WO2021147179A1 - 血液粒子检测方法及其血液分析仪 - Google Patents
血液粒子检测方法及其血液分析仪 Download PDFInfo
- Publication number
- WO2021147179A1 WO2021147179A1 PCT/CN2020/084259 CN2020084259W WO2021147179A1 WO 2021147179 A1 WO2021147179 A1 WO 2021147179A1 CN 2020084259 W CN2020084259 W CN 2020084259W WO 2021147179 A1 WO2021147179 A1 WO 2021147179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- blood
- low
- value
- normal
- Prior art date
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 190
- 239000008280 blood Substances 0.000 title claims abstract description 190
- 238000001514 detection method Methods 0.000 title claims abstract description 127
- 239000002245 particle Substances 0.000 title claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 108
- 238000000034 method Methods 0.000 claims abstract description 48
- 210000001772 blood platelet Anatomy 0.000 claims abstract description 35
- 210000000265 leukocyte Anatomy 0.000 claims abstract description 35
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 27
- 210000003743 erythrocyte Anatomy 0.000 claims abstract description 19
- 239000000523 sample Substances 0.000 claims description 311
- 230000007246 mechanism Effects 0.000 claims description 52
- 210000004027 cell Anatomy 0.000 claims description 51
- 239000012530 fluid Substances 0.000 claims description 18
- 239000012488 sample solution Substances 0.000 claims description 16
- 102000001554 Hemoglobins Human genes 0.000 claims description 11
- 108010054147 Hemoglobins Proteins 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 10
- 238000004820 blood count Methods 0.000 claims description 7
- 238000004737 colorimetric analysis Methods 0.000 claims description 7
- 230000010365 information processing Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 5
- 239000012895 dilution Substances 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 11
- 230000007812 deficiency Effects 0.000 abstract 1
- 239000000306 component Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 5
- 239000003219 hemolytic agent Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 238000004159 blood analysis Methods 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/48707—Physical analysis of biological material of liquid biological material by electrical means
- G01N33/48735—Investigating suspensions of cells, e.g. measuring microbe concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1024—Counting particles by non-optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1028—Sorting particles
Definitions
- This application relates to the technical field of blood analysis, and in particular to a blood particle detection method and a blood analyzer.
- biological samples such as blood are usually collected from the human body to detect the distribution of some cell particles (such as red blood cells, white blood cells, and platelets) in the human body to help doctors diagnose the health of the human body.
- cell particles such as red blood cells, white blood cells, and platelets
- white blood cells and platelets have important reference value in clinical medicine, so there are higher requirements for the accuracy of their detection.
- Existing blood particle detection usually relies on automated or semi-automated blood analyzers or related blood analysis systems.
- the optical system and the electrical impedance system are mainly used in combination to complete the detection of blood particle components.
- the optical system is mainly used to detect white blood cells or platelets in blood samples.
- the electrical impedance system is used to detect platelets and so on. As a result, specific components in the blood are detected, but most of these devices are bulky and costly.
- the prior art has the following problem: when the existing blood testing instrument performs the detection of white blood cells and platelets, it needs to use an optical system to achieve it.
- the implementation cost of the optical system is relatively high, and white blood cell detection and platelet detection are required to be performed in sections, which requires high instrument systems, which is not conducive to reducing the manufacturing cost and volume of the equipment.
- the embodiments of the present application provide a blood particle detection method and a blood analyzer thereof, which are used to solve the problems of high cost and large volume of the existing blood analyzer using an optical system.
- the first aspect of the embodiments of the present application provides a blood particle detection method.
- the method includes:
- the blood sample is a low-value sample
- reacting the blood sample with a corresponding reagent to form a first low-value sample liquid and a second low-value sample liquid
- the blood sample is a normal sample
- the leukocytes of the blood sample are detected through the first low-value sample fluid or the first normal sample fluid, and the blood sample is detected through the second low-value sample fluid or the second normal sample fluid. Red blood cells and platelets.
- reacting the blood sample with a corresponding reagent to form a first low-value sample solution and a second low-value sample solution specifically includes:
- Corresponding reagents are added to the first counting cell and the second counting cell to react to form a first low-value sample liquid and a second low-value sample liquid, respectively.
- the electrical impedance method is used to detect the white blood cells of the blood sample through the first low-value sample liquid and the red blood cells of the blood sample are detected through the second low-value sample liquid
- the number of platelets including:
- the first negative pressure guides the first low-value sample solution and the second low-value sample solution to flow through the first impedance detection area and the second impedance detection area at a first speed at a set first time, respectively;
- the second electrical signal is statistically analyzed to obtain the red blood cell and platelet counts of the blood sample.
- the electrical impedance method is used to detect the white blood cells of the blood sample through the first normal sample fluid and the number of red blood cells and platelets in the blood sample through the second normal sample fluid. , Specifically including:
- the second negative pressure guides the first normal sample liquid and the second normal sample liquid to flow through the first impedance detection area and the second impedance detection area at a second speed for a set second time, respectively;
- the second electrical signal is statistically analyzed to obtain the red blood cell and platelet counts of the blood sample.
- the first time is longer than the second time so that the blood sample belonging to the low-value sample has more counts in the impedance detection area than the blood sample belonging to the normal sample.
- determining whether the collected blood sample is a normal sample or a low-value sample includes:
- the blood sample is a normal sample by default, particle detection is performed on the blood sample
- the blood sample is a normal sample.
- the method further includes:
- the hemoglobin concentration of the blood sample is detected through the first low-value sample liquid or the first normal sample liquid.
- the blood analyzer includes:
- Sample preparation institution used to collect blood samples and obtain corresponding reagents
- the reaction mechanism is used to provide a reaction place for the blood sample and the corresponding reagent to form the corresponding first low-value sample liquid and the second low-value sample liquid, or the first normal sample and the second normal sample liquid;
- a detection mechanism the detection mechanism includes a first and a second impedance detection area, and detects the sample liquid flowing through the first and second impedance detection areas by the electrical impedance method;
- the mode setting mechanism is used to set the corresponding measurement mode according to whether the current blood sample is a normal sample or a low-value sample;
- An information processing mechanism for receiving and processing the electrical signals detected by the detection mechanism
- the control mechanism is used to control the sample preparation mechanism, the testing mechanism, the information processing mechanism, and the mode setting mechanism.
- the sample preparation mechanism includes a horizontal movement motor, a vertical movement motor, a pipetting needle, and a syringe;
- the horizontal movement motor and the vertical movement motor are driving mechanisms for driving the pipetting needle and the syringe to move in corresponding directions;
- the pipette needle and the syringe are used to collect blood samples and corresponding reagents.
