohm.
  15. The system of claim 11, wherein when the relevant parameter of the on-board  equipment includes the temperature of the on-board equipment, the one or more processors are configured to cause the system to:
    detect the temperature of the on-board equipment via a temperature sensor.
  16. The system of claim 10, wherein the preset threshold includes a reference threshold, and the one or more processors are configured to cause the system to:
    when the relevant parameter is greater than the reference threshold, determine the operation instruction information as an instruction of power off operation, wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
  17. The system of claim 10, wherein the preset threshold further includes a reference threshold and a first threshold, and the first threshold is greater than the reference threshold, wherein the one or more processors are configured to cause the system to:
    when the relevant parameter exceeds the reference threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and
    when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  18. The system of claim 10, wherein the preset threshold further includes a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, wherein the one or more processors are configured to cause the system to:
    when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation;
    when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power  management operation; and
    when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  19. A system for monitoring an on-board equipment, comprising:
    an acquisition module, configured to acquire a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment; and
    a determination module, configured to determine an operation instruction information related to the on-board equipment based on the relevant parameter and a preset threshold.
  20. The system of claim 19, wherein the relevant parameter of the on-board equipment includes a working current of the on-board equipment and/or a temperature of the on-board equipment.
  21. The system of claim 20, wherein when the relevant parameter of the on-board equipment includes the working current of the on-board equipment, the acquisition module is configured to:
    acquire a voltage across a resistor in series with the on-board equipment; and
    determine a corresponding current based on a resistance of the resistor and the voltage across the resistor, and the current reflecting the working current flowing through the on-board equipment.
  22. The system of claim 21, wherein an error of the resistance is less than or equal to 1%.
  23. The system of claim 21, wherein the resistance of the resistor is less than or equal to 1 ohm.
  24. The system of claim 20, wherein when the relevant parameter of the on-board  equipment includes the temperature of the on-board equipment, the acquisition module is configured to:
    detect the temperature of the on-board equipment via a temperature sensor.
  25. The system of claim 19, wherein the preset threshold includes a reference threshold, the determination module is configured to:
    when the relevant parameter is greater than the reference threshold, determine the operation instruction information as an instruction of power off operation, wherein the power off operation includes cutting off power transmission between a vehicle battery and the on-board equipment.
  26. The system of claim 19, wherein the preset threshold further includes a reference threshold and a first threshold, and the first threshold is greater than the reference threshold, wherein the determination module is configured to:
    when the relevant parameter exceeds the reference threshold and is within the first threshold, determine the operation instruction information as an instruction of reminder operation; and
    when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  27. The system of claim 19, wherein the preset threshold further includes a reference threshold, a first threshold, and a second threshold, the second threshold is greater than the reference threshold and less than the first threshold, wherein the determination module is configured to:
    when the relevant parameter exceeds the reference threshold and is within the second threshold, determine the operation instruction information as an instruction of reminder operation;
    when the relevant parameter exceeds the second threshold and is within the first threshold, determine the operation instruction information as an instruction of power  management operation; and
    when the relevant parameter exceeds the first threshold, determine the operation instruction information as an instruction of power off operation.
  28. A monitoring device of an on-board equipment, comprising a processor, wherein the processor is configured to execute the method for monitoring the on-board equipment according to any one of claims 1-9.
  29. A computer-readable storage medium storing computer instructions, wherein when a computer read the computer instructions in the storage medium, the computer executes the method for monitoring an on-board equipment according to any one of claims 1 to 9.
  30. A monitoring device of an on-board equipment, comprising:
    a monitoring unit for monitoring a relevant parameter of the on-board equipment, the relevant parameter reflecting a working state of the on-board equipment.
  31. The monitoring device of claim 30, wherein the monitoring unit includes a current monitoring unit or a temperature monitoring unit, wherein the current monitoring unit is configured to monitor a working current of the on-board equipment, and the temperature monitoring unit is configured to monitor a temperature of the on-board equipment.
  32. The monitoring device of claim 31, wherein when the monitoring unit includes the temperature monitoring unit, the temperature monitoring unit includes:
    a divider resistor, one end of the divider resistor connected to a power supply of the on-board equipment and another end of the divider resistor connected to a second processing unit;
    a thermal resistor, connected in series with the divider resistor;
    a second acquisition unit, configured to acquire a voltage across the thermal resistor or a voltage across the divider resistor or a voltage between the divider resistor and the thermal  resistor, wherein
    the second processing unit is connected to the second acquisition unit and configured to determine a temperature change of the on-board equipment according to an acquisition result of the second acquisition unit.
  33. The monitoring device of claim 31, wherein when the monitoring unit includes a current monitoring unit, the current monitoring unit includes:
    a sampling resistor, one end of the sampling resistor connected to a power supply of the on-board equipment and another end of the sampling resistor connected to a processing unit;
    an acquisition unit, an input end of the acquisition unit connected to both ends of the sampling resistor, an output end of the acquisition unit connected to the processing unit, the acquisition unit being configured to acquire a voltage across the sampling resistor, wherein
    the processing unit is configured to determine a working current of the on-board equipment based on the voltage across the sampling resistor.
  34. The monitoring device of claim 33, wherein an error of a resistance of the sampling resistor is less than or equal to 1%.
  35. The monitoring device of claim 33, wherein a resistance of the sampling resistor is less than or equal to 1 ohm.
  36. The monitoring device of claim 33, wherein the acquisition unit is an analog-to-digital converter.
  37. The monitoring device of claim 33, wherein a first input end of the acquisition unit is connected to one end of a first protection resistor, another end of the first protection resistor is connected to the one end of the sampling resistor, a second input end of the acquisition unit is connected to one end of a second protection resistor, and another end of the second protection resistor is connected to the another of the sampling resistor.
  38. The monitoring device of claim 33, wherein the processing unit is further configured to cut off the power supply of the on-board equipment when the working current is greater than a rated current of the on-board equipment.
  39. The monitoring device of claim 33, further comprising:
    a conversion circuit, one end of the conversion circuit connected to a vehicle power supply, another end of the conversion circuit connected to the power supply of the on-board equipment, the conversion circuit being configured to convert an output voltage of the vehicle power supply to a rated voltage of the on-board equipment.
  40. The monitoring device of claim 39, wherein the conversion circuit at least comprises a DC step-down converter, one end of the DC step-down converter connected to the vehicle power supply, and another end of the DC step-down converter connected to the power supply of the on-board equipment.
  41. The monitoring device of claim 40, wherein the processing unit is further configured to control the conversion circuit to stop outputting voltage when the working current is greater than the rated current of the on-board equipment.
  42. An on-board equipment, at least including a monitoring device according to any one of claims 30 to 41.
PCT/CN2020/088970 2020-01-20 2020-05-07 Methods and systems for monitoring an on-board equipment WO2021147208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020132911.0 2020-01-20
CN202020132911.0U CN211969350U (en) 2020-01-20 2020-01-20 Monitoring device of vehicle-mounted equipment and vehicle-mounted equipment

