WO2021145513A1 - Virtual reality-based fem analysis processing apparatus and method of power device - Google Patents

Virtual reality-based fem analysis processing apparatus and method of power device Download PDF

Info

Publication number
WO2021145513A1
WO2021145513A1 PCT/KR2020/006494 KR2020006494W WO2021145513A1 WO 2021145513 A1 WO2021145513 A1 WO 2021145513A1 KR 2020006494 W KR2020006494 W KR 2020006494W WO 2021145513 A1 WO2021145513 A1 WO 2021145513A1
Authority
WO
WIPO (PCT)
Prior art keywords
power device
fem
virtual reality
fem analysis
web server
Prior art date
Application number
PCT/KR2020/006494
Other languages
French (fr)
Korean (ko)
Inventor
박민원
딘민차우
정가은
성해진
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2021145513A1 publication Critical patent/WO2021145513A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present invention relates to an FEM analysis processing apparatus of a power device, and in particular, a virtual reality screen (VR model) that provides electrical and mechanical characteristics of a power device connected to a finite element method (FEM) based on 3D modeling ) to a virtual reality-based FEM analysis processing device and method for power devices that can be checked through
  • VR model virtual reality screen
  • FEM finite element method
  • a virtual reality (VR) system is widely used in various fields, and is particularly effectively used in the engineering field.
  • the project 3D model can be viewed through the virtual reality system.
  • the 3D model is created with a CAD program, and it can be used as an input for design configuration such as mechanical engineering, electrical engineering, etc., or can visualize and deliver an idea to a certain extent before developing a new power device. Therefore, when developing a new power device, the design process is the most important part, and if this 3D model is used, the operator can understand the model for the power device by using a simulation method using the 3D CAD model, thereby saving cost and time.
  • FEM finite element method
  • Another object of the present invention is to connect the FEM results of electric power devices or electric devices in a three-dimensional virtual environment to a VR environment in real time through a simulation platform and display them as a virtual reality screen, so that the numerical analysis results of the analysis target devices can be easily understood. It is to provide an FEM analysis processing apparatus and method of a power device.
  • the present invention for achieving the above object is a 3D CAD model unit for 3D modeling a specific power device to be analyzed; FEM analysis unit to analyze the electromagnetic field, thermal and mechanical characteristics of the modeled power device; a computer device for transmitting the 3D modeling and FEM analysis results to a web server; and a VR device that implements the analyzed FEM analysis result of the power device as a 3D model in a virtual environment in a state connected to the web server. to provide.
  • the 3D CAD model unit uses CATIA software that provides multi-platform software.
  • the FEM analysis unit uses COMSOL.
  • the computer device a virtual reality platform for supporting virtual reality; VR software that allows users to design, manipulate and collaborate on projects in a virtual environment by extending the 3D functions provided by the 3D CAD model department; a Java API for transmitting the analyzed result of the FEM analysis unit to a web server through a file transfer protocol; and the OpenGL program for directly rendering the 3D CAD modeling includes a program capable of directly rendering the 3D CAD modeling.
  • the method comprising: selecting an analysis target power device; generating a 3D CAD model for the power device by a 3D CAD model unit; analyzing, by the FEM analysis unit, the FEM simulation result of the power device using the 3D model of the power device; transmitting, by a computer device, the FEM simulation result to a web server using a predetermined communication protocol; uploading, by a web server, the FEM simulation result; connecting the web server and the VR device; and providing the FEM simulation result in three dimensions to the VR device. It provides a FEM analysis processing method of a power device based on virtual reality, characterized in that it is performed.
  • the simulation result analysis may include drawing voids and boundaries of the 3D CAD model; inputting main parameters of the power device; selecting a component material of the 3D CAD model; adding a physical option of the 3D CAD model; selecting a pre-entered equation for each characteristic of the power device; selecting the electrical circuit option and drawing an electrical circuit; For numerical analysis of the power device, the steps of generating a mesh structure and selecting a rotating mesh are sequentially performed, and an FEM simulator is executed to provide an analysis result.
  • the FEM analysis processing apparatus and method of the electric power device based on the virtual reality of the present invention as described above, it is possible to visually check the characteristics of the electromagnetic and the like of various electric power equipment in a 3D environment.
  • the present invention displays a virtual reality screen by connecting the FEM analysis result of a power device in a three-dimensional virtual environment to the virtual environment in real time through a platform, the operator can easily understand the electrical and mechanical characteristics of the power device. .
  • the 3D model of the power device can be assembled and disassembled through the virtual reality screen, thereby improving the learning effect of the power device structure diagram.
  • FIG. 1 is a block diagram of an FEM analysis processing device of a power device based on virtual reality according to a preferred embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a process of providing an analysis result of a power device through virtual reality according to a preferred embodiment of the present invention
  • FIG. 3 is a flowchart illustrating a process of analyzing various FEM characteristics of a power device during the analysis process of FIG.
  • FIG. 4 is an exemplary view showing the FEM analysis result of the power device of the present invention and the analysis result in connection with virtual reality;
  • the present invention is to provide a virtual screen by visualizing the analysis results of various electrical and mechanical properties of electric power devices or electrical devices in real time.
  • the present invention will be described in more detail based on the embodiments shown in the drawings. do it with
  • FIG. 1 is a block diagram of an FEM analysis processing apparatus 10 of a power device based on virtual reality according to a preferred embodiment of the present invention.
  • the 3D CAD model unit 100 that provides multi-platform software for designing power devices is provided.
  • the 3D CAD model unit 100 may use CATIA software suitable for a CAD program and convertible, but other software may be provided.
  • the modeling example displayed by the 3D CAD model unit 100 in FIG. 1 is a model of one pole of the generator according to CATIA V5.
  • the FEM analysis unit 110 for analyzing the electromagnetic field, stress, heat, etc. of the modeled power device is provided, and according to the embodiment, the FEM analysis unit 110 is FEM analysis software COMSOL (multiphysics analysis program) use
  • the FEM analysis unit 110 is also referred to as a FEM simulator.
  • the example modeled in FIG. 1 shows the electromagnetic field analysis model of the generator 1-pole model using the COMSOL.
  • the 3D CAD model unit 100 and the FEM analysis unit (ie, the FEM simulator) 110 may be configured separately from the computer device 120 to be described later or may be configured within the computer device 120 .
  • a computer device 120 is provided for virtual reality (VR), 3D CAD and FEM processing.
  • the computer device 120 should be of a high-performance workstation class capable of sufficiently executing the above-described multiple functions.
  • the computer device 120 includes a keyboard and mouse as input devices, a monitor for displaying information, and a base station as a communication sensor device.
  • a virtual reality platform (not shown) for supporting virtual reality is installed.
  • VR software is installed so that users can design, manipulate, and collaborate on projects in a virtual environment by extending the 3D functions provided by the 3D CAD.
  • a rendering database is also provided to store 3D CAD software as a modeling tool and software as a development tool program (eg C/C++, Java API, OpenGL, etc.).
  • the Java API serves to extract and transmit the analyzed result of the FEM analysis unit to a web server through a file transfer protocol.
  • the OpenGL program is a program that can directly render the 3D CAD modeling.
  • a VR device 140 for a user to implement a virtual technology in virtual reality is provided.
  • the VR device 140 serves to implement the FEM analysis result of the analyzed power device as a 3D model in a virtual environment while connected to the web server 130, and the VR device 140 is worn by the user on the head.
  • It includes a headset (HMD: Head mounted display) and a controller that the user controls in virtual reality.
  • the web server 130 receives the FEM analysis result, uploads it, and provides it to the VR device 140 .
  • the analysis results of the electromagnetic fields of various power devices in the 3D environment can be visually confirmed through the mapping environment, and various principles of power devices can be easily understood.
  • the user selects a power device to be analyzed.
  • a 3D model of the power device is generated using the CATIA software of the 3D CAD model unit 100 (s100).
  • the 3D model will be the same as that illustrated in the 3D CAD model unit 100 of FIG. 1 .
  • the FEM analysis unit 110 analyzes the simulation of the power device in the 3D model of the power device generated by the 3D CAD model unit 100 (s110).
  • the simulation analysis process is a process of processing the FEM analysis of the power device, and will be for analyzing the electromagnetic field, magnetic field, thermal and mechanical properties of the power device.
  • the simulation analysis process of the power device will be referred to in FIG. 3 .
  • the FEM simulator 110 receives the 3D CAD model, it draws voids and boundaries (s200).
  • the main parameters of the power device are input (s210).
  • a physical option such as a component material selection of the 3D model (s220) and a rotator/magnetic option is added (s230).
  • Equations are selected for each electromagnetic field, magnetic field, thermal, and mechanical characteristics to be analyzed (s240). Equations are input in the FEM simulator 110, and different equations are provided for each electromagnetic field, thermal, and mechanical properties.
  • Equation 1 is Gauss's law
  • Equation 2 is Gauss's law for magnetism
  • Equation 3 is Faraday's lay
  • Equation 4 is Ampere-Maxwell law. Since the above-described equations are already input to the FEM analysis unit 110, when the user inputs the parameters, they are automatically calculated.
  • Equations 1 to 4 E: electric field, B: magnetic field, : charge density, : permittivity of free space, : Transmittance of free space, J means current density vector.
  • Equations 5 and 6 are used to analyze the thermal characteristics. Equation 5 is a Fourier heat law, Equation 6 is a 'Stefan-Boltzmann equation', and since Equations 5 and 6 are already input to the FEM analysis unit 110 , they are automatically calculated when a user inputs parameters.
  • Equations 5 and 6 k: heat conduction heat of the material, ⁇ : total heat emissivity of the material, ⁇ : Stefan-Boltzmann constant, T: temperature.
  • Equation 7 is torque
  • Equation 8 is tangential force
  • Equation 9 is centrifugal force
  • Equation 10 is gravity
  • Equation 11 is a 'Lorentz' force equation required to analyze the mechanical stress of the power device.
  • an appropriate equation may be set in the FEM analysis unit (ie, the FEM simulator) 110 .
  • a process of creating a mesh structure is performed so that numerical analysis can be performed on power devices having complex three-dimensional geometric shapes. That is, a mesh structure that stores data necessary for numerical analysis is required, and this mesh structure includes the coordinates of each node constituting the mesh, initial conditions and boundary conditions necessary for numerical analysis.
  • a rotation mesh is selected (s260).
  • the FEM simulator 110 when executed (s270), the results of the electromagnetic field characteristics, thermal characteristics, and mechanical characteristics to be analyzed can be known (s280).
  • An FEM simulation execution result screen is displayed on the computer device 120 as a simulation analysis result for the power device. Examples of the analysis result are 200 (electromagnetic field characteristic analysis), 300 (thermal characteristic analysis), 400 (mechanical characteristic analysis) of FIG. 4 . analysis) is the same.
  • the analysis result of the power device is completed by connecting the analysis result from the virtual reality environment to the VR environment in real time through the virtual reality platform, which will be described with reference to FIG. 2 above. That is, when the 3D FEM simulation analysis process (S110) of FIG. 2 is completed according to the sequence of FIG. 3 as described above and the FEM analysis result of the power device is provided, the analysis result is Java, a development tool program installed in the computer gy 120 It is transmitted to the API (s120).
  • the FEM analysis result using the Java API is transmitted to the web server 130 and then uploaded to OpenGL (s130, s140).
  • OpenGL is used to render 3D CAD data.
  • the VR device 140 is connected to the web server 130 to support virtual reality (s150). As such, when the VR device 140 is connected and the user wears the headset, the user can visually check the analysis result of the power device in the virtual reality environment (s160).
  • An example of the analysis result is as shown in 500 of FIG. 4 .
  • the electric power device when a user operates a controller in a virtual reality environment, the electric power device can be assembled and disassembled in a three-dimensional space.
  • the simulation analysis results will be displayed on the screen so that the complex numerical data and field patterns of the power equipment can be better understood.
  • the present invention connects the FEM analysis result of the power device and the 3D system in a VR-based environment to visualize the various analysis results of the power device on a 3D platform to implement an immersive model so that the numerical analysis result can be easily understood. .
  • VR devices and AR devices that can design and process FEM analysis results of various electric power devices in virtual reality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Processing Or Creating Images (AREA)

