WO2021145631A1 - Method and device for restoring signal using compressive sensing - Google Patents

Method and device for restoring signal using compressive sensing Download PDF

Info

Publication number
WO2021145631A1
WO2021145631A1 PCT/KR2021/000363 KR2021000363W WO2021145631A1 WO 2021145631 A1 WO2021145631 A1 WO 2021145631A1 KR 2021000363 W KR2021000363 W KR 2021000363W WO 2021145631 A1 WO2021145631 A1 WO 2021145631A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement signal
measurement
reconstructing
reconstructed
Prior art date
Application number
PCT/KR2021/000363
Other languages
French (fr)
Korean (ko)
Inventor
박문규
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of WO2021145631A1 publication Critical patent/WO2021145631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]

Definitions

  • the present invention relates to a method and apparatus for reconstructing an original signal for a measurement signal, and more particularly, to a method and apparatus for reconstructing a signal using compression sensing.
  • Compression sensing theory pays attention to the so-called sparse signals with most of the values of 0 when transformed into a specific signal space.
  • Most of the signals transformed into the frequency domain through Fourier transform are sparse signals in which magnitude F is 0 at frequency x, and a relatively small number of x values in magnitude F represent non-zero values. .
  • y is a measurement signal
  • A is a linear measurement matrix
  • x is an original signal for the measurement signal. That is, in this linear measurement equation, y obtained by multiplying the original signal x by a certain matrix is defined as a linearly measured signal.
  • An object of the present invention is to provide a signal restoration method capable of further increasing the accuracy of signal restoration using compression sensing.
  • the reconstruction unit for reconstructing the measurement signal; an optimum solution calculation unit for calculating an optimum solution for the linear measurement equation of the reconstructed measurement signal in a frequency domain; and an inverse transform unit configured to inversely transform the optimal solution into a time domain value.
  • the accuracy of the optimal solution for the original signal may be improved by increasing the sparseness of the measurement signal.
  • the original signal can be accurately restored.
  • FIG. 1 is a view for explaining a signal restoration apparatus using compression sensing according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a signal restoration method using compression sensing according to an embodiment of the present invention.
  • 3 to 5 are diagrams for explaining a restoration result of a signal restoration method according to an embodiment of the present invention.
  • compression sensing is a theory of reconstructing a signal based on the sparsity of the measurement signal, and as the sparsity increases, the optimal solution for the original signal can be more accurately calculated.
  • the present invention restores the original signal from the measurement signal by increasing the sparseness of the measurement signal and calculating an optimal solution for the original signal.
  • the measurement signal in order to increase the sparseness of the measurement signal, the measurement signal is reconstructed according to the magnitude order, and then an optimal solution to the original signal is calculated from the linear transformation equation of the reconstructed measurement signal.
  • the linearity of the reconstructed measurement signal is increased, and the section in which data is rapidly changed is reduced, so that a high frequency component of the reconstructed measurement signal may decrease and the sparseness of the measurement signal may increase.
  • the signal restoration method may be applied to all technical fields for receiving and restoring a measurement signal based on compression sensing, such as a communication system, an image processing apparatus, and a power system.
  • the signal restoration method according to an embodiment of the present invention may be performed in a computing device including a processor, and as an embodiment, may be performed in a desktop, a notebook computer, a server, or a separate signal restoration device.
  • FIG. 1 is a view for explaining a signal restoration apparatus using compression sensing according to an embodiment of the present invention.
  • the signal restoration apparatus includes a reconstruction unit 110 , an optimal solution calculation unit 120 , and an inverse transform unit 130 .
  • the reconstruction unit 110 reconstructs the measurement signal according to the order of magnitude.
  • the reconstruction unit 110 may reconstruct the measurement signal by rearranging the sampling data for the measurement signal in the time domain in an ascending order or a descending order according to an embodiment.
  • the measurement signal may vary according to an embodiment in which the signal restoration apparatus is used.
  • a measurement signal may be a reception signal of a receiving device, and a measurement signal of an image processing device may be an image signal.
  • measurement data on the amount of power consumption or generation may correspond to the measurement signal.
  • sampling data is data in which a continuous measurement signal in the time domain is sampled according to a sampling frequency according to compression sensing.
  • the measurement signal may be sampled according to this sampling frequency.
  • the optimal solution calculator 120 calculates an optimal solution for the linear measurement equation of the reconstructed measurement signal in the frequency domain.
  • the optimal solution calculator 120 may perform a Fourier transform on the reconstructed measurement signal, convert the reconstructed measurement signal into a signal in the frequency domain, and, as an embodiment, calculate the optimal solution using L 1 -optimization. . And for L 1 -optimization, an optimal solution calculation algorithm such as Operator Splitting QP Solver may be used.
  • the inverse transform unit 130 inversely transforms the optimal solution calculated in the frequency domain into a time domain value, and may calculate a time domain value through an inverse Fourier transform. At this time, since the optimal solution calculated in the frequency domain is the optimal solution calculated from the reconstructed measurement signal, in order to obtain the time domain value of the optimal solution for the measurement signal before reconstruction, the inverse transform unit 130 uses the index for the sampling data before reconstruction. can
  • the accuracy of the optimal solution for the original signal may be improved by increasing the sparseness of the measurement signal.
