WO2021147094A1 - Time restriction on uplink transmission on different cells - Google Patents

Time restriction on uplink transmission on different cells Download PDF

Info

Publication number
WO2021147094A1
WO2021147094A1 PCT/CN2020/074013 CN2020074013W WO2021147094A1 WO 2021147094 A1 WO2021147094 A1 WO 2021147094A1 CN 2020074013 W CN2020074013 W CN 2020074013W WO 2021147094 A1 WO2021147094 A1 WO 2021147094A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
time
pusch
transmission channels
scheduled entity
Prior art date
Application number
PCT/CN2020/074013
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074013 priority Critical patent/WO2021147094A1/en
Priority to PCT/CN2020/138511 priority patent/WO2021147599A1/en
Publication of WO2021147094A1 publication Critical patent/WO2021147094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size

Definitions

  • the technology discussed below relates generally to wireless communication systems, and more particularly, to placing time restrictions on uplink transmissions on different cells (e.g., carriers, component carriers) to implement dynamic spectrum sharing.
  • cells e.g., carriers, component carriers
  • a schooled entity may schedule radio resource allocations using downlink control information (DCI) .
  • DCI may transport downlink control information for one or more cells.
  • a DCI may, for example, schedule one or multiple physical uplink shared channel (PUSCH) in one cell (e.g., carrier, component carrier) , schedule one physical downlink shared channel (PDSCH) in one cell, provide transmit power control (TPC) commands for physical uplink control channel (PUCCH) and PUSCH, among other things.
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • TPC transmit power control
  • Cross carrier scheduling may have improved use of the spectrum; however, the improvement is limited due to present constraints on the use of DCI.
  • a method of wireless communication includes determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • an apparatus for wireless communication is disclosed.
  • that apparatus includes means for determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, means for calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and means for adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • a non-transitory computer-readable storage medium storing computer-executable code is disclosed.
  • the code causes the computer to determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • an apparatus for wireless communication is disclosed.
  • the apparatus includes a processor, a transceiver communicatively coupled to the processor, and a memory communicatively coupled to the processor.
  • the processor is configured to determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the disclosure.
  • FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects of the disclosure.
  • FIG. 3 is a block diagram illustrating a wireless communication system supporting multiple-input multiple-output (MIMO) communication.
  • MIMO multiple-input multiple-output
  • FIG. 4 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some aspects of the disclosure.
  • OFDM orthogonal frequency divisional multiplexing
  • FIG. 5 is a schematic illustration of an OFDM air interface utilizing a scalable numerology according to some aspects of the disclosure.
  • FIG. 6 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity employing a processing system according to some aspects of the disclosure.
  • FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity according to some aspects of the disclosure.
  • FIG. 8A illustrates partially overlapped uplink transmissions made by a scheduled entity (e.g., a user equipment, a user device, a mobile device) on different cells (e.g., carriers, component carriers) according to some aspects of the disclosure.
  • a scheduled entity e.g., a user equipment, a user device, a mobile device
  • cells e.g., carriers, component carriers
  • FIG. 8B illustrates an output power level of a transmitter of the scheduled entity beginning at time t0 and continuing beyond time t3 according to some aspects of the disclosure.
  • FIG. 9A is an illustrative example without limitation of a series of physical downlink control channels (PDCCHs) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) spanning a vertical frequency axis according to some aspects of the disclosure.
  • PDCCHs physical downlink control channels
  • two cells e.g., carriers, component carriers
  • FIG. 9B illustrates a total UL transmitter power of the scheduled entity during the UL transmissions of PUSCH_1, PUSCH_2, PUSCH_3, PUSCH_4, PUSCH_5, and PUSCH_6 according to some aspects of the disclosure.
  • FIG. 10A is an illustrative example without limitation of a physical downlink control channel (PDCCH) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning the vertical frequency axis according to some aspects of the disclosure.
  • PDCCH physical downlink control channel
  • FIG. 10B illustrates a total UL transmitter power of the scheduled entity during the UL transmissions of PUSCH_1 and PUSCH_2 according to some aspects of the disclosure.
  • FIG. 11A is an illustrative example without limitation of a physical downlink control channel (PDCCH) , spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure.
  • PDCCH physical downlink control channel
  • FIG. 11B illustrates a total UL transmitter power level of the scheduled device during the UL transmissions of PUSCH_1 and PUSCH_2 according to some aspects of the disclosure.
  • FIG. 12 is a flow chart illustrating an exemplary process for wireless communication implementing dynamic spectrum sharing, operational at a scheduling entity according to some aspects of the disclosure.
  • FIG. 13 is a flow chart illustrating an exemplary process for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure.
  • FIG. 14 is a flow chart illustrating another exemplary process for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure.
  • FIG. 15 is a flow chart illustrating an exemplary process for adjusting timing and either setting power levels of uplink transmission channels or receiving/transmitting certain delta power values as described herein according to some aspects of the disclosure.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • DSS dynamic spectrum sharing
  • SCell secondary cell
  • PUSCH physical uplink shared channel
  • PCell primary cell
  • SCell primary cell
  • aspects described herein may relate to a use of a PDCCH of a PCell or SCell to schedule PDSCH on multiple cells (e.g., multiple component carriers, multiple carriers) using a single DCI.
  • the DCI may convey timing restrictions to at least one of control or prevent UL transmitter power fluctuation within one uplink transmission period (e.g., within one slot or mini-slot) .
  • RAT radio access technology.
  • RATs include GSM, UTRA, E-UTRA (LTE) , Bluetooth, and Wi-Fi.
  • NR new radio. Generally refers to 5G technologies and the new radio access technology undergoing definition and standardization by 3GPP in Release 15.
  • Legacy compatibility may refer to the capability of a 5G network to provide connectivity to pre-5G devices, and the capability of 5G devices to obtain connectivity to a pre-5G network.
  • Multimode device a device that can provide simultaneous connectivity across different networks, such as 5G, 4G, and Wi-Fi networks.
  • CA carrier aggregation.
  • 5G networks may provide for aggregation of sub-6 GHz carriers, above-6 GHz carriers, mmWave carriers, etc., all controlled by a single integrated MAC layer.
  • MR-AN multi-RAT radio access network.
  • a single radio access network may provide one or more cells for each of a plurality of RATs, and may support inter-and intra-RAT mobility and aggregation.
  • MR-CN multi-RAT core network.
  • a single, common core network may support multiple RATs (e.g., 5G, LTE, and WLAN) .
  • a single 5G control plane may support the user planes of a plurality of RATs by utilizing software-defined networking (SDN) technology in the core network.
  • SDN software-defined networking
  • SDN software-defined networking.
  • a dynamic, adaptable network architecture that may be managed by way of abstraction of various lower-level functions of a network, enabling the control of network functions to be directly programmable.
  • SDR software-defined radio.
  • a dynamic, adaptable radio architecture where many signal processing components of a radio such as amplifiers, modulators, demodulators, etc. are replaced by software functions.
  • SDR enables a single radio device to communicate utilizing different and diverse waveforms and RATs simply by reprogramming the device.
  • mmWave millimeter-wave. Generally refers to high bands above 24 GHz, which can provide a very large bandwidth.
  • Beamforming directional signal transmission or reception.
  • the amplitude and phase of each antenna in an array of antennas may be precoded, or controlled to create a desired (e.g., directional) pattern of constructive and destructive interference in the wavefront.
  • MIMO multiple-input multiple-output.
  • MIMO is a multi-antenna technology that exploits multipath signal propagation so that the information-carrying capacity of a wireless link can be multiplied by using multiple antennas at the transmitter and receiver to send multiple simultaneous streams.
  • a suitable precoding algorithm scaling the respective streams’ amplitude and phase
  • the different spatial signatures of the respective streams can enable the separation of these streams from one another.
  • the transmitter sends one or more streams to the same receiver, taking advantage of capacity gains associated with using multiple Tx, Rx antennas in rich scattering environments where channel variations can be tracked.
  • the receiver may track these channel variations and provide corresponding feedback to the transmitter.
  • This feedback may include channel quality information (CQI) , the number of preferred data streams (e.g., rate control, a rank indicator (RI) ) , and a precoding matrix index (PMI) .
  • CQI channel quality information
  • RI rank indicator
  • PMI precoding matrix index
  • Massive MIMO a MIMO system with a very large number of antennas (e.g., greater than an 8x8 array) .
  • MU-MIMO a multi-antenna technology where base station, in communication with a large number of UEs, can exploit multipath signal propagation to increase overall network capacity by increasing throughput and spectral efficiency, and reducing the required transmission energy.
  • the transmitter may attempt to increase the capacity by transmitting to multiple users using its multiple transmit antennas at the same time, and also using the same allocated time–frequency resources.
  • the receiver may transmit feedback including a quantized version of the channel so that the transmitter can schedule the receivers with good channel separation.
  • the transmitted data is precoded to maximize throughput for users and minimize inter-user interference.
  • AS access stratum. A functional grouping consisting of the parts in the radio access network and in the UE, and the protocols between these parts being specific to the access technique (i.e., the way the specific physical media between the UE and the radio access network is used to carry information) .
  • NAS non-access stratum. Protocols between UE and the core network that are not terminated in the radio access network.
  • RAB radio access bearer. The service that the access stratum provides to the non-access stratum for transfer of user information between a UE and the core network.
  • a wireless communication network may be separated into a plurality of virtual service networks (VSNs) , or network slices, which are separately configured to better suit the needs of different types of services.
  • VSNs virtual service networks
  • Some wireless communication networks may be separated, e.g., according to eMBB, IoT, and URLLC services.
  • eMBB enhanced mobile broadband.
  • eMBB refers to the continued progression of improvements to existing broadband wireless communication technologies such as LTE.
  • eMBB provides for (generally continuous) increases in data rates and increased network capacity.
  • IoT the Internet of things. In general, this refers to the convergence of numerous technologies with diverse use cases into a single, common infrastructure. Most discussions of the IoT focus on machine-type communication (MTC) devices.
  • MTC machine-type communication
  • URLLC ultra-reliable and low-latency communication. Sometimes equivalently called mission-critical communication. Reliability refers to the probability of success of transmitting a given number of bytes within 1 ms under a given channel quality. Ultra-reliable refers to a high target reliability, e.g., a packet success rate greater than 99.999%. Latency refers to the time it takes to successfully deliver an application layer packet or message. Low-latency refers to a low target latency, e.g., 1 ms or even 0.5 ms (for comparison, a target for eMBB may be 4ms) .
  • MTC machine-type communication. A form of data communication that involves one or more entities that do not necessarily need human interaction. Optimization of MTC services differs from that for human-to-human communications because MTC services generally involve different market scenarios, data communications, lower costs and effort, a potentially very large number of communicating terminals, and, to a large extent, little traffic per terminal. (See 3GPP TS 22.368. )
  • Duplex a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full duplex means both endpoints can simultaneously communicate with one another.
  • Half duplex means only one endpoint can send information to the other at a time.
  • a full duplex channel generally relies on physical isolation of a transmitter and receiver, and interference cancellation techniques.
  • Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction.
  • OFDM orthogonal frequency division multiplexing.
  • An air interface may be defined according to a two-dimensional grid of resource elements, defined by separation of resources in frequency by defining a set of closely spaced frequency tones or sub-carriers, and separation in time by defining a sequence of symbols having a given duration. By setting the spacing between the tones based on the symbol rate, inter-symbol interference can be eliminated.
  • OFDM channels provide for high data rates by allocating a data stream in a parallel manner across multiple subcarriers.
  • CP cyclic prefix.
  • a multipath environment degrades the orthogonality between subcarriers because symbols received from reflected or delayed paths may overlap into the following symbol.
  • a CP addresses this problem by copying the tail of each symbol and pasting it onto the front of the OFDM symbol. In this way, any multipath components from a previous symbol fall within the effective guard time at the start of each symbol, and can be discarded.
  • Scalable numerology in OFDM, to maintain orthogonality of the subcarriers or tones, the subcarrier spacing is equal to the inverse of the symbol period.
  • a scalable numerology refers to the capability of the network to select different subcarrier spacings, and accordingly, with each spacing, to select the corresponding symbol period.
  • the symbol period should be short enough that the channel does not significantly vary over each period, in order to preserve orthogonality and limit inter-subcarrier interference.
  • RSMA resource spread multiple access.
  • a non-orthogonal multiple access scheme generally characterized by small, grantless data bursts in the uplink where signaling over head is a key issue, e.g., for IoT.
  • LBT listen before talk. A non-scheduled, contention-based multiple access technology where a device monitors or senses a carrier to determine if it is available before transmitting over the carrier. Some LBT technologies utilize signaling such as a request to send (RTS) and a clear to send (CTS) to reserve the channel for a given duration of time.
  • RTS request to send
  • CTS clear to send
  • D2D device-to-device. Also point-to-point (P2P) . D2D enables discovery of, and communication with nearby devices using a direct link between the devices (i.e., without passing through a base station, relay, or other node) . D2D can enable mesh networks, and device-to-network relay functionality. Some examples of D2D technology include Bluetooth pairing, Wi-Fi Direct, Miracast, and LTE-D.
  • IAB integrated access and backhaul.
  • Some base stations may be configured as IAB nodes, where the wireless spectrum may be used both for access links (i.e., wireless links with UEs) , and for backhaul links. This scheme is sometimes referred to as wireless self-backhauling.
  • wireless self-backhauling By using wireless self-backhauling, rather than requiring each new base station deployment to be outfitted with its own hard-wired backhaul connection, the wireless spectrum utilized for communication between the base station and UE may be leveraged for backhaul communication, enabling fast and easy deployment of highly dense small cell networks.
  • QoS quality of service.
  • QoS is characterized by the combined aspects of performance factors applicable to all services, such as: service operability performance; service accessibility performance; service retainability performance; service integrity performance; and other factors specific to each service.
  • Blockchain a distributed database and transaction processing technology having certain features that provide secure and reliable records of transactions in a way this is very resistant to fraud or other attacks.
  • a transaction takes place, many copies of a transaction record are sent to other participants in a network, each of which simultaneously confirms the transaction via a mathematical calculation. Blocks are accepted via a scoring algorithm based on these confirmations.
  • a block is a group or batch of transaction records, including a timestamp and a hash of a previous block, linking the blocks to one another. This string of blocks forms a blockchain.
  • a blockchain can improve security and trust to the ability for any type of transaction or instructions between devices.
  • the various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards.
  • the wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G.
  • 3GPP 3 rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE.
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • the 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • NG-RAN next-generation RAN
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
  • BTS base transceiver station
  • BSS basic service set
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • the radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
  • a “mobile” apparatus need not necessarily have a capability to move, and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission.
  • DL downlink
  • the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) .
  • Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Uplink Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • UL uplink
  • the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106.
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108.
  • the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system.
  • the backhaul 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 a schematic illustration of a RAN 200 is provided.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted from one access point or base station.
  • FIG. 2 illustrates macrocells 202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • two base stations 210 and 212 are shown in cells 202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206.
  • a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables.
  • the cells 202, 204, and 126 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells.
  • the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
  • the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the base stations 210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
  • FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • a quadcopter or drone 220 may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210; UEs 226 and 228 may be in communication with base station 212; UEs 230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • a mobile network node e.g., quadcopter 220
  • quadcopter 220 may be configured to function as a UE.
  • the quadcopter 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) .
  • P2P peer to peer
  • UE 238 is illustrated communicating with UEs 240 and 242.
  • the UE 238 may function as a scheduling entity or a primary sidelink device
  • UEs 240 and 242 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device.
  • a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • UEs 240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238.
  • a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
  • the ability for a UE to communicate while moving, independent of its location is referred to as mobility.
  • the various physical channels between the UE and the radio access network are generally set up, maintained, and released under the control of an access and mobility management function (AMF, not illustrated, part of the core network 102 in FIG. 1) , which may include a security context management function (SCMF) that manages the security context for both the control plane and the user plane functionality, and a security anchor function (SEAF) that performs authentication.
  • AMF access and mobility management function
  • SCMF security context management function
  • SEAF security anchor function
  • a radio access network 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) .
  • a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells.
  • the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell.
  • UE 224 illustrated as a vehicle, although any suitable form of UE may be used
  • the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition.
  • the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
  • UL reference signals from each UE may be utilized by the network to select a serving cell for each UE.
  • the base stations 210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) .
  • PSSs Primary Synchronization Signals
  • SSSs unified Secondary Synchronization Signals
  • PBCH Physical Broadcast Channels
  • the UEs 222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal.
  • the uplink pilot signal transmitted by a UE may be concurrently received by two or more cells (e.g., base stations 210 and 214/216) within the radio access network 200.
  • Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224.
  • the radio access network e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network
  • the network may continue to monitor the uplink pilot signal transmitted by the UE 224.
  • the network 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
  • the synchronization signal transmitted by the base stations 210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing.
  • the use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
  • the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum.
  • Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body.
  • Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access.
  • Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs.
  • the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
  • LSA licensed shared access
  • the air interface in the radio access network 200 may utilize one or more duplexing algorithms.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full duplex means both endpoints can simultaneously communicate with one another.
  • Half duplex means only one endpoint can send information to the other at a time.
  • a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • transmissions in different directions operate at different carrier frequencies.
  • TDD transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several
  • the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology.
  • FIG. 3 illustrates an example of a wireless communication system 300 supporting MIMO.
  • a transmitter 302 includes multiple transmit antennas 304 (e.g., N transmit antennas) and a receiver 306 includes multiple receive antennas 308 (e.g., M receive antennas) .
  • N transmit antennas e.g., N transmit antennas
  • M receive antennas multiple receive antennas 308
  • Each of the transmitter 302 and the receiver 306 may be implemented, for example, within a scheduling entity 108, a scheduled entity 106, or any other suitable wireless communication device.
  • Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource.
  • the data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) .
  • MU-MIMO multi-user MIMO
  • This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink.
  • the spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE.
  • each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
  • the number of data streams or layers corresponds to the rank of the transmission.
  • the rank of the MIMO system 300 is limited by the number of transmit or receive antennas 304 or 308, whichever is lower.
  • the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank.
  • the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station.
  • the RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas.
  • SINR signal-to-interference-and-noise ratio
  • the RI may indicate, for example, the number of layers that may be supported under the current channel conditions.
  • the base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
  • resource information e.g., the available resources and amount of data to be scheduled for the UE
  • the base station may assign the rank for DL MIMO transmissions based on UL SINR measurements (e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit the CSI-RS with separate C-RS sequences for each layer to provide for multi-layer channel estimation. From the CSI-RS, the UE may measure the channel quality across layers and resource blocks and feed back the CQI and RI values to the base station for use in updating the rank and assigning REs for future downlink transmissions.
  • SINR measurements e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal
  • SRS Sounding Reference Signal
  • the base station may then transmit the CSI-RS with separate C-RS sequences for each layer to provide for multi-layer channel estimation.
  • the UE may measure the channel quality across layers and resource blocks and feed back the CQI and RI values to the base station for use in updating the rank and assigning
