WO2021146834A1 - Dci scheduling of multiple component carriers - Google Patents

Dci scheduling of multiple component carriers Download PDF

Info

Publication number
WO2021146834A1
WO2021146834A1 PCT/CN2020/073185 CN2020073185W WO2021146834A1 WO 2021146834 A1 WO2021146834 A1 WO 2021146834A1 CN 2020073185 W CN2020073185 W CN 2020073185W WO 2021146834 A1 WO2021146834 A1 WO 2021146834A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
transmission
parameter
downlink control
downlink
Prior art date
Application number
PCT/CN2020/073185
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/073185 priority Critical patent/WO2021146834A1/en
Publication of WO2021146834A1 publication Critical patent/WO2021146834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to carrier aggregation and multiple component carrier operation.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ; receiving, by the UE, a second transmission including second configuration information for a second CC; receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs; determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information; receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  • a user equipment UE
  • a second transmission including second configuration information for a second CC
  • a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ; receiving, by the UE, a second transmission including second configuration information for a second CC; receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs; determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information; transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter; and transmitting, by the UE to a second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
  • a user equipment UE
  • a second transmission including second configuration information for a second CC
  • a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one CC; transmitting, by the network, a second transmission including second configuration information for a second CC; generating, by the network, a downlink control information indication configured to indicate a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the configuration information and the second configuration information; transmitting, by the network, a downlink control information transmission including the downlink control information indication; transmitting, by the network to the particular UE, a first downlink transmission via the first CC based on the first downlink control information parameter; and transmitting, by the network to the particular UE, a second downlink transmission via the second CC based on the second downlink control information parameter.
  • UE user equipment
  • a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one component carrier (CC) ; transmitting, by the network, a second transmission including second configuration information for a second CC; generating, by the network, a downlink control information indication configured to indicate a first uplink control information parameter for a first CC and a second uplink control information parameter for the second CC based on the configuration information and the second configuration information; transmitting, by the network, a downlink control information transmission including the downlink control information indication; receiving, by the network from the particular UE, a first uplink transmission via the first CC based on the first uplink control information parameter; and receiving, by the network from the particular UE, a second uplink transmission via the second CC based on the second uplink control information parameter.
  • the apparatus may include a processor and a memory configured to perform the actions recited in the above methods or means for performing the actions recited in the above methods.
  • FIG. 1 is a block diagram illustrating details of a wireless communication system.
  • FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.
  • FIGS. 3A and 3B are diagrams illustrating examples different operating modes.
  • FIG. 4 is a block diagram illustrating an example of a wireless communications system that enables multi-CC codepoint operation.
  • FIG. 5 is a ladder diagram illustrating an example of a process flow for an example of multi-CC codepoint scheduling operations.
  • FIG. 6 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation.
  • FIG. 7 is a ladder diagram illustrating an example of a process flow for a second example of multi-CC codepoint operation.
  • FIG. 8 is a ladder diagram illustrating an example of a process flow for a third example of multi-CC codepoint operation.
  • FIG. 9 is a ladder diagram illustrating an example of a process flow for a fourth example of multi-CC codepoint operation.
  • FIG. 10 is a block diagram illustrating an example of a field layout for downlink control messages.
  • FIG. 11 is a block diagram illustrating example blocks executed by a UE.
  • FIG. 12 is a block diagram illustrating another example of blocks executed by a UE.
  • FIG. 13 is a block diagram illustrating example blocks executed by a network entity.
  • FIG. 14 is a block diagram illustrating another example of blocks executed by a network entity.
  • wireless communications networks This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • ultra-high density
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 is a block diagram illustrating 5G network 100 including various base stations and UEs configured according to aspects of the present disclosure.
  • the 5G network 100 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • the base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO.
  • Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • the 5G network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • UEs that do not include UICCs may also be referred to as internet of everything (IoE) or internet of things (IoT) devices.
  • UEs 115a-115d are examples of mobile smart phone-type devices accessing 5G network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • UEs 115e-115k are examples of various machines configured for communication that access 5G network 100.
  • a UE may be able to communicate with any type of the base stations, whether macro base station, small cell, or the like. In FIG.
  • a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • 5G network 100 also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • 5G network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc.
  • the data may be for the PDSCH, etc.
  • the transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105.
  • the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115.
  • the processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively.
  • the controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein.
  • the controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGS. 11-14 and/or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 of the 5g network 100 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • a first category no LBT or CCA is applied to detect occupancy of the shared channel.
  • a second category (CAT 2 LBT) , which may also be referred to as an abbreviated LBT, a single-shot LBT, or a 25- ⁇ s LBT, provides for the node to perform a CCA to detect energy above a predetermined threshold or detect a message or preamble occupying the shared channel.
  • the CAT 2 LBT performs the CCA without using a random back-off operation, which results in its abbreviated length, relative to the next categories.
  • a third category performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the node may proceed to transmit. However, if the first CCA detects a signal occupying the shared channel, the node selects a random back-off based on the fixed contention window size and performs an extended CCA. If the shared channel is detected to be idle during the extended CCA and the random number has been decremented to 0, then the node may begin transmission on the shared channel.
  • CAT 3 LBT performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the no
  • the node decrements the random number and performs another extended CCA.
  • the node would continue performing extended CCA until the random number reaches 0. If the random number reaches 0 without any of the extended CCAs detecting channel occupancy, the node may then transmit on the shared channel. If at any of the extended CCA, the node detects channel occupancy, the node may re-select a new random back-off based on the fixed contention window size to begin the countdown again.
  • a fourth category (CAT 4 LBT) , which may also be referred to as a full LBT procedure, performs the CCA with energy or message detection using a random back-off and variable contention window size.
  • the sequence of CCA detection proceeds similarly to the process of the CAT 3 LBT, except that the contention window size is variable for the CAT 4 LBT procedure.
  • base stations 105 and UEs 115 may be operated by the same or different network operating entities.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
  • FIG. 3A corresponds to a diagram for carrier aggregation and FIG. 3B corresponds to a diagram for dual connectivity.
  • FIG. 3A a diagram illustrating carrier aggregation is illustrated.
  • FIG. 3A depicts one base station 105a which communicates with UE 115a.
  • Base station 105a may transmit data and control information; base station 105a may transmit (and receive) information using different equipment or settings (such as different frequencies) .
  • the network that is base station 105a, includes primary and secondary cells, such as primary and secondary serving cells.
  • FIG. 3B a diagram illustrating dual connectivity is illustrated.
  • FIG. 3B depicts two base stations, 105a and 105b which communicate with UE 115a.
  • UE 115a communicates data with both base stations and control information with one base station, main base station 105a.
  • the network includes primary and secondary cell groups, as opposed to primary and secondary cells in carrier aggregation.
  • Each group, primary or secondary may include primary and secondary cells.
  • such setups where each group includes primary and secondary cells may utilize both carrier aggregation and dual connectivity.
  • a DCI transmission schedules transmissions (e.g., uplink, downlink, or both) for a single component carrier (CC) or multiple CCs.
  • CC component carrier
  • each parameter is signalled individually per CC (referred to as individual-CC scheduling by an individual-CC scheduling parameter) .
  • a multiple DCI parameter such as TCI, may include multiple values, i.e., one for each CC. This may increase DCI length and singling overhead.
  • a parameter e.g., a multi-CC scheduling parameter
  • the multi-CC scheduling parameter has candidate values (e.g., codepoints) that are mapped to a set of values of individual-CC scheduling parameters for different CCs.
  • candidate values e.g., codepoints
  • a single multi-CC TCI codepoint in a DCI can be signalled with each candidate value mapped to multiple individual-CC TCI IDs on respective CCs.
  • the multi-CC scheduling parameter codepoint can be indicated by a single scheduling parameter list or by multiple scheduling parameter lists, such as per CC scheduling parameter lists.
  • multiple scheduling parameter lists (individual-CC or per CC scheduling parameter lists) can be used such that one codepoint value in the DCI can indicate different information for different CCs.
  • a list of individual-CC scheduling parameters can be configured by RRC signalling per CC, and for each CC, a subset of the scheduling parameter list can be selected by MAC-CE signalling.
  • the DCI codepoints for the multi-CC scheduling parameters are mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on each CC.
  • a single scheduling parameter list can be used such that the one codepoint value in the DCI indicates the same information for multiple CCs.
  • a list of individual-CC scheduling parameters can be configured by RRC signalling for one CC, and for the CC, a subset of the scheduling parameter list can be selected by the MAC-CE signalling.
  • the DCI codepoints for the multi-CC scheduling parameters for the CC are mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on the CC.
  • the DCI codepoints for the multi-CC scheduling parameters for the other CCs are also mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on the CC.
  • Single and multiple scheduling parameter list operation may be used in conjunction with each other in some implementations. Such per CC or common operation may be determined and/or indicated dynamically by gNB or UE, e.g. via RRC/MAC-CE/DCI to signal the other side. For example, the RRC signaling may be used to indicate to the UE whether a single scheduling parameter list or multiple scheduling parameter lists is configured.
  • multi-CC TCI codepoints can be used for DL beam indication.
  • multi-CC spatial relation information, multi-CC UL TCI codepoints, or both, can be used for UL beam indication.
  • a single multi-CC PDSCH scheduling offset K0 can be signalled in a DCI where each candidate value is mapped to multiple individual-CC K0 values.
  • multi-CC K1 and/or K2 codepoints can be used for signalling /indicating offsets between PDSCH and PUCCH and offsets for between DCI and PUSCH respectively.
  • the multi-CC scheduling parameters may be signalled by /included in and/or correspond to the fields for individual-CC scheduling parameters in existing DCI formats, e.g. format 0_0, 0_1, 1_0, 1_1.
  • the mapping between multi-CC parameter value to individual-CC parameter value (s) can be updated by gNB or UE via RRC/MAC-CE/DCI.
  • FIG. 4 illustrates an example of a wireless communications system 400 that supports multi-CC scheduling operations.