  • FIG. 2 is a view for explaining a signal restoration method using compression sensing according to an embodiment of the present invention.
  • the signal restoration method of the above-described signal restoration apparatus is described as an embodiment.
  • the signal restoration apparatus receives a measurement signal (S210).
  • the measurement signal may be input in the form of an analog signal or in the form of pre-sampled data according to a sampling frequency according to compression sensing.
  • the signal restoration apparatus may sample the measurement signal according to a preset sampling frequency.
  • the signal restoration apparatus reconstructs the measurement signal according to the order of magnitude of the measurement signal (S220).
  • the signal restoration apparatus may reconstruct the measurement signal by rearranging sampling data for the measurement signal in an ascending order or a descending order according to an embodiment.
  • the input measurement signal is y
  • the relationship between the reconstructed measurement signal y s and the input measurement signal may be expressed as in [Equation 1].
  • the signal restoration apparatus calculates an optimal solution for the linear measurement equation of the reconstructed measurement signal in the frequency domain ( S230 ).
  • a linear measurement equation for the reconstructed measurement signal may be expressed as in [Equation 2], and the signal restoration apparatus may calculate an optimal solution to [Equation 2] through L 1 -optimization.
  • G represents the linear measurement matrix
  • G represents the original signal for the reconstructed measurement signal, and may be expressed in a vector form.
  • the optimal solution in the frequency domain may be transformed into an optimal solution in the time domain through an inverse Fourier transform.
  • the signal restoration apparatus since the optimum solution in the frequency domain is calculated from the reconstructed measurement signal, and the optimum solution to be finally obtained is the optimum solution for the original signal of the measurement signal before reconstruction, the signal restoration apparatus according to an embodiment of the present invention is , restores the time domain value according to the index to the sampling data of the input measurement signal.
  • the signal restoration apparatus generates the time domain value of the optimal solution calculated in the frequency domain, and then, according to the index for the sampling data, the time domain value of the original signal for the input measurement signal. to restore Since the index allocated to the reconstructed sampling data indicates the order before reconstruction of the sampling data, the time domain value of the original signal for the input measurement signal through the index can be restored.
  • the signal restoration apparatus may convert the sort order of the reconstructed sampling data to the sort order before the reconstruction by using an index for the sampling data of the input measurement signal, and as the sort order of the reconstructed sampling data is converted, The order of each element of the time domain value vector is also rearranged, and eventually, the time domain value of the original signal for the input measurement signal can be restored. Expressing this as an equation is [Equation 3].
  • the reconstruction operator As an inverse transform operator for , it is an operator that transforms the reconstructed sampling data in the order before reconstruction.
  • the signal restoration apparatus when loss data is included in the measurement signal, since reconstruction is unnecessary for the lost data, the signal restoration apparatus according to an embodiment of the present invention generates a lossless data vector and a lossy data vector from sampling data of the input measurement signal. And, it is possible to reconstruct the lossless data vector in ascending or descending order.
  • the lossless data is data in which a measured value exists
  • the loss data is data in which a measured value does not exist
  • the lossy data vector may include a preset null value.
  • the reconstructed lossless data vector with the measured value is expressed as m and the lossy data vector without the measured value as u
  • the reconstructed measurement signal is In this case, a linear measurement equation for the lossless data vector and the lossy data vector may be expressed as [Equation 4].
  • the linear measurement matrix G and the linear measurement matrices B and C are , and the linear measurement matrix C represents a vector for the null space of the linear measurement matrix G.
  • the signal restoration apparatus may calculate an optimal solution to [Equation 4] through L 1 -optimization, as described above.
  • 3 to 5 are views for explaining a restoration result of a signal restoration method according to an embodiment of the present invention, and are diagrams for explaining a restoration result when loss data is included in a measurement signal.
  • FIG. 3 is a diagram illustrating a measurement signal as in [Equation 5], and black points shown in FIG. 3 indicate sampled data.
  • FIG. 4 When the data of the predetermined section 310 of the sampling data is lost, the result of reconstructing the measurement signal according to the linear measurement equation without reconstructing the measurement signal is shown in FIG. 4 .
  • the black point (measured) shown in FIG. 4 represents the original signal as well as the measured signal, and the solid line (reconstructed) represents the restoration result for the original signal. It can be seen that there is a significant error between the original signal and the restoration result. there is.
  • FIG. 5(b) is a diagram showing the restored result after reconstructing the lossless data of the measurement signal in ascending order as shown in FIG. 5(a), and it can be seen that the original signal and the restored result are almost the same.
  • the original signal can be accurately restored.
  • the technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiments or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and carry out program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • a hardware device may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Disclosed are a method and a device for restoring a signal using compressive sensing. The disclosed method for restoring a signal using compressive sensing comprises the steps of: receiving input of measurement signals; reconstructing the measurement signals in order of size; and calculating an optimal solution for a linear measurement equation of the reconstructed measurement signals in a frequency domain.

