WO2021145707A1 - Self-charging composite battery using solar light and manufacturing method therefor - Google Patents

Self-charging composite battery using solar light and manufacturing method therefor Download PDF

Info

Publication number
WO2021145707A1
WO2021145707A1 PCT/KR2021/000563 KR2021000563W WO2021145707A1 WO 2021145707 A1 WO2021145707 A1 WO 2021145707A1 KR 2021000563 W KR2021000563 W KR 2021000563W WO 2021145707 A1 WO2021145707 A1 WO 2021145707A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
pad
via hole
secondary battery
anode
Prior art date
Application number
PCT/KR2021/000563
Other languages
French (fr)
Korean (ko)
Inventor
김제하
임두현
Original Assignee
청주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 청주대학교 산학협력단 filed Critical 청주대학교 산학협력단
Publication of WO2021145707A1 publication Critical patent/WO2021145707A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators

Definitions

  • the present invention relates to a self-charging composite battery using sunlight and a method for manufacturing the same, and more particularly, self-charging using sunlight that integrates solar cells and secondary battery modules as individual elements on both sides of a single common circuit board. It relates to a composite battery and a method for manufacturing the same.
  • the solar cell which is a photovoltaic power generation device, needs to secure flexibility that can be applied to bent or bent objects in a general rigid flat plate type, and the secondary battery, which is an energy storage, is also a trend in which the flexible function is emphasized. am.
  • a solar cell module and a secondary battery module are integrated on both sides of a flexible circuit board, and the electrode of each cell is directly connected through a via hole penetrating the circuit board, thereby minimizing the device area.
  • a self-charged composite battery using the same and a manufacturing method thereof.
  • a self-charged composite battery using sunlight includes a flexible circuit board, a solar cell unit and a secondary cell unit sharing the circuit board as a common layer, the solar cell unit and the secondary battery
  • the parts are electrically interconnected through conductive via holes formed through the circuit board.
  • circuit board according to an embodiment of the present invention may be a flexible polyimide sheet.
  • the solar cell unit is a metal layer formed on one surface of the circuit board, and includes a pad unit including a positive electrode pad and a negative electrode pad spaced apart from each other, and a solar cell formed on the pad unit. , a first via hole provided in the anode pad and penetrating toward the circuit board, and a second via hole provided in the cathode pad and penetrating toward the circuit board.
  • the positive electrode pad and the negative electrode pad according to an embodiment of the present invention are each
  • first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board, wherein the first via hole is provided in the anode pad
  • the pad portion may be formed through, and the second via hole may be formed through the first pad portion provided in the negative electrode pad.
  • the secondary battery unit is a secondary battery unit in which an anode layer, an electrolyte layer and a cathode layer are sequentially formed on the other surface of the circuit board, is formed on the other surface of the circuit board, and the secondary battery unit and It may include an anode pad disposed to be spaced apart, a first via hole provided in the anode pad and penetrating toward the circuit board, and a second via hole provided in the anode layer and penetrating toward the circuit board.
  • the positive electrode pad includes a first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board,
  • the first via hole may be formed through the second pad portion provided in the positive electrode pad.
  • first via hole communicates with the positive electrode pad of the solar cell unit and the secondary battery unit
  • second via hole is the negative electrode pad of the solar cell unit and the anode of the secondary battery unit. layers can be communicated.
  • the cathode layer according to an embodiment of the present invention may include a solder portion in contact with one surface of the positive electrode pad so that the secondary battery unit is electrically connectable.
  • the solar cell part according to an embodiment of the present invention is formed to surround the pad part and the solar cell, and is laminated on the first protective layer and a transparent first protective layer made of EVA, POE or PVB. and may further include a first sealing unit including a second protective layer made of a transparent material made of PEN and PET.
  • the secondary battery unit is a vacuum cavity formed to surround the secondary battery unit, a third protective layer of a transparent material formed along the circumference of the vacuum cavity and made of EVA, POE or PVB and a second sealing part laminated on the third protective layer and including a fourth protective layer made of a polymer or aluminum foil.
  • a method of manufacturing a self-charged composite battery using sunlight is a manufacturing method of a self-charged composite battery including a flexible circuit board, a solar cell part and a secondary battery part sharing the circuit board as a common layer
  • preparing a circuit board having a metal layer formed on both sides etching the metal layer formed on one surface of the circuit board to form a pad portion including an anode pad and a cathode pad so as to be spaced apart from each other, on the anode pad forming a first via hole to penetrate toward the circuit board and forming a second via hole in the cathode pad to penetrate toward the circuit board; etching the metal layer formed on the other surface of the circuit board to form an anode layer to be spaced apart from each other and forming an anode pad, forming a first via hole in the anode pad to penetrate toward the circuit board, and forming a second via hole in the anode layer to pass through toward the circuit board, and on the ano
  • first via hole communicates with the anode pad formed on one surface of the circuit board and the anode pad formed on the other surface of the circuit board, and the second via hole is formed on one surface of the circuit board.
  • the negative electrode pad and the anode layer may be in communication.
  • the method may include soldering to one surface of the positive electrode pad formed on the other surface of the circuit board.
  • EVA, POE or PVB is used to surround the pad part formed on one surface of the circuit board, the first via hole, and the second via hole.
  • the method may further include forming a first protective layer made of a transparent material and forming a second protective layer made of a transparent material made of PEN and PET on the first protective layer.
  • the method for manufacturing a self-charged composite battery using sunlight further comprises the step of forming a vacuum cavity by etching a portion of the periphery of the anode layer, forming the secondary battery unit Thereafter, forming a third protective layer made of a transparent material made of EVA, POE or PVB along the periphery of the vacuum cavity, and forming a fourth protective layer made of a polymer or aluminum foil on the third protective layer It may further include the step of
  • the solar cell module and the secondary battery module are manufactured by sharing a flexible circuit board, the device area can be minimized, and an external load circuit can be manufactured together, so that the device area is self-powered.
  • This mounted electronic circuit can be implemented.
  • independent charging by a solar cell and power storage by a secondary battery can be simultaneously made, thereby minimizing power loss due to connection with an external power source, and requiring constant or emergency operation It may be easily applicable to a wireless sensor module.
  • FIG. 1 is a cross-sectional view illustrating a self-charging composite battery using sunlight according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention.
  • 3A to 3J are plan views for sequentially explaining the manufacturing method of FIG. 2 .
  • FIG. 4 is a graph showing the operating characteristics of the self-charged composite battery using sunlight according to an embodiment of the present invention.
  • 212b (212b', 212b''): the second pad part of the positive electrode pad (solar cell part)
  • the composite battery of the present invention corresponds to a self-charging composite battery that integrates a solar cell module and a secondary battery module as an element of a single body. Specifically, by using a common flexible circuit board as a flat platform to fabricate a fusion module that integrates a solar cell module and a secondary cell module on both sides through a via hole penetrating the circuit board, the device area of each module (foot print) can be significantly minimized.
  • FIG. 1 is a cross-sectional view illustrating a self-charging composite battery using sunlight according to an embodiment of the present invention.
  • a self-charged composite battery 1 using sunlight includes a flexible circuit board 100 and a solar cell unit sharing the circuit board 100 as a common layer. 200 and the secondary battery unit 300 may be included.
  • the solar cell unit 200 and the secondary battery unit 300 may be electrically interconnected through a conductive via hole formed through the circuit board 100 .
  • the composite battery 1 of the present invention utilizes a single circuit board 100 as a common body to integrate the solar cell unit 200 and the secondary battery unit 300 on both sides of the substrate 100, respectively. It can be implemented as a module.
  • Conductive metal films P1 and P2 such as copper may be formed on both surfaces of the circuit board 100 .
  • the metal films P1 and P2 are for etching the electric circuit to form the pad parts 212 and 214 of the solar cell part 200 and the anode layer 312 and the anode pad 320 of the secondary battery part 300 to be described later. It is preferably implemented as an insulator as an object.
  • the circuit board 100 may be a flexible polyimide sheet.
  • the metal films P1 and P2 use a heat-resistant material to withstand the heat treatment performed in the encapsulation process of the solar cell unit 200 and the mounting process of the secondary battery unit 300, which will be described later.
  • circuit board 100 may be implemented with various materials having heat resistance and flexible insulator properties.
  • the solar cell unit 200 is a module integrated on one surface of the circuit board 100 and may be formed at a position facing sunlight for power generation in the solar cell 220 .
  • the solar cell 220 according to the input conditions (voltage, current, etc.) by the characteristics (anode layer, electrolyte layer, cathode layer, etc.) of the secondary battery unit 300 formed on the opposite side of the circuit board 100 They may be connected in series or in parallel, and may be stacked on the pad parts 212 and 214 of the solar cell unit 200 to be described later through die bonding.
  • the solar cell unit 200 may include pad units 212 and 214 , a solar cell 220 , a first via hole 230 , and a second via hole 230 .
  • the pad parts 212 and 214 may include an anode pad 212 and a cathode pad 214 spaced apart from each other as a metal layer P1 formed on one surface of the circuit board 100 .
  • the positive electrode pad 212 and the negative electrode pad 214 may be formed by etching the metal film P1 formed on one surface of the circuit board 100 , and in this embodiment, a solar cell on the positive electrode pad 212 . 220 may be formed.
  • the positive electrode pad 212 and the negative electrode pad 214 formed on one surface of the circuit board 100 are first pad portions (“212a,” in FIGS. 3B and 3D) disposed on the inner side of the circuit board 100, respectively. 214a") and second pad parts extending from the first pad parts 212a and 214a and disposed on the outer side of the circuit board 100 (see “212b, 214b" in FIGS. 3B and 3D). .
  • the positive electrode pad 212 and the negative electrode pad 214 are microstrips from the first pad portions 212a and 214a and the first pad portions 212a and 214a disposed in the central portion of the circuit board 100 . It may include a second pad portion (refer to “212b' and 214b' in FIGS. 3B to 3D ) disposed on the outer portion of the circuit board 100 through a thinly etched connection portion such as a conductive wire.
  • the second pad part (see “212b'' and 214b'' in FIGS. 3B to 3D ) is not connected to the first pad parts 212a and 214a, but is disposed on the outer side of the circuit board 100 . They may be placed separately. In this case, the second pad portion 212b ′′ of the positive electrode pad 212 may have a via hole for connecting to the positive electrode pad 320 of the secondary battery unit 300 to be described later.
  • some of the second pad parts 212b and 214b may serve as terminals for circuit contacts for supplying power to an external electronic circuit.
  • the first via hole 230 is provided in the anode pad 212 formed on one surface of the circuit board 100 and may be formed through the anode pad 212 toward the circuit board 100 . Specifically, the second pad portion of the anode pad 212 . It may be provided in (212a). In this case, the first via hole 230 may communicate with the via hole 330 provided in the anode pad 320 formed on the other surface of the circuit board 100 to be described later.
  • the second via hole 240 is provided in the negative electrode pad 214 formed on one surface of the circuit board 100 , and may be formed through the circuit board 100 , and specifically, the first pad portion of the negative electrode pad 214 . It may be provided in (214a). In this case, the second via hole 240 may communicate with the via hole 340 provided in the anode layer 312 formed on the other surface of the circuit board 100 .
  • the inside of the first via hole 230 and the second via hole 240 may be sealed. Accordingly, when the respective via holes 230 and 240 are opened, the electrolyte provided in the secondary battery unit 300 formed on the other surface of the circuit board 100 is prevented from being lost, and moisture or oxygen is introduced into the vacuum cavity 311 . penetration can be prevented.
  • the secondary battery unit 300 is a module integrated on the other surface of the circuit board 100 and may be formed at a position opposite to the solar cell unit 200 integrated on one surface of the circuit board 100 . At this time, the secondary battery unit 300 may be charged by receiving power generated from the solar cell 220 of the solar cell unit 200 through a via hole penetrating the circuit board 100 , and in detail, the solar cell unit 300 .
  • the negative electrode pad 214 of the battery unit 200 and the anode layer 312 of the secondary battery unit 300 may transmit and receive solar power through the second via hole 240 .
  • the secondary battery unit 300 may include secondary battery units 312 , 314 , 316 , a positive electrode pad 320 , a first via hole 330 , and a second via hole 340 .
  • the secondary battery units 312 , 314 , and 316 may be implemented as the anode layer 312 , the electrolyte layer 314 , and the cathode layer 316 are sequentially formed on the other surface of the circuit board 100 .
  • the anode layer 312 may include an anode current collector 312a and an anode electrode 312b.
  • the anode current collector 312a may be formed by etching the metal film P2 formed on the other surface of the circuit board 100, and the anode electrode 312b is formed on one surface of the anode current collector 312a with graphite. It may be formed by applying an anode material such as
  • the electrolyte layer 314 is an electrolyte sheet that fills the space between the anode layer 312 and the cathode layer 316, and may electrically separate the anode layer 312 and the cathode layer 316 together with a gel polymer separator. .
  • the cathode layer 316 may include a cathode current collector 316a and a cathode electrode 316b.
  • a cathode electrode 316b may be formed on one surface of the cathode current collector 316a as a positive active material is applied, and the cathode current collector 316a on which the cathode electrode 316b is formed is formed on one side of the separator and electrolyte layer 314, that is, , may be formed at the bottom.
  • anode layer 312 and the cathode layer 316 may be electrically separated based on the separator and the electrolyte layer 314 .
  • the positive electrode pad 320 is a metal layer formed by etching the metal film P2 formed on the other surface of the circuit board 100 , and may be disposed to be spaced apart from the anode layer 312 of the secondary battery unit.
  • the positive electrode pad 320 extends from the first pad part (refer to “320a” in FIGS. 3E to 3H ) disposed on the inner part of the circuit board 100 and the first pad part 320a to the outer part of the circuit board 100 . It may include a second pad part (refer to “320b” in FIGS. 3E to 3H ) disposed on the .
  • the positive electrode pad 320 includes a first pad portion 320a disposed in the central portion of the circuit board 100 and a connection portion etched from the first pad portion 320a thinly like a microstrip wire. may include a second pad portion 320b disposed on the outer portion of the circuit board 100 through
  • the first via hole 330 is provided in the anode pad 320 formed on the other surface of the circuit board 100 and may be formed through the anode pad 320 toward the circuit board 100 . Specifically, the second pad portion of the anode pad 320 . It may be provided in (320b). In this case, the first via hole 330 may communicate with the via hole 230 provided in the anode pad 212 formed on one surface of the circuit board 100 .
  • the second via hole 340 is provided in the anode layer 312 formed on the other surface of the circuit board 100 , and may be formed through the circuit board 100 . In this case, the second via hole 340 may communicate with the via hole 240 provided in the negative electrode pad 214 formed on one surface of the circuit board 100 .
  • the first via holes 230 and 330 communicate with the positive electrode pad 212 of the solar cell unit 200 and the positive electrode pad 320 of the secondary battery unit 300 , and the second via holes 330 and 340 are connected to the solar cell unit 300 .
  • the negative electrode pad 214 of the branch 200 may communicate with the anode layer 312 of the secondary battery unit 300 . Accordingly, in the present invention, the device area can be minimized by directly connecting the electrodes of the battery formed on both sides of the circuit board 100 through each via hole passing through the circuit board 100 .
  • the cathode layer 316 may include a solder part 360 contacting one surface of the positive electrode pad 320 formed on the other surface of the circuit board 100 so that the secondary battery unit is electrically connectable. That is, the cathode layer 316 is connected to the anode pad 320 through the solder unit 360 , and the cathode pad ( ) of the solar cell unit 200 through the first via hole 330 provided in the cathode pad 320 . 320) by being connected to the electrical connection may be possible.
  • the present invention may be configured to further include a sealing unit for protecting each battery from the outside.
  • the solar cell unit 200 is formed to surround the pad portions 212 and 214 and the solar cell 220 and includes a first protective layer 252 and a first transparent material made of EVA, POE, or PVB.
  • a first sealing part laminated on the protective layer 252 and including a second protective layer 254 made of a transparent material made of PEN or PET may be further included.
  • the second protective layer 254 may have a structure in which a transparent polymer protective film 254a and a moisture blocking oxide film 254b are sequentially stacked.
  • the secondary battery unit 300 is formed along the periphery of the vacuum cavity 311 formed to surround the secondary battery unit, the vacuum cavity 311, the third of a transparent material composed of EVA, POE or PVB It may further include a second sealing part laminated on the protective layer 352 and the third protective layer 352 and including a fourth protective layer 354 made of a polymer or aluminum foil.
  • the fourth protective layer 354 may have a structure in which an aluminum foil protective layer 354a and a moisture blocking oxide film 354b are sequentially stacked.
  • the solar cell module and the secondary battery module are manufactured by sharing a flexible circuit board, the device area can be minimized, and an external load circuit can be manufactured together, so that the device area is reduced. It is possible to implement an electronic circuit in which a self-power supply is mounted.
  • independent charging by a solar cell and power storage by a secondary battery can be simultaneously made, thereby minimizing power loss due to connection with an external power source, and requiring constant or emergency operation It may be easily applicable to a wireless sensor module.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention, and FIGS. 3A to 3J are shown to sequentially explain the manufacturing method of FIG. It is a flat view.
  • an apparatus for manufacturing a self-charged composite battery using sunlight prepares a circuit board having metal layers P1 and P2 formed on both sides ( S10 ).
  • conductive copper films P1 and P2 may be attached to the upper and lower portions of the circuit board, and to withstand the degradation process performed during the sealing process of the solar cell unit 200 and the secondary battery unit 300 to be described later. It is preferable to use a polyimide sheet having heat resistance.
  • the apparatus for manufacturing a self-charged composite battery using sunlight etches the metal layer P1 formed on one surface of the circuit board 100 so that the positive electrode pad 212 is spaced apart from each other. And the pad parts 212 and 214 including the negative electrode pad 214 are formed (S20).
  • the anode pad 212 and the cathode pad 214 may be implemented by etching the copper film P1 formed on the polyimide sheet 100 .
  • the copper film P1 formed on the inner side of each circuit board 100 is etched to form the first pad portions 212a and 214a and the circuit board
  • the copper film P1 formed on the outer side of 100 may be etched to form second pad parts 212b' and 214b', and the first pad parts 212a and 214a and the second pad part 212b'
  • the copper film formed between 214b' may be etched in the form of microstrips to connect the first pad parts 212a and 214a and the second pad parts 212b' and 214b'.
  • second pad parts 212b'' and 214b'' may be additionally formed by separately etching the copper film P1 formed on the outer side of the circuit board 100 .
  • a first via hole 230 is formed in the second pad part 212b'' of the positive electrode pad 212 to penetrate toward the circuit board, and the negative electrode pad (
  • a second via hole 240 is formed in the first pad portion 214a of the 214 to penetrate toward the circuit board 100 (S30).
  • the solar cell 220 is attached to the positive electrode pad 212 by die-bonding, and separately
  • the negative electrode bus bar 222 provided on one side of the solar cell 220 and the negative electrode pad 214 disposed around the positive electrode pad 212 may be electrically connected by using the electrode lead 215 of Specifically, the solar cell 220 and the first pad portion 214a of the negative electrode pad 214 may be electrically connected.
  • the solar cell 220 of the 2X2 structure is implemented, and the two cells are respectively connected in parallel and then connected in series again.
  • the apparatus for manufacturing a self-charged composite battery using sunlight may form a first sealing part 250 for sealing the solar cell part.
  • a first protective layer made of a transparent material made of EVA, POE or PVB to surround the pad parts 212 and 214 formed on one surface of the circuit board 100 and the first via hole 230 and the second via hole 240 ( 252) and depositing a second protective layer 254 of a transparent material composed of PEN and PET on the first protective layer 252, and then at a temperature of about 140 to 160 degrees for about 10 to 20 minutes.
  • the first sealing part 250 may be formed by performing lamination by heat treatment during the process.
  • the apparatus for manufacturing a self-charged composite battery using sunlight etches the metal layer P2 formed on the other surface of the circuit board 100 so as to be spaced apart from each other by etching the anode layer. (312) and the anode pad 320 is formed (S40).
  • the anode layer 312 and the anode pad 320 may be implemented by etching the copper film P2 formed under the polyimide sheet 100 .
  • the anode layer 312 includes an anode current collector 312a and an anode electrode 312b, and the anode current collector 312a is first formed. Specifically, the copper film P2 formed under the circuit board 100 ) may be etched to form the anode current collector 312a.
  • the first pad part 320a is formed by etching the copper film P2 formed on the inner side of the circuit board 100 , and the copper formed on the outer side of the circuit board 100 .
  • the second pad portion 320b may be formed by etching the layer P2, and the first pad portion may be etched in a microstrip form by etching the copper film formed between the first pad portion 320a and the second pad portion 320b.
  • the 320a and the second pad part 320b may be connected to each other.
  • the anode layer 312 is disposed to be spaced apart from the anode pad 320 , and may be implemented by etching the copper film P2 around the inner side of the circuit board 100 in which the anode pad 320 is formed.
  • a first via hole 330 is formed in the second pad part 320b of the positive electrode pad 320 to penetrate toward the circuit board, and an anode layer 312 is formed.
  • a second via hole 340 is formed so as to penetrate toward the circuit board 100 (S50).
  • the first via hole 330 communicates with the positive electrode pad 212 of the solar cell unit 200 and the positive electrode pad 320 of the secondary battery unit 300
  • the second via hole 340 is the solar cell unit 200 .
  • the first via holes 230 and 330 and the second via holes 240 and 340 are preferably manufactured to be sealed inside.
  • the anode electrode 312b After forming the first via holes 230 and 330 and the second via holes 240 and 340 , as shown in FIG. 3G , as a negative electrode material such as graphite is applied on the anode current collector 312a, the anode electrode 312b ) can be formed.
  • a part of the copper film provided on the periphery of the anode layer 312 may be etched to form a vacuum cavity 311 , and the inside of the vacuum cavity 311 formed in this way is designated as a space for forming a secondary battery unit.
  • the apparatus for manufacturing a self-charged composite battery using sunlight sequentially stacks an electrolyte layer 314 and a cathode layer 316 on the anode layer 312 to form a secondary secondary battery.
  • a battery unit is formed (S60).
  • the electrolyte sheet laminated with the separator ( A cathode layer 316 may be stacked on the 314 .
  • the cathode layer 316 includes a cathode current collector 316a and a cathode electrode 316b, and after coating a cathode active material on an electrolyte sheet 314 stacked with a separator, a cathode current collector 316a of aluminum foil. By laminating, the cathode layer 316 can be formed.
  • soldering to one surface of the anode pad 320 formed on the other surface of the circuit board 100 may be included.
  • the cathode electrode 316b in order to electrically connect the cathode current collector 316a of the cathode layer 316 to the positive electrode pad 212 provided in the solar cell unit 200, the cathode electrode 316b.
  • soldering at a low temperature may be performed using an adhesive solder such as AuSn so that the cathode current collector 316a is stacked on the positive electrode pad 320 spaced apart from the secondary battery unit. Accordingly, as the positive electrode bonding point 360 is formed on the positive electrode pad 320 of the secondary battery unit 300 , the electrical connection between the secondary battery unit and the positive electrode pad 320 can be completed.
  • the apparatus for manufacturing a self-charged composite battery using sunlight may form a second sealing part 350 for sealing the secondary battery part 300 .
  • a third protective layer 352 of a transparent material composed of EVA, POE, or PVB is deposited along the periphery of the vacuum cavity 311 provided around the anode layer 312 , and the third protective layer 352 .
  • a fourth protective layer 354 made of a polymer or aluminum foil on it heat treatment at a temperature of about 140 to 160 degrees for about 10 to 20 minutes may form the second sealing part 350 . .
  • FIG. 4 is a graph showing the operating characteristics of the self-charged composite battery using sunlight according to an embodiment of the present invention.
  • the photocurrent generated by the current-voltage (I-V) characteristic of the solar cell is charged to the secondary battery, and the voltage value of the secondary battery increases as the charge progresses, and charging is stopped at the maximum allowable voltage value.
  • the maximum charging voltage may change according to the selection of the secondary battery electrode, and excessive charging may lead to fire and explosion of the device module.
  • the I-V characteristic curve of the solar cell may provide an advantage in the operation of the secondary battery.
  • the solar cell-secondary battery composite device can set an optimal operating point suitable for the intrinsic characteristics of the two devices.
  • the self-charging limiting function of the solar cell-secondary battery composite device provides the advantage of not only simplifying the configuration of the electronic circuit mounted together with the integrated power device, but also fundamentally blocking the risk factors caused by the instability of the charger.
  • Such a self-charging integrated power supply module can provide an optimal energy source to an IoT sensor module having high mobility in a remote location or an element module requiring constant power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A self-charging composite battery using solar light according to one embodiment of the present invention comprises: a flexible circuit board; and a solar cell unit and a secondary battery unit that share the circuit board as a shared layer, wherein the solar cell unit and the secondary battery unit are electrically connected to each other through a conductive via hole formed through the circuit board.