  • a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 304.
  • Each data stream reaches each receive antenna 308 along a different signal path 310.
  • the receiver 306 may then reconstruct the data streams using the received signals from each receive antenna 308.
  • channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code.
  • an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
  • LDPC quasi-cyclic low-density parity check
  • PBCH physical broadcast channel
  • scheduling entities 108 and scheduled entities 106 may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
  • suitable hardware and capabilities e.g., an encoder, a decoder, and/or a CODEC
  • the air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices.
  • 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) .
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • SC-FDMA single-carrier FDMA
  • multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • a frame refers to a duration of 10 ms for wireless transmissions, with each frame consisting of 10 subframes of 1 ms each.
  • FIG. 4 an expanded view of an exemplary DL subframe 402 is illustrated, showing an OFDM resource grid 404.
  • time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers or tones.
  • the resource grid 404 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a MIMO implementation with multiple antenna ports available, a corresponding multiple number of resource grids 404 may be available for communication.
  • the resource grid 404 is divided into multiple resource elements (REs) 406.
  • An RE which is 1 subcarrier ⁇ 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal.
  • each RE may represent one or more bits of information.
  • a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 408, which contains any suitable number of consecutive subcarriers in the frequency domain.
  • an RB may include 12 subcarriers, a number independent of the numerology used.
  • an RB may include any suitable number of consecutive OFDM symbols in the time domain.
  • a UE generally utilizes only a subset of the resource grid 404.
  • An RB may be the smallest unit of resources that can be allocated to a UE.
  • the RB 408 is shown as occupying less than the entire bandwidth of the subframe 402, with some subcarriers illustrated above and below the RB 408.
  • the subframe 402 may have a bandwidth corresponding to any number of one or more RBs 408.
  • the RB 408 is shown as occupying less than the entire duration of the subframe 402, although this is merely one possible example.
  • Each subframe 402 may consist of one or multiple adjacent slots.
  • one subframe 402 includes four slots 410, as an illustrative example.
  • a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length.
  • CP cyclic prefix
  • a slot may include 7 or 14 OFDM symbols with a nominal CP.
  • Additional examples may include mini-slots having a shorter duration (e.g., 1, 2, 4, or 7 OFDM symbols) . These mini-slots may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs.
  • An expanded view of one of the slots 410 illustrates the slot 410 including a control region 412 and a data region 414.
  • the control region 412 may carry control channels (e.g., PDCCH)
  • the data region 414 may carry data channels (e.g., PDSCH or PUSCH) .
  • a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion.
  • the simple structure illustrated in FIG. 4 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
  • the various REs 406 within an RB 408 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc.
  • Other REs 406 within the RB 408 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 408.
  • the transmitting device may allocate one or more REs 406 (e.g., within a control region 412) to carry DL control information 114 including one or more DL control channels that generally carry information originating from higher layers, such as a physical broadcast channel (PBCH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 106.
  • DL REs may be allocated to carry DL physical signals that generally do not carry information originating from higher layers.
  • These DL physical signals may include a primary synchronization signal (PSS) ; a secondary synchronization signal (SSS) ; demodulation reference signals (DM-RS) ; phase-tracking reference signals (PT-RS) ; channel-state information reference signals (CSI-RS) ; etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DM-RS demodulation reference signals
  • PT-RS phase-tracking reference signals
  • CSI-RS channel-state information reference signals
  • the synchronization signals PSS and SSS may be transmitted in an SS block that includes 4 consecutive OFDM symbols, numbered via a time index in increasing order from 0 to 3.
  • the SS block may extend over 240 contiguous subcarriers, with the subcarriers being numbered via a frequency index in increasing order from 0 to 239.
  • the present disclosure is not limited to this specific SS block configuration.
  • Nonlimiting examples may utilize greater or fewer than two synchronization signals; may include one or more supplemental channels in addition to the PBCH; may omit a PBCH; and/or may utilize nonconsecutive symbols for an SS block, within the scope of the present disclosure.
  • the PDCCH may carry downlink control information (DCI) for one or more UEs in a cell.
  • DCI downlink control information
  • This can include, but is not limited to, power control commands, scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
  • a transmitting device may utilize one or more REs 406 to carry UL control information 118 (UCI) .
  • the UCI can originate from higher layers via one or more UL control channels, such as a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , etc., to the scheduling entity 108.
  • UL REs may carry UL physical signals that generally do not carry information originating from higher layers, such as demodulation reference signals (DM-RS) , phase-tracking reference signals (PT-RS) , sounding reference signals (SRS) , etc.
  • DM-RS demodulation reference signals
  • PT-RS phase-tracking reference signals
  • SRS sounding reference signals
  • control information 118 may include a scheduling request (SR) , i.e., a request for the scheduling entity 108 to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity 108 may transmit downlink control information 114 that may schedule resources for uplink packet transmissions.
  • UL control information may also include hybrid automatic repeat request (HARQ) feedback such as an acknowledgment (ACK) or negative acknowledgment (NACK) , channel state information (CSI) , or any other suitable UL control information.
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • CRC cyclic redundancy check
  • one or more REs 406 may be allocated for user data or traffic data.
  • traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the RAN may provide system information (SI) characterizing the cell.
  • This system information may be provided utilizing minimum system information (MSI) , and other system information (OSI) .
  • MSI minimum system information
  • OSI system information
  • the MSI may be periodically broadcast over the cell to provide the most basic information required for initial cell access, and for acquiring any OSI that may be broadcast periodically or sent on-demand.
  • the MSI may be provided over two different downlink channels.
  • the PBCH may carry a master information block (MIB)
  • the PDSCH may carry a system information block type 1 (SIB1) .
  • SIB1 may be referred to as the remaining minimum system information (RMSI) .
  • OSI may include any SI that is not broadcast in the MSI.
  • the PDSCH may carry a plurality of SIBs, not limited to SIB1, discussed above.
  • the OSI may be provided in these SIBs, e.g., SIB2 and above.
  • channels or carriers described above and illustrated in FIGs. 1 and 4 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • Transport channels carry blocks of information called transport blocks (TB) .
  • TBS transport block size
  • MCS modulation and coding scheme
  • the subcarrier spacing may be equal to the inverse of the symbol period.
  • a numerology of an OFDM waveform refers to its particular subcarrier spacing and cyclic prefix (CP) overhead.
  • a scalable numerology refers to the capability of the network to select different subcarrier spacings, and accordingly, with each spacing, to select the corresponding symbol duration, including the CP length.
  • a nominal subcarrier spacing (SCS) may be scaled upward or downward by integer multiples. In this manner, regardless of CP overhead and the selected SCS, symbol boundaries may be aligned at certain common multiples of symbols (e.g., aligned at the boundaries of each 1 ms subframe) .
  • the range of SCS may include any suitable SCS.
  • a scalable numerology may support a SCS ranging from 15 kHz to 480 kHz.
  • FIG. 5 shows a first RB 502 having a nominal numerology, and a second RB 504 having a scaled numerology.
  • the first RB 502 may have a ‘nominal’ subcarrier spacing (SCS n ) of 30 kHz, and a ‘nominal’ symbol duration n of 333 ⁇ s.
  • FIG. 6 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity 600 employing a processing system 614 according to some aspects of the disclosure.
  • the scheduling entity 600 may be a network access node, a base station, a gNB, an eNB as illustrated in any one or more of FIGs. 1, 2, and/or 3.
  • the scheduling entity 600 may be a user equipment as illustrated in any one or more of FIGs. 1, 2, and/or 3.
  • the scheduling entity 600 may be implemented with a processing system 614 that includes one or more processors 604.
  • processors 604 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the scheduling entity 600 may be configured to perform any one or more of the functions described herein. That is, the processor 604, as utilized in a scheduling entity 600, may be used to implement any one or more of the processes and procedures described below and illustrated in FIGs. 12-15.
  • the processing system 614 may be implemented with a bus architecture, represented generally by the bus 602.
  • the bus 602 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 614 and the overall design constraints.
  • the bus 602 communicatively couples together various circuits including one or more processors (represented generally by the processor 604) , a memory 605, and computer-readable media (represented generally by the computer-readable storage medium 606) .
  • the bus 602 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 608 provides an interface between the bus 602 and a transceiver 610.
  • the transceiver 610 provides a communication interface or means for communicating with various other apparatus over a transmission medium.
  • a user interface 612 e.g., keypad, display, speaker, microphone, joystick
  • a user interface 612 is optional, and may be omitted in some examples, such as a base station.
  • the processor 604 may include schedule determining circuitry 640 configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain.
  • schedule determining circuitry 640 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
  • the processor 604 may further include power level circuitry 642 configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval.
  • the power level circuitry 642 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
  • the processor 604 may further include timing circuitry 644 configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • the timing circuitry 644 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1206 of FIG. 12.
  • the schedule determining circuitry 640, power level circuitry 642 and timing circuitry 644 may allow wireless communication, implementing dynamic spectrum sharing (DSS) , operational at the scheduling entity 600.
  • DSS dynamic spectrum sharing
  • the processor 604 is responsible for managing the bus 602 and general processing, including the execution of software stored on the computer-readable storage medium 606.
  • the software when executed by the processor 604, causes the processing system 614 to perform the various functions described below for any particular apparatus.
  • the computer-readable storage medium 606 and the memory 605 may also be used for storing data that is manipulated by the processor 604 when executing software.
  • One or more processors 604 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable storage medium 606.
  • the computer-readable storage medium 606 may be a non-transitory computer-readable storage medium storing computer-executable code.
  • a non-transitory computer-readable medium storage includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g., a compact disc (CD) or a digital versatile disc (DVD)
  • the computer-readable storage medium 606 may reside in the processing system 614, external to the processing system 614, or distributed across multiple entities including the processing system 614.
  • the computer-readable storage medium 606 may be embodied in a computer program product.
  • a computer program product may include a computer-readable storage medium in packaging materials.
  • the computer-readable storage medium 606 may include schedule determining instructions 652 (e.g., software) configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain.
  • schedule determining instructions 652 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
  • the computer-readable storage medium 606 may further include, for example, power level instructions 654 (e.g., software) configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval.
  • the power level instructions 654 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
  • the computer-readable storage medium 606 may further include, for example, timing instructions 656 (e.g., software) configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • timing instructions 656 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1208 of FIG. 12.
  • FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity 700 employing a processing system 714 according to some aspects of the disclosure.
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 714 that includes one or more processors 704.
  • the scheduled entity 700 may be a user equipment (UE) , a user device, a mobile device, as illustrated in any one or more of FIGs. 1, 2, and/or 3.
  • UE user equipment
  • the processing system 714 may be substantially the same as the processing system 614 illustrated in FIG. 6, including a bus interface 708, a bus 702, memory 705, a processor 704, and a computer-readable storage medium 706.
  • the scheduled entity 700 may include a user interface 712 and a transceiver 710 substantially similar to those described above in FIG. 6. That is, the processor 704, as utilized in a scheduled entity 700, may be used to implement any one or more of the processes described below and illustrated in FIGs. 12-15.
  • the processor 704 may include schedule determining circuitry 740 configured for various functions, including, for example, determining to schedule a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain.
  • the scheduling entity, or circuitry of the scheduling entity may be configured to transmit to at least one scheduled entity, one message to schedule a plurality of uplink transmission channels on the plurality of cells.
  • the one message may be a downlink control information (DCI) .
  • DCI downlink control information
  • the schedule determining circuitry 740 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
  • the processor 704 may further include power level circuitry 742 configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval.
  • the power level circuitry 742 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
  • the processor 704 may further include timing circuitry 744 configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • the timing circuitry 744 may be configured to implement one or more of the functions described below in relation to FIG. 12-15, including, e.g., block 1206 of FIG. 12. Taken together the schedule determining circuitry 740, power level circuitry 742, and timing circuitry 744 may allow wireless communication, implementing dynamic spectrum sharing (DSS) , operational at the scheduled entity 700.
  • DSS dynamic spectrum sharing
  • the computer-readable storage medium 706 may include schedule determining instructions 752 (e.g., software) configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain.
  • schedule determining instructions 752 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
  • the computer-readable storage medium 706 may further include, for example, power level instructions 754 (e.g., software) configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval.
  • the power level instructions 754 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
  • the computer-readable storage medium 706 may further include, for example, timing instructions 756 (e.g., software) configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • timing instructions 756 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1208 of FIG. 12.
  • FIG. 8A illustrates partially overlapped uplink transmissions 800 made by a scheduled entity (e.g., a user equipment, a user device, a mobile device) on different cells (e.g., carriers, component carriers) according to aspects of the disclosure.
  • a scheduled entity e.g., a user equipment, a user device, a mobile device
  • cells e.g., carriers, component carriers
  • the partial overlap occurs in time.
  • the different cells may be referred to as Cell x at center frequency f x and Cell y at center frequency f y .
  • the center frequencies (f x , f y ) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) .
  • the transmissions from the scheduled entity includes a first uplink transmission on Cell x of a PUSCH_2 802 and a second uplink transmission on Cell y of a PUSCH_1 804.
  • Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH are within the scope of the disclosure.
  • the UL Tx of PUSCH_2 802 and PUSCH_1 804 are depicted as occurring within a given time interval 808. Illustrative examples without limitation of such given periods of time include a slot and a mini-slot, although other periodic intervals are within the scope of the disclosure.
  • next time interval 810 (e.g., a predefined interval) is depicted. Also illustrated, for overall and non-limiting impression, is a partial transmission of a third uplink transmission on Cell x of a PUSCH_N, where N is an integer greater than 2.
  • PUSCH_N 806 may or may not be present in operation.
  • PUSCH_N could be transmitted on Cell y, or any other cell, and need not be transmitted in the next time interval 810 (e.g., need not start transmission contiguously upon the conclusion of the transmission of PUSCH_1 804 on Cell y or continuously with the transmission of PUSCH_1 804 on Cell y) .
  • PUSCH_2 802 may begin transmission at time t0 and end transmission at time t2.
  • PUSCH_1 804 may begin transmission at time t1 and end transmission at time t3.
  • FIG. 8B illustrates an output power level of a transmitter of the scheduled entity beginning at time t0 and continuing beyond time t3 according to some aspects of the disclosure.
  • the vertical axis of FIG. 8B depicts a total UL transmitter power level (total UL Tx power) at an output of the scheduled entity, during transmission of PUSCH_2 802, PUSCH_1 804, and PUSCH_N 806.
  • a horizontal line corresponding to a maximum transmitter output power of the scheduled entity, P Tx-Max .
  • the scheduled entity may be unable to transmit at a power level greater than P Tx-Max without, for example, saturating the amplifiers of the scheduled entity and generating unwanted harmonics and intermodulation products resulting from operation of the amplifiers in a non-linear region.
  • PUSCH_2 802 is transmitted on Cell x beginning at time t0 and ending at time t2.
  • PUSCH_1 804 is transmitted on Cell y beginning at time t1 and ending at time t3.
  • t0 ⁇ t1 ⁇ t2 ⁇ t3 consequently, the transmission of PUSCH_2 802 and PUSCH_1 804 overlaps in time starting at t1 and ending at t2.
  • the start of the overlap and the stop of the overlap may occur at or approximately at t1 and t2, respectively.
  • a transmission power control (TPC) command of a DCI may have directed the scheduled entity to transmit PUSCH_2 802 at a given power level, P PUSCH_2 , for a time interval t0 ⁇ t ⁇ t2.
  • the instruction may be made, for example, by way of identifying a delta amount of power (e.g., expressed in dB) to be added (or subtracted) from a previous power level of Cell x (e.g., a power level of Cell x at a time prior to t0) , or by way of identifying an absolute power value (e.g., expressed in mW or dBm) for transmission by Cell x during the time interval t0 ⁇ t ⁇ t2.
  • a delta amount of power e.g., expressed in dB
  • an absolute power value e.g., expressed in mW or dBm
  • the same or a different DCI element may have directed the scheduled entity to transmit PUSCH_1 804 at a given power level, P PUSCH_1 , for a time interval t0 ⁇ t ⁇ t2.
  • the instruction may be made, for example, by way of identifying a delta amount of power (e.g., expressed in dB) to be added (or subtracted) from a previous power level of Cell y (e.g., a power level of Cell y at a time prior to t1) , or by way of identifying an absolute power value (e.g., expressed in mW or dBm) for transmission by Cell y during the time interval t1 ⁇ t ⁇ t3.
  • the scheduled entity may be directed to transmit PUSCH_N at P PUSCH_N over some given time interval.
  • any relationship between the three power levels, P PUSCH_2 , P PUSCH_1 , P PUSCH_N is arbitrary. Any power level may be greater than, equal to, or less than any other power level, without limitation. Furthermore, for example, the total transmitter power may be a sum of a power level of each cell at any given time.
  • the total Tx power from t0 ⁇ t ⁇ t1 is equal to P PUSCH_2 812
  • the total Tx power from t1 ⁇ t ⁇ t2 (i.e., during the overlap) is equal to the power level 814, which is the sum of P PUSCH_2 + P PUSCH_1
  • the total Tx power from t2 ⁇ t ⁇ t3 is equal to P PUSCH_1 816.
  • the total Tx power t > t3 (e.g., until the end of the next time interval 810) is equal to P PUSCH_N 818.
  • the scheduled entity transmitter may have a maximum transmitter output power level, P Tx-Max .
  • the power level 814 during the overlap is the sum of PPUSCH_2 + PPUSCH_1, which is greater than P Tx-Max .
  • Attempting to drive the output power of the scheduled entity above the maximum transmitter output power level may cause the amplifiers of the scheduled entity to, for example, go into saturation, clip the amplitude of the output of the scheduled entity, cause unwanted generation of harmonics, and other unwanted results as known to those of ordinary skill in the art.
  • This clipping is depicted in the illustrative example of FIG. 8B, such that the actual total UL Tx power level observed at the output of the scheduled entity is substantially equal to P Tx-Max 820.
  • UL Tx power level may fluctuate within one UL Tx (e.g., within a given time interval 808, such as a slot or a mini-slot) and may not be desirable, for example, due to unwanted saturation of Tx amplifiers.
  • Tx power for PUSCH_1 may have to drop to a less than desired value (e.g., P Tx-Max ) in the overlapped area. The power fluctuations within the same UL Tx may not be desirable.
  • the undesirability may be realized because the signal to noise ratio (SNR) estimated by a demodulation reference symbol (DMRS) in the first portion of PUSCH_1 (transmitted during overlap) may not match the later portion of PUSCH_1 (transmitted after conclusion of the overlap) , and a scheduling entity (e.g., network access node, eNB, gNB) may not know the difference (e.g., an actual measured difference) between the P Tx-Max (in the overlapped portion) and a commanded (expected) power, P PUSCH_1 . Without knowledge of the difference (e.g., between actual and expected) , the scheduling entity will not be able to adjust the SNR accordingly.
  • SNR signal to noise ratio
  • DMRS demodulation reference symbol
  • the error may be due to TPC command errors on different cells (e.g., on Cell x and/or on Cell y) .
  • the scheduling entity may make errors in the one or more TPC commands sent to the scheduled entity because of an inability to properly demodulate the signal from the scheduled entity due to an improperly estimated SNR. That is, due to a difference between what a scheduling entity expects as the transmitted power on an uplink from a scheduled entity and what the transmitted power on the uplink actually is (e.g., due to the Tx power limit of the scheduled entity) . Accordingly, scheduling entity may not calculate the SNR properly.
  • a time restriction may be introduced on UL Tx on different cells (e.g., carriers, component carriers) to ensure that UL Tx on different cells is either fully overlapped (all cells starting transmission at a same first time and ending transmission at a same second time, where the second time is later than the first time) or non-overlapped, both as distinguished from the partially overlapped example provided in FIG. 8A.
  • cells e.g., carriers, component carriers
  • FIG. 9A is an illustrative example without limitation of a series of physical downlink control channels (PDCCHs) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) spanning a vertical frequency axis according to some aspects of the disclosure.
  • the horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) .
  • the plurality of predetermined time intervals begin/end at t0, t1, t2, t3, t4, t5, and t6. Only the predetermined time interval 902 spanning between t0 and t1 is provided with a reference number.
  • the remaining predetermined time intervals, t1-t2, r2-t3, t3-t4, t4-t5, and t5-t6, are not provided with reference numbers to avoid cluttering the drawing.
  • each of the predetermined time intervals are of equal length; however, they may be of unequal length, for example, to support scalable numerology.
  • a PDCCH 904 is depicted as starting at t0.
  • the PDCCH 904 includes a downlink control information (DCI) ; that is, a single DCI 906.
  • the single DCI 906 of PDCCH 904 schedules PUSCH_1 908 and PUSCH_2 910 (as represented by the dashed line arrows emanating from PDCCH 904 and terminating at PUSCH_1 908 and PDSCH_2 910) .
  • the single DCI 906 of PDCCH 904 may schedule one or more (e.g., multiple) uplink transmission channels. That is, the single DCI 906 may schedule one, two, three, or more uplink transmission channels.