Publications (1)

Publication Number Publication Date
WO2021147208A1 true WO2021147208A1 (en) 2021-07-29

Family

ID=73372155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088970 WO2021147208A1 (en) 2020-01-20 2020-05-07 Methods and systems for monitoring an on-board equipment

Country Status (2)

Country Link
CN (1) CN211969350U (en)
WO (1) WO2021147208A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147914A1 (en) * 2020-01-20 2021-07-29 北京嘀嘀无限科技发展有限公司 Low-voltage protection method and system for vehicle-mounted devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201039451Y (en) * 2007-05-10 2008-03-19 青岛海信电器股份有限公司 Stereo sound accompanying power amplification circuit
CN102883256A (en) * 2012-09-25 2013-01-16 浙江吉利汽车研究院有限公司杭州分公司 High temperature alarming system and method for automobile sound equipment
US8480433B2 (en) * 2011-04-05 2013-07-09 Sung Jung Minute Industry Co., Ltd. On-board diagnostic adapter
CN103901248A (en) * 2012-12-28 2014-07-02 北京北大千方科技有限公司 Voltage detecting circuit in vehicle-mounted equipment and vehicle-mounted equipment
CN106042834A (en) * 2016-06-24 2016-10-26 北京新能源汽车股份有限公司 Control method and system for warm air of electric automobile air conditioner
CN107978031A (en) * 2017-11-20 2018-05-01 葛飞 A kind of automobile data recorder and its parking monitoring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201039451Y (en) * 2007-05-10 2008-03-19 青岛海信电器股份有限公司 Stereo sound accompanying power amplification circuit
US8480433B2 (en) * 2011-04-05 2013-07-09 Sung Jung Minute Industry Co., Ltd. On-board diagnostic adapter
CN102883256A (en) * 2012-09-25 2013-01-16 浙江吉利汽车研究院有限公司杭州分公司 High temperature alarming system and method for automobile sound equipment
CN103901248A (en) * 2012-12-28 2014-07-02 北京北大千方科技有限公司 Voltage detecting circuit in vehicle-mounted equipment and vehicle-mounted equipment
CN106042834A (en) * 2016-06-24 2016-10-26 北京新能源汽车股份有限公司 Control method and system for warm air of electric automobile air conditioner
CN107978031A (en) * 2017-11-20 2018-05-01 葛飞 A kind of automobile data recorder and its parking monitoring method

Also Published As

Publication number Publication date
CN211969350U (en) 2020-11-20

Similar Documents

Publication Publication Date Title
US20220111732A1 (en) Safety monitoring method and system for vehicle, and device
US20160001719A1 (en) Charging Method
US20180172770A1 (en) Battery management system and method thereof
JP5079186B2 (en) System and method for monitoring a vehicle battery
US20180080995A1 (en) Notification system and method for providing remaining running time of a battery
US9008907B2 (en) Intelligent vehicle power control system and method
US20160332533A1 (en) Maintaining a vehicle battery
US11260755B2 (en) Battery management apparatus and method
CN103080762A (en) Battery deterioration detection device, battery deterioration detection method, and program therefor
US11721993B1 (en) Battery management system
KR20150121526A (en) Method and device to estimate battery lifetime during driving of electrical vehicle
KR20210033309A (en) Solar charging system and method for vehicle
KR20160148583A (en) Method and device for monitoring the electrical battery of a vehicle
WO2021147208A1 (en) Methods and systems for monitoring an on-board equipment
CN110722989A (en) New energy automobile battery management system dormancy method
CN112406545A (en) Relay temperature rise monitoring method and device and electric automobile
KR20170048866A (en) Apparatus and method for monitoring auxiliary battery of vehicle
KR20150044201A (en) Apparatus and method for judging of current consumption of battery
CN103576098A (en) On-line power supply life monitoring method, on-line power supply life monitoring system and power supply
CN112937436A (en) Vehicle parking early warning method and device and electronic equipment
CN219106257U (en) Circuit for battery temperature detection and compensation
CN116587921A (en) Battery control method, device, battery management system and storage medium
CN114475475B (en) Vehicle storage battery management method and device and electronic equipment
CN113815636A (en) Vehicle safety monitoring method and device, electronic equipment and storage medium
US20220011368A1 (en) System and method for managing battery of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915332

Country of ref document: EP

Kind code of ref document: A1