  • wireless communications system 400 may implement aspects of wireless communication system 100.
  • wireless communications system 400 includes network entity 105 (such as a network system or base station) and UE 115, and optionally includes second network entity 405a (such as a TRP of the base station or a second base station) , third network entity 405b, a servicing device 407, or a combination thereof.
  • Multiple CC scheduling operation may enable more efficient multiple carrier or cell operation and may increase reliability and reduce latency and overhead as compared to single CC operation and per CC indication.
  • Network entity 105 and UE 115 may be configured to communicate via frequency bands, such as FR1 having a frequency of 410 to 7125 MHz, FR2 having a frequency of 24250 to 52600 MHz for mm-Wave, or bands above FR2.
  • the FR2 frequency bands may be limited to 52.6 GHz. While in some other implementations, the FR2 frequency bands may have a frequency of 300 GHz or more.
  • sub-carrier spacing (SCS) may be equal to 15, 30, 60, or 120 kHz for some data channels.
  • Network entity 105 and UE 115 may be configured to communicate via one or more component carriers (CCs) , such as representative first CC 481, second CC 482, third CC 483, and fourth CC 484.
  • CCs component carriers
  • One or more CCs may be used to communicate a Physical Downlink Control Channel (PDCCH) , a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Control Channel (PUCCH) , or a Physical Uplink Shared Channel (PUSCH) .
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • such transmissions may be scheduled by dynamic grants.
  • such transmissions may be scheduled by one or more periodic grants and may correspond to semi-persistent scheduling (SPS) grants or configured grants of the one or more periodic grants.
  • SPS semi-persistent scheduling
  • the grants, both dynamic and periodic, may be preceded or indicated by a pre-grant transmission or a message with a UE identifier (UE-ID) .
  • the pre-grant transmission may include a UE-ID.
  • the pre-grant transmission or UE-ID message may be configured to activate one or more UEs such that the UEs will transmit a first reference signal, listen/monitor for a second reference signal, or both.
  • the pre-grant transmission or UE-ID message may be sent during a contention period, such as contention period 310, and initiate a contention procedure.
  • Each periodic grant may have a corresponding configuration, such as configuration parameters/settings.
  • the periodic grant configuration may include SPS configurations and settings. Additionally, or alternatively, one or more periodic grants (such as SPS grants thereof) may have or be assigned to a CC ID, such as intended CC ID.
  • Each CC may have a corresponding configuration, such as configuration parameters/settings.
  • the configuration may include bandwidth, bandwidth part, hybrid automatic repeat request (HARQ) process, TCI state, RS, control channel resources, data channel resources, or a combination thereof.
  • one or more CCs may have or be assigned to a Cell ID, a Bandwidth Part (BWP) ID, or both.
  • the Cell ID may include a unique cell ID for the CC, a virtual Cell ID, or a particular Cell ID of a particular CC of the plurality of CCs.
  • one or more CCs may have or be assigned to a HARQ ID.
  • Each CC also may have corresponding management functionalities, such as, beam management, BWP switching functionality, or both. In some implementations, two or more CCs are quasi co-located, such that the CCs have the same beam or same symbol.
  • control information may be communicated via network entity 105 and UE 115.
  • the control information may be communicated suing MAC-CE transmissions, RRC transmissions, DCI, transmissions, another transmission, or a combination thereof.
  • UE 115 includes processor 402, memory 404, transmitter 410, receiver 412, encoder, 413, decoder 414, Multiple CC Manager 415, and antennas 252a–r.
  • Processor 402 may be configured to execute instructions stored at memory 404 to perform the operations described herein.
  • processor 402 includes or corresponds to controller/processor 280
  • memory 404 includes or corresponds to memory 282.
  • Memory 404 also may be configured to store multiple per CC scheduling parameter lists 406 (e.g., individual or per CC scheduling parameter lists) , a shared CC scheduling parameter list 408, a multiple CC indicator 442, an indicator value 444, settings data, or a combination thereof, as further described herein.
  • the multiple per CC scheduling parameter lists 406 includes or corresponds to multiple individual scheduling parameter lists of values to map a codepoint value to transmission information, such as shown in FIGS. 6 and 8.
  • the shared CC scheduling parameter list 408 includes or corresponds to a scheduling parameter list to map a codepoint value to transmission information, such as shown in FIGS. 7 and 9.
  • the multiple CC indicator 442 includes or corresponds to codepoint value of a DCI (or UCI for uplink) .
  • the indicator value 444 includes or corresponds to a decoded codepoint value, as shown in FIGS. 6-9.
  • the settings data includes or corresponds to data which is used by UE 115 to determine a multiple CC indication operation mode, a particular mapping scheduling parameter list, or other settings of multiple CC indication operation.
  • Transmitter 410 is configured to transmit data to one or more other devices, and receiver 412 is configured to receive data from one or more other devices.
  • transmitter 410 may transmit data
  • receiver 412 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • UE 115 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • transmitter 410 and receiver 412 may be replaced with a transceiver. Additionally, or alternatively, transmitter 410, receiver, 412, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
  • Encoder 413 and decoder 414 may be configured to encode and decode, such as encode or decode transmissions, respectively.
  • Multiple CC Manager 415 may be configured to determine an indicator value 444 based on a multiple CC indicator 442 and on multiple CC scheduling parameter lists 406 or multiple CC shared scheduling parameter list 408.
  • the indicator value 444 may indicate downlink information for multiple transmissions on multiple CCs. Such multiple CC indicator enables enhanced multiple CC operation and reduces signaling overhead as compared to a plurality of individual indications.
  • Network entity 105 includes processor 430, memory 432, transmitter 434, receiver 436, encoder 437, decoder 438, Multiple CC Manager 439, and antennas 234a–t.
  • Processor 430 may be configured to execute instructions stores at memory 432 to perform the operations described herein.
  • processor 430 includes or corresponds to controller/processor 240
  • memory 432 includes or corresponds to memory 242.
  • Memory 432 may be configured to store data, such as 406, 408, 442, 444, settings data, or a combination thereof, similar to the UE 115 and as further described herein.
  • Transmitter 434 is configured to transmit data to one or more other devices
  • receiver 436 is configured to receive data from one or more other devices.
  • transmitter 434 may transmit data
  • receiver 436 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • network entity 105 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • LAN local area network
  • WAN wide area network
  • modem-to-modem connection the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • transmitter 434 and receiver 436 may be replaced with a transceiver. Additionally, or alternatively, transmitter 434, receiver, 436, or both may include or correspond to one or more components of network entity 105 described with reference to FIG. 2.
  • Encoder 437, and decoder 438 may include the same functionality as described with reference to encoder 413 and decoder 414, respectively.
  • Multiple CC Manager 439 may include similar functionality as described with reference to Multiple CC Manager 415.
  • network entity 105 may determine that UE 115 has multiple CC scheduling operation capability. For example, UE 115 may transmit a message 448, such as a capabilities message, that includes a multiple CC scheduling operation indicator 472. Indicator 472 may indicate multiple CC scheduling operation capability or a particular type of multiple CC scheduling operation, such as uplink, downlink, or both. In some implementations, network entity 105 sends control information to indicate to UE 115 that multiple CC scheduling operations are to be used. For example, in some implementations, message 448 (or another message, such as a response or a trigger message) is transmitted by the network entity 105.
  • message 448 or another message, such as a response or a trigger message
  • network entity 105 transmits an optional configuration transmission 450.
  • the configuration transmission 450 may include or indicate a multiple CC scheduling operation configuration, such as settings data.
  • the configuration transmission 450 (such as settings data thereof) may indicate multiple CC scheduling operation format, a parameter list, etc.
  • the configuration transmission 450 (such as a RRC message or a DCI) , or both, multiple CC scheduling operations may be established.
  • the network entity 115 transmits configuration transmissions 460 and 462 to UE 115.
  • the configuration transmissions 460 and 462 each include a per CC scheduling parameter list or include a scheduling parameter list and an indication to reuse the scheduling parameter list or that the scheduling parameter list is a shared or common CC scheduling parameter list.
  • the network entity 105 transmits a DCI transmission 464.
  • the DCI transmission 464 may include or indicate a multiple CC indicator 442 which identifies the corresponding downlink information for transmissions via multiple CCs.
  • the UE 115 determines an indicator value 444 and determines downlink information based on the indicator value 444.
  • the UE 115 may receive data transmissions (downlink transmissions) or transmit data transmissions (uplink transmissions) according to the DCI 464 and the multiple CC indicator 442.
  • the UE 115 receives a first data transmission 466 from the network entity 105 on a first CC and a second data transmission 468 from the second network entity 405a on a second CC.
  • the first and second data transmissions are sent and/or received based on the multiple CC indicator 442. For example, reference signals or offsets may be indicated for multiple or each CC.
  • the UE 115 may optionally send one or more acknowledgment messages 470 (ACKs) responsive to one or more messages from the network entity 105 or second network entity 405a.
  • ACKs acknowledgment messages
  • FIG. 5 is a ladder diagram illustrating an example of a process flow for an example of multi-CC codepoint scheduling operations.
  • a process flow 500 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure.
  • process flow 500 may implement aspects of a wireless communications system 100 or 400.
  • a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 500.
  • Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • UE 115 may receive from a first network entity 502 (e.g., a first gNB or a first TRP of a gNB) , a first configuration transmission (e.g., a multiple CC configuration transmission) .
  • the first configuration transmission may include a multiple CC scheduling parameter list for a particular parameter or parameters.
  • the first configuration transmission may include a plurality of multiple CC scheduling parameter lists.
  • the first configuration transmission may include an indication or a selection of a previously stored or received multiple CC scheduling parameter list.
  • the first configuration transmission may indicate a list ID number.
  • the first configuration transmission may include or correspond to a DCI transmission, a MAC CE transmission, or a RRC transmission.
  • UE 115 may receive from the first network entity 502 or the second network entity 504, a second configuration transmission (e.g., a multiple CC configuration transmission) .
  • the second configuration transmission may include a second multiple CC scheduling parameter list for a second particular parameter or parameters.
  • the second configuration transmission may include or indicate to use the first scheduling parameter list indicated by the first configuration transmission for a second component carrier.
  • the second configuration transmission may include an indication or a selection of a previously stored or received multiple CC scheduling parameter list.
  • the second configuration transmission may indicate a list ID number.
  • the second configuration transmission may include or correspond to a DCI transmission, a MAC CE transmission, or a RRC transmission.
  • UE 115 may receive a DCI transmission from the first network entity 502 including a multiple CC scheduling parameter.
  • the DCI transmission includes a downlink control information indication for multiple downlink transmission on multiple CCs.
  • the DCI transmission includes a multiple CC parameter codepoint, such as a multiple CC TCI codepoint or a multiple CC offset codepoint (e.g., K0-K2) .
  • the DCI transmission is received form the first network entity 502 in the example of FIG. 5, the DCI transmission may be received from another network entity, such as the second network entity 504 (e.g., a second gNB or a second TRP of a gNB) .
  • the second network entity 504 e.g., a second gNB or a second TRP of a gNB