Description

압축 센싱을 이용하는 신호 복원 방법 및 장치Signal restoration method and apparatus using compression sensing
본 발명은 측정 신호에 대한 원신호를 복원하는 방법 및 장치에 관한 것으로서, 더욱 상세하게는 압축 센싱을 이용하는 신호 복원 방법 및 장치에 관한 것이다. The present invention relates to a method and apparatus for reconstructing an original signal for a measurement signal, and more particularly, to a method and apparatus for reconstructing a signal using compression sensing.
기존의 정보/통신 시스템은 샤논(Shannon)과 나이키스트(Nyquist)에 의한 샘플링 이론(Sampling Theorem)에 입각하여 설계된 디지털 시스템 위주로 발전되어 왔다. 신호의 최고 주파수의 2배 이상으로 샘플링을 하면 그 신호를 정확하게 다시 아날로그 신호로 복원할 수 있다는 것이 바로 샤논-나이키스트의 샘플링 이론인데, 오늘날까지 이 이론은 디지털 시스템을 구축하는 기초이론으로 충실되게 이용되어 왔다.Existing information/communication systems have been developed mainly for digital systems designed based on the Sampling Theorem by Shannon and Nyquist. Shannon-Nykist's sampling theory is that the signal can be accurately restored back to an analog signal by sampling at more than twice the maximum frequency of the signal. To this day, this theory has been faithfully maintained as a basic theory for building digital systems. has been used
하지만 최근 나이키스트 레이트(Nyquist rate) 이상으로 신호를 샘플링하지 않아도 완전하기 신호를 복원할 수 있는 압축 센싱 이론이 많은 관심을 받고 있다.However, recently, a compression sensing theory capable of reconstructing a complete signal without sampling the signal above the Nyquist rate has received much attention.
압축 센싱 이론은 통상적으로 다루는 신호들은 대부분 어떤 특정한 신호 공간(space)로 변환(transform)되었을 때, 대부분의 값이 0인 소위 스파스(sparse)한 신호라는 것에 주목하고 있다. 푸리에 변환을 통해 주파수 영역으로 변환된 신호는, 대부분이 주파수 x에서 크기 F가 0이고, 상대적으로 아주 적은 수의 x에서 크기 F가 논-제로(none-zeor)값을 나타내는 스파스한 신호이다.Compression sensing theory pays attention to the so-called sparse signals with most of the values of 0 when transformed into a specific signal space. Most of the signals transformed into the frequency domain through Fourier transform are sparse signals in which magnitude F is 0 at frequency x, and a relatively small number of x values in magnitude F represent non-zero values. .
압축 센싱 이론에 따르면, 이러한 스파스한 신호는 아주 적은 수의 선형측정(linear measurements)만으로도 원래의 신호로 거의 완벽하게 복원될 수 있다.According to the compressed sensing theory, such a sparse signal can be almost completely restored to the original signal with a very small number of linear measurements.
압축 센싱 이론의 핵심은 선형 방정식 y=Ax의 최적해를 찾는 것으로 요약될 수 있다. 여기서, y는 측정 신호이며, A는 선형 측정 행렬, x는 측정 신호에 대한 원신호를 나타낸다. 즉, 이러한 선형 측정식에서, 원래의 신호 x에 어떤 행렬을 곱해서 얻은 y가, 선형 측정된 신호라고 정의된다.The core of compressive sensing theory can be summarized as finding the optimal solution of the linear equation y=Ax. Here, y is a measurement signal, A is a linear measurement matrix, and x is an original signal for the measurement signal. That is, in this linear measurement equation, y obtained by multiplying the original signal x by a certain matrix is defined as a linearly measured signal.
이러한 선형 방정식은 under-determined system이므로 수많은 원신호 x에 대한 해가 존재하며, 이러한 해 중에서 최적해는, L 0-최적화(Optimization 또는 최소화), L 1-최적화 또는 L 2-최적화 기법을 통해 계산될 수 있다.Since this linear equation is an under-determined system, there are many solutions for the original signal x, and among these solutions, the optimal solution can be calculated through L 0 -optimization (Optimization or minimization), L 1 -optimization or L 2 -optimization techniques. can
본 발명은 압축 센싱을 이용하는 신호 복원의 정확도를 더욱 높일 수 있는 신호 복원 방법을 제공하기 위한 것이다. An object of the present invention is to provide a signal restoration method capable of further increasing the accuracy of signal restoration using compression sensing.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 측정 신호를 입력받는 단계; 크기 순서에 따라서, 상기 측정 신호를 재구성하는 단계; 및 상기 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산하는 단계를 포함하는 압축 센싱을 이용하는 신호 복원 방법이 제공된다. According to an embodiment of the present invention for achieving the above object, the step of receiving a measurement signal; reconstructing the measurement signal according to the magnitude order; and calculating an optimal solution to the linear measurement equation of the reconstructed measurement signal in a frequency domain.
또한 상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, 크기 순서에 따라서, 상기 측정 신호를 재구성하는 재구성부; 상기 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산하는 최적해 계산부; 및 상기 최적해를 시간 영역값으로 역변환하는 역변환부를 포함하는 압축 센싱을 이용하는 신호 복원 장치가 제공된다.In addition, according to another embodiment of the present invention for achieving the above object, according to the order of magnitude, the reconstruction unit for reconstructing the measurement signal; an optimum solution calculation unit for calculating an optimum solution for the linear measurement equation of the reconstructed measurement signal in a frequency domain; and an inverse transform unit configured to inversely transform the optimal solution into a time domain value.
본 발명의 일실시예에 따르면, 측정 신호의 희박도가 상승하여 원신호에 대한 최적해의 정확도가 향상될 수 있다.According to an embodiment of the present invention, the accuracy of the optimal solution for the original signal may be improved by increasing the sparseness of the measurement signal.
또한 본 발명의 일실시예에 따르면, 측정 신호의 일부 데이터가 손실된 경우에도 원신호가 정확하게 복원될 수 있다.In addition, according to an embodiment of the present invention, even when some data of the measurement signal is lost, the original signal can be accurately restored.
도 1은 본 발명의 일실시예에 따른 압축 센싱을 이용하는 신호 복원 장치를 설명하기 위한 도면이다.1 is a view for explaining a signal restoration apparatus using compression sensing according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 압축 센싱을 이용하는 신호 복원 방법을 설명하기 위한 도면이다.2 is a diagram for explaining a signal restoration method using compression sensing according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 일실시예에 따른 신호 복원 방법의 복원 결과를 설명하기 위한 도면이다.3 to 5 are diagrams for explaining a restoration result of a signal restoration method according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