Abstract

The present invention relates to a virtual reality-based finite elements method (FEM) analysis processing apparatus and method of a power device, which enable electrical and mechanical characteristics and the like of the power device connected to an FEM to be identified via a virtual reality screen (VR model) provided on the basis of 3-dimensional modeling. The present invention is configured by including: a 3D CAD model unit for 3D-modeling a specific power device to be analyzed; an FEM analysis unit for analyzing electromagnetic field, thermal, and mechanical characteristics of the modeled power device; and a VR device for implementing a result of FEM analysis of the analyzed power device as a 3D model in a virtual environment, while being connected to a web server and a computer apparatus for transmitting results of the 3D modeling and the FEM analysis to the web server.

Description

가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치 및 방법FEM analysis processing apparatus and method of electric power equipment based on virtual reality
본 발명은 전력기기의 FEM 분석 처리장치에 관한 것으로, 특히 유한 요소법(FEM:Finite Elements Method)에 연결된 전력기기의 전기적, 기계적인 특성 등을 3차원 모델링을 기반으로 제공되는 가상 현실화면(VR 모델)을 통해 확인할 수 있도록 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치 및 방법에 관한 것이다. The present invention relates to an FEM analysis processing apparatus of a power device, and in particular, a virtual reality screen (VR model) that provides electrical and mechanical characteristics of a power device connected to a finite element method (FEM) based on 3D modeling ) to a virtual reality-based FEM analysis processing device and method for power devices that can be checked through
알려진 바와 같이 가상현실(VR) 시스템은 다양한 분야에 폭넓게 활용되고 있고, 특히 엔지니어링 분야에서 효과적으로 사용되고 있다. 즉 가상현실 시스템을 통해 프로젝트 3D 모델을 볼 수 있는 것이다.As is known, a virtual reality (VR) system is widely used in various fields, and is particularly effectively used in the engineering field. In other words, the project 3D model can be viewed through the virtual reality system.
3D 모델은 CAD 프로그램으로 작성되며, 기계공학, 전기공학 등의 설계 구성에 대한 입력으로 사용되거나 새로운 전력기기를 개발하기 전에 어느 정도의 아이디어를 시각화하여 전달할 수 있다. 따라서 새로운 전력기기를 개발할 때 설계과정이 가장 중요한 부분인데, 이러한 3D 모델을 이용하면 3D CAD 모델을 사용한 시뮬레이션 방법으로 작업자는 전력기기에 대한 모델을 이해할 수 있어 비용과 시간을 절약할 수 있다.The 3D model is created with a CAD program, and it can be used as an input for design configuration such as mechanical engineering, electrical engineering, etc., or can visualize and deliver an idea to a certain extent before developing a new power device. Therefore, when developing a new power device, the design process is the most important part, and if this 3D model is used, the operator can understand the model for the power device by using a simulation method using the 3D CAD model, thereby saving cost and time.
현재 가장 많이 사용하는 시뮬레이션 방법은 3D 모델의 공학 및 수학문제를 해결하기 위한 유한 요소법(FEM)을 이용하는 것이다. Currently, the most used simulation method is to use the finite element method (FEM) to solve engineering and mathematical problems of 3D models.
하지만, 현재 전력기기에 대한 설계에서 3D 모델을 이용하는 추세이지만, 전력기기의 FEM과 3D 시스템을 접목하여 활용하고 있지 못하다. 그러기 때문에 전력기기의 동작특성과 구조를 쉽게 이해하는 데에는 한계가 있다. 즉 전력기기는 전자기 원리를 기반으로 동작하기 때문에 전자기장 계산으로 인해 복잡한 수치 데이터와 필드 패턴이 생성되며, 이러한 수치 데이터와 필드 패턴을 쉽게 이해할 수 없는 것이다.However, although the current trend of using 3D models in the design of power devices is that they are not utilized by combining the FEM and 3D systems of power devices. Therefore, there is a limit to easily understanding the operating characteristics and structure of power devices. In other words, since power devices operate based on electromagnetic principles, complex numerical data and field patterns are generated due to electromagnetic field calculations, and these numerical data and field patterns cannot be easily understood.
따라서 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로, 전력기기나 전기기기의 동작 특성과 구조를 더 잘 이해할 수 있게 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치 및 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to solve the above problems, and to provide a FEM analysis processing apparatus and method of a power device based on virtual reality that enables a better understanding of the operating characteristics and structure of a power device or an electric device will be.
본 발명의 다른 목적은 3차원 가상 환경에서 전력기기나 전기기기의 FEM 결과를 시뮬레이션 플랫폼을 통해 실시간으로 VR 환경에 연결하여 가상 현실화면으로 표시할 수 있어, 분석대상 기기의 수치 해석 결과를 쉽게 이해할 수 있도록 한 전력기기의 FEM 분석 처리장치 및 방법을 제공하는 것이다.Another object of the present invention is to connect the FEM results of electric power devices or electric devices in a three-dimensional virtual environment to a VR environment in real time through a simulation platform and display them as a virtual reality screen, so that the numerical analysis results of the analysis target devices can be easily understood. It is to provide an FEM analysis processing apparatus and method of a power device.
이와 같은 목적을 달성하기 위한 본 발명은, 분석하고자 하는 특정 전력기기를 3D 모델링하는 3D CAD 모델부; 모델링 된 상기 전력기기의 전자기장, 열적, 기계적 특성을 분석하는 FEM 분석부; 상기 3D 모델링 및 FEM 분석 결과를 웹서버로 전송하는 컴퓨터 장치; 및 상기 웹 서버와 연결된 상태에서, 분석된 상기 전력기기의 FEM 분석결과를 가상환경에서 3D 모델로 구현하는 VR기기를 포함하는 것을 특징으로 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치를 제공한다. The present invention for achieving the above object is a 3D CAD model unit for 3D modeling a specific power device to be analyzed; FEM analysis unit to analyze the electromagnetic field, thermal and mechanical characteristics of the modeled power device; a computer device for transmitting the 3D modeling and FEM analysis results to a web server; and a VR device that implements the analyzed FEM analysis result of the power device as a 3D model in a virtual environment in a state connected to the web server. to provide.