Description

태양광을 이용한 자가 충전 복합전지 및 그 제조 방법Self-charging composite battery using sunlight and manufacturing method therefor
본 발명은 태양광을 이용한 자가 충전 복합전지 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는 태양전지 및 이차전지의 모듈을 단일 공용 회로기판의 양면에 각각의 소자로 집적하는 태양광을 이용한 자가 충전 복합전지 및 그 제조 방법에 관한 것이다.The present invention relates to a self-charging composite battery using sunlight and a method for manufacturing the same, and more particularly, self-charging using sunlight that integrates solar cells and secondary battery modules as individual elements on both sides of a single common circuit board. It relates to a composite battery and a method for manufacturing the same.
현재 태양전지의 활용은 기존의 대규모 발전뿐만 아니라 건축물에 활용하거나 집적하는 건물일체형태양전지(Building Integrated Photo-Voltaics, BIPV), 에너지 하베스팅에 의한 사물인터넷(IOT) 소자의 무선 독립 에너지원 등으로 확장되고 있다.Currently, the use of solar cells is not only for large-scale power generation, but also for building integrated photo-voltaics (BIPV), which are used or integrated in buildings, and wireless independent energy sources for Internet of Things (IOT) devices by energy harvesting. is expanding
최근의 웨어러블 전자기기의 발전에 있어서, 전자소자가 전력 그리드와 떨어진 원격지에서도 기능을 할 수 있어야 하기 때문에 독립적인 전원 기능에 대한 집적화 기능이 중요해 지고 있다.In the recent development of wearable electronic devices, since an electronic device must be able to function even in a remote location away from the power grid, an integration function for an independent power supply function is becoming important.
이와 함께, 태양광 전력생산 소자인 태양전지 셀은 일반적인 딱딱한 평판형에서 굴곡 또는 꺾인 대상체에 적용 가능한 구부러질 수 있는 유연성을 확보하는 것이 필요하며, 에너지 저장소자인 이차전지 또한 플렉서블 기능이 강조되고 있는 추세이다.At the same time, the solar cell, which is a photovoltaic power generation device, needs to secure flexibility that can be applied to bent or bent objects in a general rigid flat plate type, and the secondary battery, which is an energy storage, is also a trend in which the flexible function is emphasized. am.
이에 따라, 에너지 제공을 수행하는 태양전지 및 에너지 저장을 수행하는 이차전지의 집적화 공간을 최소화하면서 플렉서블한 기능을 수행할 수 있는 복합전지의 개발이 필요한 실정이다.Accordingly, there is a need to develop a composite battery capable of performing a flexible function while minimizing the integration space of a solar cell providing energy and a secondary battery performing energy storage.
관련 선행기술로는 대한민국 공개특허공보 제10-2016-0062616호(발명의 명칭: 하이브리드 자가 충전 전지 및 이의 제조방법, 공개일자: 2016년 06월 02일)가 있다.As a related prior art, there is Republic of Korea Patent Publication No. 10-2016-0062616 (title of the invention: hybrid self-charging battery and manufacturing method thereof, publication date: June 02, 2016).
본 발명의 실시예에서는 플렉서블한 회로기판의 양면에 태양전지 모듈 및 이차전지 모듈을 집적화하되, 회로기판을 관통하는 비아홀을 통해 각 전지의 전극을 직접 연결함으로써 소자 면적을 최소화할 수 있는 태양광을 이용한 자가 충전 복합전지 및 그 제조 방법을 제공한다.In an embodiment of the present invention, a solar cell module and a secondary battery module are integrated on both sides of a flexible circuit board, and the electrode of each cell is directly connected through a via hole penetrating the circuit board, thereby minimizing the device area. Provided are a self-charged composite battery using the same and a manufacturing method thereof.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem(s) mentioned above, and another problem(s) not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지는 플렉서블한 회로기판과, 상기 회로기판을 공유층으로 공유하는 태양전지부 및 이차전지부를 포함하고, 상기 태양전지부와 상기 이차전지부는 상기 회로기판에 관통 형성되는 전도성의 비아홀을 통해 전기적으로 상호 연결된다.A self-charged composite battery using sunlight according to an embodiment of the present invention includes a flexible circuit board, a solar cell unit and a secondary cell unit sharing the circuit board as a common layer, the solar cell unit and the secondary battery The parts are electrically interconnected through conductive via holes formed through the circuit board.
또한, 본 발명의 일 실시예에 따른 상기 회로기판은 플렉서블한 폴리이미드(polyimide) 시트일 수 있다.In addition, the circuit board according to an embodiment of the present invention may be a flexible polyimide sheet.
또한, 본 발명의 일 실시예에 따른 상기 태양전지부는 상기 회로기판의 일면에 형성되는 금속층으로서 서로 이격되게 배치되는 양극패드와 음극패드를 포함하는 패드부, 상기 패드부 상에 형성되는 태양전지셀, 상기 양극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제1 비아홀 및 상기 음극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제2 비아홀을 포함할 수 있다.In addition, the solar cell unit according to an embodiment of the present invention is a metal layer formed on one surface of the circuit board, and includes a pad unit including a positive electrode pad and a negative electrode pad spaced apart from each other, and a solar cell formed on the pad unit. , a first via hole provided in the anode pad and penetrating toward the circuit board, and a second via hole provided in the cathode pad and penetrating toward the circuit board.
또한, 본 발명의 일 실시예에 따른 상기 양극패드 및 상기 음극패드는 각각In addition, the positive electrode pad and the negative electrode pad according to an embodiment of the present invention are each
상기 회로기판의 내측부에 배치되는 제1 패드부와 상기 제1 패드부로부터 연장되어 상기 회로기판의 외측부에 배치되는 제2 패드부를 포함하며, 상기 제1 비아홀은 상기 양극패드에 구비되는 상기 제2 패드부에 관통 형성되고, 제2 비아홀은 상기 음극패드에 구비되는 상기 제1 패드부에 관통 형성될 수 있다.a first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board, wherein the first via hole is provided in the anode pad The pad portion may be formed through, and the second via hole may be formed through the first pad portion provided in the negative electrode pad.
또한, 본 발명의 일 실시예에 따른 상기 이차전지부는 상기 회로기판의 타면에 애노드층, 전해질층 및 캐소드층이 순차적으로 형성되는 이차전지 유닛, 상기 회로기판의 타면에 형성되며 상기 이차전지 유닛과 이격되게 배치되는 양극패드, 상기 양극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제1 비아홀 및 상기 애노드층에 구비되며 상기 회로기판을 향하여 관통 형성되는 제2 비아홀을 포함할 수 있다.In addition, the secondary battery unit according to an embodiment of the present invention is a secondary battery unit in which an anode layer, an electrolyte layer and a cathode layer are sequentially formed on the other surface of the circuit board, is formed on the other surface of the circuit board, and the secondary battery unit and It may include an anode pad disposed to be spaced apart, a first via hole provided in the anode pad and penetrating toward the circuit board, and a second via hole provided in the anode layer and penetrating toward the circuit board.
또한, 본 발명의 일 실시예에 따른 상기 양극패드는 상기 회로기판의 내측부에 배치되는 제1 패드부와 상기 제1 패드부로부터 연장되어 상기 회로기판의 외측부에 배치되는 제2 패드부를 포함하며, 상기 제1 비아홀은 상기 양극패드에 구비되는 상기 제2 패드부에 관통 형성될 수 있다.In addition, the positive electrode pad according to an embodiment of the present invention includes a first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board, The first via hole may be formed through the second pad portion provided in the positive electrode pad.
또한, 본 발명의 일 실시예에 따른 상기 제1 비아홀은 상기 태양전지부 및 상기 이차전지부의 양극패드를 연통하고, 상기 제2 비아홀은 상기 태양전지부의 음극패드 및 상기 이차전지부의 애노드층을 연통할 수 있다.In addition, the first via hole according to an embodiment of the present invention communicates with the positive electrode pad of the solar cell unit and the secondary battery unit, and the second via hole is the negative electrode pad of the solar cell unit and the anode of the secondary battery unit. layers can be communicated.
또한, 본 발명의 일 실시예에 따른 상기 캐소드층은 상기 이차전지 유닛이 전기적으로 연결 가능하도록 상기 양극패드의 일면과 접촉되는 솔더부를 포함할 수 있다.In addition, the cathode layer according to an embodiment of the present invention may include a solder portion in contact with one surface of the positive electrode pad so that the secondary battery unit is electrically connectable.
또한, 본 발명의 일 실시예에 따른 상기 태양전지부는 상기 패드부 및 상기 태양전지셀을 둘러싸도록 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층 및 상기 제1 보호층에 적층되며 PEN, PET로 구성되는 투명한 재질의 제2 보호층을 포함하는 제1 밀봉부를 더 포함할 수 있다.In addition, the solar cell part according to an embodiment of the present invention is formed to surround the pad part and the solar cell, and is laminated on the first protective layer and a transparent first protective layer made of EVA, POE or PVB. and may further include a first sealing unit including a second protective layer made of a transparent material made of PEN and PET.
또한, 본 발명의 일 실시예에 따른 상기 이차전지부는 상기 이차전지 유닛을 둘러싸도록 형성되는 진공 캐비티, 상기 진공 캐비티의 둘레를 따라 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층 및 상기 제3 보호층에 적층되며 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층을 포함하는 제2 밀봉부를 더 포함할 수 있다.In addition, the secondary battery unit according to an embodiment of the present invention is a vacuum cavity formed to surround the secondary battery unit, a third protective layer of a transparent material formed along the circumference of the vacuum cavity and made of EVA, POE or PVB and a second sealing part laminated on the third protective layer and including a fourth protective layer made of a polymer or aluminum foil.
본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법은 플렉서블한 회로기판과, 상기 회로기판을 공유층으로 공유하는 태양전지부 및 이차전지부를 포함하는 자가 충전 복합전지의 제조 방법에 있어서, 양면에 금속층이 형성된 회로기판을 준비하는 단계, 상기 회로기판의 일면에 형성된 금속층을 에칭하여 서로 이격되게 배치되도록 양극패드 및 음극패드를 포함하는 패드부를 형성하는 단계, 상기 양극패드에 상기 회로기판을 향하여 관통하도록 제1 비아홀을 형성하고 상기 음극패드에 상기 회로기판을 향하여 관통하도록 제2 비아홀을 형성하는 단계, 상기 회로기판의 타면에 형성된 금속층을 에칭하여 서로 이격되게 배치되도록 애노드층 및 양극패드를 형성하는 단계, 상기 양극패드에 상기 회로기판을 향하여 관통하도록 제1 비아홀을 형성하고, 상기 애노드층에 상기 회로기판을 향하여 관통하도록 제2 비아홀을 형성하는 단계 및 상기 애노드층 상에 전해질층과 캐소드층을 순차적으로 적층하여 이차전지 유닛을 형성하는 단계를 포함한다.A method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention is a manufacturing method of a self-charged composite battery including a flexible circuit board, a solar cell part and a secondary battery part sharing the circuit board as a common layer In the method, preparing a circuit board having a metal layer formed on both sides, etching the metal layer formed on one surface of the circuit board to form a pad portion including an anode pad and a cathode pad so as to be spaced apart from each other, on the anode pad forming a first via hole to penetrate toward the circuit board and forming a second via hole in the cathode pad to penetrate toward the circuit board; etching the metal layer formed on the other surface of the circuit board to form an anode layer to be spaced apart from each other and forming an anode pad, forming a first via hole in the anode pad to penetrate toward the circuit board, and forming a second via hole in the anode layer to pass through toward the circuit board, and on the anode layer and sequentially stacking an electrolyte layer and a cathode layer to form a secondary battery unit.
또한, 본 발명의 일 실시예에 따른 상기 제1 비아홀은 상기 회로기판의 일면에 형성된 양극패드 및 상기 회로기판의 타면에 형성된 양극패드를 연통하고, 상기 제2 비아홀은 상기 회로기판의 일면에 형성된 음극패드 및 상기 애노드층을 연통할 수 있다.In addition, the first via hole according to an embodiment of the present invention communicates with the anode pad formed on one surface of the circuit board and the anode pad formed on the other surface of the circuit board, and the second via hole is formed on one surface of the circuit board. The negative electrode pad and the anode layer may be in communication.
또한, 본 발명의 일 실시예에 따른 상기 이차전지 유닛을 형성하는 단계는In addition, the step of forming the secondary battery unit according to an embodiment of the present invention
상기 캐소드층을 적층 시, 상기 회로기판의 타면에 형성된 양극패드의 일면과 솔더링하는 단계를 포함할 수 있다.When laminating the cathode layer, the method may include soldering to one surface of the positive electrode pad formed on the other surface of the circuit board.