  • a scheduling entity (not shown) (similar to scheduling entity 600, FIG. 6) may determine to schedule, for at least one scheduled entity (not shown) (similar to scheduled entity 700, FIG. 7) , a plurality of uplink transmission channels (e.g., PUSCH_1 908 and PUSCH_2 910) on a plurality of cells (e.g., Cell y at frequency f y , Cell y at frequency f y , etc. ) in the frequency domain during the predetermined time interval 902 in the time domain.
  • PUSCH_1 908 and PUSCH_2 910 on a plurality of cells (e.g., Cell y at frequency f y , Cell y at frequency f y , etc. ) in the frequency domain during the predetermined time interval 902 in the time domain.
  • the scheduling entity may calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) as a function of time during the predetermined time interval 902. The calculations may be based on expected power levels based on TPC commands issued by the scheduling entity to the scheduled entity.
  • the scheduling entity may adjust a start time (t start ) and a stop time (t stop ) of each of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) , for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • the scheduling entity may transmit to the at least one scheduled entity, one message to schedule the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) on the plurality of cells (e.g., Cell y, Cell x) .
  • the one message may be a downlink control information (DCI) .
  • the PDCCH 904 may carry the single DCI 906.
  • the scheduling entity may select the plurality of uplink transmission channels to be a plurality of at least one of PUCCH, PUSCH, SRS, or PRACH channels.
  • the plurality of uplink transmission channels may be comprised solely of PUCCH channels, solely of PUSCH channels, solely of SRS channels, solely of PRACH channels, or any combination of at least two of PUCCH, PUSCH, SRS, or PRACH channels.
  • the scheduling entity may implement each of the plurality of cells (e.g., Cell y, Cell x) as a component carrier of a wireless communication network that provides for aggregation of component carriers.
  • the scheduling entity may select at least two contiguous cells (e.g., component carriers) in the frequency domain as at least two of the plurality of cells.
  • the scheduling entity may select at least two non-contiguous cells in the frequency domain as at least two of the plurality of cells.
  • the at least two of the plurality of cells may be in a same frequency band, while in other examples, the at least two of the plurality of cells may be in different frequency bands.
  • the predetermined time interval 902 is at least one of a slot or a mini-slot. It will be understood that other measures of the predetermined time interval 902 are within the scope of the disclosure.
  • the scheduling entity may adjust the start time (t start ) of each of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) to a first time (e.g., t1) and the stop time (t stop ) of each of the plurality of uplink transmission channels to a second time, where the second time (t stop ) is later than the first time (t start ) .
  • the stop time (t stop ) may be earlier than the end of a given predetermined time interval. For example, in FIG. 9A, t stop is greater than t start and less than t2.
  • the plurality of uplink transmission channels is fully overlapped (as indicated by the cross-hatching of PUSCH_1 908 and PUSCH_2 910) .
  • the stop time (t stop ) may be coincident with the end of a given predetermined time interval (e.g., t 2 , in FIG. 9A) , without departing from the scope of the disclosure.
  • the interval between t2 and t3 includes a second PDCCH 912, which is depicted as starting at t2.
  • the second PDCCH 912 includes a second DCI; that is, a second single DCI 914.
  • the second single DCI 914 of the second PDCCH 912 schedules PUSCH_3 916 and PUSCH_4 918 (as represented by the dashed line arrows emanating from second PDCCH 912 and terminating at PUSCH_3 916 and PDSCH_4 918) .
  • the second single DCI 914 of the second PDCCH 912 may schedule one or multiple uplink transmission channels. That is, the second single DCI 914 may schedule one, two, three, or more uplink transmission channels.
  • the scheduling entity may adjust the start time (e.g., t start_PUSCH_4 ) of at least one uplink transmission channel (e.g., PUSCH_4 918) of the plurality of uplink transmission channels to occur after a stop time (e.g., t stop_PUSCH_3 ) of at least one other one (e.g., PUSCH_3 916) of the plurality of uplink transmission channels, where the start time (e.g., t start_PUSCH_4 ) is later than the stop time (e.g., t stop_PUSCH_3 ) .
  • the plurality of uplink transmission channels is not overlapped.
  • PUSCH_3 916 and PUSCH_4 918 do not overlap in time throughout the entire interval from t3 to t4.
  • the amount of time between the end of PUSCH_3 916 and the start of PUSCH_4 is identified as a first delay, D1, in FIG. 9A.
  • the interval between t4 and t5 includes a third PDCCH 920, which is depicted as starting at t4.
  • the third PDCCH 920 includes a third DCI; that is, a third single DCI 922.
  • the third single DCI 922 of third PDCCH 920 schedules PUSCH_5 924 and PUSCH_6 926 (as represented by the dashed line arrows emanating from the third PDCCH 920 and terminating at PUSCH_5 924 and PDSCH_6 926) .
  • the third single DCI 922 of the third PDCCH 920 may schedule one or multiple uplink transmission channels. That is, the third single DCI 922 may schedule one, two, three, or more uplink transmission channels.
  • the scheduling entity may adjust the start time (e.g., t start_PUSCH_6 ) of at least one uplink transmission channel (e.g., PUSCH_6 926) of the plurality of uplink transmission channels to occur after a stop time (e.g., t stop_PUSCH_5 ) of at least one other one (e.g., PUSCH_5 924) of the plurality of uplink transmission channels, where the start time (e.g., t start_PUSCH_6 ) is later than the stop time (e.g., t stop_PUSCH_5 ) .
  • the plurality of uplink transmission channels is not overlapped.
  • PUSCH_5 924 and PUSCH_6 926 do not overlap in time throughout the entire interval from t5 to t6.
  • the amount of time between the stop of PUSCH_5 924 and the start of PUSCH_6 is identified as a second delay, D2, in FIG. 9A.As pictographically illustrated for exemplary purposes, D1 ⁇ D2. Accordingly, the delay between a stop time of a given PUSCH and a start time of a succeeding PUSCH can be adjusted, selected, or varied by the scheduling entity.
  • a scheduling entity may adjust the start time of at least one uplink transmission channel of the plurality of uplink transmission channels by delaying the start time so that it occurs after a predetermined delay (e.g., D1, D2, etc. ) following the stop time of at least one other uplink transmission channel of the plurality of uplink transmission channels.
  • a predetermined delay e.g., D1, D2, etc.
  • a scheduling entity may postpone a start time of at least one uplink transmission channel to prevent the transmission of the at least one uplink transmission channel from occurring during the predetermined time interval.
  • FIG. 9B illustrates a total UL transmitter power level of the scheduled entity during the UL transmissions of PUSCH_1 908, PUSCH_2 910, PUSCH_3 916, PUSCH_4 918, PUSCH_5 924, and PUSCH_6 926 according to some aspects of the disclosure.
  • the horizontal time axis of FIG. 9A and FIG. 9B coincide.
  • the vertical axis of FIG. 9B depicts a total UL transmitter power level at an output of the scheduled entity.
  • P Tx-Max a maximum transmitter output power level of the scheduled entity
  • the total UL transmitter power level (e.g., the sum of power levels of the plurality of uplink transmission channels as a function of time during a predetermined time interval) resulting from transmission of the uplink transmission channels, during each predefined time interval (e.g., t1-t2, t3-t4, and t5-t6) remains at a predetermined value during transmission of the plurality of uplink transmission channels.
  • a first total UL Tx power level 928 during transmission of the plurality of uplink transmission channels PUSCH_1 908 and PUSCH_2 910 is less than P Tx-Max .
  • a second total UL Tx power level 930 and a third total UL Tx power level 932 during transmission of the plurality of uplink transmission channels PUSCH_3 916 and PUSCH_4 918 is less than P Tx-Max .
  • the second total UL Tx power level 930 is equal to the third total UL Tx power level 932.
  • a fourth total UL Tx power level 934 and a fifth total UL Tx power level 936 during transmission of the plurality of uplink transmission channels PUSCH_5 924 and PUSCH_6 938 is less than P Tx-Max .
  • the fourth total UL Tx power level 934 is greater than the fifth total UL Tx power level 936.
  • any segment of total UL Tx power level may be greater, equal to, or less than any other segment of total UL Tx power level; however, according to aspects described herein the total UL Tx power level within each segment should be maintained at a predetermined value during transmission of the plurality of uplink transmission channels within that segment.
  • transmissions of a plurality of uplink transmission channels may partially overlap in time.
  • an initial UL Tx power level may be maintained during transmissions of the plurality of uplink transmission channels.
  • the scheduling entity may receive a delta value corresponding to a difference between a power level of an output of a transmitter of the least one scheduled entity prior to the partial overlap, and a power level of the output of the transmitter during the partial overlap. The scheduling entity may use the delta value and a commanded power level, previously transmitted to the at least one scheduled entity, to calculate a signal to noise ratio of a signal received from the at least one scheduled entity.
  • FIG. 10A is an illustrative example without limitation of a physical downlink control channel (PDCCH) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure.
  • the horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) .
  • the plurality of predetermined time intervals begin/end at t0, t1, t2, and t3. Only the predetermined time interval 1002 spanning between t0 and t1 is provided with a reference number.
  • a PDCCH 1004 is depicted as starting at t0.
  • the PDCCH 1004 includes a DCI; that is, a single DCI 1006.
  • the single DCI 1006 of PDCCH 1004 schedules PUSCH_1 1008 and PUSCH_2 1010 (as represented by the dashed line arrows emanating from PDCCH 1004 and terminating at PUSCH_1 1008 and PDSCH_2 1010) .
  • the single DCI 1006 of PDCCH 1004 may schedule one or multiple uplink transmission channels. That is, the single DCI 1006 may schedule one, two, three, or more uplink transmission channels.
  • FIG. 10A illustrates partially overlapped uplink transmissions 1001 in time made by a scheduled entity on different cells (e.g., component carriers, carriers) .
  • the different cells may be referred to as Cell x at center frequency f x and Cell y at center frequency f y .
  • the center frequencies (f x , f y ) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) .
  • the partially overlapped uplink transmissions 1001 created by overlap of two UL Tx channels is depicted as an illustrative example without limitation. A greater number of UL Tx channels may contribute to the total number of partially overlapped uplink transmissions 1001.
  • the transmissions from the scheduled entity include a first uplink transmission on Cell y of a PUSCH_1 1008 and a second uplink transmission on Cell x of a PUSCH_2 1010.
  • Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH, are within the scope of the disclosure.
  • the UL Tx of PUSCH_1 1008 and PUSCH_2 1010 are depicted as occurring within a given time interval spanning from t1 to t2.
  • Illustrative examples without limitation of such given time intervals include a slot and a mini-slot, although other periodic and aperiodic intervals are within the scope of the disclosure.
  • PUSCH_1 1008 may begin transmission at time t start_PUSCH_1 and end transmission at time t stop_PUSCH_1 .
  • PUSCH_2 1010 may begin transmission at time t start_PUSCH_2 and end transmission at time t stop_PUSCH_2 .
  • time t start_PUSCH_1 ⁇ t start_PUSCH_2 ⁇ t stop_PUSCH_1 ⁇ t stop_PUSCH_2 As illustrated, time t start_PUSCH_1 ⁇ t start_PUSCH_2 ⁇ t stop_PUSCH_1 ⁇ t stop_PUSCH_2 . Therefore, PUSCH_1 1008 and PUSCH_2 1010 partially overlap in time between t start_PUSCH_2 and t stop_PUSCH_1 (as depicted by the cross-hatched section in FIG. 10A. There is no limitation as to a length (duration) of the overlap in time.
  • the scheduling entity or the scheduled entity may, for example, adjust a power level of at least one of the first cell or the second cell to maintain the sum of power levels of the plurality of cells (e.g., the sum of power levels of Cell y transmitting PUSCH_1 1008 and Cell x transmitting PUSCH_2 1010) (as a function of time) at a level realized prior to a start of a later started one of the first transmission or the second transmission.
  • the level realized prior to the start of the later started one of the first transmission or the second transmission would be the level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the transmission of PUSCH_2 1010 (as PUSCH_2 1010 is the later started one of the first transmission or the second transmission) .
  • FIG. 10B illustrates a total UL transmitter power level of the scheduled entity during the UL transmissions of PUSCH_1 1008 and PUSCH_2 1010 according to some aspects of the disclosure.
  • the horizontal time axis of FIG. 10A and FIG. 10B coincide.
  • the vertical axis of FIG. 10B depicts a total UL transmitter power level at an output of the scheduled entity.
  • a horizontal line depicted is a horizontal line, corresponding to a maximum transmitter power level of the scheduled entity, P Tx-Max .
  • P Tx-Max a maximum transmitter power level of the scheduled entity
  • the description of P Tx-Max is omitted for the sake of brevity, as P Tx-Max was previously described.
  • a total UL transmitter power level 1012 during transmission of the plurality of uplink transmission channels PUSCH_1 1008 and PUSCH_2 1010 is less than PTx-Max.
  • the total UL transmitter power level 1012 e.g., the sum of power levels of the plurality of uplink transmission channels (e.g., PUSCH_1 1008 and PUSCH_2 1010) , as a function of time during a predetermined time interval (e.g., t1 to t2) ) remains at a given value (e.g., a predetermined value) during transmission of the plurality of uplink transmission channels.
  • the sum of power levels of the plurality of uplink transmission channels remains at the predetermined value during transmission of the plurality of uplink transmission channels because the scheduling entity or the scheduled entity may, for example, adjust a power level of at least one of the first cell (e.g., Cell y) or the second cell (e.g., Cell x) to maintain the sum of power levels of the plurality of cells (e.g., the sum of power levels of Cell y transmitting PUSCH_1 1008 and Cell x transmitting PUSCH_2 1010) (as a function of time) at a level realized prior to a start of the later started one of the first transmission or the second transmission.
  • a power level of at least one of the first cell e.g., Cell y
  • the second cell e.g., Cell x
  • the level realized prior to the start of the later started one of the first transmission or the second transmission would be the level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the transmission of PUSCH_2 1010 (as PUSCH_2 1010 is the later started one of the first transmission or the second transmission) . Accordingly, even though the power of Cell x is added to that of Cell y, the scheduling entity or the scheduled entity may adjust the power level of at least one of Cell x or Cell y to maintain the total UL Tx power level at the level realized when only PUSCH_1 1008 was contributing to the total UL Tx power level of the scheduled entity.
  • the scheduling entity or the scheduled entity may adjust the power level of at least one of Cell x or Cell y to maintain the total UL Tx power level at the level realized when only PUSCH_1 1008 was contributing to the total UL Tx power level of the scheduled entity.
  • FIG. 11A is an illustrative example without limitation of a physical downlink control channel (PDCCH) , PDCCH 1104, spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure.
  • the horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) .
  • the plurality of predetermined time intervals begin/end at t0, t1, t2, and t3. Only the predetermined time interval 1102 spanning between t0 and t1 is provided with a reference number.
  • a PDCCH 1104 is depicted as starting at t0.
  • the PDCCH 1104 includes a DCI; that is, a single DCI 1106.
  • the single DCI 1106 of PDCCH 1104 schedules PUSCH_1 1108 and PUSCH_2 1110 (as represented by the dashed line arrows emanating from PDCCH 1104 and terminating at PUSCH_1 1108 and PDSCH_2 1110) .
  • the single DCI 1106 of PDCCH 1104 may schedule one or multiple uplink transmission channels. That is, the single DCI 1106 may schedule one, two, three, or more uplink transmission channels.
  • FIG. 11A illustrates partially overlapped uplink transmissions 1101 in time made by a scheduled entity on different cells (e.g., component carriers, carriers) .
  • the different cells may be referred to as Cell x at center frequency f x and Cell y at center frequency f y .
  • the center frequencies (f x , f y ) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) .
  • the partially overlapped uplink transmissions 1101 created by overlap of two UL Tx channels is depicted as an illustrative example without limitation. A greater number of UL Tx channels may contribute to the total number of partially overlapped uplink transmissions 1101.
  • the transmissions from the scheduled entity include a first uplink transmission on Cell y of a PUSCH_1 1108 and a second uplink transmission on Cell x of a PUSCH_2 1110.
  • Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH are within the scope of the disclosure.
  • the UL Tx of PUSCH_1 1108 and PUSCH_2 1110 are depicted as occurring within a given time interval spanning from t1 to t2.
  • Illustrative examples without limitation of such given periods of time include a slot and a mini-slot, although other periodic intervals are within the scope of the disclosure.
  • PUSCH_1 1108 may begin transmission at time t start_PUSCH_1 and end transmission at time t stop_PUSCH_1 .
  • PUSCH_2 1110 may begin transmission at time t start_PUSCH_2 and end transmission at time t stop_PUSCH_2 .
  • time t start_PUSCH_1 ⁇ t start_PUSCH_2 ⁇ t stop_PUSCH_1 ⁇ t stop_PUSCH_2 As illustrated, time t start_PUSCH_1 ⁇ t start_PUSCH_2 ⁇ t stop_PUSCH_1 ⁇ t stop_PUSCH_2 . Therefore, PUSCH_1 1008 and PUSCH_2 1010 partially overlap in time between t start_PUSCH_2 and t stop_PUSCH_1 (as depicted by the cross-hatched section in FIG. 11A. There is no limitation as to a length (duration) of the overlap in time.
  • a scheduling entity may, for example, receive a delta value corresponding to a difference between a power level of an output of a transmitter of the least one scheduled entity prior to the partial overlap and a power level of the output of the transmitter during the partial overlap.
  • the power level of the output of the transmitter of the least one scheduled entity prior to the partial overlap in the example of FIG. 11A would be the power level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the transmission of PUSCH_2 1110
  • FIG. 11B illustrates a total UL transmitter power level 1112 of the scheduled device during the UL transmissions of PUSCH_1 1108 and PUSCH_2 1110 according to some aspects of the disclosure.
  • the vertical axis of FIG. 11B depicts a total UL transmitter power level at an output of the scheduled entity.
  • a horizontal line depicted is a horizontal line, corresponding to a maximum transmitter output power level of the scheduled entity, P Tx- Max .
  • P Tx-Max a maximum transmitter output power level of the scheduled entity
  • a scheduling entity may, for example, receive a delta value (e.g., a first delta value 1114) corresponding to a difference between a power level at an output of a transmitter of the least one scheduled entity prior to the partial overlap (e.g., the power level at the output of the transmitter at any time between t start_PUSCH_1 and t start_PUSCH_2 ) and a power level at the output of the transmitter during the partial overlap (e.g., the power
  • the scheduling entity may, for example, receive a delta value (e.g., a second delta value 1116) corresponding to a difference between a power level at an output of a transmitter of the least one scheduled entity during the partial overlap (e.g., the power level at the output of the transmitter at any time between t start_PUSCH_2 and t stop_PUSCH_1 ) and a power level at the output of the transmitter after the partial overlap (e.g., the power level at the output of the transmitter at any time between t stop_PUSCH_1 and t stop_PUSCH_2 ) .
  • a delta value e.g., a second delta value 1116
  • the total UL transmitter power level 1112 is allowed to vary.
  • the UL transmitter power level during the time when only PUSCH_1 1108 is transmitting is denoted as P0
  • the UL transmitter power level during the time when the transmissions of PUSCH_1 1108 and PUSCH_2 1110 are transmitting is denoted as P1
  • the UL transmitter power level for during the time when the transmissions of PUSCH_1 1108 and PUSCH_2 1110 are transmitting is denoted as P1’
  • the UL transmitter power level during the time when only PUSCH_2 1110 is transmitting is denoted as P2.
  • the delta values may be fed back from the scheduled entity to the scheduling entity.
  • the scheduling entity may use the delta value and a commanded power level (e.g. a commanded level as sent using a TPC message to the scheduled entity) to calculate a signal to noise ratio (SNR) of a signal received from the at least one scheduled entity.
  • SNR signal to noise ratio
  • FIG. 12 is a flow chart illustrating an exemplary process 1200 for wireless communication implementing dynamic spectrum sharing, operational at a scheduling entity, according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects.
  • the process 1200 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1200 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1200 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the entity practicing the process 1200 may determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain.
  • the entity may calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval.
  • the entity may adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • FIG. 13 is a flow chart illustrating an exemplary process 1300 for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects.
  • the process 1300 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1300 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1300 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the entity practicing the process 1300 may adjust a start time of each of a plurality of uplink transmission channels to a first time and a stop time of each of the plurality of uplink transmission channels to a second time, where the second time is later than the first time.
  • the entity may optionally set a power level for at least one of a plurality of cells on which the plurality of uplink transmission channels is transmitted to a level that ensures that the sum of power levels of the plurality of cells is less than or equal to a maximum transmitter output power level (P Tx-Max ) of a scheduled entity.
  • P Tx-Max maximum transmitter output power level
  • FIG. 14 is a flow chart illustrating another exemplary process 1400 for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects.
  • the process 1400 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1400 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1400 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the entity practicing the process 1400 may adjust a start time of at least one uplink transmission channel of a plurality of uplink transmission channels to occur after a stop time of at least one other one of the plurality of uplink transmission channels.
  • the entity may optionally aet a power level for at least one of a plurality of cells on which the plurality of uplink transmission channels is transmitted to a level that ensures that the sum of power levels of the plurality of cells is less than or equal to a maximum transmitter output power level of a scheduled entity.
  • FIG. 15 is a flow chart illustrating an exemplary process 1500 for adjusting timing and either setting power levels of uplink transmission channels or receiving/transmitting certain delta power values as described herein according to some aspects of the disclosure.
  • the process 1500 may be carried out by the scheduling entity 600 illustrated in FIG. 6.
  • the process 1500 may be carried out by the scheduled entity 700 illustrated in FIG. 7.
  • the process 1500 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the entity practicing the process 1500 may adjust a first transmission on a first cell of a plurality of cells to partially overlap a second transmission on a second cell of the plurality of cells.
  • the entity may adjust a power level of at least one of the first cell or the second cell to maintain a sum of power levels of the plurality of cells at a level realized prior to a start of a later started one of the first transmission or the second transmission.
  • the entity may at least one of receive or transmit a delta value corresponding to a difference between a power level at an output of a transmitter of the least one user equipment prior to the partial overlap and a power level at the output of the transmitter during the partial overlap.
  • the apparatus 600 and/or 700 for wireless communication includes means for determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, and means for calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and means for adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  • the aforementioned means may be the processor (s) 604, 704 shown in FIG. 6 and/or FIG. 7 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 604 and/or the processor 704 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 606 and/or the computer-readable storage medium 706, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, and/or 3, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 12 -15.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1-8 One or more of the components, steps, features and/or functions illustrated in FIGs. 1-8 may be rearranged and/or combined into a single component, step, feature, or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1-8 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Abstract