상기 3D CAD 모델부는 다중 플랫폼 소프트웨어를 제공하는 CATIA 소프트웨어를 사용한다. The 3D CAD model unit uses CATIA software that provides multi-platform software.
상기 FEM 분석부는 COMSOL을 사용한다.The FEM analysis unit uses COMSOL.
상기 컴퓨터 장치는, 가상현실을 지원하기 위한 가상현실 플랫폼; 3D CAD 모델부가 제공하는 3D 기능을 확장하여 사용자가 가상환경에서 프로젝트를 설계, 조작 및 공동작업이 가능한 VR 소프트웨어; 상기 FEM 분석부의 분석된 결과를 파일 전송 프로토콜을 통해 웹 서버로 전송하는 Java API; 및 3D CAD 모델링을 직접 렌더링하는 OpenGL 프로그램은 상기 3D CAD 모델링을 직접 렌더링할 수 있는 프로그램을 포함한다. The computer device, a virtual reality platform for supporting virtual reality; VR software that allows users to design, manipulate and collaborate on projects in a virtual environment by extending the 3D functions provided by the 3D CAD model department; a Java API for transmitting the analyzed result of the FEM analysis unit to a web server through a file transfer protocol; and the OpenGL program for directly rendering the 3D CAD modeling includes a program capable of directly rendering the 3D CAD modeling.
본 발명의 다른 특징에 따르면, 분석 대상 전력기기를 선정하는 단계; 3D CAD 모델부가 상기 전력기기에 대한 3D CAD 모델을 생성하는 단계; FEM 분석부가 상기 전력기기의 3D 모델을 이용하여 전력기기의 FEM 시뮬레이션 결과를 분석하는 단계; 컴퓨터 장치가 소정 통신 프로토콜을 이용하여 상기 FEM 시뮬레이션 결과를 웹 서버로 전송하는 단계; 웹 서버가 상기 FEM 시뮬레이션 결과를 업로드하는 단계; 상기 웹 서버와 VR 기기가 연결되는 단계; 및 상기 VR 기기에 상기 FEM 시뮬레이션 결과를 3차원으로 제공하는 단계를 포함하는 수행되는 것을 특징으로 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리방법을 제공한다.According to another feature of the present invention, the method comprising: selecting an analysis target power device; generating a 3D CAD model for the power device by a 3D CAD model unit; analyzing, by the FEM analysis unit, the FEM simulation result of the power device using the 3D model of the power device; transmitting, by a computer device, the FEM simulation result to a web server using a predetermined communication protocol; uploading, by a web server, the FEM simulation result; connecting the web server and the VR device; and providing the FEM simulation result in three dimensions to the VR device. It provides a FEM analysis processing method of a power device based on virtual reality, characterized in that it is performed.
상기 시뮬레이션 결과 분석은, 상기 3D CAD 모델의 공극과 경계를 드로잉하는 단계; 상기 전력기기의 주요 매개변수를 입력하는 단계; 상기 3D CAD 모델의 컴포넌트 물질을 선택하는 단계; 상기 3D CAD 모델의 물리적 옵션을 추가하는 단계; 상기 전력기기의 특성별로 미리 입력된 수식을 선택하는 단계; 상기 전기적 회로 옵션을 선택하고 전기회로를 드로잉하는 단계; 상기 전력기기의 수치 해석을 위해 메쉬 구조를 생성하고 회전 메쉬를 선택하는 단계가 순서대로 진행되고, FEM 시뮬레이터를 실행하여 분석결과를 제공한다. The simulation result analysis may include drawing voids and boundaries of the 3D CAD model; inputting main parameters of the power device; selecting a component material of the 3D CAD model; adding a physical option of the 3D CAD model; selecting a pre-entered equation for each characteristic of the power device; selecting the electrical circuit option and drawing an electrical circuit; For numerical analysis of the power device, the steps of generating a mesh structure and selecting a rotating mesh are sequentially performed, and an FEM simulator is executed to provide an analysis result.
이상과 같은 본 발명의 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치 및 방법에 따르면, 3D 환경에서 각종 전력기기의 전자기 등의 특성 결과를 시각적으로 확인할 수 있다.According to the FEM analysis processing apparatus and method of the electric power device based on the virtual reality of the present invention as described above, it is possible to visually check the characteristics of the electromagnetic and the like of various electric power equipment in a 3D environment.
또 본 발명은 3차원 가상 환경에서 전력기기의 FEM 분석결과를 플랫폼을 통해 가상 환경에 실시간으로 연결하여 가상 현실화면을 표시하기 때문에, 작업자는 손쉽게 전력기기의 전기적, 기계적 특성 등을 쉽게 이해할 수 있다.In addition, since the present invention displays a virtual reality screen by connecting the FEM analysis result of a power device in a three-dimensional virtual environment to the virtual environment in real time through a platform, the operator can easily understand the electrical and mechanical characteristics of the power device. .
또 전력기기의 3D 모델을 가상 현실화면을 통해 조립 및 분해할 수 있어 전력기기 구조도의 학습효과를 향상시킬 수 있다.In addition, the 3D model of the power device can be assembled and disassembled through the virtual reality screen, thereby improving the learning effect of the power device structure diagram.
도 1은 본 발명의 바람직한 실시 예에 따라 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치의 블록 구성도1 is a block diagram of an FEM analysis processing device of a power device based on virtual reality according to a preferred embodiment of the present invention;
도 2는 본 발명의 바람직한 실시 예에 따라 전력기기의 분석결과를 가상현실을 통해 제공하는 과정을 설명하는 흐름도2 is a flowchart illustrating a process of providing an analysis result of a power device through virtual reality according to a preferred embodiment of the present invention;
도 3은 도 2의 분석 과정 중 전력기기의 각종 FEM 특성을 분석하는 과정을 설명하는 흐름도3 is a flowchart illustrating a process of analyzing various FEM characteristics of a power device during the analysis process of FIG.
도 4는 본 발명의 전력기기의 FEM 분석결과 및 그 분석결과를 가상현실과 연계하여 표시한 예시 도면 4 is an exemplary view showing the FEM analysis result of the power device of the present invention and the analysis result in connection with virtual reality;
본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Objects and effects of the present invention, and technical configurations for achieving them will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다.In addition, the terms described below are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators.