또한, 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법은 상기 회로기판의 일면에 형성된 패드부, 상기 제1 비아홀 및 상기 제2 비아홀을 둘러싸도록 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층을 형성하는 단계 및 상기 제1 보호층 상에 PEN, PET로 구성되는 투명한 재질의 제2 보호층을 형성하는 단계를 더 포함할 수 있다.In addition, in the method for manufacturing a self-charging composite battery using sunlight according to an embodiment of the present invention, EVA, POE or PVB is used to surround the pad part formed on one surface of the circuit board, the first via hole, and the second via hole. The method may further include forming a first protective layer made of a transparent material and forming a second protective layer made of a transparent material made of PEN and PET on the first protective layer.
또한, 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법은 상기 애노드층의 둘레 일부를 식각하여 진공 캐비티를 형성하는 단계를 더 포함하고, 상기 이차전지 유닛을 형성하는 단계 이후에, 상기 진공 캐비티의 둘레를 따라 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층을 형성하는 단계 및 상기 제3 보호층 상에 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층을 형성하는 단계를 더 포함할 수 있다.In addition, the method for manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention further comprises the step of forming a vacuum cavity by etching a portion of the periphery of the anode layer, forming the secondary battery unit Thereafter, forming a third protective layer made of a transparent material made of EVA, POE or PVB along the periphery of the vacuum cavity, and forming a fourth protective layer made of a polymer or aluminum foil on the third protective layer It may further include the step of
기타 실시예들의 구체적인 사항들은 상세한 설명 및 첨부 도면들에 포함되어 있다.The details of other embodiments are included in the detailed description and accompanying drawings.
본 발명의 실시예들에 따르면, 태양전지 모듈 및 이차전지 모듈이 플렉서블한 회로기판을 공유하여 제작되기 때문에 소자 면적을 최소화할 수 있으며, 외부의 부하회로가 함께 제작될 수 있어 소자 면적에 자가 전원이 실장된 전자회로를 구현할 수 있다.According to the embodiments of the present invention, since the solar cell module and the secondary battery module are manufactured by sharing a flexible circuit board, the device area can be minimized, and an external load circuit can be manufactured together, so that the device area is self-powered. This mounted electronic circuit can be implemented.
또한, 본 발명의 실시예들에 따르면, 태양전지에 의한 독립충전과 이차전지에 의한 전력저장이 동시에 이루어질 수 있어 외부 전원과의 연결에 의한 전력손실을 최소화할 수 있으며, 상시 또는 비상시 운영이 필요한 무선 센서 모듈에 용이하게 적용 가능할 수 있다.In addition, according to the embodiments of the present invention, independent charging by a solar cell and power storage by a secondary battery can be simultaneously made, thereby minimizing power loss due to connection with an external power source, and requiring constant or emergency operation It may be easily applicable to a wireless sensor module.
도 1은 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지를 설명하기 위해 도시한 단면도이다.1 is a cross-sectional view illustrating a self-charging composite battery using sunlight according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법을 설명하기 위해 도시한 흐름도이다.2 is a flowchart illustrating a method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention.
도 3a 내지 도 3j는 도 2의 제조 방법을 순차적으로 설명하기 위해 도시한 평면도이다.3A to 3J are plan views for sequentially explaining the manufacturing method of FIG. 2 .
도 4는 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 동작 특성을 나타내는 그래프이다.4 is a graph showing the operating characteristics of the self-charged composite battery using sunlight according to an embodiment of the present invention.
*도면 중 주요 부호에 대한 설명*Description of major symbols in the drawing
1 : 태양광을 이용한 자가 충전 복합전지1: Self-charging composite battery using sunlight
100 : 회로기판100: circuit board
200 : 태양전지부200: solar cell unit
212 : 태양전지부의 양극패드212: positive electrode pad of the solar cell part
212a : 양극패드(태양전지부)의 제1 패드부212a: the first pad part of the positive electrode pad (solar cell part)
212b(212b', 212b'') : 양극패드(태양전지부)의 제2 패드부212b (212b', 212b''): the second pad part of the positive electrode pad (solar cell part)
214a : 음극패드의 제1 패드부214a: first pad portion of the negative electrode pad
214b(214b', 214b'') : 음극패드의 제2 패드부214b (214b', 214b''): second pad portion of the negative electrode pad
220 : 태양전지셀220: solar cell
230,330 : 제1 비아홀230,330: first via hole
240,340 : 제2 비아홀240,340: second via hole
250 : 제1 밀봉부250: first sealing part
252 : 제1 보호층252: first protective layer
254 : 제2 보호층254: second protective layer
254a : 폴리머 보호막254a: polymer protective film
254b : 수분차단 산화막254b: moisture barrier oxide film
300 : 이차전지부300: secondary battery unit
311 : 진공 캐비티311: vacuum cavity
312 : 애노드층312: anode layer
312a : 애노드 집전체312a: anode current collector
312b : 애노드 전극312b: anode electrode
314 : 전해질층314: electrolyte layer
316 : 캐소드층316: cathode layer
316a : 캐소드 집전체316a: cathode current collector
316b : 캐소드 전극316b: cathode electrode
320 : 이차전지부의 양극패드320: positive electrode pad of the secondary battery part
320a : 양극패드(이차전지부)의 제1 패드부320a: the first pad part of the positive electrode pad (secondary battery part)
320b : 양극패드(이차전지부)의 제2 패드부320b: the second pad part of the positive electrode pad (secondary battery part)
350 : 제1 밀봉부350: first sealing part
352 : 제3 보호층352: third protective layer
354 : 제4 보호층354: fourth protective layer
354a : 수분차단 산화막354a: moisture barrier oxide film
354b : 알루미늄 보호막354b: aluminum protective film
360 : 솔더부360: solder part
P1, P2 : 금속막P1, P2: metal film
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and/or features of the present invention, and methods of achieving them, will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
본 발명의 복합전지는 태양전지 모듈과 이차전지 모듈을 단일 몸체의 소자로서 집적하는 자가 충전 복합전지에 해당한다. 구체적으로, 플렉서블(flexible)한 공통의 회로기판을 평면 플랫폼으로 이용하여 회로기판을 관통하는 비아홀을 통해 양면에 태양전지 모듈과 이차전지 모듈을 집적한 융합모듈을 제작함에 따라, 각 모듈의 소자 면적(foot print)을 대폭적으로 최소화할 수 있다.The composite battery of the present invention corresponds to a self-charging composite battery that integrates a solar cell module and a secondary battery module as an element of a single body. Specifically, by using a common flexible circuit board as a flat platform to fabricate a fusion module that integrates a solar cell module and a secondary cell module on both sides through a via hole penetrating the circuit board, the device area of each module (foot print) can be significantly minimized.
이를 통해, 태양전지 모듈에서 생산된 광전류를 비아홀을 통해 반대편에 위치한 이차전지 모듈로 전기적 전달하여 충전되도록 할 수 있다. 이로써, 외부의 전원을 필요로 하지 않는 자가 충전 집적회로(energy-integrated circuit)를 구현할 수 있게 되는 것이다. 특히, 이차전지의 외부 전력 연결 수단인 전극 리드탭을 사용하지 않고도 임의의 집적형 전자회로와 융합 가능하도록 할 수 있어, 전기적 상호연결에 의한 전력손실을 최소화할 수 있는 장점이 있다.Through this, it is possible to electrically transfer the photocurrent produced by the solar cell module to the secondary battery module located on the opposite side through the via hole to be charged. Accordingly, it is possible to implement a self-charging integrated circuit (energy-integrated circuit) that does not require an external power source. In particular, since it can be fused with any integrated electronic circuit without using an electrode lead tab, which is an external power connection means of the secondary battery, there is an advantage in that power loss due to electrical interconnection can be minimized.
상기와 같은 특징을 가지는 본 발명의 복합전지에 관한 구체적인 설명은 아래에서 후술한다.A detailed description of the composite battery of the present invention having the above characteristics will be described below.
도 1은 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지를 설명하기 위해 도시한 단면도이다.1 is a cross-sectional view illustrating a self-charging composite battery using sunlight according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지(1)는 플렉서블한 회로기판(100)과, 상기 회로기판(100)을 공유층으로 공유하는 태양전지부(200) 및 이차전지부(300)를 포함하여 구성될 수 있다.Referring to FIG. 1 , a self-charged composite battery 1 using sunlight according to an embodiment of the present invention includes a flexible circuit board 100 and a solar cell unit sharing the circuit board 100 as a common layer. 200 and the secondary battery unit 300 may be included.
이때, 태양전지부(200)와 이차전지부(300)는 회로기판(100)에 관통 형성되는 전도성의 비아홀을 통해 전기적으로 상호 연결될 수 있다.In this case, the solar cell unit 200 and the secondary battery unit 300 may be electrically interconnected through a conductive via hole formed through the circuit board 100 .
이에 따라, 본 발명의 복합전지(1)는 단일의 회로기판(100)을 공통된 몸체로 활용하여 기판(100)의 양면에 태양전지부(200) 및 이차전지부(300)를 각각 집적한 융합모듈로서 구현될 수 있다.Accordingly, the composite battery 1 of the present invention utilizes a single circuit board 100 as a common body to integrate the solar cell unit 200 and the secondary battery unit 300 on both sides of the substrate 100, respectively. It can be implemented as a module.
회로기판(100)의 양면에는 구리와 같은 전도성의 금속막(P1,P2)이 형성될 수 있다. 금속막(P1,P2)은 후술하는 태양전지부(200)의 패드부(212,214) 및 이차전지부(300)의 애노드층(312)과 양극패드(320)를 형성하도록 전기회로를 식각하기 위한 대상체로서 부도체로 구현되는 것이 바람직하다. 일 실시예로, 회로기판(100)은 플렉서블한 폴리이미드(polyimide) 시트일 수 있다. Conductive metal films P1 and P2 such as copper may be formed on both surfaces of the circuit board 100 . The metal films P1 and P2 are for etching the electric circuit to form the pad parts 212 and 214 of the solar cell part 200 and the anode layer 312 and the anode pad 320 of the secondary battery part 300 to be described later. It is preferably implemented as an insulator as an object. In one embodiment, the circuit board 100 may be a flexible polyimide sheet.
참고로, 금속막(P1,P2)은 후술하는 태양전지부(200)의 봉지공정과 이차전지부(300)의 실장공정에서 수행되는 열처리 작업에 견딜 수 있도록 내열성 소재를 사용하는 것이 바람직하다.For reference, it is preferable that the metal films P1 and P2 use a heat-resistant material to withstand the heat treatment performed in the encapsulation process of the solar cell unit 200 and the mounting process of the secondary battery unit 300, which will be described later.
그러나, 이에 제한되지 않고 회로기판(100)은 내열성을 가지며 플렉서블한 부도체 성격의 다양한 소재로 구현될 수 있다.However, the present invention is not limited thereto, and the circuit board 100 may be implemented with various materials having heat resistance and flexible insulator properties.
태양전지부(200)는 회로기판(100)의 일면에 집적되는 모듈로서 태양전지셀(220)에서의 전력 생산을 위해 햇빛을 향하는 위치에 형성될 수 있다. 여기서, 태양전지셀(220)은 회로기판(100)의 반대편에 형성되는 이차전지부(300)의 특성(애노드층, 전해질층, 캐소드층 등)에 의한 입력 조건(전압, 전류 등)에 따라 직렬 또는 병렬 연결될 수 있으며, 후술하는 태양전지부(200)의 패드부(212,214) 상에 다이본딩을 통해 적층될 수 있다.The solar cell unit 200 is a module integrated on one surface of the circuit board 100 and may be formed at a position facing sunlight for power generation in the solar cell 220 . Here, the solar cell 220 according to the input conditions (voltage, current, etc.) by the characteristics (anode layer, electrolyte layer, cathode layer, etc.) of the secondary battery unit 300 formed on the opposite side of the circuit board 100 They may be connected in series or in parallel, and may be stacked on the pad parts 212 and 214 of the solar cell unit 200 to be described later through die bonding.
구체적으로, 태양전지부(200)는 패드부(212,214), 태양전지셀(220), 제1 비아홀(230) 및 제2 비아홀(230)을 포함하여 구성될 수 있다.Specifically, the solar cell unit 200 may include pad units 212 and 214 , a solar cell 220 , a first via hole 230 , and a second via hole 230 .
패드부(212,214)는 회로기판(100)의 일면에 형성되는 금속층(P1)으로서 서로 이격되게 배치되는 양극패드(212)와 음극패드(214)를 포함할 수 있다. 양극패드(212) 및 음극패드(214)는 회로기판(100)의 일면에 형성되는 금속막(P1)을 에칭함에 따라 형성될 수 있으며, 본 실시예에서는 양극패드(212) 상에 태양전지셀(220)이 형성될 수 있다.The pad parts 212 and 214 may include an anode pad 212 and a cathode pad 214 spaced apart from each other as a metal layer P1 formed on one surface of the circuit board 100 . The positive electrode pad 212 and the negative electrode pad 214 may be formed by etching the metal film P1 formed on one surface of the circuit board 100 , and in this embodiment, a solar cell on the positive electrode pad 212 . 220 may be formed.