Aspects of the disclosure relate to determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. Other aspects, embodiments, and features are also claimed and described.

Description

TIME RESTRICTION ON UPLINK TRANSMISSION ON DIFFERENT CELLS TECHNICAL FIELD
The technology discussed below relates generally to wireless communication systems, and more particularly, to placing time restrictions on uplink transmissions on different cells (e.g., carriers, component carriers) to implement dynamic spectrum sharing.
INTRODUCTION
The radio spectrum is limited and must be shared by multiple service providers, each of whom rely on radio access networks with multiple scheduling entities (e.g., network access nodes, eNBs, gNBs) to communicate with a vast number of user devices. According to some aspects, a schooled entity may schedule radio resource allocations using downlink control information (DCI) . A DCI may transport downlink control information for one or more cells. A DCI may, for example, schedule one or multiple physical uplink shared channel (PUSCH) in one cell (e.g., carrier, component carrier) , schedule one physical downlink shared channel (PDSCH) in one cell, provide transmit power control (TPC) commands for physical uplink control channel (PUCCH) and PUSCH, among other things. Cross carrier scheduling may have improved use of the spectrum; however, the improvement is limited due to present constraints on the use of DCI.
As the demand for mobile broadband access continues to increase, research and development continue to advance wireless communication technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a simplified summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor  to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
In one example a method of wireless communication is disclosed. The method includes determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. In one example, an apparatus for wireless communication is disclosed. According to ne aspect, that apparatus includes means for determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, means for calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and means for adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. According to one aspect, a non-transitory computer-readable storage medium storing computer-executable code is disclosed. According to one aspect, the code causes the computer to determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. In another example, an apparatus for wireless communication is disclosed. The apparatus includes a processor, a transceiver communicatively coupled to the processor, and a memory communicatively coupled to the processor. According to one aspect, the processor is  configured to determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
These and other aspects of the invention will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain embodiments and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the disclosure.
FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects of the disclosure.
FIG. 3 is a block diagram illustrating a wireless communication system supporting multiple-input multiple-output (MIMO) communication.
FIG. 4 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some aspects of the disclosure.
FIG. 5 is a schematic illustration of an OFDM air interface utilizing a scalable numerology according to some aspects of the disclosure.
FIG. 6 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity employing a processing system according to some aspects of the disclosure.
FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity according to some aspects of the disclosure.
FIG. 8A illustrates partially overlapped uplink transmissions made by a scheduled entity (e.g., a user equipment, a user device, a mobile device) on different cells (e.g., carriers, component carriers) according to some aspects of the disclosure.
FIG. 8B illustrates an output power level of a transmitter of the scheduled entity beginning at time t0 and continuing beyond time t3 according to some aspects of the disclosure.
FIG. 9A is an illustrative example without limitation of a series of physical downlink control channels (PDCCHs) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) spanning a vertical frequency axis according to some aspects of the disclosure.
FIG. 9B illustrates a total UL transmitter power of the scheduled entity during the UL transmissions of PUSCH_1, PUSCH_2, PUSCH_3, PUSCH_4, PUSCH_5, and PUSCH_6 according to some aspects of the disclosure.
FIG. 10A is an illustrative example without limitation of a physical downlink control channel (PDCCH) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning the vertical frequency axis according to some aspects of the disclosure.
FIG. 10B illustrates a total UL transmitter power of the scheduled entity during the UL transmissions of PUSCH_1 and PUSCH_2 according to some aspects of the disclosure.
FIG. 11A is an illustrative example without limitation of a physical downlink control channel (PDCCH) , spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure.
FIG. 11B illustrates a total UL transmitter power level of the scheduled device during the UL transmissions of PUSCH_1 and PUSCH_2 according to some aspects of the disclosure.
FIG. 12 is a flow chart illustrating an exemplary process for wireless communication implementing dynamic spectrum sharing, operational at a scheduling entity according to some aspects of the disclosure.
FIG. 13 is a flow chart illustrating an exemplary process for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure.
FIG. 14 is a flow chart illustrating another exemplary process for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure.
FIG. 15 is a flow chart illustrating an exemplary process for adjusting timing and either setting power levels of uplink transmission channels or receiving/transmitting certain delta power values as described herein according to some aspects of the disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described  innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
Various aspects described herein relate to dynamic spectrum sharing (DSS) . DSS may provide opportunities to enhance aspects related to the physical downlink control channel (PDCCH) for cross-carrier scheduling. The enhancements may include utilizing a physical downlink control channel (PDCCH) of a secondary cell (SCell) (e.g., secondary component carrier, secondary carrier) to schedule a physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) on a primary cell (PCell) (e.g., a primary component carrier, a primary carrier) or an SCell. In more detail, aspects described herein may relate to a use of a PDCCH of a PCell or SCell to schedule PDSCH on multiple cells (e.g., multiple component carriers, multiple carriers) using a single DCI. The DCI may convey timing restrictions to at least one of control or prevent UL transmitter power fluctuation within one uplink transmission period (e.g., within one slot or mini-slot) .
DEFINITIONS
RAT: radio access technology. The type of technology or communication standard utilized for radio access and communication over a wireless air interface. Just a few examples of RATs include GSM, UTRA, E-UTRA (LTE) , Bluetooth, and Wi-Fi.
NR: new radio. Generally refers to 5G technologies and the new radio access technology undergoing definition and standardization by 3GPP in Release 15.
Legacy compatibility: may refer to the capability of a 5G network to provide connectivity to pre-5G devices, and the capability of 5G devices to obtain connectivity to a pre-5G network.
Multimode device: a device that can provide simultaneous connectivity across different networks, such as 5G, 4G, and Wi-Fi networks.
CA: carrier aggregation. 5G networks may provide for aggregation of sub-6 GHz carriers, above-6 GHz carriers, mmWave carriers, etc., all controlled by a single integrated MAC layer.
MR-AN: multi-RAT radio access network. A single radio access network may provide one or more cells for each of a plurality of RATs, and may support inter-and intra-RAT mobility and aggregation.
MR-CN: multi-RAT core network. A single, common core network may support multiple RATs (e.g., 5G, LTE, and WLAN) . In some examples, a single 5G control plane may support the user planes of a plurality of RATs by utilizing software-defined networking (SDN) technology in the core network.
SDN: software-defined networking. A dynamic, adaptable network architecture that may be managed by way of abstraction of various lower-level functions of a network, enabling the control of network functions to be directly programmable.
SDR: software-defined radio. A dynamic, adaptable radio architecture where many signal processing components of a radio such as amplifiers, modulators, demodulators, etc. are replaced by software functions. SDR enables a single radio device to communicate utilizing different and diverse waveforms and RATs simply by reprogramming the device.
mmWave: millimeter-wave. Generally refers to high bands above 24 GHz, which can provide a very large bandwidth.
Beamforming: directional signal transmission or reception. For a beamformed transmission, the amplitude and phase of each antenna in an array of antennas may be precoded, or controlled to create a desired (e.g., directional) pattern of constructive and destructive interference in the wavefront.
MIMO: multiple-input multiple-output. MIMO is a multi-antenna technology that exploits multipath signal propagation so that the information-carrying capacity of a wireless link can be multiplied by using multiple antennas at the transmitter and receiver to send multiple simultaneous streams. At the multi-antenna transmitter, a suitable precoding algorithm (scaling the respective streams’ amplitude and phase) is applied (in some examples, based on known channel state information) . At the multi-antenna receiver, the different spatial signatures of the respective streams (and, in some  examples, known channel state information) can enable the separation of these streams from one another.
1. In single-user MIMO, the transmitter sends one or more streams to the same receiver, taking advantage of capacity gains associated with using multiple Tx, Rx antennas in rich scattering environments where channel variations can be tracked.
2. The receiver may track these channel variations and provide corresponding feedback to the transmitter. This feedback may include channel quality information (CQI) , the number of preferred data streams (e.g., rate control, a rank indicator (RI) ) , and a precoding matrix index (PMI) .
Massive MIMO: a MIMO system with a very large number of antennas (e.g., greater than an 8x8 array) .
MU-MIMO: a multi-antenna technology where base station, in communication with a large number of UEs, can exploit multipath signal propagation to increase overall network capacity by increasing throughput and spectral efficiency, and reducing the required transmission energy.
1. The transmitter may attempt to increase the capacity by transmitting to multiple users using its multiple transmit antennas at the same time, and also using the same allocated time–frequency resources. The receiver may transmit feedback including a quantized version of the channel so that the transmitter can schedule the receivers with good channel separation. The transmitted data is precoded to maximize throughput for users and minimize inter-user interference.
AS: access stratum. A functional grouping consisting of the parts in the radio access network and in the UE, and the protocols between these parts being specific to the access technique (i.e., the way the specific physical media between the UE and the radio access network is used to carry information) .
NAS: non-access stratum. Protocols between UE and the core network that are not terminated in the radio access network.
RAB: radio access bearer. The service that the access stratum provides to the non-access stratum for transfer of user information between a UE and the core network.
Network slicing: a wireless communication network may be separated into a plurality of virtual service networks (VSNs) , or network slices, which are separately configured to better suit the needs of different types of services. Some wireless communication networks may be separated, e.g., according to eMBB, IoT, and URLLC services.
eMBB: enhanced mobile broadband. Generally, eMBB refers to the continued progression of improvements to existing broadband wireless communication technologies such as LTE. eMBB provides for (generally continuous) increases in data rates and increased network capacity.
IoT: the Internet of things. In general, this refers to the convergence of numerous technologies with diverse use cases into a single, common infrastructure. Most discussions of the IoT focus on machine-type communication (MTC) devices.
URLLC: ultra-reliable and low-latency communication. Sometimes equivalently called mission-critical communication. Reliability refers to the probability of success of transmitting a given number of bytes within 1 ms under a given channel quality. Ultra-reliable refers to a high target reliability, e.g., a packet success rate greater than 99.999%. Latency refers to the time it takes to successfully deliver an application layer packet or message. Low-latency refers to a low target latency, e.g., 1 ms or even 0.5 ms (for comparison, a target for eMBB may be 4ms) .
MTC: machine-type communication. A form of data communication that involves one or more entities that do not necessarily need human interaction. Optimization of MTC services differs from that for human-to-human communications because MTC services generally involve different market scenarios, data communications, lower costs and effort, a potentially very large number of communicating terminals, and, to a large extent, little traffic per terminal. (See 3GPP TS 22.368. )
Duplex: a point-to-point communication link where both endpoints can communicate with one another in both directions. Full duplex means both endpoints can simultaneously communicate with one another. Half duplex means only one endpoint can send information to the other at a time. In a wireless link, a full duplex channel generally relies on physical isolation of a transmitter and receiver, and interference cancellation techniques. Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) . In FDD, the transmitter and receiver at each endpoint operate at different carrier frequencies. In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction.
OFDM: orthogonal frequency division multiplexing. An air interface may be defined according to a two-dimensional grid of resource elements, defined by separation of resources in frequency by defining a set of closely spaced frequency tones or sub-carriers, and separation in time by defining a sequence of symbols having a given duration. By setting the spacing between the tones based on the symbol rate, inter-symbol interference can be eliminated. OFDM channels provide for high data rates by allocating a data stream in a parallel manner across multiple subcarriers.
CP: cyclic prefix. A multipath environment degrades the orthogonality between subcarriers because symbols received from reflected or delayed paths may overlap into the following symbol. A CP addresses this problem by copying the tail of each symbol and pasting it onto the front of the OFDM symbol. In this way, any multipath components from a previous symbol fall within the effective guard time at the start of each symbol, and can be discarded.
Scalable numerology: in OFDM, to maintain orthogonality of the subcarriers or tones, the subcarrier spacing is equal to the inverse of the symbol period. A scalable numerology refers to the capability of the network to select different subcarrier spacings, and accordingly, with each spacing, to select the corresponding symbol period. The symbol period should be short enough that the channel does not significantly vary over each period, in order to preserve orthogonality and limit inter-subcarrier interference.
RSMA: resource spread multiple access. A non-orthogonal multiple access scheme generally characterized by small, grantless data bursts in the uplink where signaling over head is a key issue, e.g., for IoT.
LBT: listen before talk. A non-scheduled, contention-based multiple access technology where a device monitors or senses a carrier to determine if it is available before transmitting over the carrier. Some LBT technologies utilize signaling such as a request to send (RTS) and a clear to send (CTS) to reserve the channel for a given duration of time.
D2D: device-to-device. Also point-to-point (P2P) . D2D enables discovery of, and communication with nearby devices using a direct link between the devices (i.e., without passing through a base station, relay, or other node) . D2D can enable mesh networks, and device-to-network relay functionality. Some examples of D2D technology include Bluetooth pairing, Wi-Fi Direct, Miracast, and LTE-D.
IAB: integrated access and backhaul. Some base stations may be configured as IAB nodes, where the wireless spectrum may be used both for access links (i.e., wireless  links with UEs) , and for backhaul links. This scheme is sometimes referred to as wireless self-backhauling. By using wireless self-backhauling, rather than requiring each new base station deployment to be outfitted with its own hard-wired backhaul connection, the wireless spectrum utilized for communication between the base station and UE may be leveraged for backhaul communication, enabling fast and easy deployment of highly dense small cell networks.
QoS: quality of service. The collective effect of service performances which determine the degree of satisfaction of a user of a service. QoS is characterized by the combined aspects of performance factors applicable to all services, such as: service operability performance; service accessibility performance; service retainability performance; service integrity performance; and other factors specific to each service.
Blockchain: a distributed database and transaction processing technology having certain features that provide secure and reliable records of transactions in a way this is very resistant to fraud or other attacks. When a transaction takes place, many copies of a transaction record are sent to other participants in a network, each of which simultaneously confirms the transaction via a mathematical calculation. Blocks are accepted via a scoring algorithm based on these confirmations. A block is a group or batch of transaction records, including a timestamp and a hash of a previous block, linking the blocks to one another. This string of blocks forms a blockchain. In a wireless communication network, especially one with large numbers of IoT devices, a blockchain can improve security and trust to the ability for any type of transaction or instructions between devices.
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, various aspects of the present disclosure are illustrated with reference to a wireless communication system 100. The wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR)  specifications, often referred to as 5G. As another example, the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE. The 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
The radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
Within the present document, a “mobile” apparatus need not necessarily have a capability to move, and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) . A mobile apparatus may additionally be an automotive or other  transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more  scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106. Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108. On the other hand, the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system. The backhaul 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
Referring now to FIG. 2, by way of example and without limitation, a schematic illustration of a RAN 200 is provided. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1. The geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted from one access point or base station. FIG. 2 illustrates  macrocells  202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio  link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
In FIG. 2, two  base stations  210 and 212 are shown in  cells  202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables. In the illustrated example, the  cells  202, 204, and 126 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
It is to be understood that the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example,  UEs  222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
In some examples, a mobile network node (e.g., quadcopter 220) may be configured to function as a UE. For example, the quadcopter 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. For example, two or more UEs (e.g., UEs 226 and 228) may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) . In a further example, UE 238 is illustrated communicating with  UEs  240 and 242. Here, the UE 238 may function as a scheduling entity or a primary sidelink device, and  UEs  240 and 242 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device. In still another example, a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network. In a mesh network example,  UEs  240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238. Thus, in a wireless communication system with scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, or a mesh configuration, a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
In the radio access network 200, the ability for a UE to communicate while moving, independent of its location, is referred to as mobility. The various physical channels between the UE and the radio access network are generally set up, maintained, and released under the control of an access and mobility management function (AMF, not illustrated, part of the core network 102 in FIG. 1) , which may include a security context management function (SCMF) that manages the security context for both the control plane and the user plane functionality, and a security anchor function (SEAF) that performs authentication.
In various aspects of the disclosure, a radio access network 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) . In a network configured for DL-based mobility, during a call with a scheduling entity, or at any other time, a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells. During this  time, if the UE moves from one cell to another, or if signal quality from a neighboring cell exceeds that from the serving cell for a given amount of time, the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell. For example, UE 224 (illustrated as a vehicle, although any suitable form of UE may be used) may move from the geographic area corresponding to its serving cell 202 to the geographic area corresponding to a neighbor cell 206. When the signal strength or quality from the neighbor cell 206 exceeds that of its serving cell 202 for a given amount of time, the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition. In response, the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
In a network configured for UL-based mobility, UL reference signals from each UE may be utilized by the network to select a serving cell for each UE. In some examples, the  base stations  210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) . The  UEs  222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal. The uplink pilot signal transmitted by a UE (e.g., UE 224) may be concurrently received by two or more cells (e.g.,  base stations  210 and 214/216) within the radio access network 200. Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the  base stations  210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224. As the UE 224 moves through the radio access network 200, the network may continue to monitor the uplink pilot signal transmitted by the UE 224. When the signal strength or quality of the pilot signal measured by a neighboring cell exceeds that of the signal strength or quality measured by the serving cell, the network 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
Although the synchronization signal transmitted by the  base stations  210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing. The use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves  the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
In various implementations, the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum. Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body. Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access. Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs. For example, the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
The air interface in the radio access network 200 may utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full duplex means both endpoints can simultaneously communicate with one another. Half duplex means only one endpoint can send information to the other at a time. In a wireless link, a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) . In FDD, transmissions in different directions operate at different carrier frequencies. In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot.
In some aspects of the disclosure, the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology. FIG. 3 illustrates an example of a wireless communication system 300 supporting MIMO. In a MIMO system, a transmitter 302 includes multiple transmit antennas 304 (e.g., N transmit antennas) and a receiver 306 includes multiple receive  antennas 308 (e.g., M receive antennas) . Thus, there are N × M signal paths 310 from the transmit antennas 304 to the receive antennas 308. Each of the transmitter 302 and the receiver 306 may be implemented, for example, within a scheduling entity 108, a scheduled entity 106, or any other suitable wireless communication device.
The use of such multiple antenna technology enables the wireless communication system to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource. The data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) . This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink. The spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE. On the uplink, each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
The number of data streams or layers corresponds to the rank of the transmission. In general, the rank of the MIMO system 300 is limited by the number of transmit or receive  antennas  304 or 308, whichever is lower. In addition, the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank. For example, the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station. The RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas. The RI may indicate, for example, the number of layers that may be supported under the current channel conditions. The base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
In Time Division Duplex (TDD) systems, the UL and DL are reciprocal, in that each uses different time slots of the same frequency bandwidth. Therefore, in TDD systems, the base station may assign the rank for DL MIMO transmissions based on UL  SINR measurements (e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit the CSI-RS with separate C-RS sequences for each layer to provide for multi-layer channel estimation. From the CSI-RS, the UE may measure the channel quality across layers and resource blocks and feed back the CQI and RI values to the base station for use in updating the rank and assigning REs for future downlink transmissions.
In the simplest case, as shown in FIG. 3, a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 304. Each data stream reaches each receive antenna 308 along a different signal path 310. The receiver 306 may then reconstruct the data streams using the received signals from each receive antenna 308.
In order for transmissions over the radio access network 200 to obtain a low block error rate (BLER) while still achieving very high data rates, channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code. In a typical block code, an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
In early 5G NR specifications, user data is coded using quasi-cyclic low-density parity check (LDPC) with two different base graphs: one base graph is used for large code blocks and/or high code rates, while the other base graph is used otherwise. Control information and the physical broadcast channel (PBCH) are coded using Polar coding, based on nested sequences. For these channels, puncturing, shortening, and repetition are used for rate matching.
However, those of ordinary skill in the art will understand that aspects of the present disclosure may be implemented utilizing any suitable channel code. Various implementations of scheduling entities 108 and scheduled entities 106 may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
The air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices. For example, 5G NR specifications provide multiple access for UL transmissions from  UEs  222 and 224 to base station 210, and for multiplexing for DL  transmissions from base station 210 to one or  more UEs  222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for UL transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) . However, within the scope of the present disclosure, multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes. Further, multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
Various aspects of the present disclosure will be described with reference to an OFDM waveform, schematically illustrated in FIG. 4. It should be understood by those of ordinary skill in the art that the various aspects of the present disclosure may be applied to a DFT-s-OFDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to DFT-s-OFDMA waveforms.