그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. Only the present embodiments are provided so that the disclosure of the present invention is complete, and to fully inform those of ordinary skill in the art to which the present invention belongs, the scope of the invention, the present invention is defined by the scope of the claims will only be Therefore, the definition should be made based on the content throughout this specification.
본 발명은 전력기기나 전기기기가 가지는 각종 전기적, 기계적 특성의 분석 결과를 실시간으로 시각화하여 가상화면으로 제공하는 것이고, 이하에서는 도면에 도시한 실시 예에 기초하면서 본 발명에 대하여 더욱 상세하게 설명하기로 한다. The present invention is to provide a virtual screen by visualizing the analysis results of various electrical and mechanical properties of electric power devices or electrical devices in real time. Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. do it with
도 1은 본 발명의 바람직한 실시 예에 따라 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치(10)의 블록 구성도이다. 이에 도시한 바와 같이 전력기기를 설계하기 위한 다중 플랫폼 소프트웨어를 제공하는 3D CAD 모델부(100)가 제공된다. 실시 예에서 상기 3D CAD 모델부(100)는 CAD 프로그램에 적합하고 변환 가능한 CATIA 소프트웨어를 사용할 수 있으나 다른 소프트웨어가 제공될 수 있다. 도 1에서 상기 3D CAD 모델부(100)에 의해 표시된 모델링 예는 CATIA V5에 의한 발전기의 1극의 모델이다.1 is a block diagram of an FEM analysis processing apparatus 10 of a power device based on virtual reality according to a preferred embodiment of the present invention. As shown here, the 3D CAD model unit 100 that provides multi-platform software for designing power devices is provided. In an embodiment, the 3D CAD model unit 100 may use CATIA software suitable for a CAD program and convertible, but other software may be provided. The modeling example displayed by the 3D CAD model unit 100 in FIG. 1 is a model of one pole of the generator according to CATIA V5.
본 발명에 따르면 모델링 된 전력기기의 전자기장, 응력 및 열 등을 분석하는 FEM 분석부(110)가 구비되며, 실시 예에 따르면 FEM 분석부(110)는 FEM 분석 소프트웨어인 COMSOL(다중물리 해석 프로그램)을 사용한다. FEM 분석부(110)를 FEM 시뮬레이터라고 하기도 한다. 도 1에서 모델링 된 예는 상기 COMSOL을 사용한 발전기 1극 모델의 전자기장 분석 모델을 나타내고 있다.According to the present invention, the FEM analysis unit 110 for analyzing the electromagnetic field, stress, heat, etc. of the modeled power device is provided, and according to the embodiment, the FEM analysis unit 110 is FEM analysis software COMSOL (multiphysics analysis program) use The FEM analysis unit 110 is also referred to as a FEM simulator. The example modeled in FIG. 1 shows the electromagnetic field analysis model of the generator 1-pole model using the COMSOL.
상기한 3D CAD 모델부(100) 및 FEM 분석부(즉 FEM 시뮬레이터)(110)는 후술하는 컴퓨터 장치(120)와 별개로 구성되거나 그 컴퓨터 장치(120) 내에 구성될 수도 있다.The 3D CAD model unit 100 and the FEM analysis unit (ie, the FEM simulator) 110 may be configured separately from the computer device 120 to be described later or may be configured within the computer device 120 .
가상현실(VR), 3D CAD 및 FEM 처리를 위한 컴퓨터 장치(120)가 제공된다. 컴퓨터 장치(120)는 상기한 복수 기능을 충분히 실행할 수 있는 고성능의 워크 스테이션 급이어야 한다. A computer device 120 is provided for virtual reality (VR), 3D CAD and FEM processing. The computer device 120 should be of a high-performance workstation class capable of sufficiently executing the above-described multiple functions.
이러한 컴퓨터 장치(120)는 입력장치로 키보드 및 마우스, 정보를 표시하는 모니터, 통신센서장치인 베이스 스테이션을 포함하고 있다.The computer device 120 includes a keyboard and mouse as input devices, a monitor for displaying information, and a base station as a communication sensor device.
그리고 도면에는 도시하지 않았지만, 가상현실을 지원하기 위한 가상현실 플랫폼(미도시)이 설치된다. 또 상기 3D CAD가 제공하는 3D 기능을 확장하여 사용자가 가상환경에서 프로젝트를 설계, 조작 및 공동작업이 가능하도록 VR 소프트웨어가 설치된다. 또 모델링 도구인 3D CAD 소프트웨어와 개발 도구 프로그램인 소프트 웨어(예를 들면 C/C++, Java API, OpenGL 등)을 저장하도록 렌더링 데이터베이스도 구비된다. 상기 Java API는 상기 FEM 분석부의 분석된 결과를 파일 전송 프로토콜을 통해 웹 서버로 추출 전송하는 역할을 한다. 그리고 상기 OpenGL 프로그램은 상기 3D CAD 모델링을 직접 렌더링할 수 있는 프로그램이다.And although not shown in the drawing, a virtual reality platform (not shown) for supporting virtual reality is installed. In addition, VR software is installed so that users can design, manipulate, and collaborate on projects in a virtual environment by extending the 3D functions provided by the 3D CAD. A rendering database is also provided to store 3D CAD software as a modeling tool and software as a development tool program (eg C/C++, Java API, OpenGL, etc.). The Java API serves to extract and transmit the analyzed result of the FEM analysis unit to a web server through a file transfer protocol. And the OpenGL program is a program that can directly render the 3D CAD modeling.
사용자가 가상현실에서 가상기술을 구현하기 위한 VR 기기(140)가 구비된다. VR 기기(140)는 웹 서버(130)와 연결된 상태에서, 분석된 상기 전력기기의 FEM 분석결과를 가상환경에서 3D 모델로 구현하는 역할을 하며, 이러한 VR 기기(140)는 사용자가 머리에 착용하는 헤드셋(HMD: Head mounted display), 가상현실에서 사용자가 조정하는 컨트롤러 등을 포함하고 있다.A VR device 140 for a user to implement a virtual technology in virtual reality is provided. The VR device 140 serves to implement the FEM analysis result of the analyzed power device as a 3D model in a virtual environment while connected to the web server 130, and the VR device 140 is worn by the user on the head. It includes a headset (HMD: Head mounted display) and a controller that the user controls in virtual reality.
상기 웹 서버(130)는 FEM 분석결과를 전송받아 업로드(up-load)하고 이를 VR 기기(140)로 제공한다. The web server 130 receives the FEM analysis result, uploads it, and provides it to the VR device 140 .
이와 같은 구성에 따르면, 3D 환경에서 각종 전력기기의 전자기장의 해석 결과를 사상환경을 통해 시각적으로 확인할 수 있으며, 전력기기 등의 각종 원리를 쉽게 이해할 수 있을 것이다.According to such a configuration, the analysis results of the electromagnetic fields of various power devices in the 3D environment can be visually confirmed through the mapping environment, and various principles of power devices can be easily understood.