구체적으로, 회로기판(100)의 일면에 형성되는 양극패드(212) 및 음극패드(214)는 각각 회로기판(100)의 내측부에 배치되는 제1 패드부(도 3b 및 도 3d의 "212a, 214a" 참조)와 제1 패드부(212a, 214a)로부터 연장되어 회로기판(100)의 외측부에 배치되는 제2 패드부(도 3b 및 도 3d의 "212b, 214b" 참조)를 포함할 수 있다. Specifically, the positive electrode pad 212 and the negative electrode pad 214 formed on one surface of the circuit board 100 are first pad portions (“212a,” in FIGS. 3B and 3D) disposed on the inner side of the circuit board 100, respectively. 214a") and second pad parts extending from the first pad parts 212a and 214a and disposed on the outer side of the circuit board 100 (see "212b, 214b" in FIGS. 3B and 3D). .
일 실시예로, 양극패드(212) 및 음극패드(214)는 회로기판(100)의 중앙 부분에 배치되는 제1 패드부(212a, 214a)와 제1 패드부(212a, 214a)로부터 마이크로스트립 도선과 같이 가느다랗게 에칭된 연결 부분을 통해 회로기판(100)의 바깥 부분에 배치되는 제2 패드부(도 3b 내지 도 3d의 "212b', 214b'" 참조)를 포함할 수 있다. In one embodiment, the positive electrode pad 212 and the negative electrode pad 214 are microstrips from the first pad portions 212a and 214a and the first pad portions 212a and 214a disposed in the central portion of the circuit board 100 . It may include a second pad portion (refer to “212b' and 214b' in FIGS. 3B to 3D ) disposed on the outer portion of the circuit board 100 through a thinly etched connection portion such as a conductive wire.
다른 실시예로, 제2 패드부(도 3b 내지 도 3d의 "212b'', 214b''" 참조)는 제1 패드부(212a, 214a)와 연결되지 않고, 회로기판(100)의 외측부에 별도로 배치될 수 있다. 이때, 양극패드(212)의 제2 패드부(212b'')에는 후술하는 이차전지부(300)의 양극패드(320)와 연결되기 위한 비아홀이 구비될 수 있다.In another embodiment, the second pad part (see "212b'' and 214b'' in FIGS. 3B to 3D ) is not connected to the first pad parts 212a and 214a, but is disposed on the outer side of the circuit board 100 . They may be placed separately. In this case, the second pad portion 212b ″ of the positive electrode pad 212 may have a via hole for connecting to the positive electrode pad 320 of the secondary battery unit 300 to be described later.
참고로, 제2 패드부(212b, 214b) 중 일부는 외부의 전자회로에 전원을 공급하는 회로 컨텍용으로서 터미널 역할을 수행할 수 있다.For reference, some of the second pad parts 212b and 214b may serve as terminals for circuit contacts for supplying power to an external electronic circuit.
제1 비아홀(230)은 회로기판(100)의 일면에 형성되는 양극패드(212)에 구비되되 회로기판(100)을 향하여 관통 형성될 수 있으며 구체적으로, 양극패드(212)의 제2 패드부(212a)에 구비될 수 있다. 이때, 제1 비아홀(230)은 후술하는 회로기판(100)의 타면에 형성되는 양극패드(320)에 구비된 비아홀(330)과 연통될 수 있다.The first via hole 230 is provided in the anode pad 212 formed on one surface of the circuit board 100 and may be formed through the anode pad 212 toward the circuit board 100 . Specifically, the second pad portion of the anode pad 212 . It may be provided in (212a). In this case, the first via hole 230 may communicate with the via hole 330 provided in the anode pad 320 formed on the other surface of the circuit board 100 to be described later.
제2 비아홀(240)은 회로기판(100)의 일면에 형성되는 음극패드(214)에 구비되되 회로기판(100)을 향하여 관통 형성될 수 있으며 구체적으로, 음극패드(214)의 제1 패드부(214a)에 구비될 수 있다. 이때, 제2 비아홀(240)은 회로기판(100)의 타면에 형성되는 애노드층(312)에 구비된 비아홀(340)과 연통될 수 있다.The second via hole 240 is provided in the negative electrode pad 214 formed on one surface of the circuit board 100 , and may be formed through the circuit board 100 , and specifically, the first pad portion of the negative electrode pad 214 . It may be provided in (214a). In this case, the second via hole 240 may communicate with the via hole 340 provided in the anode layer 312 formed on the other surface of the circuit board 100 .
제1 비아홀(230) 및 제2 비아홀(240)은 내부가 밀봉될 수 있다. 이에 따라, 각 비아홀(230,240)이 개방되는 경우, 회로기판(100)의 타면에 형성되는 이차전지부(300)에 구비된 전해질이 유실되는 것을 예방하고 진공 캐비티(311) 내로 수분 또는 산소 등이 침투되는 것을 방지하도록 할 수 있다.The inside of the first via hole 230 and the second via hole 240 may be sealed. Accordingly, when the respective via holes 230 and 240 are opened, the electrolyte provided in the secondary battery unit 300 formed on the other surface of the circuit board 100 is prevented from being lost, and moisture or oxygen is introduced into the vacuum cavity 311 . penetration can be prevented.
이차전지부(300)는 회로기판(100)의 타면에 집적되는 모듈로서 회로기판(100)의 일면에 집적되는 태양전지부(200)와 대향되는 위치에 형성될 수 있다. 이때, 이차전지부(300)는 회로기판(100)을 관통하는 비아홀을 통해 태양전지부(200)의 태양전지셀(220)에서 생산된 전력을 전달받아 충전될 수 있으며, 상세하게는, 태양전지부(200)의 음극패드(214)와 이차전지부(300)의 애노드층(312)이 제2 비아홀(240)을 통해 태양광 전력을 주고받을 수 있다. The secondary battery unit 300 is a module integrated on the other surface of the circuit board 100 and may be formed at a position opposite to the solar cell unit 200 integrated on one surface of the circuit board 100 . At this time, the secondary battery unit 300 may be charged by receiving power generated from the solar cell 220 of the solar cell unit 200 through a via hole penetrating the circuit board 100 , and in detail, the solar cell unit 300 . The negative electrode pad 214 of the battery unit 200 and the anode layer 312 of the secondary battery unit 300 may transmit and receive solar power through the second via hole 240 .
구체적으로, 이차전지부(300)는 이차전지 유닛(312,314,316), 양극패드(320), 제1 비아홀(330) 및 제2 비아홀(340)을 포함하여 구성될 수 있다.Specifically, the secondary battery unit 300 may include secondary battery units 312 , 314 , 316 , a positive electrode pad 320 , a first via hole 330 , and a second via hole 340 .
이차전지 유닛(312,314,316)은 회로기판(100)의 타면에 애노드층(312), 전해질층(314) 및 캐소드층(316)이 순차적으로 형성됨에 따라 구현될 수 있다.The secondary battery units 312 , 314 , and 316 may be implemented as the anode layer 312 , the electrolyte layer 314 , and the cathode layer 316 are sequentially formed on the other surface of the circuit board 100 .
애노드층(312)은 애노드 집전체(312a)와 애노드 전극(312b)을 포함할 수 있다. 애노드 집전체(312a)는 회로기판(100)의 타면에 형성되는 금속막(P2)을 에칭함에 따라 형성될 수 있으며, 애노드 전극(312b)은 애노드 집전체(312a)의 일면에 그래파이트(Graphite)와 같은 음극 소재를 도포함에 따라 형성될 수 있다.The anode layer 312 may include an anode current collector 312a and an anode electrode 312b. The anode current collector 312a may be formed by etching the metal film P2 formed on the other surface of the circuit board 100, and the anode electrode 312b is formed on one surface of the anode current collector 312a with graphite. It may be formed by applying an anode material such as
전해질층(314)은 애노드층(312) 및 캐소드층(316) 사이의 공간을 채우는 전해질 시트로서, 겔 폴리머의 분리막과 함께 애노드층(312)과 캐소드층(316)을 전기적으로 분리시킬 수 있다.The electrolyte layer 314 is an electrolyte sheet that fills the space between the anode layer 312 and the cathode layer 316, and may electrically separate the anode layer 312 and the cathode layer 316 together with a gel polymer separator. .
캐소드층(316)은 캐소드 집전체(316a)와 캐노드 전극(316b)을 포함할 수 있다. 캐소드 집전체(316a)의 일면에는 양극 활물질을 도포함에 따라 캐소드 전극(316b)이 형성될 수 있으며, 캐소드 전극(316b)이 형성된 캐소드 집전체(316a)가 분리막 및 전해질층(314)의 일면 즉, 하부에 형성될 수 있다.The cathode layer 316 may include a cathode current collector 316a and a cathode electrode 316b. A cathode electrode 316b may be formed on one surface of the cathode current collector 316a as a positive active material is applied, and the cathode current collector 316a on which the cathode electrode 316b is formed is formed on one side of the separator and electrolyte layer 314, that is, , may be formed at the bottom.
이에 따라, 분리막 및 전해질층(314)을 기준으로 애노드층(312)과 캐소드층(316)은 전기적으로 분리되어 구현될 수 있다.Accordingly, the anode layer 312 and the cathode layer 316 may be electrically separated based on the separator and the electrolyte layer 314 .
양극패드(320)는 회로기판(100)의 타면에 형성되는 금속막(P2)을 에칭함에 따라 형성되는 금속층으로서 이차전지 유닛의 애노드층(312)과 서로 이격되게 배치될 수 있다.The positive electrode pad 320 is a metal layer formed by etching the metal film P2 formed on the other surface of the circuit board 100 , and may be disposed to be spaced apart from the anode layer 312 of the secondary battery unit.
양극패드(320)는 회로기판(100)의 내측부에 배치되는 제1 패드부(도 3e 내지 도 3h의 "320a" 참조)와 제1 패드부(320a)로부터 연장되어 회로기판(100)의 외측부에 배치되는 제2 패드부(도 3e 내지 도 3h의 "320b" 참조)를 포함할 수 있다.The positive electrode pad 320 extends from the first pad part (refer to “320a” in FIGS. 3E to 3H ) disposed on the inner part of the circuit board 100 and the first pad part 320a to the outer part of the circuit board 100 . It may include a second pad part (refer to “320b” in FIGS. 3E to 3H ) disposed on the .
일 실시예로, 양극패드(320)는 회로기판(100)의 중앙 부분에 배치되는 제1 패드부(320a)와 제1 패드부(320a)로부터 마이크로스트립 도선과 같이 가느다랗게 에칭된 연결 부분을 통해 회로기판(100)의 바깥 부분에 배치되는 제2 패드부(320b)를 포함할 수 있다In an embodiment, the positive electrode pad 320 includes a first pad portion 320a disposed in the central portion of the circuit board 100 and a connection portion etched from the first pad portion 320a thinly like a microstrip wire. may include a second pad portion 320b disposed on the outer portion of the circuit board 100 through
제1 비아홀(330)은 회로기판(100)의 타면에 형성되는 양극패드(320)에 구비되되 회로기판(100)을 향하여 관통 형성될 수 있으며 구체적으로, 양극패드(320)의 제2 패드부(320b)에 구비될 수 있다. 이때, 제1 비아홀(330)은 회로기판(100)의 일면에 형성되는 양극패드(212)에 구비된 비아홀(230)과 연통될 수 있다.The first via hole 330 is provided in the anode pad 320 formed on the other surface of the circuit board 100 and may be formed through the anode pad 320 toward the circuit board 100 . Specifically, the second pad portion of the anode pad 320 . It may be provided in (320b). In this case, the first via hole 330 may communicate with the via hole 230 provided in the anode pad 212 formed on one surface of the circuit board 100 .
제2 비아홀(340)은 회로기판(100)의 타면에 형성되는 애노드층(312)에 구비되되 회로기판(100)을 향하여 관통 형성될 수 있다. 이때, 제2 비아홀(340)은 회로기판(100)의 일면에 형성되는 음극패드(214)에 구비된 비아홀(240)과 연통될 수 있다.The second via hole 340 is provided in the anode layer 312 formed on the other surface of the circuit board 100 , and may be formed through the circuit board 100 . In this case, the second via hole 340 may communicate with the via hole 240 provided in the negative electrode pad 214 formed on one surface of the circuit board 100 .
이러한 구조에 의해, 제1 비아홀(230,330)은 태양전지부(200)의 양극패드(212) 및 이차전지부(300)의 양극패드(320)를 연통하고, 제2 비아홀(330,340)은 태양전지부(200)의 음극패드(214) 및 이차전지부(300)의 애노드층(312)을 연통할 수 있다. 이로써, 본 발명에서는 회로기판(100)을 관통하는 각 비아홀을 통해 회로기판(100)의 양면에 형성되는 전지의 전극을 직접 연결함으로써 소자 면적을 최소화할 수 있다.With this structure, the first via holes 230 and 330 communicate with the positive electrode pad 212 of the solar cell unit 200 and the positive electrode pad 320 of the secondary battery unit 300 , and the second via holes 330 and 340 are connected to the solar cell unit 300 . The negative electrode pad 214 of the branch 200 may communicate with the anode layer 312 of the secondary battery unit 300 . Accordingly, in the present invention, the device area can be minimized by directly connecting the electrodes of the battery formed on both sides of the circuit board 100 through each via hole passing through the circuit board 100 .
한편, 캐소드층(316)은 이차전지 유닛이 전기적으로 연결 가능하도록 회로기판(100)의 타면에 형성된 양극패드(320)의 일면과 접촉되는 솔더부(360)를 포함할 수 있다. 즉, 캐소드층(316)은 솔더부(360)를 통해 양극패드(320)와 연결되며, 양극패드(320)에 구비된 제1 비아홀(330)을 통해 태양전지부(200)의 양극패드(320)와 연결됨으로써 전기적 연결이 가능해질 수 있는 것이다.Meanwhile, the cathode layer 316 may include a solder part 360 contacting one surface of the positive electrode pad 320 formed on the other surface of the circuit board 100 so that the secondary battery unit is electrically connectable. That is, the cathode layer 316 is connected to the anode pad 320 through the solder unit 360 , and the cathode pad ( ) of the solar cell unit 200 through the first via hole 330 provided in the cathode pad 320 . 320) by being connected to the electrical connection may be possible.
본 발명에서는, 외부로부터 각 전지를 보호하기 위한 밀봉부를 더 포함하여 구성될 수 있다.In the present invention, it may be configured to further include a sealing unit for protecting each battery from the outside.