  • UE 115 may determine downlink transmission scheduling information for multiple downlink transmissions for multiple CCs. For example, the UE 115 may determine first and second downlink information for a particular DCI parameter based on multiple CC parameter codepoint. Detailed explanation and examples of determining multiple parameter information on a single codepoint are described with reference to FIGS. 6-9.
  • UE 115 may receive from the first network entity 502 a first downlink data transmission (e.g., first PDSCH) for a first component carrier according to the first downlink information.
  • a first downlink data transmission e.g., first PDSCH
  • UE 115 may receive from a second network entity 504 a second downlink data transmission (e.g., second PDSCH transmission) for a second component carrier according to the second downlink information.
  • a second downlink data transmission e.g., second PDSCH transmission
  • FIG. 6 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation.
  • a process flow 600 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure.
  • process flow 600 may implement aspects of a wireless communications system 100 or 400.
  • a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 600.
  • Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • UE 115 may receive from a gNB, a DCI transmission.
  • the DCI includes a multiple CC TCI codepoint.
  • UE 115 may determine downlink transmission for multiple downlink transmissions for multiple CCs.
  • UE 115 determines downlink reference signals (RS) for two CC’s based on a single TCI codepoint (e.g., codepoint value) .
  • the DCI includes a TCI codepoint of 01.
  • the UE 115 uses a first scheduling parameter list to decode the TCI codepoint of 01 for a first CC and a second scheduling parameter list to decode the TCI codepoint value of 01 for the second CC.
  • RS downlink reference signals
  • the TCI codepoint value of 01 indicates a TCI ID value of x associated with the reference signal 1 for CC1
  • the TCI codepoint value of 01 indicates a TCI ID of x associated with the reference signal 5 for CC2.
  • the individual scheduling parameter lists may indicate different values or information for each CC.
  • UE 115 may receive from the gNB network entity a first PDSCH for a first component carrier using a beam associated with the reference signal 1 on CC1.
  • the first PDSCH is associated with or includes a reference signal, RS1, that corresponds to the TCI codepoint value of 01.
  • UE 115 may receive from the gNB a second PDSCH transmission for a second component carrier using a beam associated with the reference signal 5 on CC2.
  • the second PDSCH is associated with or includes a reference signal, RS5, that corresponds to the TCI codepoint value of 01. Therefore, the multi-CC TCI codepoint 01 in the DCI is mapped to two TCI states with different reference signals on respective CCs.
  • UE 115 may transmit an ACK via a PUCCH to the gNB via the first or second component carrier. As illustrated in FIG. 6, the ACK is transmitted on cell 1 or the first component carrier (CC1) .
  • FIG. 7 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation.
  • a process flow 700 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure.
  • process flow 700 may implement aspects of a wireless communications system 100 or 400.
  • a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 700.
  • Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • UE 115 may receive from a gNB, a DCI transmission.
  • the DCI includes a multiple CC TCI codepoint.
  • UE 115 may determine downlink transmission for multiple downlink transmissions for multiple CCs.
  • UE 115 determines downlink reference signals (RS) for two CC’s based on a single TCI codepoint (e.g., codepoint value) .
  • the DCI includes a TCI codepoint of 01.
  • the UE 115 uses a shared scheduling parameter list to decode the TCI codepoint of 01 for each CC.
  • the TCI codepoint value of 01 indicates a TCI ID of 01 for CC1 and 01 for CC2.
  • the shared scheduling parameter list indicates the same value or information for each CC.
  • UE 115 may receive from the gNB network entity a first PDSCH for a first component carrier using a beam associated with the reference signal 1 on CC1.
  • the first PDSCH is associated with (e.g., received with or according to) the reference signal (RS1) that corresponds to the TCI codepoint value of 01.
  • UE 115 may receive from the gNB a second PDSCH transmission for a second component carrier using a beam associated with the reference signal 1 on CC2.
  • the second PDSCH is associated with (e.g., received with or according to) the reference signal (RS1) that corresponds to the TCI codepoint value of 01.
  • UE 115 may transmit an ACK via a PUCCH to the gNB via the first or second component carrier. As illustrated in FIG. 7, the ACK is transmitted on cell 1 or the first component carrier (CC1) .
  • FIGS. 8 and 9 are ladder diagrams illustrating an example of process flows for third and fourth examples of multi-CC codepoint operation.
  • FIG. 8 illustrates an example of a multiple CC K0 codepoint value for individual CC scheduling parameter lists
  • FIG. 9 illustrates an example of a K0 codepoint values for shared CC scheduling parameter lists.
  • downlink examples are illustrated in FIGS. 6-9, in other implementations, uplink multiple CC indicators may be used.
  • a DCI e.g., 610) may schedule uplink transmissions on multiple CCs.
  • certain DCI parameters are shown in the example of FIGS. 6-9, other DCI parameters may be used for multiple CC operation, such as at least K1 and K2.
  • the downlink control message 1000 may include or correspond to the configuration messages and/or DCI transmission of FIGS. 4-9.
  • the downlink control message 1000 includes one or more fields.
  • the downlink control message 1000 is a DCI.
  • a DCI (or DCI transmission) may have multiple different types or formats, such as Format 0_0, 0_1, 1_0, 1_1, etc.
  • the downlink control message 1000 includes one or more first fields 1012, a TCI field 1014, one or more second fields 1016, an offset field 1018, and one or more third fields 1020.
  • fields 1012-1020 are illustrated in the example of FIG. 10, one of more of such fields may be optional.
  • the TCI state field 1014 may identify or indicate a value for TCI state for one or more downlink transmissions for multiple CCs, such as downlink data transmissions (e.g., PDSCH transmissions) .
  • the TCI state field 1014 indicates a value for TCI state for each PDSCH transmission or indicates a value for TCI state for each PUSCH transmission on multiple CC.
  • the TCI state field 1014 is a 2 bit field.
  • the TCI state field 1014 may indicate the values for the TCI states directly.
  • a value of the TCI state field 1014 i.e., a value identified by bits thereof, is or indicates the value for one or more of the TCI states of the multiple CCs.
  • a bit of the TCI state field 1014 corresponds to a first TCI state value for a first CC and a second TCI state value for a second CC.
  • the TCI state field 1014 may indicate the TCI state values indirectly, i.e., identify the TCI state for each CC by indicating a member of set or a value or location of a list.
  • a value of the TCI state field 1014 i.e., a value identified by bits thereof, indicates a particular member of a set of TCI state values, and a value (e.g., a second value) of the particular member of the set indicates the TCI state values.
  • a bit sequence of 11 illustrates an 4 th member of a set.
  • the downlink control message 1000 includes a SRI field, similar to the TCI field 1014, which identifies or indicates a value for SRI for one or more CCs.
  • the offset field 1018 may identify or indicate a value for one or more offsets for one or more CCs.
  • the offset field 1018 may indicate a K0 offset value, a K1 offset value, a K2, offset value, or a combination thereof.
  • the offset field 1018 indicates a value for at least one offset for each CC.
  • the offset field 1018 is a 2 bit field.
  • the TCI state field 1014 is illustrated as being separate from the offset field 1018, the fields 1014 and 1018 may be contiguous fields. Additionally or alternatively, one or more of fields 1014 or 1018 may be a first field or a last field.
  • the offset field 1018 indirectly indicates the offset value, similar to as described with reference to the TCI field 1014. Additional fields or fields 1012, 1016, or 1020 may indicates a value for SRI, a value for RV, a value for TDRA, or a combination thereof, for each CC (e.g., each downlink data transmission on each CC) .
  • FIGS. 11 and 12 are block diagrams illustrating example blocks executed by a UE configured according to an aspect of the present disclosure.
  • FIG. 11 illustrates a downlink multiple CC indicator example and
  • FIG. 12 illustrates an uplink multiple CC indicator example.
  • FIGS. 13 and 14 are block diagrams illustrating example blocks executed by a network configured according to an aspect of the present disclosure.
  • FIG. 13 illustrates a downlink multiple CC indicator example and
  • FIG. 14 illustrates an uplink multiple CC indicator example.
  • a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) .
  • UE user equipment
  • CC component carrier
  • the method of wireless communication also includes receiving, by the UE, a second transmission including second configuration information for a second CC.
  • the method of wireless communication includes receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs.
  • the method of wireless communication may include determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information.
  • the method of wireless communication also includes receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter.
  • the method of wireless communication further includes receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  • a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) .
  • UE user equipment
  • CC component carrier
  • the method of wireless communication also includes receiving, by the UE, a second transmission including second configuration information for a second CC.
  • the method of wireless communication includes receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs.
  • the method of wireless communication may include determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information.
  • the method of wireless communication also includes transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter.
  • the method of wireless communication further includes transmitting, by the UE to a second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
  • a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one CC.
  • UE user equipment
  • the method of wireless communication also includes transmitting, by the network, a second transmission including second configuration information for a second CC.
  • the method may also include generating, by the network, a downlink control information indication configured to indicate a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the configuration information and the second configuration information.
  • the method of wireless communication includes transmitting, by the network, a downlink control information transmission including the downlink control information indication.
  • the method of wireless communication also includes transmitting, by the network to the particular UE, a first downlink transmission via the first CC based on the first downlink control information parameter.
  • the method of wireless communication further includes transmitting, by the network to the particular UE, a second downlink transmission via the second CC based on the second downlink control information parameter.
  • a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one component carrier (CC) .
  • UE user equipment
  • CC component carrier
  • the method of wireless communication also includes transmitting, by the network, a second transmission including second configuration information for a second CC.
  • the method may include generating, by the network, a downlink control information indication configured to indicate a first uplink control information parameter for a first CC and a second uplink control information parameter for the second CC based on the configuration information and the second configuration information.
  • the method of wireless communication includes transmitting, by the network, a downlink control information transmission including the downlink control information indication;
  • the method of wireless communication also includes receiving, by the network from the particular UE, a first uplink transmission via the first CC based on the first uplink control information parameter;
  • the method of wireless communication further includes receiving, by the network from the particular UE, a second uplink transmission via the second CC based on the second uplink control information parameter.
  • the functional blocks and modules in FIGS. 11-14 may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In one aspect, a method of wireless communication includes receiving, by a user equipment (UE), a first transmission including configuration information for at least one component carrier (CC) and receiving a second transmission including second configuration information for a second CC. The method also includes receiving a downlink control information transmission indicating a downlink control information indication for multiple CCs, and determining a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information. The method further includes receiving a first downlink transmission for the first CC based on the first downlink control information parameter, and receiving a second downlink transmission for the second CC based on the second downlink control information parameter. In addition, other aspects are described.