다음에는 전력기기의 전기적, 기계적, 열적 특성 등에 대한 각종 분석 결과를 가상현실에서 제공하는 과정을 도 2 내지 도 4를 함께 참고하여 살펴보기로 한다. Next, a process of providing various analysis results for electrical, mechanical, and thermal characteristics of power devices in virtual reality will be described with reference to FIGS. 2 to 4 together.
사용자는 분석하고자 하는 전력기기를 선정한다, 전력기기가 선정되면 3D CAD 모델부(100)의 CATIA 소프트웨어를 사용하여 그 전력기기에 대한 3D 모델을 생성한다(s100). 3D 모델은 도 1의 3D CAD 모델부(100)에 예시한 것과 같을 것이다. The user selects a power device to be analyzed. When the power device is selected, a 3D model of the power device is generated using the CATIA software of the 3D CAD model unit 100 (s100). The 3D model will be the same as that illustrated in the 3D CAD model unit 100 of FIG. 1 .
그러면 FEM 분석부(110)는 상기 3D CAD 모델부(100)가 생성한 전력기기의 3D 모델에서 그 전력기기의 시뮬레이션을 분석한다(s110). 여기서 시뮬레이션 분석과정은 전력기기의 FEM 분석을 처리하는 과정으로, 전력기기의 전자기장, 자기장, 열적 및 기계적 특성을 분석하기 위한 것일 것이다. Then, the FEM analysis unit 110 analyzes the simulation of the power device in the 3D model of the power device generated by the 3D CAD model unit 100 (s110). Here, the simulation analysis process is a process of processing the FEM analysis of the power device, and will be for analyzing the electromagnetic field, magnetic field, thermal and mechanical properties of the power device.
상기 전력기기의 시뮬레이션 분석과정은 도 3을 참고하기로 한다. 도 3에 도시한 바와 같이 FEM 시뮬레이터(110)가 3D CAD 모델을 전달받으면 공극과 경계를 드로잉한다(s200). The simulation analysis process of the power device will be referred to in FIG. 3 . As shown in FIG. 3 , when the FEM simulator 110 receives the 3D CAD model, it draws voids and boundaries (s200).
그런 다음 상기 전력기기의 주요 매개변수를 입력한다(s210). 또 3D 모델의 컴포넌트 물질 선택(s220), 회전기/자기적 옵션 등의 물리적 옵션 등을 추가한다(s230). Then, the main parameters of the power device are input (s210). In addition, a physical option such as a component material selection of the 3D model (s220) and a rotator/magnetic option is added (s230).
이와 같이 전력기기의 물리적 옵션까지 입력되면 분석하고자 하는 전자기장, 자기장, 열적, 기계적 특성별로 수식들을 선택한다(s240). 수식들의 입력은 FEM 시뮬레이터(110)에서 이루어지며, 전자기장, 열적, 기계적 특성별로 상이한 수식들이 각각 제공된다. In this way, when the physical option of the power device is input, equations are selected for each electromagnetic field, magnetic field, thermal, and mechanical characteristics to be analyzed (s240). Equations are input in the FEM simulator 110, and different equations are provided for each electromagnetic field, thermal, and mechanical properties.
전자기장 분석에는 다음의 수학식 1 내지 4가 이용된다. 수학식 1은 Gauss's law, 수학식 2는 Gauss's law for magnetism, 수학식 3은 Faraday's lay, 수학식 4는 Ampere-Maxwell law이다. 상기한 수학식들이 상기 FEM 분석부(110)에 이미 입력되어 있기 때문에 사용자가 매개변수가 입력하면 자동 계산된다.The following Equations 1 to 4 are used for the electromagnetic field analysis. Equation 1 is Gauss's law, Equation 2 is Gauss's law for magnetism, Equation 3 is Faraday's lay, Equation 4 is Ampere-Maxwell law. Since the above-described equations are already input to the FEM analysis unit 110, when the user inputs the parameters, they are automatically calculated.
Figure PCTKR2020006494-appb-img-000001
Figure PCTKR2020006494-appb-img-000001
Figure PCTKR2020006494-appb-img-000002
Figure PCTKR2020006494-appb-img-000002
Figure PCTKR2020006494-appb-img-000003
Figure PCTKR2020006494-appb-img-000003
Figure PCTKR2020006494-appb-img-000004
Figure PCTKR2020006494-appb-img-000004
상기 수학식 1 내지 4에서, E: 전계, B: 자계,
Figure PCTKR2020006494-appb-img-000005
: 전하밀도,
Figure PCTKR2020006494-appb-img-000006
: 자유공간의 유전율,
Figure PCTKR2020006494-appb-img-000007
: 자유공간의 투과율, J는 전류밀도 벡터를 의미한다.
In Equations 1 to 4, E: electric field, B: magnetic field,
Figure PCTKR2020006494-appb-img-000005
: charge density,
Figure PCTKR2020006494-appb-img-000006
: permittivity of free space,
Figure PCTKR2020006494-appb-img-000007
: Transmittance of free space, J means current density vector.
열적 특성의 분석에는 수학식 5 및 수학식 6이 이용된다. 수학식 5는 Fourier heat law, 수학식 6은 'Stefan-Boltzmann equation'이고, 상기 FEM 분석부(110)에 이미 수학식 5, 6은 입력되어 있기 때문에 사용자가 매개변수가 입력하면 자동 계산된다. Equations 5 and 6 are used to analyze the thermal characteristics. Equation 5 is a Fourier heat law, Equation 6 is a 'Stefan-Boltzmann equation', and since Equations 5 and 6 are already input to the FEM analysis unit 110 , they are automatically calculated when a user inputs parameters.
Figure PCTKR2020006494-appb-img-000008
Figure PCTKR2020006494-appb-img-000008
Figure PCTKR2020006494-appb-img-000009
Figure PCTKR2020006494-appb-img-000009
상기 수학식 5 및 6에서, k: 물질의 열전도열, ε: 물질의 총 열방사율, σ: Stefan-Boltzmann 상수, T: 온도를 의미한다.In Equations 5 and 6, k: heat conduction heat of the material, ε: total heat emissivity of the material, σ: Stefan-Boltzmann constant, T: temperature.
기계적 응력 분석에는 힘의 방향과 진폭이 필요하기 때문에 다음의 수학식 7 내지 수학식 11이 이용된다. 수학식 7은 토크, 수학식 8은 접선력, 수학식 9은 원심력, 수학식 10은 중력, 수학식 11은 전력기기의 기계적 응력을 분석하기 위해 필요한 'Lorentz' 힘 방정식이다. Since the direction and amplitude of the force are required for mechanical stress analysis, the following Equations 7 to 11 are used. Equation 7 is torque, Equation 8 is tangential force, Equation 9 is centrifugal force, Equation 10 is gravity, and Equation 11 is a 'Lorentz' force equation required to analyze the mechanical stress of the power device.
Figure PCTKR2020006494-appb-img-000010
Figure PCTKR2020006494-appb-img-000010
Figure PCTKR2020006494-appb-img-000011
Figure PCTKR2020006494-appb-img-000011
Figure PCTKR2020006494-appb-img-000012
Figure PCTKR2020006494-appb-img-000012
Figure PCTKR2020006494-appb-img-000013
Figure PCTKR2020006494-appb-img-000013
Figure PCTKR2020006494-appb-img-000014
Figure PCTKR2020006494-appb-img-000014