일 실시예로, 태양전지부(200)는 패드부(212,214) 및 태양전지셀(220)을 둘러싸도록 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층(252) 및 제1 보호층(252)에 적층되며 PEN, PET로 구성되는 투명한 재질의 제2 보호층(254)을 포함하는 제1 밀봉부를 더 포함할 수 있다. 여기서, 제2 보호층(254)은 투명한 폴리머 보호막(254a)과 수분차단 산화막(254b)이 순차적으로 적층된 구조를 가질 수 있다.In one embodiment, the solar cell unit 200 is formed to surround the pad portions 212 and 214 and the solar cell 220 and includes a first protective layer 252 and a first transparent material made of EVA, POE, or PVB. A first sealing part laminated on the protective layer 252 and including a second protective layer 254 made of a transparent material made of PEN or PET may be further included. Here, the second protective layer 254 may have a structure in which a transparent polymer protective film 254a and a moisture blocking oxide film 254b are sequentially stacked.
일 실시예로, 이차전지부(300)는 이차전지 유닛을 둘러싸도록 형성되는 진공 캐비티(311), 진공 캐비티(311)의 둘레를 따라 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층(352) 및 제3 보호층(352)에 적층되며 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층(354)을 포함하는 제2 밀봉부를 더 포함할 수 있다. 여기서, 제4 보호층(354)은 알루미늄 호일의 보호층(354a)과 수분차단 산화막(354b)이 순차적으로 적층된 구조를 가질 수 있다.In one embodiment, the secondary battery unit 300 is formed along the periphery of the vacuum cavity 311 formed to surround the secondary battery unit, the vacuum cavity 311, the third of a transparent material composed of EVA, POE or PVB It may further include a second sealing part laminated on the protective layer 352 and the third protective layer 352 and including a fourth protective layer 354 made of a polymer or aluminum foil. Here, the fourth protective layer 354 may have a structure in which an aluminum foil protective layer 354a and a moisture blocking oxide film 354b are sequentially stacked.
이로써, 본 발명의 실시예들에 따르면, 태양전지 모듈 및 이차전지 모듈이 플렉서블한 회로기판을 공유하여 제작되기 때문에 소자 면적을 최소화할 수 있으며, 외부의 부하회로가 함께 제작될 수 있어 소자 면적에 자가 전원이 실장된 전자회로를 구현할 수 있다.Accordingly, according to embodiments of the present invention, since the solar cell module and the secondary battery module are manufactured by sharing a flexible circuit board, the device area can be minimized, and an external load circuit can be manufactured together, so that the device area is reduced. It is possible to implement an electronic circuit in which a self-power supply is mounted.
또한, 본 발명의 실시예들에 따르면, 태양전지에 의한 독립충전과 이차전지에 의한 전력저장이 동시에 이루어질 수 있어 외부 전원과의 연결에 의한 전력손실을 최소화할 수 있으며, 상시 또는 비상시 운영이 필요한 무선 센서 모듈에 용이하게 적용 가능할 수 있다.In addition, according to the embodiments of the present invention, independent charging by a solar cell and power storage by a secondary battery can be simultaneously made, thereby minimizing power loss due to connection with an external power source, and requiring constant or emergency operation It may be easily applicable to a wireless sensor module.
이하에서는, 도 2와 도 3a 내지 도 3j를 참조하여 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법을 설명하고자 한다.Hereinafter, a method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention will be described with reference to FIGS. 2 and 3A to 3J .
도 2는 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 제조 방법을 설명하기 위해 도시한 흐름도이고, 도 3a 내지 도 3j는 도 2의 제조 방법을 순차적으로 설명하기 위해 도시한 평면도이다.2 is a flowchart illustrating a method of manufacturing a self-charged composite battery using sunlight according to an embodiment of the present invention, and FIGS. 3A to 3J are shown to sequentially explain the manufacturing method of FIG. It is a flat view.
먼저, 도 2 및 도 3a를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 양면에 금속층(P1,P2)이 형성된 회로기판을 준비한다(S10).First, referring to FIGS. 2 and 3A , an apparatus for manufacturing a self-charged composite battery using sunlight prepares a circuit board having metal layers P1 and P2 formed on both sides ( S10 ).
구체적으로, 회로기판의 상하부에는 전도성의 구리막(P1,P2)이 부착될 수 있으며, 후술하는 태양전지부(200)와 이차전지부(300)의 밀봉공정 시 수행되는 열화공정에 견딜 수 있도록 내열성을 가지는 폴리이미드(polyimide) 시트를 사용하는 것이 바람직하다.Specifically, conductive copper films P1 and P2 may be attached to the upper and lower portions of the circuit board, and to withstand the degradation process performed during the sealing process of the solar cell unit 200 and the secondary battery unit 300 to be described later. It is preferable to use a polyimide sheet having heat resistance.
다음으로, 도 2 및 도 3b를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 회로기판(100)의 일면에 형성된 금속층(P1)을 에칭하여 서로 이격되게 배치되도록 양극패드(212) 및 음극패드(214)를 포함하는 패드부(212,214)를 형성한다(S20).Next, referring to FIGS. 2 and 3B , the apparatus for manufacturing a self-charged composite battery using sunlight etches the metal layer P1 formed on one surface of the circuit board 100 so that the positive electrode pad 212 is spaced apart from each other. And the pad parts 212 and 214 including the negative electrode pad 214 are formed (S20).
구체적으로, 폴리이미드 시트(100)의 상부에 형성된 구리막(P1)을 에칭함으로써 양극패드(212) 및 음극패드(214)를 구현할 수 있다. 이때, 양극패드(212) 및 음극패드(214)를 구현하는데 있어서, 각 회로기판(100)의 내측부에 형성된 구리막(P1)을 에칭하여 제1 패드부(212a,214a)를 형성하고 회로기판(100)의 외측부에 형성된 구리막(P1)을 에칭하여 제2 패드부(212b',214b')를 형성할 수 있으며, 제1 패드부(212a,214a)와 제2 패드부(212b',214b') 사이에 형성된 구리막을 마이크로스트립 형태로 에칭하여 제1 패드부(212a,214a)와 제2 패드부(212b',214b')가 연결되도록 할 수 있다. 아울러, 회로기판(100)의 외측부에 형성된 구리막(P1)을 별도로 에칭하여 제2 패드부(212b'', 214b'')를 추가로 형성할 수 있다.Specifically, the anode pad 212 and the cathode pad 214 may be implemented by etching the copper film P1 formed on the polyimide sheet 100 . At this time, in implementing the positive electrode pad 212 and the negative electrode pad 214 , the copper film P1 formed on the inner side of each circuit board 100 is etched to form the first pad portions 212a and 214a and the circuit board The copper film P1 formed on the outer side of 100 may be etched to form second pad parts 212b' and 214b', and the first pad parts 212a and 214a and the second pad part 212b', The copper film formed between 214b' may be etched in the form of microstrips to connect the first pad parts 212a and 214a and the second pad parts 212b' and 214b'. In addition, second pad parts 212b'' and 214b'' may be additionally formed by separately etching the copper film P1 formed on the outer side of the circuit board 100 .
다음으로, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 양극패드(212)의 제2 패드부(212b'')에 회로기판을 향하여 관통하도록 제1 비아홀(230)을 형성하고, 음극패드(214)의 제1 패드부(214a)에 회로기판(100)을 향하여 관통하도록 제2 비아홀(240)을 형성한다(S30).Next, in the apparatus for manufacturing a self-charging composite battery using sunlight, a first via hole 230 is formed in the second pad part 212b'' of the positive electrode pad 212 to penetrate toward the circuit board, and the negative electrode pad ( A second via hole 240 is formed in the first pad portion 214a of the 214 to penetrate toward the circuit board 100 (S30).
다음으로, 도 2 및 도 3d를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 양극패드(212) 상에 태양전지셀(220)을 다이본딩(die-bonding)하여 부착하고, 별도의 전극도선(215)을 이용하여 태양전지셀(220)의 일측에 구비된 음극 버스바(222)와 양극패드(212) 주변에 배치된 음극패드(214)를 전기적으로 연결시킬 수 있다. 구체적으로, 태양전지셀(220)과 음극패드(214)의 제1 패드부(214a)를 전기적으로 연결시킬 수 있다. 아울러, 본 실시예에서는 2X2 구조의 태양전지셀(220)을 구현한 것으로 두 셀을 각각 병렬연결 한 다음 다시 직렬연결 하였으나, 이에 한정되지 않고 다양한 배열의 셀 구조를 구현할 수 있다.Next, referring to FIGS. 2 and 3D , in an apparatus for manufacturing a self-charged composite battery using sunlight, the solar cell 220 is attached to the positive electrode pad 212 by die-bonding, and separately The negative electrode bus bar 222 provided on one side of the solar cell 220 and the negative electrode pad 214 disposed around the positive electrode pad 212 may be electrically connected by using the electrode lead 215 of Specifically, the solar cell 220 and the first pad portion 214a of the negative electrode pad 214 may be electrically connected. In addition, in this embodiment, the solar cell 220 of the 2X2 structure is implemented, and the two cells are respectively connected in parallel and then connected in series again.
다음으로, 도 2 및 도 3e를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 태양전지부를 밀봉하기 위한 제1 밀봉부(250)를 형성할 수 있다.Next, referring to FIGS. 2 and 3E , the apparatus for manufacturing a self-charged composite battery using sunlight may form a first sealing part 250 for sealing the solar cell part.
구체적으로, 회로기판(100)의 일면에 형성된 패드부(212,214)와 제1 비아홀(230) 및 제2 비아홀(240)을 둘러싸도록 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층(252)을 증착하고, 제1 보호층(252) 상에 PEN, PET로 구성되는 투명한 재질의 제2 보호층(254)을 증착한 후, 약 140도 내지 160도의 온도에서 약 10분 내지 20분 동안 열처리하여 라미네이션(lamination)을 수행함으로써 제1 밀봉부(250)를 형성할 수 있다.Specifically, a first protective layer made of a transparent material made of EVA, POE or PVB to surround the pad parts 212 and 214 formed on one surface of the circuit board 100 and the first via hole 230 and the second via hole 240 ( 252) and depositing a second protective layer 254 of a transparent material composed of PEN and PET on the first protective layer 252, and then at a temperature of about 140 to 160 degrees for about 10 to 20 minutes. The first sealing part 250 may be formed by performing lamination by heat treatment during the process.
다음으로, 도 2, 도 3f 및 도 3g를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 회로기판(100)의 타면에 형성된 금속층(P2)을 에칭하여 서로 이격되게 배치되도록 애노드층(312) 및 양극패드(320)를 형성한다(S40).Next, referring to FIGS. 2, 3F and 3G , the apparatus for manufacturing a self-charged composite battery using sunlight etches the metal layer P2 formed on the other surface of the circuit board 100 so as to be spaced apart from each other by etching the anode layer. (312) and the anode pad 320 is formed (S40).
구체적으로, 도 3f에 도시된 바와 같이, 폴리이미드 시트(100)의 하부에 형성된 구리막(P2)을 에칭함으로써 애노드층(312) 및 양극패드(320)를 구현할 수 있다. Specifically, as shown in FIG. 3F , the anode layer 312 and the anode pad 320 may be implemented by etching the copper film P2 formed under the polyimide sheet 100 .
애노드층(312)은 애노드 집전체(312a)와 애노드 전극(312b)을 포함하는 것으로 애노드 집전체(312a)를 먼저 형성하게 되며 구체적으로는, 회로기판(100)의 하부에 형성된 구리막(P2)을 에칭하여 애노드 집전체(312a)를 형성할 수 있다.The anode layer 312 includes an anode current collector 312a and an anode electrode 312b, and the anode current collector 312a is first formed. Specifically, the copper film P2 formed under the circuit board 100 ) may be etched to form the anode current collector 312a.
이때, 양극패드(320)를 구현하는데 있어서, 회로기판(100)의 내측부에 형성된 구리막(P2)을 에칭하여 제1 패드부(320a)를 형성하고, 회로기판(100)의 외측부에 형성된 구리막(P2)을 에칭하여 제2 패드부(320b)를 형성할 수 있으며, 제1 패드부(320a)와 제2 패드부(320b) 사이에 형성된 구리막을 마이크로스트립 형태로 에칭하여 제1 패드부(320a)와 제2 패드부(320b)가 연결되도록 할 수 있다. 여기서, 애노드층(312)은 양극패드(320)와 이격되게 배치되는 것으로 회로기판(100)의 내측부 중 양극패드(320)가 형성된 주변의 구리막(P2)을 에칭하여 구현될 수 있다.At this time, in implementing the anode pad 320 , the first pad part 320a is formed by etching the copper film P2 formed on the inner side of the circuit board 100 , and the copper formed on the outer side of the circuit board 100 . The second pad portion 320b may be formed by etching the layer P2, and the first pad portion may be etched in a microstrip form by etching the copper film formed between the first pad portion 320a and the second pad portion 320b. The 320a and the second pad part 320b may be connected to each other. Here, the anode layer 312 is disposed to be spaced apart from the anode pad 320 , and may be implemented by etching the copper film P2 around the inner side of the circuit board 100 in which the anode pad 320 is formed.
다음으로, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 양극패드(320)의 제2 패드부(320b)에 회로기판을 향하여 관통하도록 제1 비아홀(330)을 형성하고, 애노드층(312)에 회로기판(100)을 향하여 관통하도록 제2 비아홀(340)을 형성한다(S50).Next, in the apparatus for manufacturing a self-charging composite battery using sunlight, a first via hole 330 is formed in the second pad part 320b of the positive electrode pad 320 to penetrate toward the circuit board, and an anode layer 312 is formed. A second via hole 340 is formed so as to penetrate toward the circuit board 100 (S50).