- the detection mechanism includes: a negative pressure pump, a first counting cell, a second counting cell, and a counting liquid path device;
- the negative pressure pump is used to establish negative pressure to guide the first low value sample liquid and the second low value sample liquid to flow through the first counting cell and the second counting cell respectively at a set time and speed;
- the counting fluid path device is used to collect electrical signals generated when flowing through the first counting cell and the second counting cell; wherein, the electrical signals generated when flowing through the first counting cell are used to detect white blood cells in the blood sample , The electrical signal generated by flowing through the second counting cell is used to detect the number of red blood cells and platelets in the blood sample; when the current blood sample is a low-value sample, the time flowing through the first counting cell and the second counting cell is longer than When the current sample is a normal sample, the time that it passes through the first counting pool and the second counting pool;
- the detection mechanism further includes a colorimetric detection device; the colorimetric detection device is used to detect the hemoglobin concentration of the first low-value sample liquid or the first normal sample liquid in the first counting cell using a colorimetric method.
- the blood particle detection method and the blood analyzer provided by the embodiments of the present application can well overcome the defects of the existing blood detection system by setting multiple detection modes and multiple impedance detection areas. It does not need to add an optical system and use a segmented detection method, can simplify the requirements of the blood detection system, and can improve the detection accuracy of low-value samples, and has a good application prospect.
- Figure 1 is a schematic diagram of a blood particle detection method provided by an embodiment of the present application.
- Figure 2 is a structural block diagram of a blood analyzer provided by an embodiment of the present application.
- Fig. 3a is a schematic diagram of a detection process of a low-value sample provided in an embodiment of the present application
- Fig. 3b is a schematic diagram of a detection process of a normal sample provided in an embodiment of the present application.
- Fig. 1 shows a flowchart of a blood particle detection method provided by an embodiment of the present application.
- the blood particle detection method can realize the simultaneous detection of white blood cells and platelets in a blood sample, and has a good detection accuracy rate for low-value samples.
- the method may include the following steps:
- Step 110 Determine whether the collected blood sample is a normal sample or a low-value sample. If it is a low-value sample, perform step 120, and if it is a normal sample, perform step 130.
- Low-value samples and "normal samples” are relative concepts.
- a low-value sample is a blood sample whose blood cell or platelet count is far below the normal value range compared to a normal sample. It may exist in all possible types of patients.
- the type of blood sample collected can be determined in the following manner:
- the blood sample is a normal sample
- particle detection is performed on the blood sample.
- the blood sample is tested in the default mode (normal sample) in advance, and the rough blood composition can be obtained.
- the particle detection result is lower than the normal range. If it is, it is determined that the blood sample collected is a low-value sample. If not, it is determined that the blood sample is a normal sample. For blood samples that belong to low-value samples, special labels can be used to identify them so that they can be tested in the correct way.
- the normal range is a preset empirical value, which can be set after comprehensive consideration of various factors such as actual conditions.
- Step 120 react the blood sample with the corresponding reagent to form a first low-value sample solution and a second low-value sample solution.
- the same blood sample is processed, it is divided into a first low-value sample liquid and a second low-value sample liquid to be used for the detection and counting of different blood components, respectively.
- a certain amount of blood can be collected from the blood sample by a blood sampling needle, etc., added to the first counting pool and diluted.
- a part of the blood sample diluted in the first counting pool can be taken out and transferred to the second counting pool through equipment such as a blood separator.
- the above-mentioned first low-value sample liquid and second low-value sample liquid are formed.
- Step 130 react the blood sample with the corresponding reagent to form a first normal sample liquid and a second normal sample liquid.
- the reaction method corresponding to the normal sample is used to obtain the required sample liquid.
- the first normal sample liquid and the second normal sample liquid are used for naming.
- the equipment or mechanism required to form the first normal sample liquid and the second normal sample liquid is the same as in step 120, and the difference between the two is only the blood sample added, the reagent, and the dilution ratio.
- Step 140 Use the electrical impedance method to detect the white blood cells of the blood sample through the first low-value sample fluid, and detect the number of red blood cells and platelets in the blood sample through the second low-value sample fluid.
- the electrical impedance method is a commonly used cell technology method. It uses the principle of electrical signal pulses generated by cells suspended in an electrolyte solution when they pass through the counting area.
- the leukocytes and platelets of the blood sample can be detected in different impedance detection areas respectively.
- Step 150 Use the electrical impedance method to detect the white blood cells of the blood sample through the first normal sample fluid, and detect the number of red blood cells and platelets in the blood sample through the second normal sample fluid.
- the electrical impedance method is also used to count white blood cells and platelets. Due to the difference in the detection quantity range between normal samples and low value samples. Therefore, the specific parameters of the electrical impedance method used in step 140 and step 150 need to be adjusted accordingly.
- the blood particle detection method provided in the embodiments of the application additionally adds a special detection mode for low-value samples.
- the detection process can be adjusted adaptively, thereby effectively improving the detection of low-value samples.
- the detection accuracy rate is a special detection mode for low-value samples.
- the detection method is divided into the first sample liquid and the second sample liquid during the detection, without the need to use the optical system, and the simultaneous detection of white blood cells and platelets can also be realized, which effectively simplifies the hardware system and reduces Cost of equipment.
- Step 160 Detect the hemoglobin concentration of the first sample liquid (ie, the first low-value sample liquid or the first normal sample liquid) by colorimetry.
- the first sample solution can also be used to detect the hemoglobin concentration of the blood sample.
- the detection of the hemoglobin concentration can be implemented in a continuous detection manner with the electrical impedance method. That is, the hemoglobin concentration and white blood cells of the first sample liquid are detected sequentially.
- the specific steps of the electrical impedance method for detecting blood particles include:
- the blood sample belongs to a low-value sample
- a preset first negative pressure is established through a negative pressure syringe.
- the first low-value sample liquid and the second low-value sample liquid are guided by the first negative pressure to flow through the first impedance detection area and the second impedance detection area at a first speed at a set first time. So that the corresponding detection circuit collects the first electrical signal generated when the first low-value sample liquid flows through the first impedance detection zone and the second low-value sample liquid flows through the The second electrical signal of the second impedance detection zone.
- the first electrical signal is statistically analyzed to obtain the white blood cell count of the blood sample
- the second electrical signal is statistically analyzed to obtain the red blood cell and platelet count of the blood sample.