이외에도 전력기기의 다른 특성을 분석할 경우, 그에 맞는 수식은 FEM 분석부(즉 FEM 시뮬레이터)(110)에 셋팅하면 된다. In addition, when analyzing other characteristics of the power device, an appropriate equation may be set in the FEM analysis unit (ie, the FEM simulator) 110 .
도 3을 계속 참고하면, 상기와 같이 전력기기의 각 특성별로 수식이 선택 완료되면, 전기적 회로 옵션들을 선택하면서 전기적 회로를 드로잉한다(s250). Continuing to refer to FIG. 3 , when formula selection for each characteristic of the power device is completed as described above, an electrical circuit is drawn while selecting electrical circuit options (s250).
다음에는 복잡한 3차원 기하학적 형상을 가지는 전력기기에 대해 수치 해석을 수행할 수 있도록 메쉬 구조를 생성하는 과정을 수행한다. 즉 수치해석에 필요한 데이터를 저장하고 있는 메쉬(mesh) 구조가 필요로 하며, 이러한 메쉬 구조는 메쉬를 구성하는 각 노드들의 좌표와 수치 해석에 필요한 초기 조건 및 경계 조건 등을 포함한다. 메쉬를 생성하면 회전 메쉬를 선택한다(s260). Next, a process of creating a mesh structure is performed so that numerical analysis can be performed on power devices having complex three-dimensional geometric shapes. That is, a mesh structure that stores data necessary for numerical analysis is required, and this mesh structure includes the coordinates of each node constituting the mesh, initial conditions and boundary conditions necessary for numerical analysis. When a mesh is created, a rotation mesh is selected (s260).
이후, FEM 시뮬레이터(110)를 실행하면(s270), 분석하고자 하는 전자기장 특성, 열적 특성, 기계적 특성에 대한 결과를 알 수 있다(s280). 상기 전력기기에 대한 시뮬레이션 분석 결과로서 FEM 시뮬레이션 실행 결과화면이 컴퓨터 장치(120)에 표시되는데, 분석 결과의 예는 도 4의 200(전자기장 특성 분석), 300(열적 특성 분석), 400(기계적 특성 분석)과 같다. Then, when the FEM simulator 110 is executed (s270), the results of the electromagnetic field characteristics, thermal characteristics, and mechanical characteristics to be analyzed can be known (s280). An FEM simulation execution result screen is displayed on the computer device 120 as a simulation analysis result for the power device. Examples of the analysis result are 200 (electromagnetic field characteristic analysis), 300 (thermal characteristic analysis), 400 (mechanical characteristic analysis) of FIG. 4 . analysis) is the same.
이와 같이 전력기기의 FEM 분석결과가 완료되면, 그 분석결과를 가상현실 환경에서 가상현실 플랫폼을 통해 실시간으로 VR 환경으로 연결하여 제공하게 되는데, 이는 위의 도 2를 참고하여 계속 설명한다. 즉 도 2의 3D FEM 시뮬레이션 분석과정(S110)이 상기한 바와 같이 도 3의 순서에 따라 완료되어 전력기기의 FEM 분석결과가 제공되면, 분석결과는 컴퓨터 자이(120)에 설치된 개발 도구 프로그램인 Java API로 전달된다(s120). As such, when the FEM analysis result of the power device is completed, the analysis result is provided by connecting the analysis result from the virtual reality environment to the VR environment in real time through the virtual reality platform, which will be described with reference to FIG. 2 above. That is, when the 3D FEM simulation analysis process (S110) of FIG. 2 is completed according to the sequence of FIG. 3 as described above and the FEM analysis result of the power device is provided, the analysis result is Java, a development tool program installed in the computer gy 120 It is transmitted to the API (s120).
그리고 상기 Java API를 사용하여 상기 FEM 분석결과는 웹 서버(130)로 전송된 다음 OpenGL에 업로드 된다(s130, s140). 알려진 바와 같이 상기 OpenGL는 3D CAD 데이터를 렌더링하는데 사용된다. Then, the FEM analysis result using the Java API is transmitted to the web server 130 and then uploaded to OpenGL (s130, s140). As is known the OpenGL is used to render 3D CAD data.
전력기기의 분석결과가 업 로드되면, 다음에는 가상 현실 지원을 위하여 웹 서버(130)에 VR 기기(140)를 연결한다(s150). 이처럼 VR 기기(140)가 연결되어 사용자는 헤드셋을 착용하면, 사용자는 가상현실 환경에서 전력기기의 분석결과를 시각적으로 확인할 수 있게 표시된다(s160). 분석 결과의 예는 도 4의 500과 같다. After the analysis result of the power device is uploaded, the VR device 140 is connected to the web server 130 to support virtual reality (s150). As such, when the VR device 140 is connected and the user wears the headset, the user can visually check the analysis result of the power device in the virtual reality environment (s160). An example of the analysis result is as shown in 500 of FIG. 4 .
도 4의 '500' 예시 화면에서 알 수 있듯이, 사용자가 가상현실 환경에서 컨트롤러를 조작하면 전력기기를 3차원 공간에서 조립 및 분해할 수 있다. 또 시뮬레이션 분석결과가 화면에 표시되기 때문에 전력기기의 복잡한 수치 데이터와 필드 패턴을 더 잘 이해할 수 있을 것이다. As can be seen from the example screen '500' of FIG. 4 , when a user operates a controller in a virtual reality environment, the electric power device can be assembled and disassembled in a three-dimensional space. In addition, the simulation analysis results will be displayed on the screen so that the complex numerical data and field patterns of the power equipment can be better understood.
이처럼 본 발명은 VR 기반 환경에서 전력기기의 FEM 분석결과와 3D 시스템을 연계하여 3차원 플랫폼에서 상기 전력기기의 각종 분석 결과를 시각화하여 몰입형 모델을 구현하여 수치 해석결과를 쉽게 이해할 수 있도록 하는 것이다. As such, the present invention connects the FEM analysis result of the power device and the 3D system in a VR-based environment to visualize the various analysis results of the power device on a 3D platform to implement an immersive model so that the numerical analysis result can be easily understood. .
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.Although described with reference to the illustrated embodiments of the present invention as described above, these are merely exemplary, and those of ordinary skill in the art to which the present invention pertains can use various functions without departing from the spirit and scope of the present invention. It will be apparent that modifications, variations, and other equivalent embodiments are possible. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
각종 전력기기의 FEM 분석 결과를 가상현실로 처리하고 설계할 수 있는 VR장치, AR 장치 등과 같은 기술 분야에 사용될 수 있다.It can be used in technology fields such as VR devices and AR devices that can design and process FEM analysis results of various electric power devices in virtual reality.