전술된 바와 같이, 압축 센싱은 측정 신호의 희박도(sparsity)에 기반하여 신호를 복원하는 이론이며, 희박도가 증가할수록 원신호에 대한 최적해가 보다 정확하게 산출될 수 있다. As described above, compression sensing is a theory of reconstructing a signal based on the sparsity of the measurement signal, and as the sparsity increases, the optimal solution for the original signal can be more accurately calculated.
본 발명은 이러한 점에 착안하여 측정 신호의 희박도를 높여 원신호에 대한 최적해를 산출함으로써, 측정 신호로부터 원신호를 복원한다. 본 발명의 일실시예는 측정 신호의 희박도를 높이기 위해, 측정 신호를 크기 순서에 따라서 재구성한 후, 재구성된 측정 신호의 선형 변환식으로부터 원신호에 대한 최적해를 산출한다. 이와 같이, 재구성된 측정 신호는 선형성이 증가하며, 데이터가 급격히 변하는 구간이 감소하므로, 재구성된 측정 신호에 대한 고주파 성분이 감소하며 측정 신호의 희박도가 증가할 수 있다.In view of this, the present invention restores the original signal from the measurement signal by increasing the sparseness of the measurement signal and calculating an optimal solution for the original signal. In one embodiment of the present invention, in order to increase the sparseness of the measurement signal, the measurement signal is reconstructed according to the magnitude order, and then an optimal solution to the original signal is calculated from the linear transformation equation of the reconstructed measurement signal. As described above, the linearity of the reconstructed measurement signal is increased, and the section in which data is rapidly changed is reduced, so that a high frequency component of the reconstructed measurement signal may decrease and the sparseness of the measurement signal may increase.
본 발명의 일실시예에 따른 신호 복원 방법은, 통신 시스템, 영상 처리 장치, 전력 시스템 등, 압축 센싱 기반으로 측정 신호를 입력받아 복원하는 기술 분야에 모두 적용될 수 있다. The signal restoration method according to an embodiment of the present invention may be applied to all technical fields for receiving and restoring a measurement signal based on compression sensing, such as a communication system, an image processing apparatus, and a power system.
본 발명의 일실시예에 따른 신호 복원 방법은 프로세서를 포함하는 컴퓨팅 장치에서 수행될 수 있으며, 일실시예로서 데스크탑, 노트북, 서버 또는 별도의 신호 복원 장치에서 수행될 수 있다.The signal restoration method according to an embodiment of the present invention may be performed in a computing device including a processor, and as an embodiment, may be performed in a desktop, a notebook computer, a server, or a separate signal restoration device.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 압축 센싱을 이용하는 신호 복원 장치를 설명하기 위한 도면이다.1 is a view for explaining a signal restoration apparatus using compression sensing according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 신호 복원 장치는 재구성부(110), 최적해 계산부(120) 및 역변환부(130)를 포함한다.Referring to FIG. 1 , the signal restoration apparatus according to an embodiment of the present invention includes a reconstruction unit 110 , an optimal solution calculation unit 120 , and an inverse transform unit 130 .
재구성부(110)는 측정 신호를 크기 순서에 따라서 재구성한다. 재구성부(110)는 실시예에 따라서 시간 영역의 측정 신호에 대한 샘플링 데이터를 오름차순 또는 내림차순으로 재정렬함으로써, 측정 신호를 재구성할 수 있다.The reconstruction unit 110 reconstructs the measurement signal according to the order of magnitude. The reconstruction unit 110 may reconstruct the measurement signal by rearranging the sampling data for the measurement signal in the time domain in an ascending order or a descending order according to an embodiment.
측정 신호는, 신호 복원 장치가 이용되는 실시예에 따라 달라질 수 있다. 예컨대, 통신 시스템에서 측정 신호는 수신 장치의 수신 신호일 수 있으며, 영상 처리 장치에서의 측정 신호는 영상 신호일 수 있다. 또는 전력 시스템에서는 소비 전력량이나 발전량에 대한 측정 데이터가 측정 신호에 대응될 수 있다.The measurement signal may vary according to an embodiment in which the signal restoration apparatus is used. For example, in a communication system, a measurement signal may be a reception signal of a receiving device, and a measurement signal of an image processing device may be an image signal. Alternatively, in the power system, measurement data on the amount of power consumption or generation may correspond to the measurement signal.
또한 샘플링 데이터는, 시간 영역에서 연속적인 측정 신호가, 압축 센싱에 따른 샘플링 주파수에 따라서 샘플링된 데이터이다. 측정 신호는 이러한 샘플링 주파수에 따라서 샘플링될 수 있다. In addition, the sampling data is data in which a continuous measurement signal in the time domain is sampled according to a sampling frequency according to compression sensing. The measurement signal may be sampled according to this sampling frequency.
최적해 계산부(120)는 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산한다. The optimal solution calculator 120 calculates an optimal solution for the linear measurement equation of the reconstructed measurement signal in the frequency domain.
최적해 계산부(120)는 재구성된 측정 신호에 대해 푸리에 변환을 수행하여, 재구성된 측정 신호를 주파수 영역의 신호로 변환한 후, 일실시예로서, L 1-최적화를 이용하여 최적해를 계산할 수 있다. 그리고 L 1-최적화를 위해, Operator Splitting QP Solver와 같은 최적해 산출 알고리즘이 이용될 수 있다.The optimal solution calculator 120 may perform a Fourier transform on the reconstructed measurement signal, convert the reconstructed measurement signal into a signal in the frequency domain, and, as an embodiment, calculate the optimal solution using L 1 -optimization. . And for L 1 -optimization, an optimal solution calculation algorithm such as Operator Splitting QP Solver may be used.
역변환부(130)는 주파수 영역에서 계산된 최적해를 시간 영역값으로 역변환하며, 역푸리에 변환을 통해 시간 영역값을 계산할 수 있다. 이 때, 주파수 영역에서 계산된 최적해는 재구성된 측정 신호로부터 산출된 최적해이므로, 재구성전의 측정 신호에 대한 최적해의 시간 영역값을 구하기 위해, 역변환부(130)는 재구성전 샘플링 데이터에 대한 인덱스를 이용할 수 있다.The inverse transform unit 130 inversely transforms the optimal solution calculated in the frequency domain into a time domain value, and may calculate a time domain value through an inverse Fourier transform. At this time, since the optimal solution calculated in the frequency domain is the optimal solution calculated from the reconstructed measurement signal, in order to obtain the time domain value of the optimal solution for the measurement signal before reconstruction, the inverse transform unit 130 uses the index for the sampling data before reconstruction. can