이때, 제1 비아홀(330)은 태양전지부(200)의 양극패드(212) 및 이차전지부(300)의 양극패드(320)를 연통하고, 제2 비아홀(340)은 태양전지부(200)의 음극패드(214) 및 이차전지부(300)의 애노드층(312)을 연통하도록 회로기판(100)을 관통할 수 있다. 참고로, 제1 비아홀(230,330) 및 제2 비아홀(240,340)은 내부가 밀봉되도록 제작되는 것이 바람직하다.At this time, the first via hole 330 communicates with the positive electrode pad 212 of the solar cell unit 200 and the positive electrode pad 320 of the secondary battery unit 300 , and the second via hole 340 is the solar cell unit 200 . ) may penetrate through the circuit board 100 to communicate with the negative electrode pad 214 and the anode layer 312 of the secondary battery unit 300 . For reference, the first via holes 230 and 330 and the second via holes 240 and 340 are preferably manufactured to be sealed inside.
제1 비아홀(230,330) 및 제2 비아홀(240,340)을 형성한 이후, 도 3g에 도시된 바와 같이, 애노드 집전체(312a) 상에 그래파이트(Graphite)와 같은 음극 소재를 도포함에 따라 애노드 전극(312b)을 형성할 수 있다.After forming the first via holes 230 and 330 and the second via holes 240 and 340 , as shown in FIG. 3G , as a negative electrode material such as graphite is applied on the anode current collector 312a, the anode electrode 312b ) can be formed.
이후, 애노드층(312)의 둘레에 구비된 구리막 일부를 식각하여 진공 캐비티(311)를 형성할 수 있으며, 이와 같이 형성된 진공 캐비티(311)의 내부는 이차전지 유닛을 형성하기 위한 공간으로 지정될 수 있다.Thereafter, a part of the copper film provided on the periphery of the anode layer 312 may be etched to form a vacuum cavity 311 , and the inside of the vacuum cavity 311 formed in this way is designated as a space for forming a secondary battery unit. can be
다음으로, 도 2, 도 3h 및 3i를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 애노드층(312) 상에 전해질층(314)과 캐소드층(316)을 순차적으로 적층하여 이차전지 유닛을 형성한다(S60).Next, referring to FIGS. 2, 3H and 3I , the apparatus for manufacturing a self-charged composite battery using sunlight sequentially stacks an electrolyte layer 314 and a cathode layer 316 on the anode layer 312 to form a secondary secondary battery. A battery unit is formed (S60).
구체적으로, 도 3h에 도시된 바와 같이, 애노드층(312) 상에 겔 폴리머의 분리막과 함께 전해질 시트(314)를 적층한 이후, 도 3i에 도시된 바와 같이, 분리막과 함께 적층된 전해질 시트(314) 상에 캐소드층(316)을 적층할 수 있다.Specifically, as shown in FIG. 3H, after laminating the electrolyte sheet 314 with the separator of the gel polymer on the anode layer 312, as shown in FIG. 3I, the electrolyte sheet laminated with the separator ( A cathode layer 316 may be stacked on the 314 .
캐소드층(316)은 캐소드 집전체(316a)와 캐소드 전극(316b)을 포함하는 것으로 분리막과 함께 적층된 전해질 시트(314) 상에 양극 활물질을 도포한 후 알루미늄 호일의 캐소드 집전체(316a)를 적층함으로써 캐소드층(316)을 형성할 수 있다.The cathode layer 316 includes a cathode current collector 316a and a cathode electrode 316b, and after coating a cathode active material on an electrolyte sheet 314 stacked with a separator, a cathode current collector 316a of aluminum foil. By laminating, the cathode layer 316 can be formed.
여기서, 캐소드층(316)을 적층 시, 회로기판(100)의 타면에 형성된 양극패드(320)의 일면과 솔더링하는 단계를 포함할 수 있다.Here, when the cathode layer 316 is laminated, soldering to one surface of the anode pad 320 formed on the other surface of the circuit board 100 may be included.
구체적으로, 도 3i에 도시된 바와 같이, 캐소드층(316)의 캐소드 집전체(316a)를 태양전지부(200)에 구비된 양극패드(212)와 전기적으로 연결시키기 위해, 캐소드 전극(316b)뿐만 아니라 이차전지 유닛과 이격 배치된 양극패드(320) 상에 캐소드 집전체(316a)가 적층되도록 AuSn와 같은 접착 솔더를 이용하여 저온에서의 솔더링을 수행할 수 있다. 이로써, 이차전지부(300)의 양극패드(320) 상에는 양극 접착점(360)이 형성됨에 따라, 이차전지 유닛과 양극패드(320) 간의 전기적 연결이 완성될 수 있는 것이다.Specifically, as shown in FIG. 3i , in order to electrically connect the cathode current collector 316a of the cathode layer 316 to the positive electrode pad 212 provided in the solar cell unit 200, the cathode electrode 316b. In addition, soldering at a low temperature may be performed using an adhesive solder such as AuSn so that the cathode current collector 316a is stacked on the positive electrode pad 320 spaced apart from the secondary battery unit. Accordingly, as the positive electrode bonding point 360 is formed on the positive electrode pad 320 of the secondary battery unit 300 , the electrical connection between the secondary battery unit and the positive electrode pad 320 can be completed.
다음으로, 도 2 및 도 3j를 참조하면, 태양광을 이용한 자가 충전 복합전지의 제조 장치는 이차전지부(300)를 밀봉하기 위한 제2 밀봉부(350)를 형성할 수 있다.Next, referring to FIGS. 2 and 3J , the apparatus for manufacturing a self-charged composite battery using sunlight may form a second sealing part 350 for sealing the secondary battery part 300 .
구체적으로, 애노드층(312) 주변에 구비된 진공 캐비티(311)의 둘레를 따라 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층(352)을 증착하고, 제3 보호층(352) 상에 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층(354)을 증착한 후, 약 140도 내지 160도의 온도에서 약 10분 내지 20분 동안 열처리하여 제2 밀봉부(350)를 형성할 수 있다.Specifically, a third protective layer 352 of a transparent material composed of EVA, POE, or PVB is deposited along the periphery of the vacuum cavity 311 provided around the anode layer 312 , and the third protective layer 352 . After depositing a fourth protective layer 354 made of a polymer or aluminum foil on it, heat treatment at a temperature of about 140 to 160 degrees for about 10 to 20 minutes may form the second sealing part 350 . .
도 4는 본 발명의 일 실시예에 따른 태양광을 이용한 자가 충전 복합전지의 동작 특성을 나타내는 그래프이다.4 is a graph showing the operating characteristics of the self-charged composite battery using sunlight according to an embodiment of the present invention.
태양전지의 전류-전압(I-V) 특성에 의하여 생성되는 광전류가 이차전지에 충전되며, 이차전지는 전하의 충전이 진행됨에 따라 전압값이 상승되고 허용 최대 전압값에 충전이 중단하게 된다. 이때, 최대 충전전압은 이차전지 전극의 선택에 따라 변할 수가 있으며, 과도한 충전은 소자 모듈의 화재와 폭발에 이르게 할 수 있다. 이러한 충·방전 사용에 있어서 태양전지의 I-V 특성곡선이 이차전지의 동작에서 이점을 제공할 수 있다.The photocurrent generated by the current-voltage (I-V) characteristic of the solar cell is charged to the secondary battery, and the voltage value of the secondary battery increases as the charge progresses, and charging is stopped at the maximum allowable voltage value. In this case, the maximum charging voltage may change according to the selection of the secondary battery electrode, and excessive charging may lead to fire and explosion of the device module. In such charge/discharge use, the I-V characteristic curve of the solar cell may provide an advantage in the operation of the secondary battery.
방전된 이차전지가 태양전지와 연결되면, 이차전지의 음극을 통하여 태양전지로부터 광전류를 전달받아 충전이 이루어진다. 이러한 광전류 충전이 진행됨에 따라 이차전지의 전압은 도 4의 전압 축을 따라 증가하게 된다. 즉, 광전류 충전이 시작되는 시간 t i 에서 이차전지의 소자 전압은 V i(예컨대, 2.8V) 에서 시작하여 최대 충전이 예상되는 V f(예컨대, 4.0V)까지 바람직한 충전이 이루어지게 된다. 이차전지의 전력 충전량이 설계에 의하여 고정됨을 고려하면 태양전지의 효율이 높아지는 것은 I-V 특성 중 평탄한 전류가 증가하는 것을 의미하게 된다. 즉, I-V 곡선이 전류축을 따라 상승한다. 이 경우 늘어난 광전류에 의하여 총 충전시간 △t(=t f-t i)이 짧아지는 효과로 나타난다.When the discharged secondary battery is connected to the solar cell, a photocurrent is transmitted from the solar cell through the negative electrode of the secondary battery to be charged. As the photocurrent charging proceeds, the voltage of the secondary battery increases along the voltage axis of FIG. 4 . That is, the element voltage of the secondary battery in time t i which the photoelectric current charging starts will be started, the desired fill performed to V f (for example, 4.0V) is the maximum charge estimated at V i (for example, 2.8V). Considering that the charge amount of power of the secondary battery is fixed by design, the increase in the efficiency of the solar cell means that the flat current among the IV characteristics increases. That is, the IV curve rises along the current axis. In this case, due to the increased photocurrent, the total charging time Δt(=t f -t i ) is shortened.
태양전지의 광전류는 일사량의 변화에 의하여 그리고 충전전압 축을 따라서 증감하기 때문에 본 발명의 복합소자를 실제 활용하는데 있어서 균등한 광전류(I f ~ I i)를 생성하는 전압영역 △V(= V f-V i)을 설정하는 것이 매우 중요하다. 결론적으로 도 4에 도시된 바와 같이, 이차전지의 최대 충전전압(V f)은 태양전지의 최대 전력 전압점(V m) 보다는 작은 값에서 설정되어야 한다. 이와 같이, 태양전지-이차전지 복합소자는 두 소자의 고유 특성에 맞는 최적의 동작점을 설정할 수 있다. Since the photocurrent of the solar cell increases or decreases according to the change in the amount of insolation and along the charging voltage axis, an equal photocurrent (I f ~ It is very important to set the I i) voltage region △ V (= V f -V i ) to generate. In conclusion, as shown in FIG. 4 , the maximum charging voltage (V f ) of the secondary battery should be set at a value smaller than the maximum power voltage point (V m ) of the solar cell. As such, the solar cell-secondary battery composite device can set an optimal operating point suitable for the intrinsic characteristics of the two devices.
이차전지의 실제활용에서 주의해야 하는 점은 과충전에 의한 폭발 및 화재의 위험성이다. 이 태양전지-이차전지 복합소자의 경우 추가적인 소자나 기구의 도움이 없이 최적의 동작점 설정으로 이와 같은 위험성을 원천적으로 배제할 수 있다.A point to be aware of in the practical application of secondary batteries is the risk of explosion and fire due to overcharging. In the case of this solar cell-secondary cell composite device, this risk can be fundamentally excluded by setting the optimum operating point without the help of additional devices or devices.
도 4에 도시된 바와 같이, 태양전지 전류-전압(I-V) 특성 곡선에서 이차전지의 충전전압이 태양전지의 최대 전력점(maximum power point, V m~4.2 V)을 지나 증가할 경우(과충전; V f > V m), 동일한 전압상승에 대하여 급격한 광전류 감소가 발생한다. 또한, 태양전지에 의한 이차전지의 충전 전압은 태양전지의 개방전압 Voc(약 4.85 V)을 초과할 수 없다. 이러한 태양전지의 동작특성 때문에 충전전압이 최대 전압점(V m)을 초과하여 과충전에 이르더라도 급격한 광전류의 감소 때문에 장시간 태양에 노출이 되더라도 더 이상의 이차전지 충전이 이루어지지 않게 된다.As shown in FIG. 4 , when the charging voltage of the secondary battery increases past the maximum power point (V m ~4.2 V) of the solar cell in the solar cell current-voltage (IV) characteristic curve (overcharge; V f > V m ), a sharp decrease in photocurrent occurs for the same voltage rise. In addition, the charging voltage of the secondary battery by the solar cell cannot exceed the open circuit voltage Voc (about 4.85 V) of the solar cell. Due to these operating characteristics of the solar cell , even if the charging voltage exceeds the maximum voltage point (V m ) and reaches overcharge, the secondary battery is not charged any more even if it is exposed to the sun for a long time due to a rapid decrease in photocurrent.
이와 같은 태양전지-이차전지 복합소자의 자체 충전 제한 기능은 집적 전원 소자와 함께 실장하게 되는 전자회로의 구성을 간단하게 할 뿐만 아니라 충전기의 불안정성에 의한 위험요소를 근본적으로 차단하는 이점을 제공한다. 이와 같은 자가 충전 집적 전원 모듈은 원격지 이동성이 큰 사물인터넷 센서 모듈 또는 상시 전원이 필요한 소자 모듈에 최적의 에너지원을 제공할 수 있다.The self-charging limiting function of the solar cell-secondary battery composite device provides the advantage of not only simplifying the configuration of the electronic circuit mounted together with the integrated power device, but also fundamentally blocking the risk factors caused by the instability of the charger. Such a self-charging integrated power supply module can provide an optimal energy source to an IoT sensor module having high mobility in a remote location or an element module requiring constant power.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.Although specific embodiments according to the present invention have been described so far, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims described below as well as the claims and equivalents.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, although the present invention has been described with reference to the limited examples and drawings, the present invention is not limited to the above examples, which are various modifications and variations from these descriptions by those of ordinary skill in the art to which the present invention pertains. Transformation is possible. Accordingly, the spirit of the present invention should be understood only by the claims set forth below, and all equivalents or equivalent modifications thereof will fall within the scope of the spirit of the present invention.