Description

DCI SCHEDULING OF MULTIPLE COMPONENT CARRIERS BACKGROUND Field
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to carrier aggregation and multiple component carrier operation.
Background
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN) . The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) . Examples of multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless  communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
In a particular aspect, a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ; receiving, by the UE, a second transmission including second configuration information for a second CC; receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs; determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information; receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
In another aspect, a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ; receiving, by the UE, a second transmission including second configuration information for a second CC; receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs; determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information; transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter; and transmitting, by the UE to a second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
In another aspect, a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration  information for at least one CC; transmitting, by the network, a second transmission including second configuration information for a second CC; generating, by the network, a downlink control information indication configured to indicate a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the configuration information and the second configuration information; transmitting, by the network, a downlink control information transmission including the downlink control information indication; transmitting, by the network to the particular UE, a first downlink transmission via the first CC based on the first downlink control information parameter; and transmitting, by the network to the particular UE, a second downlink transmission via the second CC based on the second downlink control information parameter.
In another aspect, a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one component carrier (CC) ; transmitting, by the network, a second transmission including second configuration information for a second CC; generating, by the network, a downlink control information indication configured to indicate a first uplink control information parameter for a first CC and a second uplink control information parameter for the second CC based on the configuration information and the second configuration information; transmitting, by the network, a downlink control information transmission including the downlink control information indication; receiving, by the network from the particular UE, a first uplink transmission via the first CC based on the first uplink control information parameter; and receiving, by the network from the particular UE, a second uplink transmission via the second CC based on the second uplink control information parameter.
Although example methods are illustrated above, the methods may be carried out, implemented, or performed by an apparatus or a non-transitory computer readable medium. The apparatus may include a processor and a memory configured to perform the actions recited in the above methods or means for performing the actions recited in the above methods.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure.  Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system.
FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.
FIGS. 3A and 3B are diagrams illustrating examples different operating modes.
FIG. 4 is a block diagram illustrating an example of a wireless communications system that enables multi-CC codepoint operation.
FIG. 5 is a ladder diagram illustrating an example of a process flow for an example of multi-CC codepoint scheduling operations.
FIG. 6 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation.
FIG. 7 is a ladder diagram illustrating an example of a process flow for a second example of multi-CC codepoint operation.
FIG. 8 is a ladder diagram illustrating an example of a process flow for a third example of multi-CC codepoint operation.
FIG. 9 is a ladder diagram illustrating an example of a process flow for a fourth example of multi-CC codepoint operation.
FIG. 10 is a block diagram illustrating an example of a field layout for downlink control messages.
FIG. 11 is a block diagram illustrating example blocks executed by a UE.
FIG. 12 is a block diagram illustrating another example of blocks executed by a UE.
FIG. 13 is a block diagram illustrating example blocks executed by a network entity.
FIG. 14 is a block diagram illustrating another example of blocks executed by a network entity.
The Appendix provides further details regarding various embodiments of this disclosure and the subject matter therein forms a part of the specification of this application.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings and appendix, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long  term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD  over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
FIG. 1 is a block diagram illustrating 5G network 100 including various base stations and UEs configured according to aspects of the present disclosure. The 5G network 100 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base  station subsystem serving the coverage area, depending on the context in which the term is used.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1, the  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
The 5G network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as internet of  everything (IoE) or internet of things (IoT) devices. UEs 115a-115d are examples of mobile smart phone-type devices accessing 5G network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k are examples of various machines configured for communication that access 5G network 100. A UE may be able to communicate with any type of the base stations, whether macro base station, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
In operation at 5G network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
5G network 100 also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through 5G network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. 5G network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1. At the base station 105, a transmit processor 220 may receive data from a data source 212 and control information from  a controller/processor 240. The control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc. The data may be for the PDSCH, etc. The transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At the UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at the UE 115, a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105. At the base station 105, the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115. The processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein. The controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGS. 11-14 and/or other processes for the techniques described herein. The  memories  242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 of the 5g network 100 (in FIG 1) may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the  shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
In general, four categories of LBT procedure have been suggested for sensing a shared channel for signals that may indicate the channel is already occupied. In a first category (CAT 1 LBT) , no LBT or CCA is applied to detect occupancy of the shared channel. A second category (CAT 2 LBT) , which may also be referred to as an abbreviated LBT, a single-shot LBT, or a 25-μs LBT, provides for the node to perform a CCA to detect energy above a predetermined threshold or detect a message or preamble occupying the shared channel. The CAT 2 LBT performs the CCA without using a random back-off operation, which results in its abbreviated length, relative to the next categories.
A third category (CAT 3 LBT) performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the node may proceed to transmit. However, if the first CCA detects a signal occupying the shared channel, the node selects a random back-off based on the fixed contention window size and performs an extended CCA. If the shared channel is detected to be idle during the extended CCA and the random number has been decremented to 0, then the node may begin transmission on the shared channel. Otherwise, the node decrements the random number and performs another extended CCA. The node would continue performing extended CCA until the random number reaches 0. If the random number reaches 0 without any of the extended CCAs  detecting channel occupancy, the node may then transmit on the shared channel. If at any of the extended CCA, the node detects channel occupancy, the node may re-select a new random back-off based on the fixed contention window size to begin the countdown again.
A fourth category (CAT 4 LBT) , which may also be referred to as a full LBT procedure, performs the CCA with energy or message detection using a random back-off and variable contention window size. The sequence of CCA detection proceeds similarly to the process of the CAT 3 LBT, except that the contention window size is variable for the CAT 4 LBT procedure.
Use of a medium-sensing procedure to contend for access to an unlicensed shared spectrum may result in communication inefficiencies. This may be particularly evident when multiple network operating entities (e.g., network operators) are attempting to access a shared resource. In the 5G network 100, base stations 105 and UEs 115 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
Referring to FIGS. 3A and 3B, examples different operating modes are illustrated. FIG. 3A corresponds to a diagram for carrier aggregation and FIG. 3B corresponds to a diagram for dual connectivity. In FIG. 3A, a diagram illustrating carrier aggregation is illustrated. FIG. 3A depicts one base station 105a which communicates with UE 115a. Base station 105a may transmit data and control information; base station 105a may transmit (and receive) information using different equipment or settings (such as different frequencies) . In carrier aggregation, the network, that is base station 105a, includes primary and secondary cells, such as primary and secondary serving cells.
In FIG. 3B, a diagram illustrating dual connectivity is illustrated. FIG. 3B depicts two base stations, 105a and 105b which communicate with UE 115a. UE 115a communicates data with both base stations and control information with one base station, main base station 105a. In dual connectivity, the network includes primary and secondary cell groups, as opposed to primary and secondary cells in carrier aggregation. Each group, primary or secondary, may include primary and secondary cells. Thus, such setups where each group includes primary and secondary cells may utilize both carrier aggregation and dual connectivity.
In conventional operation, a DCI transmission schedules transmissions (e.g., uplink, downlink, or both) for a single component carrier (CC) or multiple CCs. When scheduling transmissions for multiple CCs, each parameter is signalled individually per CC (referred to as individual-CC scheduling by an individual-CC scheduling parameter) . To illustrate, a multiple DCI parameter, such as TCI, may include multiple values, i.e., one for each CC. This may increase DCI length and singling overhead.
In the implementations described herein, for a DCI transmission scheduling multiple CCs, a parameter (e.g., a multi-CC scheduling parameter) can be included /signalled for one or more parameters for two or more CCs. The multi-CC scheduling parameter has candidate values (e.g., codepoints) that are mapped to a set of values of individual-CC scheduling parameters for different CCs. To illustrate, instead of signalling multiple individual-CC TCI codepoints in a DCI, a single multi-CC TCI codepoint in a DCI can be signalled with each candidate value mapped to multiple individual-CC TCI IDs on respective CCs.
The multi-CC scheduling parameter codepoint can be indicated by a single scheduling parameter list or by multiple scheduling parameter lists, such as per CC scheduling parameter lists. For example, multiple scheduling parameter lists (individual-CC or per CC scheduling parameter lists) can be used such that one codepoint value in the DCI can indicate different information for different CCs. For example, a list of individual-CC scheduling parameters can be configured by RRC signalling per CC, and for each CC, a subset of the scheduling parameter list can be selected by MAC-CE signalling. The DCI codepoints for the multi-CC scheduling parameters are mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on each CC.
As another example, a single scheduling parameter list can be used such that the one codepoint value in the DCI indicates the same information for multiple CCs. For example, a list of individual-CC scheduling parameters can be configured by RRC signalling for one CC, and for the CC, a subset of the scheduling parameter list can be selected by the MAC-CE signalling. The DCI codepoints for the multi-CC scheduling parameters for the CC are mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on the CC. The DCI codepoints for the multi-CC scheduling parameters for the other CCs are also mapped in order to the individual-CC scheduling parameters in the selected subset of the scheduling parameter list on the CC.
Single and multiple scheduling parameter list operation may be used in conjunction with each other in some implementations. Such per CC or common operation may be determined and/or indicated dynamically by gNB or UE, e.g. via RRC/MAC-CE/DCI to  signal the other side. For example, the RRC signaling may be used to indicate to the UE whether a single scheduling parameter list or multiple scheduling parameter lists is configured.
In some implementations, multi-CC TCI codepoints can be used for DL beam indication. In addition or in the alternative, multi-CC spatial relation information, multi-CC UL TCI codepoints, or both, can be used for UL beam indication.
As another illustration, instead of signalling individual-CC PDSCH scheduling offset K0 as in Rel-15/16, a single multi-CC PDSCH scheduling offset K0 can be signalled in a DCI where each candidate value is mapped to multiple individual-CC K0 values.