Within the present disclosure, a frame refers to a duration of 10 ms for wireless transmissions, with each frame consisting of 10 subframes of 1 ms each. On a given carrier, there may be one set of frames in the UL, and another set of frames in the DL. Referring now to FIG. 4, an expanded view of an exemplary DL subframe 402 is illustrated, showing an OFDM resource grid 404. However, as those skilled in the art will readily appreciate, the PHY transmission structure for any particular application may vary from the example described here, depending on any number of factors. Here, time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers or tones.
The resource grid 404 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a MIMO implementation with multiple antenna ports available, a corresponding multiple number of resource grids 404 may be available for communication. The resource grid 404 is divided into multiple resource  elements (REs) 406. An RE, which is 1 subcarrier × 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal. Depending on the modulation utilized in a particular implementation, each RE may represent one or more bits of information. In some examples, a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 408, which contains any suitable number of consecutive subcarriers in the frequency domain. In one example, an RB may include 12 subcarriers, a number independent of the numerology used. In some examples, depending on the numerology, an RB may include any suitable number of consecutive OFDM symbols in the time domain. Within the present disclosure, it is assumed that a single RB such as the RB 408 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
A UE generally utilizes only a subset of the resource grid 404. An RB may be the smallest unit of resources that can be allocated to a UE. Thus, the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface, the higher the data rate for the UE.
In this illustration, the RB 408 is shown as occupying less than the entire bandwidth of the subframe 402, with some subcarriers illustrated above and below the RB 408. In a given implementation, the subframe 402 may have a bandwidth corresponding to any number of one or more RBs 408. Further, in this illustration, the RB 408 is shown as occupying less than the entire duration of the subframe 402, although this is merely one possible example.
Each subframe 402 (e.g., a 1ms subframe) may consist of one or multiple adjacent slots. In the example shown in FIG. 4, one subframe 402 includes four slots 410, as an illustrative example. In some examples, a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include 7 or 14 OFDM symbols with a nominal CP. Additional examples may include mini-slots having a shorter duration (e.g., 1, 2, 4, or 7 OFDM symbols) . These mini-slots may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs.
An expanded view of one of the slots 410 illustrates the slot 410 including a control region 412 and a data region 414. In general, the control region 412 may carry control channels (e.g., PDCCH) , and the data region 414 may carry data channels (e.g., PDSCH or PUSCH) . Of course, a slot may contain all DL, all UL, or at least one DL  portion and at least one UL portion. The simple structure illustrated in FIG. 4 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
Although not illustrated in FIG. 4, the various REs 406 within an RB 408 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc. Other REs 406 within the RB 408 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 408.
In a DL transmission, the transmitting device (e.g., the scheduling entity 108) may allocate one or more REs 406 (e.g., within a control region 412) to carry DL control information 114 including one or more DL control channels that generally carry information originating from higher layers, such as a physical broadcast channel (PBCH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 106. In addition, DL REs may be allocated to carry DL physical signals that generally do not carry information originating from higher layers. These DL physical signals may include a primary synchronization signal (PSS) ; a secondary synchronization signal (SSS) ; demodulation reference signals (DM-RS) ; phase-tracking reference signals (PT-RS) ; channel-state information reference signals (CSI-RS) ; etc.
The synchronization signals PSS and SSS (collectively referred to as SS) , and in some examples, the PBCH, may be transmitted in an SS block that includes 4 consecutive OFDM symbols, numbered via a time index in increasing order from 0 to 3. In the frequency domain, the SS block may extend over 240 contiguous subcarriers, with the subcarriers being numbered via a frequency index in increasing order from 0 to 239. Of course, the present disclosure is not limited to this specific SS block configuration. Other nonlimiting examples may utilize greater or fewer than two synchronization signals; may include one or more supplemental channels in addition to the PBCH; may omit a PBCH; and/or may utilize nonconsecutive symbols for an SS block, within the scope of the present disclosure.
The PDCCH may carry downlink control information (DCI) for one or more UEs in a cell. This can include, but is not limited to, power control commands, scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
In an UL transmission, a transmitting device (e.g., a scheduled entity 106) may utilize one or more REs 406 to carry UL control information 118 (UCI) . The UCI can originate from higher layers via one or more UL control channels, such as a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , etc., to the scheduling entity 108. Further, UL REs may carry UL physical signals that generally do not carry information originating from higher layers, such as demodulation reference signals (DM-RS) , phase-tracking reference signals (PT-RS) , sounding reference signals (SRS) , etc. In some examples, the control information 118 may include a scheduling request (SR) , i.e., a request for the scheduling entity 108 to schedule uplink transmissions. Here, in response to the SR transmitted on the control channel 118, the scheduling entity 108 may transmit downlink control information 114 that may schedule resources for uplink packet transmissions.
UL control information may also include hybrid automatic repeat request (HARQ) feedback such as an acknowledgment (ACK) or negative acknowledgment (NACK) , channel state information (CSI) , or any other suitable UL control information. HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
In addition to control information, one or more REs 406 (e.g., within the data region 414) may be allocated for user data or traffic data. Such traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
In order for a UE to gain initial access to a cell, the RAN may provide system information (SI) characterizing the cell. This system information may be provided utilizing minimum system information (MSI) , and other system information (OSI) . The MSI may be periodically broadcast over the cell to provide the most basic information required for initial cell access, and for acquiring any OSI that may be broadcast periodically or sent on-demand. In some examples, the MSI may be provided over two different downlink channels. For example, the PBCH may carry a master information  block (MIB) , and the PDSCH may carry a system information block type 1 (SIB1) . In the art, SIB1 may be referred to as the remaining minimum system information (RMSI) .
OSI may include any SI that is not broadcast in the MSI. In some examples, the PDSCH may carry a plurality of SIBs, not limited to SIB1, discussed above. Here, the OSI may be provided in these SIBs, e.g., SIB2 and above.
The channels or carriers described above and illustrated in FIGs. 1 and 4 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
These physical channels described above are generally multiplexed and mapped to transport channels for handling at the medium access control (MAC) layer. Transport channels carry blocks of information called transport blocks (TB) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
In OFDM, to maintain orthogonality of the subcarriers or tones, the subcarrier spacing may be equal to the inverse of the symbol period. A numerology of an OFDM waveform refers to its particular subcarrier spacing and cyclic prefix (CP) overhead. A scalable numerology refers to the capability of the network to select different subcarrier spacings, and accordingly, with each spacing, to select the corresponding symbol duration, including the CP length. With a scalable numerology, a nominal subcarrier spacing (SCS) may be scaled upward or downward by integer multiples. In this manner, regardless of CP overhead and the selected SCS, symbol boundaries may be aligned at certain common multiples of symbols (e.g., aligned at the boundaries of each 1 ms subframe) . The range of SCS may include any suitable SCS. For example, a scalable numerology may support a SCS ranging from 15 kHz to 480 kHz.
To illustrate this concept of a scalable numerology, FIG. 5 shows a first RB 502 having a nominal numerology, and a second RB 504 having a scaled numerology. As one example, the first RB 502 may have a ‘nominal’ subcarrier spacing (SCS n) of 30 kHz, and a ‘nominal’ symbol duration n of 333 μs. Here, in the second RB 504, the scaled numerology includes a scaled SCS of double the nominal SCS, or 2 × SCS n = 60 kHz. Because this provides twice the bandwidth per symbol, it results in a shortened symbol duration to carry the same information. Thus, in the second RB 504, the scaled  numerology includes a scaled symbol duration of half the nominal symbol duration, or (symbol duration n) ÷2 = 167 μs.
SCHEDULING ENTITY
FIG. 6 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity 600 employing a processing system 614 according to some aspects of the disclosure. For example, the scheduling entity 600 may be a network access node, a base station, a gNB, an eNB as illustrated in any one or more of FIGs. 1, 2, and/or 3. In another example, the scheduling entity 600 may be a user equipment as illustrated in any one or more of FIGs. 1, 2, and/or 3.
The scheduling entity 600 may be implemented with a processing system 614 that includes one or more processors 604. Examples of processors 604 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the scheduling entity 600 may be configured to perform any one or more of the functions described herein. That is, the processor 604, as utilized in a scheduling entity 600, may be used to implement any one or more of the processes and procedures described below and illustrated in FIGs. 12-15.
In this example, the processing system 614 may be implemented with a bus architecture, represented generally by the bus 602. The bus 602 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 614 and the overall design constraints. The bus 602 communicatively couples together various circuits including one or more processors (represented generally by the processor 604) , a memory 605, and computer-readable media (represented generally by the computer-readable storage medium 606) . The bus 602 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 608 provides an interface between the bus 602 and a transceiver 610. The transceiver 610 provides a communication interface or means for communicating with various other apparatus over a transmission medium. Depending upon the nature of the apparatus, a user interface 612 (e.g., keypad, display, speaker, microphone, joystick) may also be provided. Of  course, such a user interface 612 is optional, and may be omitted in some examples, such as a base station.
In some aspects of the disclosure, the processor 604 may include schedule determining circuitry 640 configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain. For example, the schedule determining circuitry 640 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
The processor 604 may further include power level circuitry 642 configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval. For example, the power level circuitry 642 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
The processor 604 may further include timing circuitry 644 configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. For example, the timing circuitry 644 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1206 of FIG. 12. Taken together the schedule determining circuitry 640, power level circuitry 642 and timing circuitry 644 may allow wireless communication, implementing dynamic spectrum sharing (DSS) , operational at the scheduling entity 600.
The processor 604 is responsible for managing the bus 602 and general processing, including the execution of software stored on the computer-readable storage medium 606. The software, when executed by the processor 604, causes the processing system 614 to perform the various functions described below for any particular apparatus. The computer-readable storage medium 606 and the memory 605 may also be used for storing data that is manipulated by the processor 604 when executing software.
One or more processors 604 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code  segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable storage medium 606. The computer-readable storage medium 606 may be a non-transitory computer-readable storage medium storing computer-executable code. A non-transitory computer-readable medium storage includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable storage medium 606 may reside in the processing system 614, external to the processing system 614, or distributed across multiple entities including the processing system 614. The computer-readable storage medium 606 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable storage medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
In one or more examples, the computer-readable storage medium 606 may include schedule determining instructions 652 (e.g., software) configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain. For example, the schedule determining instructions 652 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
The computer-readable storage medium 606 may further include, for example, power level instructions 654 (e.g., software) configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the  predetermined time interval. For example, the power level instructions 654 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
The computer-readable storage medium 606 may further include, for example, timing instructions 656 (e.g., software) configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. For example, the timing instructions 656 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1208 of FIG. 12.
SCHEDULED ENTITY
FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity 700 employing a processing system 714 according to some aspects of the disclosure. In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 714 that includes one or more processors 704. For example, the scheduled entity 700 may be a user equipment (UE) , a user device, a mobile device, as illustrated in any one or more of FIGs. 1, 2, and/or 3.
The processing system 714 may be substantially the same as the processing system 614 illustrated in FIG. 6, including a bus interface 708, a bus 702, memory 705, a processor 704, and a computer-readable storage medium 706. Furthermore, the scheduled entity 700 may include a user interface 712 and a transceiver 710 substantially similar to those described above in FIG. 6. That is, the processor 704, as utilized in a scheduled entity 700, may be used to implement any one or more of the processes described below and illustrated in FIGs. 12-15.
In some aspects of the disclosure, the processor 704 may include schedule determining circuitry 740 configured for various functions, including, for example, determining to schedule a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain. For example, the scheduling entity, or circuitry of the scheduling entity, may be configured to transmit to at least one scheduled entity, one message to schedule a  plurality of uplink transmission channels on the plurality of cells. According to one aspect, the one message may be a downlink control information (DCI) .
For example, the schedule determining circuitry 740 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
The processor 704 may further include power level circuitry 742 configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval. For example, the power level circuitry 742 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
The processor 704 may further include timing circuitry 744 configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. For example, the timing circuitry 744 may be configured to implement one or more of the functions described below in relation to FIG. 12-15, including, e.g., block 1206 of FIG. 12. Taken together the schedule determining circuitry 740, power level circuitry 742, and timing circuitry 744 may allow wireless communication, implementing dynamic spectrum sharing (DSS) , operational at the scheduled entity 700.
In one or more examples, the computer-readable storage medium 706 may include schedule determining instructions 752 (e.g., software) configured for various functions, including, for example, determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain. For example, the schedule determining instructions 752 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1202 of FIG. 12.
The computer-readable storage medium 706 may further include, for example, power level instructions 754 (e.g., software) configured for various functions, including, for example, calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval. For example, the power level instructions 754 may be  configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1204 of FIG. 12.
The computer-readable storage medium 706 may further include, for example, timing instructions 756 (e.g., software) configured for various functions, including, for example, adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. For example, the timing instructions 756 may be configured to implement one or more of the functions described below in relation to FIGs. 12-15, including, e.g., block 1208 of FIG. 12.
FIG. 8A illustrates partially overlapped uplink transmissions 800 made by a scheduled entity (e.g., a user equipment, a user device, a mobile device) on different cells (e.g., carriers, component carriers) according to aspects of the disclosure. The partial overlap occurs in time. The different cells may be referred to as Cell x at center frequency f x and Cell y at center frequency f y. The center frequencies (f x, f y) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) . Additionally, there are partially overlapped uplink transmissions 800 depicted as an illustrative example without limitation. A greater number of partially overlapped uplink transmissions (comprised of contiguous transmissions, non-contiguous transmissions, or combinations thereof) is within the scope of the disclosure.
As an illustrative example without limitation, the transmissions from the scheduled entity includes a first uplink transmission on Cell x of a PUSCH_2 802 and a second uplink transmission on Cell y of a PUSCH_1 804. Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH are within the scope of the disclosure. The UL Tx of PUSCH_2 802 and PUSCH_1 804 are depicted as occurring within a given time interval 808. Illustrative examples without limitation of such given periods of time include a slot and a mini-slot, although other periodic intervals are within the scope of the disclosure. For overall illustrative and non-limiting impression, a next time interval 810 (e.g., a predefined interval) is depicted. Also  illustrated, for overall and non-limiting impression, is a partial transmission of a third uplink transmission on Cell x of a PUSCH_N, where N is an integer greater than 2. PUSCH_N 806 may or may not be present in operation. Alternatively, PUSCH_N could be transmitted on Cell y, or any other cell, and need not be transmitted in the next time interval 810 (e.g., need not start transmission contiguously upon the conclusion of the transmission of PUSCH_1 804 on Cell y or continuously with the transmission of PUSCH_1 804 on Cell y) . As depicted in the illustrative and non-limiting example, PUSCH_2 802 may begin transmission at time t0 and end transmission at time t2. PUSCH_1 804 may begin transmission at time t1 and end transmission at time t3. As illustrated, t0<t1<t2<t3. Therefore, PUSCH_2 802 and PUSCH_1 804 partially overlap in time between t1 and t2 (as depicted by the cross-hatched section in FIG. 8A. There is no limitation as to a length (duration) of the overlap in time.
FIG. 8B illustrates an output power level of a transmitter of the scheduled entity beginning at time t0 and continuing beyond time t3 according to some aspects of the disclosure. For ease of reference the horizontal time axis of FIG. 8A and FIG. 8B coincide. The vertical axis of FIG. 8B depicts a total UL transmitter power level (total UL Tx power) at an output of the scheduled entity, during transmission of PUSCH_2 802, PUSCH_1 804, and PUSCH_N 806. Also depicted is a horizontal line, corresponding to a maximum transmitter output power of the scheduled entity, P Tx-Max. The scheduled entity may be unable to transmit at a power level greater than P Tx-Max without, for example, saturating the amplifiers of the scheduled entity and generating unwanted harmonics and intermodulation products resulting from operation of the amplifiers in a non-linear region.
According to the illustration of FIG. 8A and FIG. 8B, PUSCH_2 802 is transmitted on Cell x beginning at time t0 and ending at time t2. PUSCH_1 804 is transmitted on Cell y beginning at time t1 and ending at time t3. As described above, t0 < t1 < t2 < t3, consequently, the transmission of PUSCH_2 802 and PUSCH_1 804 overlaps in time starting at t1 and ending at t2. As used herein, the start of the overlap and the stop of the overlap may occur at or approximately at t1 and t2, respectively.
By way of example, a transmission power control (TPC) command of a DCI may have directed the scheduled entity to transmit PUSCH_2 802 at a given power level, P PUSCH_2, for a time interval t0 ≤ t ≤ t2. The instruction may be made, for example, by way of identifying a delta amount of power (e.g., expressed in dB) to be added (or subtracted) from a previous power level of Cell x (e.g., a power level of Cell x at a time  prior to t0) , or by way of identifying an absolute power value (e.g., expressed in mW or dBm) for transmission by Cell x during the time interval t0 ≤ t ≤ t2. The same or a different DCI element may have directed the scheduled entity to transmit PUSCH_1 804 at a given power level, P PUSCH_1, for a time interval t0 ≤ t ≤ t2. The instruction may be made, for example, by way of identifying a delta amount of power (e.g., expressed in dB) to be added (or subtracted) from a previous power level of Cell y (e.g., a power level of Cell y at a time prior to t1) , or by way of identifying an absolute power value (e.g., expressed in mW or dBm) for transmission by Cell y during the time interval t1 ≤ t ≤ t3. Similarly, the scheduled entity may be directed to transmit PUSCH_N at P PUSCH_N over some given time interval.
According to this example, and for ease of explanation, any relationship between the three power levels, P PUSCH_2, P PUSCH_1, P PUSCH_N is arbitrary. Any power level may be greater than, equal to, or less than any other power level, without limitation. Furthermore, for example, the total transmitter power may be a sum of a power level of each cell at any given time. Accordingly, in the given time interval 808, the total Tx power from t0 ≤ t < t1 is equal to P PUSCH_2 812, the total Tx power from t1 ≤ t ≤ t2 (i.e., during the overlap) is equal to the power level 814, which is the sum of P PUSCH_2 + P PUSCH_1, and the total Tx power from t2 < t ≤ t3 is equal to P PUSCH_1 816. For overall illustrative effect, the total Tx power t > t3 (e.g., until the end of the next time interval 810) is equal to P PUSCH_N 818.
However, as described above the scheduled entity transmitter may have a maximum transmitter output power level, P Tx-Max. As depicted in the illustration, the power level 814 during the overlap is the sum of PPUSCH_2 + PPUSCH_1, which is greater than P Tx-Max. Attempting to drive the output power of the scheduled entity above the maximum transmitter output power level may cause the amplifiers of the scheduled entity to, for example, go into saturation, clip the amplitude of the output of the scheduled entity, cause unwanted generation of harmonics, and other unwanted results as known to those of ordinary skill in the art. This clipping is depicted in the illustrative example of FIG. 8B, such that the actual total UL Tx power level observed at the output of the scheduled entity is substantially equal to P Tx-Max 820.
Accordingly, as illustrated in FIG. 8B, for partially time overlapped UL Tx on different cells (e.g., carriers, component carriers) , UL Tx power level may fluctuate within one UL Tx (e.g., within a given time interval 808, such as a slot or a mini-slot) and may not be desirable, for example, due to unwanted saturation of Tx amplifiers.
In other words, suppose PUSCH_2 is first transmitted on Cell x, with a transmitter (Tx) power level of P PUSCH_2 as determined by a TPC command on Cell 2. PUSCH_1 transmission starts in the middle of the transmission of PUSCH_2 with a Tx power level of P PUSCH_1 as determined by a TPC command on Cell 1. Due to total Tx power limit (P Tx-Max) , Tx power for PUSCH_1 may have to drop to a less than desired value (e.g., P Tx-Max) in the overlapped area. The power fluctuations within the same UL Tx may not be desirable. By way of example, the undesirability may be realized because the signal to noise ratio (SNR) estimated by a demodulation reference symbol (DMRS) in the first portion of PUSCH_1 (transmitted during overlap) may not match the later portion of PUSCH_1 (transmitted after conclusion of the overlap) , and a scheduling entity (e.g., network access node, eNB, gNB) may not know the difference (e.g., an actual measured difference) between the P Tx-Max (in the overlapped portion) and a commanded (expected) power, P PUSCH_1. Without knowledge of the difference (e.g., between actual and expected) , the scheduling entity will not be able to adjust the SNR accordingly. The error may be due to TPC command errors on different cells (e.g., on Cell x and/or on Cell y) . The scheduling entity may make errors in the one or more TPC commands sent to the scheduled entity because of an inability to properly demodulate the signal from the scheduled entity due to an improperly estimated SNR. That is, due to a difference between what a scheduling entity expects as the transmitted power on an uplink from a scheduled entity and what the transmitted power on the uplink actually is (e.g., due to the Tx power limit of the scheduled entity) . Accordingly, scheduling entity may not calculate the SNR properly.
As described herein, at least two actions may be taken to avoid the undesirable fluctuation of Tx power level in an UL Tx. According to a first aspect, a time restriction may be introduced on UL Tx on different cells (e.g., carriers, component carriers) to ensure that UL Tx on different cells is either fully overlapped (all cells starting transmission at a same first time and ending transmission at a same second time, where the second time is later than the first time) or non-overlapped, both as distinguished from the partially overlapped example provided in FIG. 8A.
FIG. 9A is an illustrative example without limitation of a series of physical downlink control channels (PDCCHs) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) spanning a vertical frequency axis according to some aspects of the disclosure. The horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) . The  plurality of predetermined time intervals begin/end at t0, t1, t2, t3, t4, t5, and t6. Only the predetermined time interval 902 spanning between t0 and t1 is provided with a reference number. The remaining predetermined time intervals, t1-t2, r2-t3, t3-t4, t4-t5, and t5-t6, are not provided with reference numbers to avoid cluttering the drawing.
According to some aspects, each of the predetermined time intervals are of equal length; however, they may be of unequal length, for example, to support scalable numerology. A PDCCH 904 is depicted as starting at t0. The PDCCH 904 includes a downlink control information (DCI) ; that is, a single DCI 906. According to some aspects, the single DCI 906 of PDCCH 904 schedules PUSCH_1 908 and PUSCH_2 910 (as represented by the dashed line arrows emanating from PDCCH 904 and terminating at PUSCH_1 908 and PDSCH_2 910) . According to some aspects, the single DCI 906 of PDCCH 904 may schedule one or more (e.g., multiple) uplink transmission channels. That is, the single DCI 906 may schedule one, two, three, or more uplink transmission channels.
According to some aspects, a scheduling entity (not shown) (similar to scheduling entity 600, FIG. 6) may determine to schedule, for at least one scheduled entity (not shown) (similar to scheduled entity 700, FIG. 7) , a plurality of uplink transmission channels (e.g., PUSCH_1 908 and PUSCH_2 910) on a plurality of cells (e.g., Cell y at frequency f y, Cell y at frequency f y, etc. ) in the frequency domain during the predetermined time interval 902 in the time domain. The scheduling entity may calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) as a function of time during the predetermined time interval 902. The calculations may be based on expected power levels based on TPC commands issued by the scheduling entity to the scheduled entity. The scheduling entity may adjust a start time (t start) and a stop time (t stop) of each of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) , for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