Claims (6)

  1. 분석하고자 하는 특정 전력기기를 3D 모델링하는 3D CAD 모델부; 3D CAD model unit for 3D modeling a specific power device to be analyzed;
    모델링 된 상기 전력기기의 전자기장, 열적, 기계적 특성을 분석하는 FEM 분석부; FEM analysis unit to analyze the electromagnetic field, thermal and mechanical characteristics of the modeled power device;
    상기 3D 모델링 및 FEM 분석 결과를 웹서버로 전송하는 컴퓨터 장치; 및 a computer device for transmitting the 3D modeling and FEM analysis results to a web server; and
    상기 웹 서버와 연결된 상태에서, 분석된 상기 전력기기의 FEM 분석결과를 가상환경에서 3D 모델로 구현하는 VR기기를 포함하는 것을 특징으로 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치. In a state connected to the web server, the FEM analysis processing apparatus of a power device based on virtual reality, characterized in that it comprises a VR device that implements the analyzed FEM analysis result of the power device as a 3D model in a virtual environment.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 3D CAD 모델부는 다중 플랫폼 소프트웨어를 제공하는 CATIA 소프트웨어를 사용하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치.The 3D CAD model unit is an FEM analysis processing device of a power device based on virtual reality using CATIA software that provides multi-platform software.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 FEM 분석부는 COMSOL을 사용하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치.The FEM analysis unit is a FEM analysis processing device of a power device based on virtual reality using COMSOL.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 컴퓨터 장치는, the computer device,
    가상현실을 지원하기 위한 가상현실 플랫폼; Virtual reality platform to support virtual reality;
    3D CAD 모델부가 제공하는 3D 기능을 확장하여 사용자가 가상환경에서 프로젝트를 설계, 조작 및 공동작업이 가능한 VR 소프트웨어; VR software that allows users to design, manipulate and collaborate on projects in a virtual environment by extending the 3D functions provided by the 3D CAD model department;
    상기 FEM 분석부의 분석된 결과를 파일 전송 프로토콜을 통해 웹 서버로 전송하는 Java API; 및 a Java API for transmitting the analyzed result of the FEM analysis unit to a web server through a file transfer protocol; and
    3D CAD 모델링을 직접 렌더링하는 OpenGL 프로그램은 상기 3D CAD 모델링을 직접 렌더링할 수 있는 프로그램을 포함하여 구성되는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리장치.The OpenGL program for directly rendering 3D CAD modeling is a virtual reality-based FEM analysis processing device for power devices that includes a program capable of directly rendering the 3D CAD modeling.
  5. 분석 대상 전력기기를 선정하는 단계; selecting a power device to be analyzed;
    3D CAD 모델부가 상기 전력기기에 대한 3D CAD 모델을 생성하는 단계; generating a 3D CAD model for the power device by a 3D CAD model unit;
    FEM 분석부가 상기 전력기기의 3D 모델을 이용하여 전력기기의 FEM 시뮬레이션 결과를 분석하는 단계; analyzing, by the FEM analysis unit, the FEM simulation result of the power device using the 3D model of the power device;
    컴퓨터 장치가 소정 통신 프로토콜을 이용하여 상기 FEM 시뮬레이션 결과를 웹 서버로 전송하는 단계; transmitting, by a computer device, the FEM simulation result to a web server using a predetermined communication protocol;
    웹 서버가 상기 FEM 시뮬레이션 결과를 업로드하는 단계; uploading, by a web server, the FEM simulation result;
    상기 웹 서버와 VR 기기가 연결되는 단계; 및 connecting the web server and the VR device; and
    상기 VR 기기에 상기 FEM 시뮬레이션 결과를 3차원으로 제공하는 단계를 포함하는 수행되는 것을 특징으로 하는 가상현실을 기반으로 한 전력기기의 FEM 분석 처리방법.FEM analysis processing method of a power device based on virtual reality, comprising the step of providing the FEM simulation result in three dimensions to the VR device.
  6. 제 5 항에 있어서, 6. The method of claim 5,
    상기 시뮬레이션 결과 분석은, The simulation result analysis is,
    상기 3D CAD 모델의 공극과 경계를 드로잉하는 단계; drawing voids and boundaries of the 3D CAD model;
    상기 전력기기의 주요 매개변수를 입력하는 단계; inputting main parameters of the power device;
    상기 3D CAD 모델의 컴포넌트 물질을 선택하는 단계; selecting a component material of the 3D CAD model;
    상기 3D CAD 모델의 물리적 옵션을 추가하는 단계; adding a physical option of the 3D CAD model;
    상기 전력기기의 특성별로 미리 입력된 수식을 선택하는 단계; selecting a pre-entered equation for each characteristic of the power device;
    상기 전기적 회로 옵션을 선택하고 전기회로를 드로잉하는 단계; 및selecting the electrical circuit option and drawing an electrical circuit; and
    상기 전력기기의 수치 해석을 위해 메쉬 구조를 생성하고 회전 메쉬를 선택하는 단계가 순서대로 진행되고, For numerical analysis of the power device, the steps of generating a mesh structure and selecting a rotating mesh are sequentially performed,
    FEM 시뮬레이터를 실행하여 분석결과를 제공하는 전력기기의 FEM 분석 처리방법. FEM analysis processing method of electric power equipment that provides analysis results by running the FEM simulator.
PCT/KR2020/006494 2020-01-14 2020-05-18 Virtual reality-based fem analysis processing apparatus and method of power device WO2021145513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200004698A KR20210091489A (en) 2020-01-14 2020-01-14 FEM Analysis Processing Apparatus and Method of Power Equipment Based on Virtual Reality
KR10-2020-0004698 2020-01-14