- any suitable type of statistical analysis method can be used. It is well-known to those skilled in the art and will not be repeated here.
- the blood sample belongs to a normal sample
- a preset second negative pressure is established through a negative pressure syringe.
- the first normal sample liquid and the second normal sample liquid are guided by the second negative pressure to flow through the first impedance detection area and the second impedance detection area at a second speed for a set second time, respectively, so that The corresponding detection circuit collects the first electrical signal generated when the first normal sample liquid flows through the first impedance detection area and the second normal sample liquid flows through the second impedance within the second time The second electrical signal in the detection zone.
- the first electrical signal is statistically analyzed to obtain the white blood cell count of the blood sample
- the second electrical signal is statistically analyzed to obtain the red blood cell and platelet count of the blood sample.
- one or more parameters involved in the electrical impedance method detection process can be adjusted accordingly to make the low-value sample have better detection accuracy.
- the first time may be set to be longer than the second time so that the blood sample belonging to the low-value sample has more counts in the impedance detection area than the blood sample belonging to the normal sample, thereby ensuring low-value samples The number of cell particles will not be underestimated.
- the blood sample belonging to the low-value sample has more counts in the impedance detection area than the blood sample belonging to the normal sample, ensuring that the number of cell particles in the low-value sample will not be underestimated.
- Fig. 2 is a structural block diagram of a blood analyzer provided by an embodiment of the application.
- the blood analyzer uses the blood particle detection method provided in the embodiments of the present application, and does not need to use an optical system and segmented detection, which can effectively reduce the cost of equipment and simplify the equipment.
- the blood analyzer includes: a sample preparation mechanism 210, a reaction mechanism 220, a detection mechanism 230, a mode setting mechanism 240, an information processing mechanism 250, and a control mechanism 260.
- the sample preparation mechanism 210 is a collection device for collecting blood samples and obtaining corresponding reagents. It can specifically include horizontal motion motors, vertical motion motors, pipetting needles, syringes, and so on. In actual use, the horizontal movement motor and the vertical movement motor are used as driving mechanisms to drive the pipetting needle and the syringe to move in corresponding directions to complete the collection of blood samples and the acquisition of reagents.
- the specific setting mode of the sample preparation mechanism can be adjusted or added or deleted according to the needs of the actual situation, which is well known to those skilled in the art.
- the reaction mechanism 220 is used to provide a reaction place for blood samples and corresponding reagents.
- the reaction mechanism 220 can provide at least two sets of mutually independent places for mixing and reacting the blood sample with the diluent and the hemolytic agent to form the corresponding first sample solution and second sample solution.
- the first sample liquid and the second sample liquid may be referred to as the first low-value sample liquid and the second low-value sample liquid, respectively.
- the first sample liquid and the second sample liquid may be referred to as the first normal sample and the second normal sample liquid, respectively.
- the detection mechanism 230 is a device that counts cells by the electrical impedance method.
- the detection mechanism 230 may have first and second impedance detection areas, which are respectively used to detect the sample liquid flowing through the first and second impedance detection areas.
- the detection mechanism 230 may include components such as a negative pressure pump, a first counting cell, a second counting cell, and a counting liquid path device.
- the negative pressure is established by the negative pressure pump to guide the first sample liquid and the second sample liquid to flow through the first counting cell and the second counting cell respectively at a set time and speed.
- the pulse signal generated when flowing through the first counting cell and the second counting cell is collected and obtained by the counting liquid path device.
- the electrical signal generated by flowing through the first counting cell can be used to detect the white blood cells of the blood sample.
- the electrical signal generated by the second counting cell is used to detect the number of red blood cells and platelets in the blood sample.
- the detection mechanism 230 may also include a colorimetric detection device for detecting the hemoglobin concentration of the blood sample.
- the colorimetric detection device can use colorimetry to detect the first low-value sample liquid or the first normal sample liquid in the first counting cell to obtain the hemoglobin concentration of the blood sample.
- the mode setting mechanism 240 is a device for setting the corresponding measurement mode according to whether the current blood sample is a normal sample or a low value sample.
- the mode setting mechanism 240 may be a manual or an automatic setting method, so that the blood analyzer can operate in a correct manner.
- the information processing mechanism 250 is a functional module for receiving and processing the electrical signals detected by the detection mechanism. It can be realized by a combination of software and hardware, execute appropriate statistical analysis algorithms to realize the processing of electrical signals, and output corresponding data information for reference to medical staff.
- the control mechanism 260 is the control core of the entire blood analyzer. It can be used to control sample preparation institutions, testing institutions, information processing institutions, and mode setting institutions, and coordinate the operation of various functional modules.
- the control mechanism 260 can be implemented by using any suitable processor or processing chip in combination with corresponding computer program instructions, and can be adjusted and set by those skilled in the art according to actual needs.
- the blood analyzer provided in the embodiments of the present application applies the blood detection method provided in the above embodiments, which can simplify the structure of the detection system. Without using an optical system, by increasing the number of cytometers, the electrical impedance detection system is effectively improved. Measurement accuracy for low-value white blood cell/platelet samples. Moreover, the two measurements are performed at the same time without interfering with each other.
- the overall mechanical structure can be simplified, the manufacturing cost and the use cost are reduced, which is advantageous for miniaturization and convenient for transportation and carrying.
- FIG. 3a and 3b are schematic diagrams of detecting low-value samples and detecting normal samples by the blood analyzer provided in an embodiment of the present application, respectively. As shown in Figures 3a and 3b, when the type of blood sample is determined, the blood analyzer can be set to the corresponding low-value sample detection mode or the normal sample detection mode.
- two blood samples (blood sample 1 and blood sample 2) are collected and used for white blood cell count and platelet (and other cell) count respectively.
- Two blood samples are respectively filled with corresponding reagents (such as hemolytic agent, diluent), mixed and reacted for a corresponding time T1, to form a first sample liquid and a second sample liquid.
- reagents such as hemolytic agent, diluent
- the first sample liquid and the second sample liquid are in the counting cell 1 and the counting cell 2, respectively, by means of an electrical impedance detection system (the flow time is expressed as T2+t1 and T2+t2, respectively, which has a longer time than the normal sample Elapsed time) for detection. That is, when performing white blood cell and platelet detection, the flow time can be specifically adjusted (t1 and t2 can have different values) to improve the detection accuracy of different components in the blood sample.
- first blood samples and second blood samples are collected, which are used to count white blood cells and count platelets (and other cells) respectively.