According to some aspects, the scheduling entity may transmit to the at least one scheduled entity, one message to schedule the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) on the plurality of cells (e.g., Cell y, Cell x) . According to one aspect, the one message may be a downlink control information (DCI) . The PDCCH 904 may carry the single DCI 906. According to some aspects, the scheduling entity may select the plurality of uplink transmission channels to be a plurality of at  least one of PUCCH, PUSCH, SRS, or PRACH channels. In other words, the plurality of uplink transmission channels may be comprised solely of PUCCH channels, solely of PUSCH channels, solely of SRS channels, solely of PRACH channels, or any combination of at least two of PUCCH, PUSCH, SRS, or PRACH channels.
According to some aspects, the scheduling entity may implement each of the plurality of cells (e.g., Cell y, Cell x) as a component carrier of a wireless communication network that provides for aggregation of component carriers. According to some aspects, the scheduling entity may select at least two contiguous cells (e.g., component carriers) in the frequency domain as at least two of the plurality of cells. According to some aspects, the scheduling entity may select at least two non-contiguous cells in the frequency domain as at least two of the plurality of cells. In some examples, the at least two of the plurality of cells may be in a same frequency band, while in other examples, the at least two of the plurality of cells may be in different frequency bands. In some examples the predetermined time interval 902 is at least one of a slot or a mini-slot. It will be understood that other measures of the predetermined time interval 902 are within the scope of the disclosure.
According to some aspects, the scheduling entity may adjust the start time (t start) of each of the plurality of uplink transmission channels (e.g., PUSCH_1, PUSCH_2) to a first time (e.g., t1) and the stop time (t stop) of each of the plurality of uplink transmission channels to a second time, where the second time (t stop) is later than the first time (t start) . As illustrated in FIG. 9A, the stop time (t stop) may be earlier than the end of a given predetermined time interval. For example, in FIG. 9A, t stop is greater than t start and less than t2. In such an example, the plurality of uplink transmission channels is fully overlapped (as indicated by the cross-hatching of PUSCH_1 908 and PUSCH_2 910) . In other aspects, the stop time (t stop) may be coincident with the end of a given predetermined time interval (e.g., t 2, in FIG. 9A) , without departing from the scope of the disclosure.
Referring again to FIG. 9A, the interval between t2 and t3 includes a second PDCCH 912, which is depicted as starting at t2. The second PDCCH 912 includes a second DCI; that is, a second single DCI 914. According to some aspects, the second single DCI 914 of the second PDCCH 912 schedules PUSCH_3 916 and PUSCH_4 918 (as represented by the dashed line arrows emanating from second PDCCH 912 and terminating at PUSCH_3 916 and PDSCH_4 918) . According to some aspects, the second single DCI 914 of the second PDCCH 912 may schedule one or multiple uplink  transmission channels. That is, the second single DCI 914 may schedule one, two, three, or more uplink transmission channels.
According to some aspects, the scheduling entity may adjust the start time (e.g., t start_PUSCH_4) of at least one uplink transmission channel (e.g., PUSCH_4 918) of the plurality of uplink transmission channels to occur after a stop time (e.g., t stop_PUSCH_3) of at least one other one (e.g., PUSCH_3 916) of the plurality of uplink transmission channels, where the start time (e.g., t start_PUSCH_4) is later than the stop time (e.g., t stop_PUSCH_3) . In such an example, the plurality of uplink transmission channels is not overlapped. For example, PUSCH_3 916 and PUSCH_4 918 do not overlap in time throughout the entire interval from t3 to t4. The amount of time between the end of PUSCH_3 916 and the start of PUSCH_4 is identified as a first delay, D1, in FIG. 9A.
Referring again to FIG. 9A, the interval between t4 and t5 includes a third PDCCH 920, which is depicted as starting at t4. The third PDCCH 920 includes a third DCI; that is, a third single DCI 922. According to some aspects, the third single DCI 922 of third PDCCH 920 schedules PUSCH_5 924 and PUSCH_6 926 (as represented by the dashed line arrows emanating from the third PDCCH 920 and terminating at PUSCH_5 924 and PDSCH_6 926) . According to some aspects, the third single DCI 922 of the third PDCCH 920 may schedule one or multiple uplink transmission channels. That is, the third single DCI 922 may schedule one, two, three, or more uplink transmission channels.
According to some aspects, the scheduling entity may adjust the start time (e.g., t start_PUSCH_6) of at least one uplink transmission channel (e.g., PUSCH_6 926) of the plurality of uplink transmission channels to occur after a stop time (e.g., t stop_PUSCH_5) of at least one other one (e.g., PUSCH_5 924) of the plurality of uplink transmission channels, where the start time (e.g., t start_PUSCH_6) is later than the stop time (e.g., t stop_PUSCH_5) . In such an example, the plurality of uplink transmission channels is not overlapped. For example, PUSCH_5 924 and PUSCH_6 926 do not overlap in time throughout the entire interval from t5 to t6. The amount of time between the stop of PUSCH_5 924 and the start of PUSCH_6 is identified as a second delay, D2, in FIG. 9A.As pictographically illustrated for exemplary purposes, D1 < D2. Accordingly, the delay between a stop time of a given PUSCH and a start time of a succeeding PUSCH can be adjusted, selected, or varied by the scheduling entity. According to some aspects, a scheduling entity may adjust the start time of at least one uplink transmission channel of the plurality of uplink transmission channels by delaying the start time so that it  occurs after a predetermined delay (e.g., D1, D2, etc. ) following the stop time of at least one other uplink transmission channel of the plurality of uplink transmission channels.
According to some aspects, a scheduling entity may postpone a start time of at least one uplink transmission channel to prevent the transmission of the at least one uplink transmission channel from occurring during the predetermined time interval.
FIG. 9B illustrates a total UL transmitter power level of the scheduled entity during the UL transmissions of PUSCH_1 908, PUSCH_2 910, PUSCH_3 916, PUSCH_4 918, PUSCH_5 924, and PUSCH_6 926 according to some aspects of the disclosure. For ease of reference the horizontal time axis of FIG. 9A and FIG. 9B coincide. The vertical axis of FIG. 9B depicts a total UL transmitter power level at an output of the scheduled entity. Also depicted is a horizontal line, corresponding to a maximum transmitter output power level of the scheduled entity, P Tx-Max. The description of P Tx-Max is omitted for the sake of brevity, as P Tx-Max was previously described.
As illustratively represented in FIG. 9B, the total UL transmitter power level (e.g., the sum of power levels of the plurality of uplink transmission channels as a function of time during a predetermined time interval) resulting from transmission of the uplink transmission channels, during each predefined time interval (e.g., t1-t2, t3-t4, and t5-t6) remains at a predetermined value during transmission of the plurality of uplink transmission channels. Additionally, as illustratively represented in FIG. 9B, a first total UL Tx power level 928 during transmission of the plurality of uplink transmission channels PUSCH_1 908 and PUSCH_2 910 is less than P Tx-Max. Additionally, a second total UL Tx power level 930 and a third total UL Tx power level 932 during transmission of the plurality of uplink transmission channels PUSCH_3 916 and PUSCH_4 918 is less than P Tx-Max. In this example, the second total UL Tx power level 930 is equal to the third total UL Tx power level 932. Additionally, a fourth total UL Tx power level 934 and a fifth total UL Tx power level 936 during transmission of the plurality of uplink transmission channels PUSCH_5 924 and PUSCH_6 938 is less than P Tx-Max. In this example, the fourth total UL Tx power level 934 is greater than the fifth total UL Tx power level 936. Any segment of total UL Tx power level may be greater, equal to, or less than any other segment of total UL Tx power level; however, according to aspects described herein the total UL Tx power level within each segment should be maintained at a predetermined value during transmission of the plurality of uplink transmission channels within that segment.
As described herein, at least two aspects may be implemented to avoid the undesirable fluctuation of UL Tx power level in an UL Tx. According to a second aspect, transmissions of a plurality of uplink transmission channels (e.g., at least two of PUCCH, PUSCH, SRS, or PRACH) on different cells (e.g., carriers, component carriers) may partially overlap in time. In a first example, an initial UL Tx power level may be maintained during transmissions of the plurality of uplink transmission channels. According to a second example, the scheduling entity may receive a delta value corresponding to a difference between a power level of an output of a transmitter of the least one scheduled entity prior to the partial overlap, and a power level of the output of the transmitter during the partial overlap. The scheduling entity may use the delta value and a commanded power level, previously transmitted to the at least one scheduled entity, to calculate a signal to noise ratio of a signal received from the at least one scheduled entity.
FIG. 10A is an illustrative example without limitation of a physical downlink control channel (PDCCH) spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure. The horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) . The plurality of predetermined time intervals begin/end at t0, t1, t2, and t3. Only the predetermined time interval 1002 spanning between t0 and t1 is provided with a reference number. The remaining predetermined time intervals, t1-t2, and t2-t3, are not provided with reference numbers to avoid cluttering the drawing. According to some aspects, each of the predetermined time intervals are of equal length; however, they may be of unequal length, for example, to support scalable numerology. A PDCCH 1004 is depicted as starting at t0. The PDCCH 1004 includes a DCI; that is, a single DCI 1006. According to some aspects, the single DCI 1006 of PDCCH 1004 schedules PUSCH_1 1008 and PUSCH_2 1010 (as represented by the dashed line arrows emanating from PDCCH 1004 and terminating at PUSCH_1 1008 and PDSCH_2 1010) . According to some aspects, the single DCI 1006 of PDCCH 1004 may schedule one or multiple uplink transmission channels. That is, the single DCI 1006 may schedule one, two, three, or more uplink transmission channels.
FIG. 10A illustrates partially overlapped uplink transmissions 1001 in time made by a scheduled entity on different cells (e.g., component carriers, carriers) . The different cells may be referred to as Cell x at center frequency f x and Cell y at center  frequency f y. The center frequencies (f x, f y) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) . The partially overlapped uplink transmissions 1001 created by overlap of two UL Tx channels is depicted as an illustrative example without limitation. A greater number of UL Tx channels may contribute to the total number of partially overlapped uplink transmissions 1001.
As an illustrative example without limitation, the transmissions from the scheduled entity include a first uplink transmission on Cell y of a PUSCH_1 1008 and a second uplink transmission on Cell x of a PUSCH_2 1010. Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH, are within the scope of the disclosure. The UL Tx of PUSCH_1 1008 and PUSCH_2 1010 are depicted as occurring within a given time interval spanning from t1 to t2. Illustrative examples without limitation of such given time intervals include a slot and a mini-slot, although other periodic and aperiodic intervals are within the scope of the disclosure.
As depicted in the illustrative and non-limiting example, PUSCH_1 1008 may begin transmission at time t start_PUSCH_1 and end transmission at time t stop_PUSCH_1PUSCH_2 1010 may begin transmission at time t start_PUSCH_2 and end transmission at time t stop_PUSCH_2. As illustrated, time t start_PUSCH_1 < t start_PUSCH_2 < t stop_PUSCH_1 < t stop_PUSCH_2. Therefore, PUSCH_1 1008 and PUSCH_2 1010 partially overlap in time between t start_PUSCH_2 and t stop_PUSCH_1 (as depicted by the cross-hatched section in FIG. 10A. There is no limitation as to a length (duration) of the overlap in time.
According to a first example, when a first transmission (e.g., PUSCH_1 1008) on a first cell (e.g., Cell y) is adjusted to partially overlap a second transmission (e.g., PUSCH_2 1010) on a second cell (Cell x) and the first transmission (e.g., PUSCH_1 1008) , and the second transmission (e.g., PUSCH_2 1010) are included in the predetermined time interval (e.g., the time interval beginning at t1 and ending at t2) , the scheduling entity or the scheduled entity may, for example, adjust a power level of at least one of the first cell or the second cell to maintain the sum of power levels of the plurality of cells (e.g., the sum of power levels of Cell y transmitting PUSCH_1 1008  and Cell x transmitting PUSCH_2 1010) (as a function of time) at a level realized prior to a start of a later started one of the first transmission or the second transmission.
In the example of FIG. 10A, the level realized prior to the start of the later started one of the first transmission or the second transmission would be the level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the transmission of PUSCH_2 1010 (as PUSCH_2 1010 is the later started one of the first transmission or the second transmission) .
FIG. 10B illustrates a total UL transmitter power level of the scheduled entity during the UL transmissions of PUSCH_1 1008 and PUSCH_2 1010 according to some aspects of the disclosure. For ease of reference the horizontal time axis of FIG. 10A and FIG. 10B coincide. The vertical axis of FIG. 10B depicts a total UL transmitter power level at an output of the scheduled entity. Also depicted is a horizontal line, corresponding to a maximum transmitter power level of the scheduled entity, P Tx-Max. The description of P Tx-Max is omitted for the sake of brevity, as P Tx-Max was previously described. As illustratively represented in FIG. 10B, a total UL transmitter power level 1012 during transmission of the plurality of uplink transmission channels PUSCH_1 1008 and PUSCH_2 1010 is less than PTx-Max.
Additionally, as illustratively represented in FIG. 10B, the total UL transmitter power level 1012 (e.g., the sum of power levels of the plurality of uplink transmission channels (e.g., PUSCH_1 1008 and PUSCH_2 1010) , as a function of time during a predetermined time interval (e.g., t1 to t2) ) remains at a given value (e.g., a predetermined value) during transmission of the plurality of uplink transmission channels. The sum of power levels of the plurality of uplink transmission channels (e.g., PUSCH_1 1008 and PUSCH_2 1010) remains at the predetermined value during transmission of the plurality of uplink transmission channels because the scheduling entity or the scheduled entity may, for example, adjust a power level of at least one of the first cell (e.g., Cell y) or the second cell (e.g., Cell x) to maintain the sum of power levels of the plurality of cells (e.g., the sum of power levels of Cell y transmitting PUSCH_1 1008 and Cell x transmitting PUSCH_2 1010) (as a function of time) at a level realized prior to a start of the later started one of the first transmission or the second transmission.
In the example of FIG. 10A and 10B, the level realized prior to the start of the later started one of the first transmission or the second transmission would be the level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the  transmission of PUSCH_2 1010 (as PUSCH_2 1010 is the later started one of the first transmission or the second transmission) . Accordingly, even though the power of Cell x is added to that of Cell y, the scheduling entity or the scheduled entity may adjust the power level of at least one of Cell x or Cell y to maintain the total UL Tx power level at the level realized when only PUSCH_1 1008 was contributing to the total UL Tx power level of the scheduled entity.
FIG. 11A is an illustrative example without limitation of a physical downlink control channel (PDCCH) , PDCCH 1104, spanning a horizontal time axis and a representation of two cells (e.g., carriers, component carriers) , Cell x and Cell y, spanning a vertical frequency axis according to some aspects of the disclosure. The horizontal time axis is divided into a plurality of predetermined time intervals (e.g., slots, mini-slots) . The plurality of predetermined time intervals begin/end at t0, t1, t2, and t3. Only the predetermined time interval 1102 spanning between t0 and t1 is provided with a reference number. The remaining predetermined time intervals, t1-t2, and t2-t3, are not provided with reference numbers to avoid cluttering the drawing. According to some aspects, each of the predetermined time intervals are of equal length; however, they may be of unequal length, for example, to support scalable numerology. A PDCCH 1104 is depicted as starting at t0. The PDCCH 1104 includes a DCI; that is, a single DCI 1106. According to some aspects, the single DCI 1106 of PDCCH 1104 schedules PUSCH_1 1108 and PUSCH_2 1110 (as represented by the dashed line arrows emanating from PDCCH 1104 and terminating at PUSCH_1 1108 and PDSCH_2 1110) . According to some aspects, the single DCI 1106 of PDCCH 1104 may schedule one or multiple uplink transmission channels. That is, the single DCI 1106 may schedule one, two, three, or more uplink transmission channels.
FIG. 11A illustrates partially overlapped uplink transmissions 1101 in time made by a scheduled entity on different cells (e.g., component carriers, carriers) . The different cells may be referred to as Cell x at center frequency f x and Cell y at center frequency f y. The center frequencies (f x, f y) of the cells are illustrated as being adjacent to one another; however, the center frequencies of the cells may be at least one of adjacent within a given band (as in intra-band aggregation of contiguous component carriers) , non-adjacent within the given band (as in intra-band aggregation of non-contiguous component carriers) , or non-adjacent between two bands (as in inter-band aggregation of component carriers) . The partially overlapped uplink transmissions 1101 created by overlap of two UL Tx channels is depicted as an illustrative example without  limitation. A greater number of UL Tx channels may contribute to the total number of partially overlapped uplink transmissions 1101.
As an illustrative example without limitation, the transmissions from the scheduled entity include a first uplink transmission on Cell y of a PUSCH_1 1108 and a second uplink transmission on Cell x of a PUSCH_2 1110. Partially overlapped transmissions of other types of channels, or of PUSCH channels with other types of channels, such as, without limitation, PUCCH, SRS, and PRACH are within the scope of the disclosure. The UL Tx of PUSCH_1 1108 and PUSCH_2 1110 are depicted as occurring within a given time interval spanning from t1 to t2. Illustrative examples without limitation of such given periods of time include a slot and a mini-slot, although other periodic intervals are within the scope of the disclosure. As depicted in the illustrative and non-limiting example, PUSCH_1 1108 may begin transmission at time t start_PUSCH_1 and end transmission at time t stop_PUSCH_1PUSCH_2 1110 may begin transmission at time t start_PUSCH_2 and end transmission at time t stop_PUSCH_2. As illustrated, time t start_PUSCH_1 < t start_PUSCH_2 < t stop_PUSCH_1 < t stop_PUSCH_2. Therefore, PUSCH_1 1008 and PUSCH_2 1010 partially overlap in time between t start_PUSCH_2 and t stop_PUSCH_1 (as depicted by the cross-hatched section in FIG. 11A. There is no limitation as to a length (duration) of the overlap in time.
According to a second example, when a first transmission (e.g., PUSCH_1 1108) on a first cell (e.g., Cell y) is adjusted to partially overlap a second transmission (e.g., PUSCH_2 1110) on a second cell (Cell x) and the first transmission (e.g., PUSCH_1 1108) and the second transmission (e.g., PUSCH_2 1110) are included in the predetermined time interval (e.g., the time interval beginning at t1 and ending at t2) , a scheduling entity may, for example, receive a delta value corresponding to a difference between a power level of an output of a transmitter of the least one scheduled entity prior to the partial overlap and a power level of the output of the transmitter during the partial overlap. The power level of the output of the transmitter of the least one scheduled entity prior to the partial overlap, in the example of FIG. 11A would be the power level (e.g., the sum of the power levels of Cell y and Cell x) prior to the start of the transmission of PUSCH_2 1110
FIG. 11B illustrates a total UL transmitter power level 1112 of the scheduled device during the UL transmissions of PUSCH_1 1108 and PUSCH_2 1110 according to some aspects of the disclosure. For ease of reference the horizontal time axis of FIG. 11A and FIG. 11B coincide. The vertical axis of FIG. 11B depicts a total UL transmitter  power level at an output of the scheduled entity. Also depicted is a horizontal line, corresponding to a maximum transmitter output power level of the scheduled entity, P Tx- Max. The description of P Tx-Max is omitted for the sake of brevity, as P Tx-Max was previously described. As illustratively represented in FIG. 11B, a total UL transmitter power level 1112 during transmission of the plurality of uplink transmission channels PUSCH_1 1108 and PUSCH_2 1110 is less than P Tx-Max.
According to a second example, when a first transmission (e.g., PUSCH_1 1108) on a first cell (e.g., Cell y) is adjusted to partially overlap a second transmission (e.g., PUSCH_2 1110) on a second cell (Cell x) and the first transmission (e.g., PUSCH_1 1108) and the second transmission (e.g., PUSCH_2 1110) are included in the predetermined time interval (e.g., the time interval beginning at t1 and ending at t2) , a scheduling entity may, for example, receive a delta value (e.g., a first delta value 1114) corresponding to a difference between a power level at an output of a transmitter of the least one scheduled entity prior to the partial overlap (e.g., the power level at the output of the transmitter at any time between t start_PUSCH_1 and t start_PUSCH_2) and a power level at the output of the transmitter during the partial overlap (e.g., the power level at the output of the transmitter at any time between t start_PUSCH_2 and t stop_PUSCH_1) . If the power level falls after the overlap period, then the scheduling entity may, for example, receive a delta value (e.g., a second delta value 1116) corresponding to a difference between a power level at an output of a transmitter of the least one scheduled entity during the partial overlap (e.g., the power level at the output of the transmitter at any time between t start_PUSCH_2 and t stop_PUSCH_1) and a power level at the output of the transmitter after the partial overlap (e.g., the power level at the output of the transmitter at any time between t stop_PUSCH_1 and t stop_PUSCH_2) .
As described, in the example of FIG. 11B, the total UL transmitter power level 1112 is allowed to vary. The UL transmitter power level during the time when only PUSCH_1 1108 is transmitting is denoted as P0, the UL transmitter power level during the time when the transmissions of PUSCH_1 1108 and PUSCH_2 1110 are transmitting is denoted as P1, the UL transmitter power level for during the time when the transmissions of PUSCH_1 1108 and PUSCH_2 1110 are transmitting is denoted as P1’, and the UL transmitter power level during the time when only PUSCH_2 1110 is transmitting is denoted as P2. A first delta power value, first delta P 1114, may be measured as a difference between P0 and P1 (e.g., first delta P 1114 = P0-P1) , to reflect the power difference between the first and second part transmission of PUSCH_1 1108.  A second delta power value, second delta P 1116, may be measured as a difference between P1’ and P2 (e.g., second delta P 1116 = P2-P1’) . The delta values may be fed back from the scheduled entity to the scheduling entity. The scheduling entity may use the delta value and a commanded power level (e.g. a commanded level as sent using a TPC message to the scheduled entity) to calculate a signal to noise ratio (SNR) of a signal received from the at least one scheduled entity.
FIG. 12 is a flow chart illustrating an exemplary process 1200 for wireless communication implementing dynamic spectrum sharing, operational at a scheduling entity, according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the process 1200 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1200 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1200 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1202, the entity practicing the process 1200 may determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain. At block 1204, the entity may calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval. At block 1206, the entity may adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
FIG. 13 is a flow chart illustrating an exemplary process 1300 for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the process 1300 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1300 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1300 may be carried out  by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1302, the entity practicing the process 1300 may adjust a start time of each of a plurality of uplink transmission channels to a first time and a stop time of each of the plurality of uplink transmission channels to a second time, where the second time is later than the first time. At block 1304, the entity may optionally set a power level for at least one of a plurality of cells on which the plurality of uplink transmission channels is transmitted to a level that ensures that the sum of power levels of the plurality of cells is less than or equal to a maximum transmitter output power level (P Tx-Max) of a scheduled entity.
FIG. 14 is a flow chart illustrating another exemplary process 1400 for adjusting timing and setting power levels of uplink transmission channels according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the process 1400 may be carried out by the scheduling entity 600 illustrated in FIG. 6. In some examples, the process 1400 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1400 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1402, the entity practicing the process 1400 may adjust a start time of at least one uplink transmission channel of a plurality of uplink transmission channels to occur after a stop time of at least one other one of the plurality of uplink transmission channels. At block 1404, the entity may optionally aet a power level for at least one of a plurality of cells on which the plurality of uplink transmission channels is transmitted to a level that ensures that the sum of power levels of the plurality of cells is less than or equal to a maximum transmitter output power level of a scheduled entity.
FIG. 15 is a flow chart illustrating an exemplary process 1500 for adjusting timing and either setting power levels of uplink transmission channels or receiving/transmitting certain delta power values as described herein according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the process 1500 may be carried out by the scheduling entity 600 illustrated  in FIG. 6. In some examples, the process 1500 may be carried out by the scheduled entity 700 illustrated in FIG. 7. In some examples, the process 1500 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1502, the entity practicing the process 1500 may adjust a first transmission on a first cell of a plurality of cells to partially overlap a second transmission on a second cell of the plurality of cells. At block 1504, the entity may adjust a power level of at least one of the first cell or the second cell to maintain a sum of power levels of the plurality of cells at a level realized prior to a start of a later started one of the first transmission or the second transmission. Alternatively, at block 1506, the entity may at least one of receive or transmit a delta value corresponding to a difference between a power level at an output of a transmitter of the least one user equipment prior to the partial overlap and a power level at the output of the transmitter during the partial overlap.
In one configuration, the apparatus 600 and/or 700 for wireless communication includes means for determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain, and means for calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval, and means for adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels. In one aspect, the aforementioned means may be the processor (s) 604, 704 shown in FIG. 6 and/or FIG. 7 configured to perform the functions recited by the aforementioned means. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 604 and/or the processor 704 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 606 and/or the computer-readable storage medium 706, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, and/or 3, and  utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 12 -15.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1-8 may be rearranged and/or combined into a single component, step, feature, or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1-8 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (23)