Claims (15)

  1. 플렉서블한 회로기판과, 상기 회로기판을 공유층으로 공유하는 태양전지부 및 이차전지부를 포함하고,A flexible circuit board, and a solar cell unit and a secondary battery unit sharing the circuit board as a common layer,
    상기 태양전지부와 상기 이차전지부는 상기 회로기판에 관통 형성되는 전도성의 비아홀을 통해 전기적으로 상호 연결되는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.The solar cell unit and the secondary battery unit are electrically interconnected through conductive via holes formed through the circuit board.
  2. 제1항에 있어서,According to claim 1,
    제1항에 있어서,According to claim 1,
    상기 회로기판은 플렉서블한 폴리이미드(polyimide) 시트인 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.The circuit board is a self-charged composite battery using sunlight, characterized in that the flexible polyimide sheet.
  3. 제1항에 있어서,According to claim 1,
    상기 태양전지부는The solar cell unit
    상기 회로기판의 일면에 형성되는 금속층으로서 서로 이격되게 배치되는 양극패드와 음극패드를 포함하는 패드부;a pad part including an anode pad and a cathode pad spaced apart from each other as a metal layer formed on one surface of the circuit board;
    상기 패드부 상에 형성되는 태양전지셀;a solar cell formed on the pad part;
    상기 양극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제1 비아홀; 및a first via hole provided in the anode pad and penetrating toward the circuit board; and
    상기 음극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제2 비아홀A second via hole provided in the negative electrode pad and penetrating toward the circuit board
    을 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.Self-charged composite battery using sunlight, characterized in that it comprises a.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 양극패드 및 상기 음극패드는 각각The positive electrode pad and the negative electrode pad are each
    상기 회로기판의 내측부에 배치되는 제1 패드부와 상기 제1 패드부로부터 연장되어 상기 회로기판의 외측부에 배치되는 제2 패드부를 포함하며,a first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board;
    상기 제1 비아홀은 상기 양극패드에 구비되는 상기 제2 패드부에 관통 형성되고, 제2 비아홀은 상기 음극패드에 구비되는 상기 제1 패드부에 관통 형성되는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.Self-charging using sunlight, characterized in that the first via hole is formed through the second pad portion provided on the positive electrode pad, and the second via hole is formed through the first pad portion provided on the negative electrode pad. composite battery.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 이차전지부는The secondary battery unit
    상기 회로기판의 타면에 애노드층, 전해질층 및 캐소드층이 순차적으로 형성되는 이차전지 유닛;a secondary battery unit in which an anode layer, an electrolyte layer, and a cathode layer are sequentially formed on the other surface of the circuit board;
    상기 회로기판의 타면에 형성되며 상기 이차전지 유닛과 이격되게 배치되는 양극패드;a positive electrode pad formed on the other surface of the circuit board and spaced apart from the secondary battery unit;
    상기 양극패드에 구비되며 상기 회로기판을 향하여 관통 형성되는 제1 비아홀; 및a first via hole provided in the anode pad and penetrating toward the circuit board; and
    상기 애노드층에 구비되며 상기 회로기판을 향하여 관통 형성되는 제2 비아홀A second via hole provided in the anode layer and penetrating toward the circuit board
    을 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.Self-charged composite battery using sunlight, characterized in that it comprises a.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 양극패드는The anode pad is
    상기 회로기판의 내측부에 배치되는 제1 패드부와 상기 제1 패드부로부터 연장되어 상기 회로기판의 외측부에 배치되는 제2 패드부를 포함하며,a first pad portion disposed on the inner side of the circuit board and a second pad portion extending from the first pad portion and disposed on the outer side of the circuit board;
    상기 제1 비아홀은 상기 양극패드에 구비되는 상기 제2 패드부에 관통 형성되는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.The self-charging composite battery using sunlight, characterized in that the first via hole is formed through the second pad portion provided in the positive electrode pad.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 제1 비아홀은 상기 태양전지부 및 상기 이차전지부의 양극패드를 연통하고, 상기 제2 비아홀은 상기 태양전지부의 음극패드 및 상기 이차전지부의 애노드층을 연통하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.The first via hole communicates with the positive electrode pad of the solar cell unit and the secondary battery unit, and the second via hole communicates with the negative electrode pad of the solar cell unit and the anode layer of the secondary battery unit. self-charging composite battery using
  8. 제5항에 있어서,6. The method of claim 5,
    상기 캐소드층은 상기 이차전지 유닛이 전기적으로 연결 가능하도록 상기 양극패드의 일면과 접촉되는 솔더부를 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.The cathode layer is a self-charged composite battery using sunlight, characterized in that it includes a solder portion contacting one surface of the positive electrode pad so that the secondary battery unit can be electrically connected.
  9. 제3항에 있어서,4. The method of claim 3,
    상기 태양전지부는The solar cell unit
    상기 패드부 및 상기 태양전지셀을 둘러싸도록 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층; 및a first protective layer formed to surround the pad part and the solar cell and made of a transparent material made of EVA, POE or PVB; and
    상기 제1 보호층에 적층되며 PEN, PET로 구성되는 투명한 재질의 제2 보호층을 포함하는 제1 밀봉부A first sealing part laminated on the first protective layer and including a second protective layer made of a transparent material made of PEN and PET
    를 더 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.Self-charged composite battery using sunlight, characterized in that it further comprises.
  10. 제5항에 있어서,6. The method of claim 5,
    상기 이차전지부는The secondary battery unit
    상기 이차전지 유닛을 둘러싸도록 형성되는 진공 캐비티;a vacuum cavity formed to surround the secondary battery unit;
    상기 진공 캐비티의 둘레를 따라 형성되며 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층; 및a third protective layer formed along the periphery of the vacuum cavity and made of a transparent material made of EVA, POE or PVB; and
    상기 제3 보호층에 적층되며 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층을 포함하는 제2 밀봉부The second sealing part is laminated on the third protective layer and includes a fourth protective layer made of a polymer or aluminum foil.
    를 더 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지.Self-charged composite battery using sunlight, characterized in that it further comprises.
  11. 플렉서블한 회로기판과, 상기 회로기판을 공유층으로 공유하는 태양전지부 및 이차전지부를 포함하는 자가 충전 복합전지의 제조 방법에 있어서,A method for manufacturing a self-charging composite battery comprising a flexible circuit board, a solar cell unit and a secondary battery unit sharing the circuit board as a common layer, the method comprising:
    양면에 금속층이 형성된 회로기판을 준비하는 단계;Preparing a circuit board having a metal layer formed on both sides;
    상기 회로기판의 일면에 형성된 금속층을 에칭하여 서로 이격되게 배치되도록 양극패드 및 음극패드를 포함하는 패드부를 형성하는 단계;etching the metal layer formed on one surface of the circuit board to form a pad portion including an anode pad and a cathode pad to be spaced apart from each other;
    상기 양극패드에 상기 회로기판을 향하여 관통하도록 제1 비아홀을 형성하고 상기 음극패드에 상기 회로기판을 향하여 관통하도록 제2 비아홀을 형성하는 단계;forming a first via hole in the anode pad to pass through toward the circuit board and forming a second via hole in the cathode pad to pass through toward the circuit board;
    상기 회로기판의 타면에 형성된 금속층을 에칭하여 서로 이격되게 배치되도록 애노드층 및 양극패드를 형성하는 단계;etching the metal layer formed on the other surface of the circuit board to form an anode layer and an anode pad to be spaced apart from each other;
    상기 양극패드에 상기 회로기판을 향하여 관통하도록 제1 비아홀을 형성하고, 상기 애노드층에 상기 회로기판을 향하여 관통하도록 제2 비아홀을 형성하는 단계; 및forming a first via hole in the anode pad to penetrate toward the circuit board, and forming a second via hole in the anode layer to penetrate toward the circuit board; and
    상기 애노드층 상에 전해질층과 캐소드층을 순차적으로 적층하여 이차전지 유닛을 형성하는 단계forming a secondary battery unit by sequentially stacking an electrolyte layer and a cathode layer on the anode layer
    를 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지의 제조 방법.A method of manufacturing a self-charged composite battery using sunlight, comprising:
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제1 비아홀은 상기 회로기판의 일면에 형성된 양극패드 및 상기 회로기판의 타면에 형성된 양극패드를 연통하고, 상기 제2 비아홀은 상기 회로기판의 일면에 형성된 음극패드 및 상기 애노드층을 연통하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지의 제조 방법.The first via hole communicates with the positive electrode pad formed on one surface of the circuit board and the positive electrode pad formed on the other surface of the circuit board, and the second via hole communicates with the negative electrode pad formed on one surface of the circuit board and the anode layer. A method for manufacturing a self-charging composite battery using sunlight, characterized in that
  13. 제11항에 있어서,12. The method of claim 11,
    상기 이차전지 유닛을 형성하는 단계는The step of forming the secondary battery unit is
    상기 캐소드층을 적층 시, 상기 회로기판의 타면에 형성된 양극패드의 일면과 솔더링하는 단계를 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지의 제조 방법.and soldering to one surface of the positive electrode pad formed on the other surface of the circuit board when the cathode layer is laminated.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 회로기판의 일면에 형성된 패드부, 상기 제1 비아홀 및 상기 제2 비아홀을 둘러싸도록 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제1 보호층을 형성하는 단계; 및forming a first protective layer made of a transparent material made of EVA, POE, or PVB to surround the pad part formed on one surface of the circuit board, the first via hole, and the second via hole; and
    상기 제1 보호층 상에 PEN, PET로 구성되는 투명한 재질의 제2 보호층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지의 제조 방법.The method of manufacturing a self-charged composite battery using sunlight, further comprising the step of forming a second protective layer made of a transparent material composed of PEN and PET on the first protective layer.
  15. 제11항에 있어서,12. The method of claim 11,
    상기 애노드층의 둘레 일부를 식각하여 진공 캐비티를 형성하는 단계를 더 포함하고,Further comprising the step of forming a vacuum cavity by etching a portion of the periphery of the anode layer,
    상기 이차전지 유닛을 형성하는 단계 이후에,After forming the secondary battery unit,
    상기 진공 캐비티의 둘레를 따라 EVA, POE 또는 PVB로 구성되는 투명한 재질의 제3 보호층을 형성하는 단계; 및forming a third protective layer made of a transparent material made of EVA, POE or PVB along the circumference of the vacuum cavity; and
    상기 제3 보호층 상에 폴리머 또는 알루미늄 호일로 구성되는 제4 보호층을 형성하는 단계forming a fourth protective layer made of a polymer or aluminum foil on the third protective layer
    를 포함하는 것을 특징으로 하는 태양광을 이용한 자가 충전 복합전지의 제조 방법.A method of manufacturing a self-charged composite battery using sunlight, comprising:
PCT/KR2021/000563 2020-01-15 2021-01-14 Self-charging composite battery using solar light and manufacturing method therefor WO2021145707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0005636 2020-01-15
KR1020200005636A KR102441625B1 (en) 2020-01-15 2020-01-15 Hybrid cell of self-charging using solar energy and method for the same