- the first blood sample and the second blood sample are filled with corresponding reagents (such as hemolytic agent, diluent), mixed and reacted for a corresponding time T1 to form the first sample liquid and the second sample liquid.
- reagents such as hemolytic agent, diluent
- the first sample liquid and the second sample liquid are detected in the counting cell 1 and the counting cell 2 respectively by means of electrical impedance method (the flow time is respectively expressed as T2), and the detection results of white blood cells and platelets are obtained.
- the first sample liquid in the counting cell 1 can also be detected by colorimetry to obtain the hemoglobin concentration of the blood sample.
- modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all the features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
一种血液粒子检测方法及其血液分析仪,该方法包括:确定采集到的血样属于正常样本还是低值样本(110);在血样属于低值样本时,将血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液(120);在血样属于正常样本时,将血样与对应的试剂进行反应,形成第一正常样本液和第二正常样本液(130);使用电阻抗法,分别通过第一低值样本液或第一正常样本液检测血样的白细胞,并且通过第二低值样本液或第二正常样本液检测血样的红细胞和血小板(140, 150)。该方法能够很好的克服现有的血液检测系统所存在的缺陷,其不需要增设光学系统和使用分段式的检测方式,能够提高对于低值样本的检测准确度并简化检测仪结构。
Description
相关申请的交叉参考
本申请要求于2020年01月22日提交中国专利局,申请号为2020100744676,名称为“血液粒子检测方法及其血液分析仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及血液分析技术领域,尤其涉及一种血液粒子检测方法及其血液分析仪。
在临床医学中,通常会从人体中采集血液等生物样本,用于检测部分细胞粒子(如红细胞、白细胞以及血小板等)在人体中的分布情况,以帮助医生对人体健康情况的诊断。
其中,白细胞及血小板在临床医学上有重要的参考价值,因此对其检测的准确度有较高的要求。现有的血液粒子检测通常依托于自动化或者半自动化的血液分析仪或者相关的血液分析系统来实现。
在现有的血细胞检测系统或者血液分析仪中,主要采用光学系统和电阻抗系统结合使用的方式来完成对血液粒子成分的检测。其中,光学系统主要用于检测血样中的白细胞或血小板。而电阻抗系统则用于检测血小板等。由此检测出血液中的特定成分,但此种设备大多体积大,成本高。
在实现本申请的过程中,申请人发现现有技术存在如下问题:现有的血液检测仪器进行白细胞和血小板等检测时,需要采用光学系统来实现。采用光学系统的实施成本较高,还需要分段进行白细胞检测和血小板检测,对于仪器系统的要求较高,不利于降低仪器设备的制作成本和体积。
发明内容
本申请的实施例提供了一种血液粒子检测方法及其血液分析仪,用于解决现有的血液分析仪采用光学系统的成本较高和体积较大的问题。
本申请实施例的第一方面提供了一种血液粒子检测方法。其中,所述方法包括:
确定采集到的血样属于正常样本还是低值样本;
在所述血样属于低值样本时,将所述血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液;
在所述血样属于正常样本时,将所述血样与对应的试剂进行反应,形成第一正常样本液和第二正常样本液;
使用电阻抗法,分别通过所述第一低值样本液或第一正常样本液检测所述血样的白细胞,并且通过所述第二低值样本液或所述第二正常样本液检测所述血样的红细胞和血小板。
可选地,将所述血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液,具体包括:
采集血样并在第一计数池内进行稀释;
将稀释后的所述血样取出部分移动至第二计数池内;
向所述第一计数池和第二计数池加入对应的试剂进行反应,分别形成第一低值样本液和第二低值样本液。
可选地,在所述血样属于低值样本时,使用电阻抗法,通过所述第一低值样本液检测所述血样的白细胞以及通过所述第二低值样本液检测所述血样的红细胞和血小板数量,具体包括:
通过负压注射器建立预设的第一负压;
由所述第一负压引导所述第一低值样本液和第二低值样本液在设定的第一时间以第一速度分别流过第一阻抗检测区和第二阻抗检测区;
采集在所述第一时间内,所述第一低值样本液流过第一阻抗检测区时产生的第一电信号以及所述第二低值样本液流过所述第二阻抗检测区的第二电信号;
统计分析所述第一电信号以获取所述血样的白细胞计数;
并且
统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
可选地,在所述血样属于正常样本时,使用电阻抗法,通过所述第一正常样本液检测所述血样的白细胞以及通过所述第二正常样本液检测所述血样的红 细胞和血小板数量,具体包括:
通过负压注射器建立预设的第二负压;
由所述第二负压引导所述第一正常样本液和第二正常样本液在设定的第二时间以第二速度分别流过第一阻抗检测区和第二阻抗检测区;
采集在所述第二时间内,所述第一正常样本液流过第一阻抗检测区时产生的第一电信号以及所述第二正常样本液流过所述第二阻抗检测区的第二电信号;
统计分析所述第一电信号以获取所述血样的白细胞计数;
并且
统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
可选地,所述第一时间长于所述第二时间以使所述属于低值样本的血样在阻抗检测区的计数多于所述属于正常样本的血样。
可选地,确定采集到的血样属于正常样本还是低值样本,具体包括:
默认所述血样属于正常样本的情况下,对所述血样进行粒子检测;
判断所述粒子检测结果是否低于正常范围;
若是,则确定采集到的血样属于低值样本;
若否,则确定所述血样属于正常样本。
可选地,所述方法还包括:
使用比色法,通过所述第一低值样本液或所述第一正常样本液检测所述血样的血红蛋白浓度。
本申请实施例的第二方面提供了一种血液分析仪。其中,所述血液分析仪包括:
制样机构,用于采集血样并获取对应的试剂;
反应机构,用于提供血样与对应的试剂的反应场所,以形成对应的第一低值样本液和第二低值样本液,或者第一正常样本和第二正常样本液;
检测机构,所述检测机构包括第一和第二阻抗检测区,通过电阻抗法分别对流经所述第一和第二阻抗检测区的样本液进行检测;