본 발명의 일실시예에 따르면, 측정 신호의 희박도가 상승하여 원신호에 대한 최적해의 정확도가 향상될 수 있다.According to an embodiment of the present invention, the accuracy of the optimal solution for the original signal may be improved by increasing the sparseness of the measurement signal.
도 2는 본 발명의 일실시예에 따른 압축 센싱을 이용하는 신호 복원 방법을 설명하기 위한 도면으로서, 도 2에서는 전술된 신호 복원 장치의 신호 복원 방법이 일실시예로서 설명된다.2 is a view for explaining a signal restoration method using compression sensing according to an embodiment of the present invention. In FIG. 2, the signal restoration method of the above-described signal restoration apparatus is described as an embodiment.
본 발명의 일실시예에 따른 신호 복원 장치는 측정 신호를 입력받는다(S210). 일예로서 측정 신호는 아날로그 신호 형태로 입력되거나, 압축 센싱에 따른 샘플링 주파수에 따라서 미리 샘플링된 데이터 형태로 입력될 수 있다. 아날로그 신호 형태로 입력된 경우, 신호 복원 장치는 미리 설정된 샘플링 주파수에 따라서 측정 신호를 샘플링할 수 있다.The signal restoration apparatus according to an embodiment of the present invention receives a measurement signal (S210). As an example, the measurement signal may be input in the form of an analog signal or in the form of pre-sampled data according to a sampling frequency according to compression sensing. When input in the form of an analog signal, the signal restoration apparatus may sample the measurement signal according to a preset sampling frequency.
그리고 신호 복원 장치는, 측정 신호의 크기 순서에 따라서, 측정 신호를 재구성(S220)한다. 신호 복원 장치는 실시예에 따라서, 측정 신호에 대한 샘플링 데이터를 오름차순 또는 내림차순으로 재정렬함으로써, 측정 신호를 재구성할 수 있다. 입력된 측정 신호를 y라고 할 경우, 재구성된 측정 신호(y s)와 입력된 측정 신호 사이의 관계는, [수학식 1]과 같이 표현될 수 있다.And the signal restoration apparatus reconstructs the measurement signal according to the order of magnitude of the measurement signal (S220). The signal restoration apparatus may reconstruct the measurement signal by rearranging sampling data for the measurement signal in an ascending order or a descending order according to an embodiment. When the input measurement signal is y, the relationship between the reconstructed measurement signal y s and the input measurement signal may be expressed as in [Equation 1].
Figure PCTKR2021000363-appb-img-000001
Figure PCTKR2021000363-appb-img-000001
여기서,
Figure PCTKR2021000363-appb-img-000002
는, 벡터 형태의 측정 신호 y를 크기 순서에 따라서 재구성하는 재구성 오퍼레이터를 나타낸다.
here,
Figure PCTKR2021000363-appb-img-000002
denotes a reconstruction operator that reconstructs the vector-shaped measurement signal y according to the magnitude order.
그리고 신호 복원 장치는, 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산(S230)한다. 재구성된 측정 신호에 대한 선형 측정식은, [수학식 2]와 같이 표현될 수 있으며, 신호 복원 장치는 L 1-최적화를 통해 [수학식 2]에 대한 최적해를 계산할 수 있다.Then, the signal restoration apparatus calculates an optimal solution for the linear measurement equation of the reconstructed measurement signal in the frequency domain ( S230 ). A linear measurement equation for the reconstructed measurement signal may be expressed as in [Equation 2], and the signal restoration apparatus may calculate an optimal solution to [Equation 2] through L 1 -optimization.
Figure PCTKR2021000363-appb-img-000003
Figure PCTKR2021000363-appb-img-000003
여기서, G는 선형 측정 행렬을 나타내며,
Figure PCTKR2021000363-appb-img-000004
는 재구성된 측정 신호에 대한 원신호를 나타내며, 벡터 형태로 표현될 수 있다.
where G represents the linear measurement matrix,
Figure PCTKR2021000363-appb-img-000004
represents the original signal for the reconstructed measurement signal, and may be expressed in a vector form.
이러한 주파수 영역에서의 최적해는 역푸리에 변환을 통해, 시간 영역에서의 최적해로 변환될 수 있다. 이 때, 주파수 영역에서의 최적해는 재구성된 측정 신호로부터 계산된 것이고, 최종적으로 구하고자하는 최적해는 재구성전 측정 신호의 원신호에 대한 최적해이기 때문에, 본 발명의 일실시예에 따른 신호 복원 장치는, 입력된 측정 신호의 샘플링 데이터에 대한 인덱스에 따라서, 시간 영역값을 복원한다.The optimal solution in the frequency domain may be transformed into an optimal solution in the time domain through an inverse Fourier transform. At this time, since the optimum solution in the frequency domain is calculated from the reconstructed measurement signal, and the optimum solution to be finally obtained is the optimum solution for the original signal of the measurement signal before reconstruction, the signal restoration apparatus according to an embodiment of the present invention is , restores the time domain value according to the index to the sampling data of the input measurement signal.
즉, 본 발명의 일실시예에 따른 신호 복원 장치는, 주파수 영역에서 계산된 최적해의 시간 영역값을 생성한 후, 샘플링 데이터에 대한 인덱스에 따라서, 입력된 측정 신호에 대한 원신호의 시간 영역값을 복원한다. 재구성된 샘플링 데이터에 할당된 인덱스는, 샘플링 데이터의 재구성전 순서를 나타내므로, 이러한 인덱스를 통해 입력된 측정 신호에 대한 원신호의 시간 영역값이 복원될 수 있다.That is, the signal restoration apparatus according to an embodiment of the present invention generates the time domain value of the optimal solution calculated in the frequency domain, and then, according to the index for the sampling data, the time domain value of the original signal for the input measurement signal. to restore Since the index allocated to the reconstructed sampling data indicates the order before reconstruction of the sampling data, the time domain value of the original signal for the input measurement signal through the index can be restored.
신호 복원 장치는, 입력된 측정 신호의 샘플링 데이터에 대한 인덱스를 이용하여, 재구성된 샘플링 데이터의 정렬 순서를, 재구성전의 정렬 순서로 변환할 수 있으며, 재구성된 샘플링 데이터의 정렬 순서가 변환됨에 따라서, 시간 영역값 벡터의 엘리멘트 별 순서 역시 재정렬되며, 결국 입력된 측정 신호에 대한 원신호의 시간 영역값이 복원될 수 있다. 이를 수학식으로 표현하면 [수학식 3]과 같다.The signal restoration apparatus may convert the sort order of the reconstructed sampling data to the sort order before the reconstruction by using an index for the sampling data of the input measurement signal, and as the sort order of the reconstructed sampling data is converted, The order of each element of the time domain value vector is also rearranged, and eventually, the time domain value of the original signal for the input measurement signal can be restored. Expressing this as an equation is [Equation 3].