  1. A method of wireless communication, operational at a scheduling entity, comprising:
    determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain;
    calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval; and
    adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  2. The method of claim 1, further comprising transmitting to the at least one scheduled entity, one message to schedule the plurality of uplink transmission channels on the plurality of cells.
  3. The method of claim 2, wherein the one message is a downlink control information (DCI) .
  4. The method of claim 1, further comprising selecting the plurality of uplink transmission channels to be a plurality of at least one of PUCCH, PUSCH, SRS, or PRACH channels.
  5. The method of claim 1, further comprising implementing each of the plurality of cells as a component carrier of a wireless communication network that provides for aggregation of component carriers.
  6. The method of claim 1, further comprising selecting at least two contiguous cells in the frequency domain as at least two of the plurality of cells.
  7. The method of claim 1, further comprising selecting at least two non-contiguous cells in the frequency domain as at least two of the plurality of cells.
  8. The method of claim 7, wherein the at least two of the plurality of cells are in a same frequency band.
  9. The method of claim 7, wherein the at least two of the plurality of cells are in different frequency bands.
  10. The method of claim 1, wherein the predetermined time interval is at least one of a slot or a mini-slot.
  11. The method of claim 1, further comprising adjusting the start time of each of the plurality of uplink transmission channels to a first time and the stop time of each of the plurality of uplink transmission channels to a second time, wherein the second time is later than the first time.
  12. The method of claim 1, where the predetermined value is less than or equal to a maximum transmitter output power level of the at least one scheduled entity.
  13. The method of claim 1, further comprising setting a power level for at least one of the plurality of cells to a level that ensures that the sum of power levels of the plurality of cells is less than or equal to a maximum transmitter output power level of the at least one scheduled entity.
  14. The method of claim 1, further comprising postponing a start time of at least one uplink transmission channel to prevent the transmission of the at least one uplink transmission channel from occurring during the predetermined time interval.
  15. The method of claim 1, further comprising adjusting the start time of at least one uplink transmission channel of the plurality of uplink transmission channels to occur after the stop time of at least one other one of the plurality of uplink transmission channels.
  16. The method of claim 1, further comprising adjusting the start time of at least one uplink transmission channel of the plurality of uplink transmission channels by delaying the start time of the at least one uplink transmission channel to occur after a predetermined delay following the stop time of at least one other uplink transmission channel of the plurality of uplink transmission channels.
  17. The method of claim 1, wherein a first transmission on a first cell is adjusted to partially overlap a second transmission on a second cell and the first transmission and the second transmission are included in the predetermined time interval, the method further comprising:
    adjusting a power level of at least one of the first cell or the second cell to maintain the sum of power levels of the plurality of cells at a level realized prior to a start of a later started one of the first transmission or the second transmission.
  18. The method of claim 1, wherein a first transmission on a first cell is adjusted to partially overlap a second transmission on a second cell and the first transmission and the second transmission are included in the predetermined time interval, the method further comprising:
    receiving a delta value corresponding to a difference between a power level at an output of a transmitter of the least one scheduled entity prior to the partial overlap and a power level at the output of the transmitter during the partial overlap.
  19. The method of claim 18, further comprising, using the delta value and a commanded power level to calculate a signal to noise ratio of a signal received from the at least one scheduled entity.
  20. The method of claim 19, further comprising, transmitting the commanded power level in a TPC command to the at least one scheduled entity.
  21. An apparatus for wireless communication, comprising:
    means for determining to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain;
    means for calculating, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval; and
    means for adjusting a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  22. A non-transitory computer-readable storage medium storing computer-executable code, comprising code for causing a computer to:
    determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain;
    calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval; and
    adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
  23. An apparatus for wireless communication, comprising:
    a processor;
    a transceiver communicatively coupled to the processor; and
    a memory communicatively coupled to the processor,
    wherein the processor is configured to:
    determine to schedule, for at least one scheduled entity, a plurality of uplink transmission channels on a plurality of cells in the frequency domain during a predetermined time interval in the time domain;
    calculate, for the at least one scheduled entity, a sum of power levels of the plurality of uplink transmission channels as a function of time during the predetermined time interval; and
    adjust a start time and a stop time of each of the plurality of uplink transmission channels, for the at least one scheduled entity, to maintain the sum of  power levels at a predetermined value during transmission of the plurality of uplink transmission channels.
PCT/CN2020/074013 2020-01-23 2020-01-23 Time restriction on uplink transmission on different cells WO2021147094A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074013 WO2021147094A1 (en) 2020-01-23 2020-01-23 Time restriction on uplink transmission on different cells
PCT/CN2020/138511 WO2021147599A1 (en) 2020-01-23 2020-12-23 Time restriction on uplink transmission on different cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074013 WO2021147094A1 (en) 2020-01-23 2020-01-23 Time restriction on uplink transmission on different cells