模式设置机构,用于根据当前血样属于正常样本还是低值样本,设置对应的测量模式;
信息处理机构,用于接收并处理所述检测机构检测获得的电信号;
控制机构,用于对制样机构、检测机构、信息处理机构、模式设置机构进行控制。
可选地,所述制样机构包括水平运动电机、垂直运动电机、移液针以及注射器;
所述水平运动电机和垂直运动电机为驱动机构,用于驱动所述移液针以及注射器沿对应方向运动;
所述移液针以及注射器用于采集血样和对应的试剂。
可选地,所述检测机构包括:负压泵、第一计数池、第二计数池以及计数液路装置;
所述负压泵用于建立负压以引导第一低值样本液和第二低值样本液以设定的时间和速度分别流经所述第一计数池和第二计数池;
所述计数液路装置用于采集流经所述第一计数池和第二计数池时产生的电信号;其中,流经所述第一计数池产生的电信号用于检测所述血样的白细胞,流经所述第二计数池产生的电信号用于检测所述血样的红细胞和血小板数量;在当前血样属于低值样本时,流经所述第一计数池和第二计数池的时间长于当前样本属于正常样本时,流经所述第一计数池和第二计数池的时间;
所述检测机构还包括比色检测装置;所述比色检测装置用于使用比色法检测所述第一计数池内的第一低值样本液或第一正常样本液的血红蛋白浓度。
本申请的实施例提供的血液粒子检测方法及其血液分析仪,通过设置多种检测模式以及多个阻抗检测区的方式,能够很好的克服现有的血液检测系统所存在的缺陷。其不需要增设光学系统和使用分段式的检测方式,能够很好的简化血液检测系统的要求,并且能够提高对于低值样本的检测准确度,具有良好的应用前景。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的血液粒子检测方法的示意图;
图2是本申请实施例提供的血液分析仪的结构框图;
图3a是本申请实施例提供的低值样本的检测流程的示意图;
图3b是本申请实施例提供的正常样本的检测流程的示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图1示出了本申请实施例提供的血液粒子检测方法的流程图。该血液粒子检测方法可以实现对血样中的白细胞和血小板的同时检测,并且对于低值样本具有良好的检测准确率。如图1所示,该方法可以包括如下步骤:
步骤110:确定采集到的血样属于正常样本还是低值样本。若属于低值样本,执行步骤120,若属于正常样本,执行步骤130。
“低值样本”和“正常样本”是相对性的概念。低值样本是指相对于正常样本而言,其血细胞或血小板计数远远低于正常数值范围的血样。其可能存在于各种可能类型的病人中。
由于低值样本的血样其计数范围与正常样本之间相差很大。因此,需要进行针对性的处理以免造成检测精度下降的问题。
在一些实施例中,可以通过如下方式确定采集到的血样具体所属的类型:
首先,默认所述血样属于正常样本的情况下,对所述血样进行粒子检测。在未判断前,预先以默认模式(正常样本)对血样进行检测,可以得到其大致 的血液成分情况。
然后,判断所述粒子检测结果是否低于正常范围。若是,则确定采集到的血样属于低值样本。若否,则确定所述血样属于正常样本。对于那些属于低值样本的血样,可以采用特殊的标识将其标识出来以便于后续采用正确的检测方式进行检测。
该正常范围是一个预设的经验性数值,具体可以由实际情况等多种不同的因素综合考虑后设定。
步骤120:将所述血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液。
采集到的血样在进行成分计数分析前,还需要进行一些预处理步骤,与稀释液和溶血剂等进行反应以获得可以被检测的样本液。具体选择使用的试剂种类、浓度、反应时间以及反应方式等都可以根据实际情况的需要而由技术人员选定或者设置,为本技术领域人员所熟知,在此不作赘述。
在本实施例中,同一份血样处理后,分为第一低值样本液和第二低值样本液以分别用于不同血液成分的检测和计数。
具体的,可以通过采血针等从所述血样中采集一定量的加入到第一计数池内并进行稀释。在第一计数池内稀释后的血样可以通过分血针等设备,取出一部分转移到第二计数池内。最后,向第一计数池和第二计数池内稀释后的血样加入相应的试剂进行反应和混匀后,形成上述的第一低值样本液和第二低值样本液。
步骤130:将所述血样与对应的试剂进行反应,形成第一正常样本液和第二正常样本液。
在确定血样属于正常样本时,则使用与正常样本相应的反应方式来获得所需要的样本液。在本实施例中,为了与属于低值样本的血样形成的样本液进行区分,使用第一正常样本液和第二正常样本液来命名。
应当说明的是,形成第一正常样本液和第二正常样本液所需要使用的设备或者机构是与步骤120相同的,两者的区别仅在于加入的血样、试剂以及稀释的比例等。
步骤140:使用电阻抗法,通过所述第一低值样本液检测所述血样的白细胞,并且通过所述第二低值样本液检测所述血样的红细胞和血小板数量。
电阻抗法是一种常用的细胞技术方法。其利用在电解质溶液中悬浮的细胞在通过计数区域时产生的电信号脉冲的原理实现。
在本实施例中,基于步骤130形成的两份独立的样本液,可以分别在不同的阻抗检测区检测血样的白细胞和血小板。
步骤150:使用电阻抗法,通过第一正常样本液检测所述血样的白细胞,并且通过所述第二正常样本液检测所述血样的红细胞和血小板数量。
对于属于正常样本的血样,同样也使用电阻抗法实现对白细胞和血小板的计数。由于正常样本和低值样本在检测数量范围上的差异。因此,步骤140和步骤150使用的电阻抗法的具体参数需要相应的进行调整。
本申请实施例提供的血液粒子检测方法,额外增设了低值样本的专用检测模式,在确定血样为低值样本时,可以对检测过程进行适应性的调整,从而有效的提升了对低值样本的检测准确率。
而且,在检测时通过分拆为第一样本液和第二样本液分别进行检测方式,不需要使用到光学系统,也可以实现对白细胞和血小板的同时检测,有效的简化了硬件系统,降低了设备成本。
步骤160:通过比色法检测所述第一样本液(即第一低值样本液或者第一正常样本液)的血红蛋白浓度。
第一样本液除了用于进行白细胞检测以外,还可以用于进行血样的血红蛋白浓度的检测。在本实施例中,该血红蛋白浓度的检测可以与电阻抗法之间可以采用连续检测的方式实现。亦即,依次对第一样本液的血红蛋白浓度和白细胞进行检测。
在一些实施例中,该电阻抗法检测血液粒子的具体步骤包括:
在所述血样属于低值样本时,首先通过负压注射器建立预设的第一负压。然后,由所述第一负压引导所述第一低值样本液和第二低值样本液在设定的第一时间以第一速度分别流过第一阻抗检测区和第二阻抗检测区以使相应的检测电路采集到所述第一时间内,所述第一低值样本液流过第一阻抗检测区时产生的第一电信号以及所述第二低值样本液流过所述第二阻抗检测区的第二电信号。
最后,统计分析所述第一电信号以获取所述血样的白细胞计数,并且统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
具体可以使用任何合适类型的统计分析方式。其为本技术领域人员所熟知,在此不作赘述。
在所述血样属于正常样本时,首先通过负压注射器建立预设的第二负压。然后,由所述第二负压引导所述第一正常样本液和第二正常样本液在设定的第二时间以第二速度分别流过第一阻抗检测区和第二阻抗检测区以使相应的检测电路采集到在所述第二时间内,所述第一正常样本液流过第一阻抗检测区时产生的第一电信号以及所述第二正常样本液流过所述第二阻抗检测区的第二电信号。
最后,统计分析所述第一电信号以获取所述血样的白细胞计数,并且统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