Figure PCTKR2021000363-appb-img-000005
Figure PCTKR2021000363-appb-img-000005
여기서,
Figure PCTKR2021000363-appb-img-000006
는 재구성 오퍼레이터
Figure PCTKR2021000363-appb-img-000007
에 대한 역변환 오퍼레이터로서, 재구성된 샘플링 데이터를 재구성전의 순서로 변환하는 오퍼레이터이다.
here,
Figure PCTKR2021000363-appb-img-000006
is the reconstruction operator
Figure PCTKR2021000363-appb-img-000007
As an inverse transform operator for , it is an operator that transforms the reconstructed sampling data in the order before reconstruction.
한편, 측정 신호에 손실 데이터가 포함된 경우, 손실 데이터에 대해서는 재구성이 불필요하므로, 본 발명의 일실시예에 따른 신호 복원 장치는 입력된 측정 신호의 샘플링 데이터로부터 무손실 데이터 벡터와 손실 데이터 벡터를 생성하고, 무손실 데이터 벡터를 오름차순 또는 내림차순으로 재구성할 수 있다. 무손실 데이터는 측정값이 존재하는 데이터이며, 손실 데이터는 측정값이 존재하지 않는 데이터로서, 손실 데이터 벡터는, 미리 설정된 null 값으로 구성될 수 있다.On the other hand, when loss data is included in the measurement signal, since reconstruction is unnecessary for the lost data, the signal restoration apparatus according to an embodiment of the present invention generates a lossless data vector and a lossy data vector from sampling data of the input measurement signal. And, it is possible to reconstruct the lossless data vector in ascending or descending order. The lossless data is data in which a measured value exists, the loss data is data in which a measured value does not exist, and the lossy data vector may include a preset null value.
측정값이 존재하는 재구성된 무손실 데이터 벡터를 m, 측정값이 존재하지 않는 손실 데이터 벡터를 u로 표현할 경우, 재구성된 측정 신호는
Figure PCTKR2021000363-appb-img-000008
으로 표현될 수 있으며, 이 경우, 무손실 데이터 벡터 및 손실 데이터 벡터에 대한 선형 측정식은 [수학식 4]와 같이 표현될 수 있다.
If the reconstructed lossless data vector with the measured value is expressed as m and the lossy data vector without the measured value as u, the reconstructed measurement signal is
Figure PCTKR2021000363-appb-img-000008
In this case, a linear measurement equation for the lossless data vector and the lossy data vector may be expressed as [Equation 4].
Figure PCTKR2021000363-appb-img-000009
Figure PCTKR2021000363-appb-img-000009
여기서, 선형 측정 행렬 G와, 선형 측정 행렬 B 및 C는
Figure PCTKR2021000363-appb-img-000010
와 같은 관계이며, 선형 측정 행렬 C는 선형 측정 행렬 G의 영공간(null space)에 대한 벡터를 나타낸다.
Here, the linear measurement matrix G and the linear measurement matrices B and C are
Figure PCTKR2021000363-appb-img-000010
, and the linear measurement matrix C represents a vector for the null space of the linear measurement matrix G.
[수학식 4]는 [수학식 2]와 동일한 형태이므로, 신호 복원 장치는, 전술된 바와 같이, L 1-최적화를 통해 [수학식 4]에 대한 최적해를 계산할 수 있다.Since [Equation 4] has the same form as [Equation 2], the signal restoration apparatus may calculate an optimal solution to [Equation 4] through L 1 -optimization, as described above.
도 3 내지 도 5는 본 발명의 일실시예에 따른 신호 복원 방법의 복원 결과를 설명하기 위한 도면으로서, 측정 신호에 손실 데이터가 포함된 경우의 복원 결과를 설명하기 위한 도면이다.3 to 5 are views for explaining a restoration result of a signal restoration method according to an embodiment of the present invention, and are diagrams for explaining a restoration result when loss data is included in a measurement signal.
도 3은 [수학식 5]와 같은 측정 신호를 나타내는 도면이며, 도 3에 표시된 검정색 포인트는 샘플링된 데이터를 나타낸다.3 is a diagram illustrating a measurement signal as in [Equation 5], and black points shown in FIG. 3 indicate sampled data.
Figure PCTKR2021000363-appb-img-000011
Figure PCTKR2021000363-appb-img-000011
이러한 샘플링 데이터 중 일정 구간(310)의 데이터가 손실된 경우, 측정 신호를 재구성하지 않고 선형 측정식에 따라서 측정 신호를 복원한 결과는 도 4와 같다. 도 4에 도시된 검정색 포인트(measured)는 측정 신호임과 동시에 원신호를 나타내며, 실선(reconstructed)은 원신호에 대한 복원 결과를 나타내는데, 원신호와 복원 결과 사이에 상당한 오차가 존재함을 알 수 있다.When the data of the predetermined section 310 of the sampling data is lost, the result of reconstructing the measurement signal according to the linear measurement equation without reconstructing the measurement signal is shown in FIG. 4 . The black point (measured) shown in FIG. 4 represents the original signal as well as the measured signal, and the solid line (reconstructed) represents the restoration result for the original signal. It can be seen that there is a significant error between the original signal and the restoration result. there is.
반면, 도 5(b)는 측정 신호의 무손실 데이터를 도 5(a)와 같이 오름차순으로 재구성한뒤, 복원한 결과를 나타내는 도면으로서, 원신호와 복원 결과가 거의 동일함을 알 수 있다.On the other hand, FIG. 5(b) is a diagram showing the restored result after reconstructing the lossless data of the measurement signal in ascending order as shown in FIG. 5(a), and it can be seen that the original signal and the restored result are almost the same.
이와 같이, 본 발명의 일실시예에 따르면, 측정 신호의 일부 데이터가 손실된 경우에도 원신호가 정확하게 복원될 수 있다.As such, according to an embodiment of the present invention, even when some data of the measurement signal is lost, the original signal can be accurately restored.
앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the medium may be specially designed and configured for the embodiments or may be known and available to those skilled in the art of computer software. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks. - includes magneto-optical media, and hardware devices specially configured to store and carry out program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like. A hardware device may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described with specific matters such as specific components and limited embodiments and drawings, but these are provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , various modifications and variations are possible from these descriptions by those of ordinary skill in the art to which the present invention pertains. Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims to be described later, but also all those with equivalent or equivalent modifications to the claims will be said to belong to the scope of the spirit of the present invention. .