Publications (1)

Publication Number Publication Date
WO2021145707A1 true WO2021145707A1 (en) 2021-07-22

Family

ID=76864529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000563 WO2021145707A1 (en) 2020-01-15 2021-01-14 Self-charging composite battery using solar light and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102441625B1 (en)
WO (1) WO2021145707A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332734A (en) * 2022-09-13 2022-11-11 四川启睿克科技有限公司 Integrated chip and battery integration method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513781B1 (en) * 2020-11-03 2023-03-27 주식회사 지피 High reliability flexible module having electric connectting structure between solar cell and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070078637A (en) * 2006-01-27 2007-08-01 경상대학교산학협력단 Combination secondary battery and solar battery
US20090014049A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic module with integrated energy storage
KR20090061300A (en) * 2007-12-11 2009-06-16 삼성전자주식회사 Complex lithium secondary battery and electronic device employing the same
KR20180074126A (en) * 2016-12-23 2018-07-03 울산과학기술원 Hybrid self-charging battery and manufacturing method thereof
US20190252564A1 (en) * 2018-02-12 2019-08-15 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic power generation and storage device, and method of manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037261A (en) * 2010-10-11 2012-04-19 삼성전자주식회사 Solar cell module and method for manufacturing the same
KR20160062616A (en) 2014-11-25 2016-06-02 울산과학기술원 Hybrid self-charging battery and manufacturing method thereof
KR102245618B1 (en) * 2016-07-20 2021-04-27 삼성에스디아이 주식회사 Flexible rechargeable battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070078637A (en) * 2006-01-27 2007-08-01 경상대학교산학협력단 Combination secondary battery and solar battery
US20090014049A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic module with integrated energy storage
KR20090061300A (en) * 2007-12-11 2009-06-16 삼성전자주식회사 Complex lithium secondary battery and electronic device employing the same
KR20180074126A (en) * 2016-12-23 2018-07-03 울산과학기술원 Hybrid self-charging battery and manufacturing method thereof
US20190252564A1 (en) * 2018-02-12 2019-08-15 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic power generation and storage device, and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332734A (en) * 2022-09-13 2022-11-11 四川启睿克科技有限公司 Integrated chip and battery integration method

Also Published As

Publication number Publication date
KR102441625B1 (en) 2022-09-07
KR20210092092A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2021145707A1 (en) Self-charging composite battery using solar light and manufacturing method therefor
WO2019117514A1 (en) Battery module comprising bus bar assembly
WO2019203426A1 (en) Battery module having bus bar, and battery pack
WO2014109481A1 (en) Secondary battery comprising integrated anode lead and cathode lead, and manufacturing method therefor
WO2018174451A1 (en) Battery module, battery pack including the battery module, and automobile including the battery pack
WO2014062016A1 (en) Electrode lead and secondary battery having same
WO2019066441A1 (en) Pouch-type rechargeable battery pack having protection circuit module
WO2019107735A1 (en) Battery module having bus bar assembly
WO2017204458A1 (en) Battery pack
WO2013180449A1 (en) Electrode assembly, battery cell, manufacturing method for electrode assembly and manufacturing method for battery cell
WO2017146369A1 (en) Battery cell and method for manufacturing such battery cell
WO2011062380A2 (en) Solar photovoltaic device
WO2013039298A1 (en) Secondary battery component, manufacturing method thereof, secondary battery manufactured using component, and assembled secondary battery device
WO2021145624A1 (en) Electrode tab bending apparatus and method
WO2019135505A1 (en) Laser welding apparatus comprising laser beam blocking block
WO2020060069A1 (en) Battery module including module busbars
KR102134120B1 (en) Low profile sensor and electrochemical cell containing same
WO2021201342A1 (en) Designable shingled photovoltaic module and manufacturing method therefor
WO2019221396A1 (en) Battery pack
WO2013065962A1 (en) Battery cell, manufacturing method thereof, and battery module including the same
WO2021025374A1 (en) Battery pack having movable busbar assembly, and secondary battery comprising same
WO2019139239A1 (en) Compound solar cell module
WO2021060742A1 (en) Cathode current collector
WO2011083994A2 (en) Solar photovoltaic device
WO2018128295A1 (en) Battery system and vehicle including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740860

Country of ref document: EP

Kind code of ref document: A1