基于低值样本和正常样本的数据范围的区别,可以相应的对上述电阻抗法检测过程中涉及到的一个或者多个参数进行调整以使得低值样本具有更好的检测准确度。
在一些实施例中,可以设置所述第一时间长于所述第二时间以使所述属于低值样本的血样在阻抗检测区的计数多于所述属于正常样本的血样,从而确保低值样本的细胞粒子数量不会被低估。
在另一些实施例中,还可以通过调整样本液流过的速度(即调整第一速度和第二速度)或者样本液的细胞粒子浓度(即调整血样与稀释液、溶血剂等反应试剂的稀释度)来获得相同的效果,使所述属于低值样本的血样在阻抗检测区的计数多于所述属于正常样本的血样,确保低值样本的细胞粒子数量不会被低估。
图2为本申请实施例提供的血液分析仪的结构框图。该血液分析仪应用本申请实施例提供的血液粒子检测方法,不需要使用光学系统和分段式检测,可以有效的降低仪器设备的成本和简化仪器。如图2所示,所述血液分析仪包括:制样机构210,反应机构220,检测机构230,模式设置机构240,信息处理机构250以及控制机构260。
其中,所述制样机构210是用于采集血样并获取对应的试剂的采集设备。其具体可以包括水平运动电机、垂直运动电机、移液针以及注射器等。实际使用时,以水平运动电机和垂直运动电机为驱动机构,用于驱动所述移液针以及注射器沿对应方向运动,完成血样的采集和试剂的获取。
其制样机构的具体设置方式可以根据实际情况的需要而进行调整或者增删,其为本领域技术人员所熟知。
所述反应机构220用于是提供血样与对应的试剂的反应场所的设备。该反应机构220可以提供至少两套相互独立的场所,供血样与稀释液、溶血剂混匀并进行反应等,以形成对应的第一样本液和第二样本液。
在样本为低值样本时,第一样本液和第二样本液分别可以被称为第一低值样本液和第二低值样本液。而在样本为正常样本时,第一样本液和第二样本液则分别可以被称为第一正常样本和第二正常样本液。
所述检测机构230是通过电阻抗法进行细胞计数的设备。为了满足白细胞和血小板同时检测的要求,所述检测机构230可以具有第一和第二阻抗检测区,分别用于对流经所述第一和第二阻抗检测区的样本液进行检测。
具体的,所述检测机构230可以包括负压泵、第一计数池、第二计数池以及计数液路装置等组件。
由所述负压泵建立负压以引导第一样本液和第二样本液以设定的时间和速度分别流经所述第一计数池和第二计数池。在流经所述第一计数池和第二计数池时产生的脉冲信号由计数液路装置采集获得。
具体而言,流经所述第一计数池产生的电信号可以用于检测所述血样的白细胞。流经所述第二计数池产生的电信号则用于检测所述血样的红细胞和血小板数量。
较佳的是,所述检测机构230还可以包括用于检测血样的血红蛋白浓度的比色检测装置。该比色检测装置可以使用比色法,对所述第一计数池内的第一低值样本液或第一正常样本液进行检测,以获取血样的血红蛋白浓度。
模式设置机构240是用于根据当前血样属于正常样本还是低值样本,设置对应的测量模式的装置。该模式设置机构240可以是一个手动的,也可以采用自动设置的方式,令血液分析仪可以以正确的方式运行。
所述信息处理机构250是用于接收并处理所述检测机构检测获得的电信号的功能模块。其可以是由软件和硬件结合实现,执行合适的统计分析算法而实现对电信号的处理,并输出对应的数据信息以提供给医护人员参考。
所述控制机构260是整个血液分析仪的控制核心。其可以用于对制样机构、检测机构、信息处理机构、模式设置机构进行控制,协调各个功能模块之间的 运作。该控制机构260具体可以采用任何合适的处理器或者处理芯片,结合相应的计算机程序指令实现,可以根据实际情况的需要而由本领域技术人员进行调整和设置。
本申请实施例提供的血液分析仪应用上述实施例提供的血液检测方法,可以简化检测系统结构,在不采用光学系统的前提下,通过增加细胞计数量的方式,有效的提升了电阻抗检测系统对于白细胞/血小板低值样本测量准确性。而且,对两者的测量同时进行互不干扰。
另外,血液分析仪由于除去了光学系统,整体的机械结构可以得到简化,制造成本和使用成本降低,有利于小型化而便于方便运输及携带。
图3a和图3b分别是本申请实施例提供的血液分析仪对低值样本进行检测和对正常样本进行检测的示意图。如图3a和3b所示,在确定了血样所属的类型时,可以将血液分析仪设置为对应的低值样本检测模式或者正常样本检测模式。
如图3a所示,在低值样本检测模式下,采集得到两份血样(血样一和血样二),分别用于白细胞计数和血小板(及其他细胞)的计数。两份血样分别加注对应的试剂(如溶血剂、稀释液),混匀并反应对应的时间T1后,形成第一样本液和第二样本液。
第一样本液和第二样本液分别在计数池1和计数池2中,通过电阻抗检测系统的方式(流经时间分别表示为T2+t1和T2+t2,具有比正常样本更长的流经时间)进行检测。亦即,进行白细胞和血小板的检测时,可以针对性的调节流过的时间(t1和t2可以有不同的取值)以提升对血样中不同成分的检测精确度。
如图3b所示,在正常样本检测模式下,采集得到两份第一血样和第二血样,分别用于白细胞计数和血小板(及其他细胞)的计数。第一血样和第二血样加注对应的试剂(如溶血剂、稀释液),混匀并反应对应的时间T1后,形成第一样本液和第二样本液。
第一样本液和第二样本液分别在计数池1和计数池2中,通过电阻抗法的方式(流经时间分别表示为T2)进行检测,获得白细胞和血小板的检测结果。另外,在计数池1中的第一样本液还可以通过比色法检测的方式,检测获得所述血样的血红蛋白浓度。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申 请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个申请方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,申请方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种血液粒子检测方法,其特征在于,包括:确定采集到的血样属于正常样本还是低值样本;在所述血样属于低值样本时,将所述血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液;在所述血样属于正常样本时,将所述血样与对应的试剂进行反应,形成第一正常样本液和第二正常样本液;使用电阻抗法,分别通过所述第一低值样本液或第一正常样本液检测所述血样的白细胞,并且通过所述第二低值样本液或所述第二正常样本液检测所述血样的红细胞和血小板。
- 根据权利要求1所述的方法,其特征在于,将所述血样与对应的试剂进行反应,形成第一低值样本液和第二低值样本液,具体包括:采集血样并在第一计数池内进行稀释;将稀释后的所述血样取出部分移动至第二计数池内;向所述第一计数池和第二计数池加入对应的试剂进行反应,分别形成所述第一低值样本液和所述第二低值样本液。
- 根据权利要求2所述的方法,其特征在于,在所述血样属于低值样本时,使用电阻抗法,通过所述第一低值样本液检测所述血样的白细胞以及通过所述第二低值样本液检测所述血样的红细胞和血小板数量,具体包括:通过负压注射器建立预设的第一负压;由所述第一负压引导所述第一低值样本液和第二低值样本液在设定的第一时间以第一速度分别流过第一阻抗检测区和第二阻抗检测区;采集在所述第一时间内,所述第一低值样本液流过第一阻抗检测区时产生的第一电信号以及所述第二低值样本液流过所述第二阻抗检测区的第二电信号;统计分析所述第一电信号以获取所述血样的白细胞计数;并且统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