Claims (9)

  1. 측정 신호를 입력받는 단계;receiving a measurement signal;
    크기 순서에 따라서, 상기 측정 신호를 재구성하는 단계; 및reconstructing the measurement signal according to the magnitude order; and
    상기 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산하는 단계calculating an optimal solution to the linear measurement equation of the reconstructed measurement signal in the frequency domain
    를 포함하는 압축 센싱을 이용하는 신호 복원 방법.A signal restoration method using compression sensing comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 측정 신호를 재구성하는 단계는The step of reconstructing the measurement signal is
    상기 측정 신호에 대한 샘플링 데이터를 오름차순 또는 내림차순으로 재구성하는Reconstructing the sampling data for the measurement signal in ascending or descending order
    압축 센싱을 이용하는 신호 복원 방법.A signal reconstruction method using compressed sensing.
  3. 제 2항에 있어서,3. The method of claim 2,
    상기 측정 신호를 재구성하는 단계는The step of reconstructing the measurement signal is
    상기 샘플링 데이터로부터, 무손실 데이터 벡터와 손실 데이터 벡터를 생성하는 단계; 및generating a lossless data vector and a lossy data vector from the sampling data; and
    상기 무손실 데이터 벡터를 상기 오름차순 또는 내림차순으로 재구성하는 단계reconstructing the lossless data vector in the ascending or descending order
    를 포함하는 압축 센싱을 이용하는 신호 복원 방법.A signal restoration method using compression sensing comprising a.
  4. 제 3항에 있어서,4. The method of claim 3,
    상기 선형 측정식은The linear measurement formula
    하기 수학식인the formula below
    압축 센싱을 이용하는 신호 복원 방법.A signal reconstruction method using compressed sensing.
    [수학식][Equation]
    Figure PCTKR2021000363-appb-img-000012
    Figure PCTKR2021000363-appb-img-000012
    여기서, 재구성된 측정 신호 y s
    Figure PCTKR2021000363-appb-img-000013
    이며, 선형 변환 벡터 G는
    Figure PCTKR2021000363-appb-img-000014
    이며,
    Figure PCTKR2021000363-appb-img-000015
    는 재구성된 측정 신호에 대한 원신호이며,
    Figure PCTKR2021000363-appb-img-000016
    이며, m은 재구성된 무손실 데이터 벡터이며, u는 손실 데이터 벡터임.
    Here, the reconstructed measurement signal y s is
    Figure PCTKR2021000363-appb-img-000013
    and the linear transformation vector G is
    Figure PCTKR2021000363-appb-img-000014
    is,
    Figure PCTKR2021000363-appb-img-000015
    is the original signal for the reconstructed measurement signal,
    Figure PCTKR2021000363-appb-img-000016
    , where m is the reconstructed lossless data vector, and u is the lossy data vector.
  5. 제 2항에 있어서,3. The method of claim 2,
    상기 샘플링 데이터는The sampling data is
    압축 센싱에 따른 샘플링 주파수에 따라서 샘플링된 데이터인Data sampled according to the sampling frequency according to compression sensing
    압축 센싱을 이용하는 신호 복원 방법.A signal reconstruction method using compressed sensing.
  6. 제 2항에 있어서,3. The method of claim 2,
    주파수 영역에서 계산된 상기 최적해의 시간 영역값을 생성하는 단계; 및generating a time domain value of the optimal solution calculated in the frequency domain; and
    상기 샘플링 데이터에 대한 인덱스에 따라서, 상기 시간 영역값을 복원하는 단계Restoring the time domain value according to the index for the sampling data
    를 포함하는 압축 센싱을 이용하는 신호 복원 방법.A signal restoration method using compression sensing comprising a.
  7. 크기 순서에 따라서, 상기 측정 신호를 재구성하는 재구성부;a reconstruction unit for reconstructing the measurement signal according to the order of magnitude;
    상기 재구성된 측정 신호의 선형 측정식에 대한 최적해를 주파수 영역에서 계산하는 최적해 계산부; 및an optimum solution calculation unit for calculating an optimum solution for the linear measurement equation of the reconstructed measurement signal in a frequency domain; and
    상기 최적해를 시간 영역값으로 역변환하는 역변환부An inverse transform unit that inversely transforms the optimal solution into a time domain value
    를 포함하는 압축 센싱을 이용하는 신호 복원 장치.A signal restoration apparatus using compression sensing comprising a.
  8. 제 7항에 있어서,8. The method of claim 7,
    상기 재구성부는The reconstruction unit
    상기 측정 신호에 대한 샘플링 데이터를 오름차순 또는 내림차순으로 재구성하는Reconstructing the sampling data for the measurement signal in ascending or descending order
    압축 센싱을 이용하는 신호 복원 장치.A signal restoration device using compression sensing.
  9. 제 8항에 있어서,9. The method of claim 8,
    상기 역변환부는The inverse transform unit
    상기 샘플링 데이터에 대한 인덱스에 따라서, 상기 시간 영역값을 복원하는 Restoring the time domain value according to the index for the sampling data
    압축 센싱을 이용하는 신호 복원 장치.A signal restoration device using compression sensing.
PCT/KR2021/000363 2020-01-15 2021-01-12 Method and device for restoring signal using compressive sensing WO2021145631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200005221A KR102252359B1 (en) 2020-01-15 2020-01-15 Method and apparatus for restoring signal by using compressive sensing
KR10-2020-0005221 2020-01-15