In some implementations, multi-CC K1 and/or K2 codepoints can be used for signalling /indicating offsets between PDSCH and PUCCH and offsets for between DCI and PUSCH respectively.
The multi-CC scheduling parameters may be signalled by /included in and/or correspond to the fields for individual-CC scheduling parameters in existing DCI formats, e.g. format 0_0, 0_1, 1_0, 1_1. The mapping between multi-CC parameter value to individual-CC parameter value (s) can be updated by gNB or UE via RRC/MAC-CE/DCI.
FIG. 4 illustrates an example of a wireless communications system 400 that supports multi-CC scheduling operations. In some examples, wireless communications system 400 may implement aspects of wireless communication system 100. For example, wireless communications system 400 includes network entity 105 (such as a network system or base station) and UE 115, and optionally includes second network entity 405a (such as a TRP of the base station or a second base station) , third network entity 405b, a servicing device 407, or a combination thereof. Multiple CC scheduling operation may enable more efficient multiple carrier or cell operation and may increase reliability and reduce latency and overhead as compared to single CC operation and per CC indication.
Network entity 105 and UE 115 may be configured to communicate via frequency bands, such as FR1 having a frequency of 410 to 7125 MHz, FR2 having a frequency of 24250 to 52600 MHz for mm-Wave, or bands above FR2. In some implementations, the FR2 frequency bands may be limited to 52.6 GHz. While in some other implementations, the FR2 frequency bands may have a frequency of 300 GHz or more. It is noted that sub-carrier spacing (SCS) may be equal to 15, 30, 60, or 120 kHz for some data channels. Network entity 105 and UE 115 may be configured to communicate via one or more component carriers (CCs) , such as representative first CC 481, second CC 482, third CC 483, and fourth CC 484. Although four CCs are shown, this is for illustration only, as more or fewer than  four CCs may be used. One or more CCs may be used to communicate a Physical Downlink Control Channel (PDCCH) , a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Control Channel (PUCCH) , or a Physical Uplink Shared Channel (PUSCH) .
In some implementations, such transmissions may be scheduled by dynamic grants. In some other implementations, such transmissions may be scheduled by one or more periodic grants and may correspond to semi-persistent scheduling (SPS) grants or configured grants of the one or more periodic grants. The grants, both dynamic and periodic, may be preceded or indicated by a pre-grant transmission or a message with a UE identifier (UE-ID) . In some implementations, the pre-grant transmission may include a UE-ID. The pre-grant transmission or UE-ID message may be configured to activate one or more UEs such that the UEs will transmit a first reference signal, listen/monitor for a second reference signal, or both. The pre-grant transmission or UE-ID message may be sent during a contention period, such as contention period 310, and initiate a contention procedure.
Each periodic grant may have a corresponding configuration, such as configuration parameters/settings. The periodic grant configuration may include SPS configurations and settings. Additionally, or alternatively, one or more periodic grants (such as SPS grants thereof) may have or be assigned to a CC ID, such as intended CC ID.
Each CC may have a corresponding configuration, such as configuration parameters/settings. The configuration may include bandwidth, bandwidth part, hybrid automatic repeat request (HARQ) process, TCI state, RS, control channel resources, data channel resources, or a combination thereof. Additionally, or alternatively, one or more CCs may have or be assigned to a Cell ID, a Bandwidth Part (BWP) ID, or both. The Cell ID may include a unique cell ID for the CC, a virtual Cell ID, or a particular Cell ID of a particular CC of the plurality of CCs. Additionally, or alternatively, one or more CCs may have or be assigned to a HARQ ID. Each CC also may have corresponding management functionalities, such as, beam management, BWP switching functionality, or both. In some implementations, two or more CCs are quasi co-located, such that the CCs have the same beam or same symbol.
In some implementations, control information may be communicated via network entity 105 and UE 115. For example, the control information may be communicated suing MAC-CE transmissions, RRC transmissions, DCI, transmissions, another transmission, or a combination thereof.
UE 115 includes processor 402, memory 404, transmitter 410, receiver 412, encoder, 413, decoder 414, Multiple CC Manager 415, and antennas 252a–r. Processor 402 may be configured to execute instructions stored at memory 404 to perform the operations described  herein. In some implementations, processor 402 includes or corresponds to controller/processor 280, and memory 404 includes or corresponds to memory 282. Memory 404 also may be configured to store multiple per CC scheduling parameter lists 406 (e.g., individual or per CC scheduling parameter lists) , a shared CC scheduling parameter list 408, a multiple CC indicator 442, an indicator value 444, settings data, or a combination thereof, as further described herein.
The multiple per CC scheduling parameter lists 406 includes or corresponds to multiple individual scheduling parameter lists of values to map a codepoint value to transmission information, such as shown in FIGS. 6 and 8. The shared CC scheduling parameter list 408 includes or corresponds to a scheduling parameter list to map a codepoint value to transmission information, such as shown in FIGS. 7 and 9. The multiple CC indicator 442 includes or corresponds to codepoint value of a DCI (or UCI for uplink) . The indicator value 444 includes or corresponds to a decoded codepoint value, as shown in FIGS. 6-9. The settings data includes or corresponds to data which is used by UE 115 to determine a multiple CC indication operation mode, a particular mapping scheduling parameter list, or other settings of multiple CC indication operation.
Transmitter 410 is configured to transmit data to one or more other devices, and receiver 412 is configured to receive data from one or more other devices. For example, transmitter 410 may transmit data, and receiver 412 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof. For example, UE 115 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some implementations, transmitter 410 and receiver 412 may be replaced with a transceiver. Additionally, or alternatively, transmitter 410, receiver, 412, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
Encoder 413 and decoder 414 may be configured to encode and decode, such as encode or decode transmissions, respectively. Multiple CC Manager 415 may be configured to determine an indicator value 444 based on a multiple CC indicator 442 and on multiple CC scheduling parameter lists 406 or multiple CC shared scheduling parameter list 408. The indicator value 444 may indicate downlink information for multiple transmissions on  multiple CCs. Such multiple CC indicator enables enhanced multiple CC operation and reduces signaling overhead as compared to a plurality of individual indications.
Network entity 105 includes processor 430, memory 432, transmitter 434, receiver 436, encoder 437, decoder 438, Multiple CC Manager 439, and antennas 234a–t. Processor 430 may be configured to execute instructions stores at memory 432 to perform the operations described herein. In some implementations, processor 430 includes or corresponds to controller/processor 240, and memory 432 includes or corresponds to memory 242. Memory 432 may be configured to store data, such as 406, 408, 442, 444, settings data, or a combination thereof, similar to the UE 115 and as further described herein.
Transmitter 434 is configured to transmit data to one or more other devices, and receiver 436 is configured to receive data from one or more other devices. For example, transmitter 434 may transmit data, and receiver 436 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof. For example, network entity 105 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some implementations, transmitter 434 and receiver 436 may be replaced with a transceiver. Additionally, or alternatively, transmitter 434, receiver, 436, or both may include or correspond to one or more components of network entity 105 described with reference to FIG. 2. Encoder 437, and decoder 438 may include the same functionality as described with reference to encoder 413 and decoder 414, respectively. Multiple CC Manager 439 may include similar functionality as described with reference to Multiple CC Manager 415.
During operation of wireless communications system 400, network entity 105 may determine that UE 115 has multiple CC scheduling operation capability. For example, UE 115 may transmit a message 448, such as a capabilities message, that includes a multiple CC scheduling operation indicator 472. Indicator 472 may indicate multiple CC scheduling operation capability or a particular type of multiple CC scheduling operation, such as uplink, downlink, or both. In some implementations, network entity 105 sends control information to indicate to UE 115 that multiple CC scheduling operations are to be used. For example, in some implementations, message 448 (or another message, such as a response or a trigger message) is transmitted by the network entity 105.
In the example of FIG. 4, network entity 105 transmits an optional configuration transmission 450. The configuration transmission 450 may include or indicate a multiple CC scheduling operation configuration, such as settings data. The configuration transmission 450 (such as settings data thereof) may indicate multiple CC scheduling operation format, a parameter list, etc.
After transmission of the message 448, the configuration transmission 450 (such as a RRC message or a DCI) , or both, multiple CC scheduling operations may be established. In the example of FIG. 4, the network entity 115 transmits  configuration transmissions  460 and 462 to UE 115. The  configuration transmissions  460 and 462 each include a per CC scheduling parameter list or include a scheduling parameter list and an indication to reuse the scheduling parameter list or that the scheduling parameter list is a shared or common CC scheduling parameter list. After transmission of the  configuration transmissions  460 and 462, the network entity 105 transmits a DCI transmission 464. The DCI transmission 464 may include or indicate a multiple CC indicator 442 which identifies the corresponding downlink information for transmissions via multiple CCs.
Additionally, the UE 115 determines an indicator value 444 and determines downlink information based on the indicator value 444. The UE 115 may receive data transmissions (downlink transmissions) or transmit data transmissions (uplink transmissions) according to the DCI 464 and the multiple CC indicator 442. In the example of FIG. 4, the UE 115 receives a first data transmission 466 from the network entity 105 on a first CC and a second data transmission 468 from the second network entity 405a on a second CC. The first and second data transmissions are sent and/or received based on the multiple CC indicator 442. For example, reference signals or offsets may be indicated for multiple or each CC. The UE 115 may optionally send one or more acknowledgment messages 470 (ACKs) responsive to one or more messages from the network entity 105 or second network entity 405a.
FIG. 5 is a ladder diagram illustrating an example of a process flow for an example of multi-CC codepoint scheduling operations. Referring to FIG. 5, a process flow 500 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of a  wireless communications system  100 or 400. For example, a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 500. Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs. Alternative examples of the following may be implemented, where some steps are performed  in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 510, UE 115 may receive from a first network entity 502 (e.g., a first gNB or a first TRP of a gNB) , a first configuration transmission (e.g., a multiple CC configuration transmission) . The first configuration transmission may include a multiple CC scheduling parameter list for a particular parameter or parameters. Alternatively, the first configuration transmission may include a plurality of multiple CC scheduling parameter lists. In other implementations, the first configuration transmission may include an indication or a selection of a previously stored or received multiple CC scheduling parameter list. To illustrate, the first configuration transmission may indicate a list ID number. The first configuration transmission may include or correspond to a DCI transmission, a MAC CE transmission, or a RRC transmission.
At 515, UE 115 may receive from the first network entity 502 or the second network entity 504, a second configuration transmission (e.g., a multiple CC configuration transmission) . The second configuration transmission may include a second multiple CC scheduling parameter list for a second particular parameter or parameters. Alternatively, the second configuration transmission may include or indicate to use the first scheduling parameter list indicated by the first configuration transmission for a second component carrier. In other implementations, the second configuration transmission may include an indication or a selection of a previously stored or received multiple CC scheduling parameter list. To illustrate, the second configuration transmission may indicate a list ID number. The second configuration transmission may include or correspond to a DCI transmission, a MAC CE transmission, or a RRC transmission.
At 520, UE 115 may receive a DCI transmission from the first network entity 502 including a multiple CC scheduling parameter. For example, the DCI transmission includes a downlink control information indication for multiple downlink transmission on multiple CCs. To illustrate, the DCI transmission includes a multiple CC parameter codepoint, such as a multiple CC TCI codepoint or a multiple CC offset codepoint (e.g., K0-K2) . Although the DCI transmission is received form the first network entity 502 in the example of FIG. 5, the DCI transmission may be received from another network entity, such as the second network entity 504 (e.g., a second gNB or a second TRP of a gNB) .