- 根据权利要求3所述的方法,其特征在于,在所述血样属于正常样本时,使用电阻抗法,通过所述第一正常样本液检测所述血样的白细胞以及通过所述第二正常样本液检测所述血样的红细胞和血小板数量,具体包括:通过负压注射器建立预设的第二负压;由所述第二负压引导所述第一正常样本液和第二正常样本液在设定的第二时间以第二速度分别流过第一阻抗检测区和第二阻抗检测区;采集在所述第二时间内,所述第一正常样本液流过第一阻抗检测区时产生的第一电信号以及所述第二正常样本液流过所述第二阻抗检测区的第二电信号;统计分析所述第一电信号以获取所述血样的白细胞计数;并且统计分析所述第二电信号以获取所述血样的红细胞和血小板计数。
- 根据权利要求4所述的方法,其特征在于,所述第一时间长于所述第二时间以使所述属于低值样本的血样在阻抗检测区的计数多于所述属于正常样本的血样。
- 根据权利要求1所述的方法,其特征在于,确定采集到的血样属于正常样本还是低值样本,具体包括:默认所述血样属于正常样本的情况下,对所述血样进行粒子检测;判断所述粒子检测结果是否低于正常范围;若是,则确定采集到的血样属于低值样本;若否,则确定所述血样属于正常样本。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:使用比色法,通过所述第一低值样本液或所述第一正常样本液检测所述血样的血红蛋白浓度。
- 一种血液分析仪,其特征在于,所述血液分析仪包括:制样机构,用于采集血样并获取对应的试剂;反应机构,用于提供血样与对应的试剂的反应场所,以形成对应的第一低值样本液和第二低值样本液,或者第一正常样本和第二正常样本液;检测机构,所述检测机构包括第一和第二阻抗检测区,通过电阻抗法分别对流经所述第一和第二阻抗检测区的样本液进行检测;模式设置机构,用于根据当前血样属于正常样本还是低值样本,设置对应的测量模式;信息处理机构,用于接收并处理所述检测机构检测获得的电信号;控制机构,用于对制样机构、检测机构、信息处理机构、模式设置机构进行控制。
- 根据权利要求8所述的血液分析仪,其特征在于,所述制样机构包括水平运动电机、垂直运动电机、移液针以及注射器;所述水平运动电机和垂直运动电机为驱动机构,用于驱动所述移液针以及注射器沿对应方向运动;所述移液针以及注射器用于采集血样和对应的试剂。
- 根据权利要求8所述的血液分析仪,其特征在于,所述检测机构包括:负压泵、第一计数池、第二计数池以及计数液路装置;所述负压泵用于建立负压以引导第一低值样本液和第二低值样本液以设定的时间和速度分别流经所述第一计数池和第二计数池;所述计数液路装置用于采集流经所述第一计数池和第二计数池时产生的电信号;其中,流经所述第一计数池产生的电信号用于检测所述血样的白细胞,流经所述第二计数池产生的电信号用于检测所述血样的红细胞和血小板数量;在当前血样属于低值样本时,流经所述第一计数池和第二计数池的时间长于当前样本属于正常样本时,流经所述第一计数池和第二计数池的时间;所述检测机构还包括比色检测装置;所述比色检测装置用于使用比色法检测所述第一计数池内的第一低值样本液或第一正常样本液的血红蛋白浓度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010074467.6 | 2020-01-22 | ||
CN202010074467.6A CN111239027A (zh) | 2020-01-22 | 2020-01-22 | 血液粒子检测方法及其血液分析仪 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147179A1 true WO2021147179A1 (zh) | 2021-07-29 |
Family
ID=70866996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/084259 WO2021147179A1 (zh) | 2020-01-22 | 2020-04-10 | 血液粒子检测方法及其血液分析仪 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111239027A (zh) |
WO (1) | WO2021147179A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777009A (zh) * | 2021-08-31 | 2021-12-10 | 深圳迈瑞动物医疗科技有限公司 | 适用于绵羊、山羊和奶牛的细胞分析仪及细胞检测方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116298348A (zh) * | 2023-05-17 | 2023-06-23 | 深圳迈瑞动物医疗科技股份有限公司 | 一种物种用血液分析装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1189059A1 (en) * | 2000-09-18 | 2002-03-20 | Sysmex Corporation | Blood cell detector, blood analyzer and blood analyzing method using the detector |
CN102539300A (zh) * | 2010-12-31 | 2012-07-04 | 深圳迈瑞生物医疗电子股份有限公司 | 低值样本粒子测量方法及粒子分析仪 |
CN105699380A (zh) * | 2016-03-23 | 2016-06-22 | 深圳市帝迈生物技术有限公司 | 一种可同时测量crp和血常规的分析设备和方法 |
CN106018773A (zh) * | 2016-06-24 | 2016-10-12 | 深圳创怀医疗科技有限公司 | 一次性血液细胞计数及分析集成试剂传感件及新型血液分析仪 |
CN108303363A (zh) * | 2017-01-12 | 2018-07-20 | 长春市布拉泽医疗科技有限公司 | 一种血细胞分析方法及使用该方法的血细胞分析仪 |
CN109959549A (zh) * | 2017-12-25 | 2019-07-02 | 深圳迈瑞生物医疗电子股份有限公司 | 样本检测方法及样本分析仪 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201303943Y (zh) * | 2008-10-15 | 2009-09-09 | 深圳市普康电子有限公司 | 血细胞分析仪采样针血样分配装置 |
CN102507448B (zh) * | 2011-11-11 | 2014-07-09 | 深圳市锦瑞电子有限公司 | 生化分析仪的检测系统及检测方法 |
CN103175950B (zh) * | 2011-12-20 | 2015-04-22 | 中国科学院深圳先进技术研究院 | 血细胞分析芯片及应用该芯片的系统 |
CN103170377B (zh) * | 2011-12-20 | 2015-02-18 | 中国科学院深圳先进技术研究院 | 血细胞分析芯片及应用该芯片的系统 |
JP5771236B2 (ja) * | 2013-05-17 | 2015-08-26 | 株式会社堀場製作所 | 血液分析装置 |
CN103471982B (zh) * | 2013-08-23 | 2015-11-25 | 深圳中科强华科技有限公司 | 一种血细胞分析芯片、分析仪及分析方法 |