Publications (1)

Publication Number Publication Date
WO2021147094A1 true WO2021147094A1 (en) 2021-07-29

Family

ID=76991988

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/074013 WO2021147094A1 (en) 2020-01-23 2020-01-23 Time restriction on uplink transmission on different cells
PCT/CN2020/138511 WO2021147599A1 (en) 2020-01-23 2020-12-23 Time restriction on uplink transmission on different cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138511 WO2021147599A1 (en) 2020-01-23 2020-12-23 Time restriction on uplink transmission on different cells

Country Status (1)

Country Link
WO (2) WO2021147094A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081836A (en) * 2012-01-29 2014-10-01 瑞典爱立信有限公司 User equipment, network node and method for applying power scaling to uplink transmissions
US20140376471A1 (en) * 2012-01-30 2014-12-25 Panasonic Intellectual Property Corporation Of America Wireless communication terminal device and method for controlling transmission power
US20190159136A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control configuration for uplink transmissions
WO2019099141A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Techniques for power control using carrier aggregation in wireless communications
CN110612751A (en) * 2017-03-22 2019-12-24 Idac控股公司 Method for performing power control in a New Radio (NR) system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081836A (en) * 2012-01-29 2014-10-01 瑞典爱立信有限公司 User equipment, network node and method for applying power scaling to uplink transmissions
US20140376471A1 (en) * 2012-01-30 2014-12-25 Panasonic Intellectual Property Corporation Of America Wireless communication terminal device and method for controlling transmission power
CN110612751A (en) * 2017-03-22 2019-12-24 Idac控股公司 Method for performing power control in a New Radio (NR) system
US20190159136A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control configuration for uplink transmissions
WO2019099141A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Techniques for power control using carrier aggregation in wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Cross-slot scheduling power saving techniques", 3GPP DRAFT; R1-1911130 CROSS-SLOT SCHEDULING POWER SAVING TECHNIQUES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 18, XP051789906 *

Also Published As

Publication number Publication date
WO2021147599A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US11044735B2 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
US11228992B2 (en) Uplink transmissions without timing synchronization in wireless communication
US11240774B2 (en) Timing advance group for new radio
US11743889B2 (en) Channel state information (CSI) reference signal (RS) configuration with cross-component carrier CSI prediction algorithm
US11026218B2 (en) Indication on joint multi-transmission point transmission in new radio system
EP3747218A1 (en) Network triggered reference signal coverage extension in wireless communication
US20230114925A1 (en) Dynamic aperiodic srs slot offset indication
US20210351833A1 (en) Measurement report payload reduction techniques
EP4026268A1 (en) Triggering reference signals in wireless networks
WO2021147091A1 (en) Dynamically enabling and disabling physical downlink shared channel scheduling using downlink control information
US20230164815A1 (en) Interlaced sidelink data for communication
US20220295569A1 (en) Random access channel process using single carrier waveforms
EP3619899A1 (en) New radio single symbol design via frequency division multiplexing of reference signals and data tones
EP4059157A1 (en) Beam failure report response receiving cell restriction rule
WO2021147094A1 (en) Time restriction on uplink transmission on different cells
WO2021147093A1 (en) Transmission power control command for a group of cells
US11974344B2 (en) Beam failure report response receiving cell restriction rule
US20230074563A1 (en) Intermittent usable time domain resources
WO2021223231A1 (en) Path loss reference signal count in carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915823

Country of ref document: EP

Kind code of ref document: A1