At 525, UE 115 may determine downlink transmission scheduling information for multiple downlink transmissions for multiple CCs. For example, the UE 115 may determine first and second downlink information for a particular DCI parameter based on multiple CC  parameter codepoint. Detailed explanation and examples of determining multiple parameter information on a single codepoint are described with reference to FIGS. 6-9.
At 530, UE 115 may receive from the first network entity 502 a first downlink data transmission (e.g., first PDSCH) for a first component carrier according to the first downlink information.
At 535, UE 115 may receive from a second network entity 504 a second downlink data transmission (e.g., second PDSCH transmission) for a second component carrier according to the second downlink information.
FIG. 6 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation. Referring to FIG. 6, a process flow 600 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure. In some examples, process flow 600 may implement aspects of a  wireless communications system  100 or 400. For example, a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 600. Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 610, UE 115 may receive from a gNB, a DCI transmission. In the example of FIG. 6, the DCI includes a multiple CC TCI codepoint.
At 615, UE 115 may determine downlink transmission for multiple downlink transmissions for multiple CCs. In the example of FIG. 6, UE 115 determines downlink reference signals (RS) for two CC’s based on a single TCI codepoint (e.g., codepoint value) . To illustrate, the DCI includes a TCI codepoint of 01. The UE 115 uses a first scheduling parameter list to decode the TCI codepoint of 01 for a first CC and a second scheduling parameter list to decode the TCI codepoint value of 01 for the second CC. As illustrated in the example of FIG. 6, for the first list, the TCI codepoint value of 01 indicates a TCI ID value of x associated with the reference signal 1 for CC1, and for the second list the TCI codepoint value of 01 indicates a TCI ID of x associated with the reference signal 5 for CC2. The individual scheduling parameter lists may indicate different values or information for each CC.
At 620, UE 115 may receive from the gNB network entity a first PDSCH for a first component carrier using a beam associated with the reference signal 1 on CC1. The first  PDSCH is associated with or includes a reference signal, RS1, that corresponds to the TCI codepoint value of 01.
At 625, UE 115 may receive from the gNB a second PDSCH transmission for a second component carrier using a beam associated with the reference signal 5 on CC2. The second PDSCH is associated with or includes a reference signal, RS5, that corresponds to the TCI codepoint value of 01. Therefore, the multi-CC TCI codepoint 01 in the DCI is mapped to two TCI states with different reference signals on respective CCs.
At 630, UE 115 may transmit an ACK via a PUCCH to the gNB via the first or second component carrier. As illustrated in FIG. 6, the ACK is transmitted on cell 1 or the first component carrier (CC1) .
FIG. 7 is a ladder diagram illustrating an example of a process flow for a first example of multi-CC codepoint operation. Referring to FIG. 7, a process flow 700 is illustrated that supports multi-CC codepoint operation in accordance with aspects of the present disclosure. In some examples, process flow 700 may implement aspects of a  wireless communications system  100 or 400. For example, a network entity or entities and a UE may perform one or more of the processes described with reference to process flow 700. Network entities may communicate with UE 115 by transmitting and receiving signals through TRPs. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 710, UE 115 may receive from a gNB, a DCI transmission. In the example of FIG. 7, the DCI includes a multiple CC TCI codepoint.
At 715, UE 115 may determine downlink transmission for multiple downlink transmissions for multiple CCs. In the example of FIG. 7, UE 115 determines downlink reference signals (RS) for two CC’s based on a single TCI codepoint (e.g., codepoint value) . To illustrate, the DCI includes a TCI codepoint of 01. The UE 115 uses a shared scheduling parameter list to decode the TCI codepoint of 01 for each CC. As illustrated in the example of FIG. 7, the TCI codepoint value of 01 indicates a TCI ID of 01 for CC1 and 01 for CC2. The shared scheduling parameter list indicates the same value or information for each CC.
At 720, UE 115 may receive from the gNB network entity a first PDSCH for a first component carrier using a beam associated with the reference signal 1 on CC1. The first PDSCH is associated with (e.g., received with or according to) the reference signal (RS1) that corresponds to the TCI codepoint value of 01.
At 725, UE 115 may receive from the gNB a second PDSCH transmission for a second component carrier using a beam associated with the reference signal 1 on CC2. The second PDSCH is associated with (e.g., received with or according to) the reference signal (RS1) that corresponds to the TCI codepoint value of 01.
At 730, UE 115 may transmit an ACK via a PUCCH to the gNB via the first or second component carrier. As illustrated in FIG. 7, the ACK is transmitted on cell 1 or the first component carrier (CC1) .
FIGS. 8 and 9 are ladder diagrams illustrating an example of process flows for third and fourth examples of multi-CC codepoint operation. FIG. 8 illustrates an example of a multiple CC K0 codepoint value for individual CC scheduling parameter lists, FIG. 9 illustrates an example of a K0 codepoint values for shared CC scheduling parameter lists. Although downlink examples are illustrated in FIGS. 6-9, in other implementations, uplink multiple CC indicators may be used. To illustrate a DCI (e.g., 610) may schedule uplink transmissions on multiple CCs. Additionally, although certain DCI parameters are shown in the example of FIGS. 6-9, other DCI parameters may be used for multiple CC operation, such as at least K1 and K2.
Referring to FIG. 10, an example of a field layout for downlink control messages is illustrated. The downlink control message 1000 may include or correspond to the configuration messages and/or DCI transmission of FIGS. 4-9. The downlink control message 1000 includes one or more fields. As illustrated in FIG. 10, the downlink control message 1000 is a DCI. A DCI (or DCI transmission) may have multiple different types or formats, such as Format 0_0, 0_1, 1_0, 1_1, etc. In the example illustrated in FIG. 10, the downlink control message 1000 includes one or more first fields 1012, a TCI field 1014, one or more second fields 1016, an offset field 1018, and one or more third fields 1020. Although fields 1012-1020 are illustrated in the example of FIG. 10, one of more of such fields may be optional.
The TCI state field 1014 may identify or indicate a value for TCI state for one or more downlink transmissions for multiple CCs, such as downlink data transmissions (e.g., PDSCH transmissions) . For example, the TCI state field 1014 indicates a value for TCI state for each PDSCH transmission or indicates a value for TCI state for each PUSCH transmission on multiple CC. In a particular implementation, the TCI state field 1014 is a 2 bit field.
The TCI state field 1014 may indicate the values for the TCI states directly. For example, a value of the TCI state field 1014, i.e., a value identified by bits thereof, is or  indicates the value for one or more of the TCI states of the multiple CCs. To illustrate, a bit of the TCI state field 1014 corresponds to a first TCI state value for a first CC and a second TCI state value for a second CC.
The TCI state field 1014 may indicate the TCI state values indirectly, i.e., identify the TCI state for each CC by indicating a member of set or a value or location of a list. For example, a value of the TCI state field 1014, i.e., a value identified by bits thereof, indicates a particular member of a set of TCI state values, and a value (e.g., a second value) of the particular member of the set indicates the TCI state values. To illustrate, a bit sequence of 11 illustrates an 4 th member of a set. Additionally, or alternatively, the downlink control message 1000 includes a SRI field, similar to the TCI field 1014, which identifies or indicates a value for SRI for one or more CCs.
The offset field 1018 may identify or indicate a value for one or more offsets for one or more CCs. For example, the offset field 1018 may indicate a K0 offset value, a K1 offset value, a K2, offset value, or a combination thereof. The offset field 1018 indicates a value for at least one offset for each CC. In a particular implementation, the offset field 1018 is a 2 bit field. Although the TCI state field 1014 is illustrated as being separate from the offset field 1018, the  fields  1014 and 1018 may be contiguous fields. Additionally or alternatively, one or more of  fields  1014 or 1018 may be a first field or a last field.
In some implementations, the offset field 1018 indirectly indicates the offset value, similar to as described with reference to the TCI field 1014. Additional fields or  fields  1012, 1016, or 1020 may indicates a value for SRI, a value for RV, a value for TDRA, or a combination thereof, for each CC (e.g., each downlink data transmission on each CC) .
FIGS. 11 and 12 are block diagrams illustrating example blocks executed by a UE configured according to an aspect of the present disclosure. FIG. 11 illustrates a downlink multiple CC indicator example and FIG. 12 illustrates an uplink multiple CC indicator example. FIGS. 13 and 14 are block diagrams illustrating example blocks executed by a network configured according to an aspect of the present disclosure. FIG. 13 illustrates a downlink multiple CC indicator example and FIG. 14 illustrates an uplink multiple CC indicator example.
Referring to FIG. 11, at 1100, a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) .
At 1101, the method of wireless communication also includes receiving, by the UE, a second transmission including second configuration information for a second CC.
At 1102, the method of wireless communication includes receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs.
The method of wireless communication may include determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information.
At 1103, the method of wireless communication also includes receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter.
At 1104, the method of wireless communication further includes receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
Referring to FIG. 12, at 1200, a method of wireless communication includes receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) .
At 1201, the method of wireless communication also includes receiving, by the UE, a second transmission including second configuration information for a second CC.
At 1202, the method of wireless communication includes receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs.
The method of wireless communication may include determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information.
At 1203, the method of wireless communication also includes transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter.
At 1204, the method of wireless communication further includes transmitting, by the UE to a second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
Referring to FIG. 13, at 1300, a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one CC.
At 1301, the method of wireless communication also includes transmitting, by the network, a second transmission including second configuration information for a second CC.
The method may also include generating, by the network, a downlink control information indication configured to indicate a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the configuration information and the second configuration information.
At 1302, the method of wireless communication includes transmitting, by the network, a downlink control information transmission including the downlink control information indication.
At 1303, the method of wireless communication also includes transmitting, by the network to the particular UE, a first downlink transmission via the first CC based on the first downlink control information parameter.
At 1304, the method of wireless communication further includes transmitting, by the network to the particular UE, a second downlink transmission via the second CC based on the second downlink control information parameter.
Referring to FIG. 14, at 1400, a method of wireless communication includes transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one component carrier (CC) .
At 1401, the method of wireless communication also includes transmitting, by the network, a second transmission including second configuration information for a second CC.
The method may include generating, by the network, a downlink control information indication configured to indicate a first uplink control information parameter for a first CC and a second uplink control information parameter for the second CC based on the configuration information and the second configuration information.
At 1402, the method of wireless communication includes transmitting, by the network, a downlink control information transmission including the downlink control information indication;
At 1403, the method of wireless communication also includes receiving, by the network from the particular UE, a first uplink transmission via the first CC based on the first uplink control information parameter; and
At 1404, the method of wireless communication further includes receiving, by the network from the particular UE, a second uplink transmission via the second CC based on the second uplink control information parameter.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules in FIGS. 11-14 may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can  contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
WHAT IS CLAIMED IS:
Figure PCTCN2020073185-appb-000001
Figure PCTCN2020073185-appb-000002
Figure PCTCN2020073185-appb-000003
Figure PCTCN2020073185-appb-000004
Figure PCTCN2020073185-appb-000005
Figure PCTCN2020073185-appb-000006
Figure PCTCN2020073185-appb-000007
Figure PCTCN2020073185-appb-000008