CN104713816B (zh) * | 2015-02-04 | 2017-06-23 | 深圳市帝迈生物技术有限公司 | 一种全血crp检测装置与方法、及一种血液细胞分析仪 |
CN205246501U (zh) * | 2015-12-21 | 2016-05-18 | 深圳联开生物医疗科技有限公司 | 一种智能均衡式高压灼烧排堵系统及血细胞分析仪 |
CN107643393B (zh) * | 2016-07-21 | 2021-11-05 | 深圳迈瑞生物医疗电子股份有限公司 | 样本分析仪及其清洗方法、含有溶血剂成分的液体的用途 |
CN106404640A (zh) * | 2016-10-28 | 2017-02-15 | 徐廷宽 | 一种血细胞检测分析的系统 |
CN107727557A (zh) * | 2017-10-16 | 2018-02-23 | 广州竞天生物科技有限公司 | 一种粒子分析仪及其液路系统和检测控制方法 |
-
2020
- 2020-01-22 CN CN202010074467.6A patent/CN111239027A/zh active Pending
- 2020-04-10 WO PCT/CN2020/084259 patent/WO2021147179A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1189059A1 (en) * | 2000-09-18 | 2002-03-20 | Sysmex Corporation | Blood cell detector, blood analyzer and blood analyzing method using the detector |
CN102539300A (zh) * | 2010-12-31 | 2012-07-04 | 深圳迈瑞生物医疗电子股份有限公司 | 低值样本粒子测量方法及粒子分析仪 |
CN105699380A (zh) * | 2016-03-23 | 2016-06-22 | 深圳市帝迈生物技术有限公司 | 一种可同时测量crp和血常规的分析设备和方法 |
CN106018773A (zh) * | 2016-06-24 | 2016-10-12 | 深圳创怀医疗科技有限公司 | 一次性血液细胞计数及分析集成试剂传感件及新型血液分析仪 |
CN108303363A (zh) * | 2017-01-12 | 2018-07-20 | 长春市布拉泽医疗科技有限公司 | 一种血细胞分析方法及使用该方法的血细胞分析仪 |
CN109959549A (zh) * | 2017-12-25 | 2019-07-02 | 深圳迈瑞生物医疗电子股份有限公司 | 样本检测方法及样本分析仪 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777009A (zh) * | 2021-08-31 | 2021-12-10 | 深圳迈瑞动物医疗科技有限公司 | 适用于绵羊、山羊和奶牛的细胞分析仪及细胞检测方法 |
CN113777009B (zh) * | 2021-08-31 | 2024-04-16 | 深圳迈瑞动物医疗科技股份有限公司 | 适用于绵羊、山羊和奶牛的细胞分析仪及细胞检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111239027A (zh) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10222320B2 (en) | Identifying and enumerating early granulated cells (EGCs) | |
US8017078B2 (en) | Blood cell analyzer, blood cell analyzing method, and computer program product | |
US7633604B2 (en) | Sample analyzer and computer program product | |
WO2021147179A1 (zh) | 血液粒子检测方法及其血液分析仪 | |
JP4648905B2 (ja) | 血液学上の分析のための集積装置とそれに関連する方法 | |
CN105334243A (zh) | 一种血液分析仪 | |
CN108362615A (zh) | 一种分析检测用装置及细胞或颗粒检测方法 | |
CN1904618A (zh) | 在血细胞分析仪上进行红细胞血型抗原检测的方法 | |
CN102539291B (zh) | 粒子分析装置及方法 | |
JP2023101619A (ja) | 好中球の亜集団の検出および報告 | |
WO2022116112A1 (zh) | 样本分析系统、方法、样本图像分析系统及血液分析仪 | |
WO2021207894A1 (zh) | 细胞分析方法、细胞分析仪及计算机可读存储介质 | |
CN114222907B (zh) | 检测和报道中性粒细胞亚群 | |
CN115267238A (zh) | 一种血液分析仪及其检测方法 | |
Kausar et al. | Frequency of Causes of Spurious Platelets Count on Routine Complete Blood Count by an Automated Hematology Cell Analyser | |
CN112547143A (zh) | 微流控芯片及血细胞检测装置 | |
JP2021516335A (ja) | 生体細胞を含む生体試料の分析方法及びその分析方法を実施する分析装置 | |
CN215525833U (zh) | 一种血液分析仪 | |
EP4187228B1 (en) | System, apparatus, and method for measuring erythrocyte sedimentation rate | |
CN113777009B (zh) | 适用于绵羊、山羊和奶牛的细胞分析仪及细胞检测方法 | |
US20230333093A1 (en) | Sample analyzer and platelet counting method | |
EP4455663A1 (en) | Blood cell analyzer, method, and use of infection marker parameter | |
WO2023125940A1 (zh) | 血液细胞分析仪、方法以及感染标志参数的用途 | |
US20240353311A1 (en) | Blood cell analyzer, method and use of infection marker parameter | |
ZHANG et al. | Performance comparison of two Sysmex hematology analyzers: the XN-550 and the XS-1000i |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915325 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915325 Country of ref document: EP Kind code of ref document: A1 |