Publications (1)

Publication Number Publication Date
WO2021145631A1 true WO2021145631A1 (en) 2021-07-22

Family

ID=75915465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000363 WO2021145631A1 (en) 2020-01-15 2021-01-12 Method and device for restoring signal using compressive sensing

Country Status (2)

Country Link
KR (1) KR102252359B1 (en)
WO (1) WO2021145631A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232707B1 (en) * 2012-02-07 2013-02-13 고려대학교 산학협력단 Apparatus and method for reconstructing signal using compressive sensing algorithm
KR20160001451A (en) * 2014-06-27 2016-01-06 한국전자통신연구원 Orthogonal frequency division multiplexing based network apparatus and method for data compression and reconstruction using compressed sensing
KR101729904B1 (en) * 2015-11-16 2017-04-24 (주)루먼텍 System for lossless transmission through lossy compression of data and the method thereof
KR101995709B1 (en) * 2012-11-05 2019-10-01 한국전자통신연구원 Active Compressive Sensing Apparatus and Method for using sparsity information of input signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232707B1 (en) * 2012-02-07 2013-02-13 고려대학교 산학협력단 Apparatus and method for reconstructing signal using compressive sensing algorithm
KR101995709B1 (en) * 2012-11-05 2019-10-01 한국전자통신연구원 Active Compressive Sensing Apparatus and Method for using sparsity information of input signal
KR20160001451A (en) * 2014-06-27 2016-01-06 한국전자통신연구원 Orthogonal frequency division multiplexing based network apparatus and method for data compression and reconstruction using compressed sensing
KR101729904B1 (en) * 2015-11-16 2017-04-24 (주)루먼텍 System for lossless transmission through lossy compression of data and the method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIM JAEYOON, KIM HYUNGSUK: "Estimation of Ultrasonic Attenuation Coefficients in the Frequency Domain using Compressed Sensing", JOURNAL OF THE INSTITUTE OF ELECTRONICS AND INFORMATION ENGINEERS, INSTITUTE OF ELECTRONICS AND INFORMATION ENGINEERS, KR, vol. 53, no. 6, 25 June 2016 (2016-06-25), KR, pages 167 - 173, XP055829824, ISSN: 2287-5026, DOI: 10.5573/ieie.2016.53.6.167 *

Also Published As

Publication number Publication date
KR102252359B1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
KR910021043A (en) Analog / Digital and Digital / Analog Signal Processors and Processing Methods
CN103329444A (en) Sigma-delta difference-of-squares LOG-RMS to DC converter with forward and feedback paths signal squaring
CN112596697A (en) Floating-point multiplication hardware using decomposed component numbers
WO2021145631A1 (en) Method and device for restoring signal using compressive sensing
JP2022116266A (en) Neural network processing unit, neural network processing method and device thereof
Luo et al. A modified moment-based edge operator for rectangular pixel image
Dodson et al. Proposed sparse extensions to the basic linear algebra subprograms
CN114910958A (en) Seismic full-waveform inversion method and system
Gropp et al. Users manual for KSP data-structure-neutral codes implementing Krylov space methods
US20060080373A1 (en) Compensating for errors in performance sensitive transformations
EP0626763B1 (en) Method and apparatus for converting an analog signal to a digital floating-point number and a digital floating-pont number to an analog signal
WO2023080292A1 (en) Apparatus and method for generating adaptive parameter for deep learning acceleration device
Andráš et al. Compressed sensing with continuous parametric reconstruction.
WO2023128024A1 (en) Method and system for quantizing deep-learning network
CN1659542A (en) Signal processing system and method
Rotithor A high performance pipelined architecture for measurement and monitoring of multiple sensor signals
Holub et al. Various scale errors in dithered quantizers: Visualisation and reduction
Cutts et al. A Special Function Coprocessor for Level-2
Whitehouse et al. A Digital Real Time Intraframe Viipeo Bandwidth Compression System
Ina et al. A new data conversion method for mixed precision Krylov solvers with FP16/BF16 Jacobi preconditioners
SU1388894A1 (en) Device for transformation in the basis of walsh piece-wise linear functions
Smith et al. A simple approach for the distribution of computationally intense tasks in an heterogeneous environment: distribution of the MDPP image-processing package
Kadalbajoo et al. Parallel group explicit method for two-dimensional parabolic equations
RU2175147C2 (en) Exponentiating device
Zhang et al. Sinewave fit algorithm based on total least-squares method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741706

Country of ref document: EP

Kind code of ref document: A1