Claims (54)

  1. A method of wireless communication comprising:
    receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ;
    receiving, by the UE, a second transmission including second configuration information for a second CC;
    receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs;
    determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information;
    receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and
    receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  2. The method of claim 1, wherein the configuration information comprises a list configured to indicate parameter information for a particular downlink scheduling parameter for the first CC.
  3. The method of claim 2, wherein the second configuration information comprises a an indication to use the list for a second CC.
  4. The method of claim 2, wherein the second configuration information comprises a second list configured to indicate parameter information for a second downlink parameter for the at least one CCs.
  5. The method of claim 1, wherein the UE is operating in a sub millimeter wave frequency range.
  6. The method of claim 1, wherein determining the downlink control information indication includes:
    determining a codepoint from the DCI transmission;
    determining a first parameter value for the first CC based on the codepoint and a first list; and
    determining a second parameter value for the second CC based on the codepoint and a second list.
  7. The method of claim 6, wherein the codepoint maps to a single value in the first list and the second list, and wherein the first parameter value and the second parameter value have different values.
  8. The method of claim 6, wherein the codepoint maps to a single value in the first list and the second list, and wherein the first parameter value and the second parameter value have the same value.
  9. The method of claim 6, wherein determining the first parameter value for the first CC includes performing a first mapping using the first list, and wherein determining the second parameter value for the second CC includes performing a second mapping using the second list.
  10. The method of claim 1, wherein determining the downlink control information indication includes:
    determining a codepoint from the DCI transmission;
    determining a first parameter value for the first CC based on the codepoint and on a shared list; and
    determining a second parameter value for the second CC based on the codepoint and the shared list.
  11. The method of claim 10, wherein the first parameter value and the second parameter value have the same value.
  12. The method of claim 10, wherein the first and second parameter values are indicated by a single value in the shared list.
  13. The method of claim 10, wherein determining the first parameter value for the first CC and the second parameter value for the second CC includes performing a single mapping to two parameter values using the shared list.
  14. The method of claim 1, wherein the first network entity operates within sub millimeter wave frequency ranges.
  15. The method of claim 1, wherein the first transmission comprises a RRC transmission or MAC CE transmission.
  16. The method of claim 1, wherein the second transmission comprises a RRC transmission or MAC CE transmission.
  17. The method of claim 1, wherein the downlink transmission comprises a PDSCH.
  18. The method of claim 1, wherein the downlink control information transmission comprises a PDCCH.
  19. The method of claim 1, wherein the first and second downlink transmissions have different data.
  20. The method of claim 1, wherein the first and second downlink transmissions have the same data.
  21. The method of claim 1, wherein the configuration information indicates a reference signal.
  22. The method of claim 20, wherein the configuration information is a list of TCI parameter values configured to associate with codepoints of DCI transmissions.
  23. The method of claim 1, wherein the configuration information indicates offset timing information.
  24. The method of claim 23, wherein the offset timing information comprises a PDSCH offset timing list configured to indicate PDSCH offset timings for codepoints of DCI transmissions.
  25. The method of claim 23, wherein the offset timing information comprises a PUCCH offset timing list configured to indicate PUCCH offset timings for codepoints of DCI transmissions.
  26. The method of claim 23, wherein the offset timing information comprises a PUSCH offset timing list configured to indicate PUSCH offset timings for codepoints of DCI transmissions.
  27. The method of claim 1, further comprising, prior to receiving the downlink control information transmission, transmitting, by the UE, a capabilities message indicating that the UE is configured for multiple CC scheduling parameter operation.
  28. The method of claim 1, further comprising, prior to receiving the downlink control information transmission, receiving, by the UE, a configuration message from a network entity indicating multiple CC scheduling parameter operation is enabled.
  29. The method of claim 1, further comprising, prior to receiving the downlink control information transmission, receiving, by the UE, a configuration message from a network entity indicating a particular type of multiple CC scheduling parameter operation.
  30. The method of claim 28, further comprising receiving, by the UE, a second configuration message from the network entity indicating a second type of multiple CC scheduling parameter operation.
  31. The method of claim 1, further comprising:
    receiving, by the UE from the first network entity, a second downlink control information transmission indicating a second downlink control information indication for multiple CCs;
    determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the second downlink  control information indication, the configuration information (e.g. first list) , and the second configuration information;
    transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter; and
    transmitting, by the UE to the second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
  32. A method of wireless communication comprising:
    receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ;
    receiving, by the UE, a second transmission including second configuration information for a second CC;
    receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs;
    determining, by the UE, a first uplink control information parameter for a first CC and a second uplink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information;
    transmitting, by the UE to the first network entity, a first uplink transmission for the first CC based on the first uplink control information parameter; and
    transmitting, by the UE to a second network entity, a second uplink transmission for the second CC based on the second uplink control information parameter.
  33. The method of claim 32, wherein the first uplink transmissions comprises a PUSCH.
  34. A method of wireless communication comprising:
    transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one CC;
    transmitting, by the network, a second transmission including second configuration information for a second CC;
    generating, by the network, a downlink control information indication configured to indicate a first downlink control information parameter for a first CC and a second downlink  control information parameter for a second CC based on the configuration information and the second configuration information;
    transmitting, by the network, a downlink control information transmission including the downlink control information indication;
    transmitting, by the network to the particular UE, a first downlink transmission via the first CC based on the first downlink control information parameter; and
    transmitting, by the network to the particular UE, a second downlink transmission via the second CC based on the second downlink control information parameter.
  35. The method of claim 34, wherein the configuration information comprises a list configured to indicate parameter information for a particular downlink scheduling parameter for the first CC.
  36. The method of claim 35, wherein the second configuration information comprises an indication to use the list for the second CC.
  37. The method of claim 35, wherein the second configuration information comprises a second list configured to indicate parameter information for a second downlink parameter for the at least one CCs.
  38. The method of claim 34, wherein the network is operating in a sub millimeter wave frequency range.
  39. The method of claim 34, wherein the first transmission comprises a RRC transmission or MAC CE transmission.
  40. The method of claim 34, wherein the second transmission comprises a RRC transmission or MAC CE transmission.
  41. The method of claim 34, wherein the downlink transmission comprises a PDSCH.
  42. The method of claim 34, wherein the downlink control information transmission comprises a PDCCH.
  43. The method of claim 34, wherein the first and second downlink transmissions have different data.
  44. The method of claim 34, wherein the first and second downlink transmissions have the same data.
  45. The method of claim 34, further comprising transmitting, by a first network entity of the network to a second network entity of the network, the second downlink control information parameter.
  46. The method of claim 34, further comprising transmitting, by the network to the particular UE, a new multiple CC list or list update.
  47. A method of wireless communication comprising:
    transmitting, by a network to a particular user equipment (UE) , a first transmission including configuration information for at least one component carrier (CC) ;
    transmitting, by the network, a second transmission including second configuration information for a second CC;
    generating, by the network, a downlink control information indication configured to indicate a first uplink control information parameter for a first CC and a second uplink control information parameter for the second CC based on the configuration information and the second configuration information;
    transmitting, by the network, a downlink control information transmission including the downlink control information indication;
    receiving, by the network from the particular UE, a first uplink transmission via the first CC based on the first uplink control information parameter; and
    receiving, by the network from the particular UE, a second uplink transmission via the second CC based on the second uplink control information parameter.
  48. The method of claim 47, further comprising transmitting, by a first network entity of the network to a second network entity of the network, the uplink transmission information.
  49. An apparatus configured for wireless communication, comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    receive, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ;
    receive, by the UE, a second transmission including second configuration information for a second CC;
    receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs;
    determine, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information;
    receive, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and
    receive, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  50. The apparatus of claim 49, wherein the apparatus is configured to perform a method as in any of claims 1–23.
  51. An apparatus configured for wireless communication, comprising:
    means for receiving, by a user equipment (UE) from a first network entity, a multiple component carrier (CC) signaling message including multiple CC scheduling information;
    receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ;
    receiving, by the UE, a second transmission including second configuration information for a second CC;
    receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs;
    determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information;
    receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and
    receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  52. The apparatus of claim 51, wherein the apparatus is configured to perform a method as in any of claims 1–23.
  53. A non-transitory, computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    receiving, by a user equipment (UE) from a first network entity, a first transmission including configuration information for at least one component carrier (CC) ;
    receiving, by the UE, a second transmission including second configuration information for a second CC;
    receiving, by the UE from the first network entity, a downlink control information transmission indicating a downlink control information indication for multiple CCs;
    determining, by the UE, a first downlink control information parameter for a first CC and a second downlink control information parameter for a second CC based on the downlink control information indication, the configuration information, and the second configuration information;
    receiving, by the UE from the first network entity, a first downlink transmission for the first CC based on the first downlink control information parameter; and
    receiving, by the UE from a second network entity, a second downlink transmission for the second CC based on the second downlink control information parameter.
  54. The non-transitory, computer-readable medium of claim 53, wherein the instructions cause the processor to perform a method as in any of claims 1–23.
PCT/CN2020/073185 2020-01-20 2020-01-20 Dci scheduling of multiple component carriers WO2021146834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073185 WO2021146834A1 (en) 2020-01-20 2020-01-20 Dci scheduling of multiple component carriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073185 WO2021146834A1 (en) 2020-01-20 2020-01-20 Dci scheduling of multiple component carriers

Publications (1)

Publication Number Publication Date
WO2021146834A1 true WO2021146834A1 (en) 2021-07-29

Family

ID=76991667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073185 WO2021146834A1 (en) 2020-01-20 2020-01-20 Dci scheduling of multiple component carriers

Country Status (1)

Country Link
WO (1) WO2021146834A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086078A1 (en) * 2012-09-24 2014-03-27 Qualcomm Incorporated Method and apparatus for supporting hybrid carrier aggregation
US20160255630A1 (en) * 2010-05-03 2016-09-01 Intel Corporation Configuring component carriers in carrier aggregation
US20170290041A1 (en) * 2016-04-01 2017-10-05 Qualcomm Incorporated Sounding reference signal triggering for enhanced carrier aggregation
US20180006775A1 (en) * 2015-03-20 2018-01-04 Huawei Technologies Co., Ltd. Carrier configuration method and device
US20180317207A1 (en) * 2017-04-27 2018-11-01 Mediatek Inc. Method of efficient downlink control information transmission
EP3668219A1 (en) * 2017-08-09 2020-06-17 China Academy of Telecommunications Technology Method and device for transmitting downlink control channel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160255630A1 (en) * 2010-05-03 2016-09-01 Intel Corporation Configuring component carriers in carrier aggregation
US20140086078A1 (en) * 2012-09-24 2014-03-27 Qualcomm Incorporated Method and apparatus for supporting hybrid carrier aggregation
US20180006775A1 (en) * 2015-03-20 2018-01-04 Huawei Technologies Co., Ltd. Carrier configuration method and device
US20170290041A1 (en) * 2016-04-01 2017-10-05 Qualcomm Incorporated Sounding reference signal triggering for enhanced carrier aggregation
US20180317207A1 (en) * 2017-04-27 2018-11-01 Mediatek Inc. Method of efficient downlink control information transmission
EP3668219A1 (en) * 2017-08-09 2020-06-17 China Academy of Telecommunications Technology Method and device for transmitting downlink control channel

Similar Documents

Publication Publication Date Title
US11388720B2 (en) Methods and apparatus for user equipment capability exchange
US11595156B2 (en) Timing considerations for AUL-DFI
WO2021243675A1 (en) Timer-based operations for a user equipment that includes multiple antenna panels
US11349609B2 (en) Hybrid automatic repeat request acknowledgement feedback enhancement for new radio-unlicensed
US11553475B2 (en) Superposition transmission of sidelink and uplink
US20190053255A1 (en) Sr configuration for enabling services of different priorities
US20210160892A1 (en) Priority class indication for base station mcot sharing for aul
US20220191926A1 (en) Procedures for autonomous uplink transmissions
US10588159B2 (en) Contention window with spatial LBT
WO2021018280A1 (en) Mac ce for beam failure recovery
US20220141832A1 (en) Cbg indication with multi-tti grant
WO2021146849A1 (en) Multiple component carrier scheduling parameter for dci scheduling multiple component carriers
WO2021114066A1 (en) Ue based pair id for redundant pdu sessions
WO2021016910A1 (en) Mac ce for beam failure recovery
WO2021146834A1 (en) Dci scheduling of multiple component carriers
US11937114B2 (en) Selective measurement reporting for a user equipment
WO2021237703A1 (en) Distance based srs configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915304

Country of ref document: EP

Kind code of ref document: A1