Publications (1)

Publication Number Publication Date
WO2021145513A1 true WO2021145513A1 (en) 2021-07-22

Family

ID=76863836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006494 WO2021145513A1 (en) 2020-01-14 2020-05-18 Virtual reality-based fem analysis processing apparatus and method of power device

Country Status (2)

Country Link
KR (1) KR20210091489A (en)
WO (1) WO2021145513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122068A (en) * 2013-12-23 2015-07-02 ダッソー システムズ シムリア コーポレイション Cad-based initial surface geometry correction
KR20160134402A (en) * 2015-05-15 2016-11-23 (주)플래닛텍 Automatic calculation of car tuning quote system and method
JP2017059213A (en) * 2015-09-16 2017-03-23 ザ・ボーイング・カンパニーThe Boeing Company Immersive design management system
KR101729589B1 (en) * 2016-03-25 2017-05-11 한국기계연구원 Finite element analysis techniques for machine tools
KR20170126312A (en) * 2016-05-09 2017-11-17 두산중공업 주식회사 Apparatus and Method for designing automation using FEM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122068A (en) * 2013-12-23 2015-07-02 ダッソー システムズ シムリア コーポレイション Cad-based initial surface geometry correction
KR20160134402A (en) * 2015-05-15 2016-11-23 (주)플래닛텍 Automatic calculation of car tuning quote system and method
JP2017059213A (en) * 2015-09-16 2017-03-23 ザ・ボーイング・カンパニーThe Boeing Company Immersive design management system
KR101729589B1 (en) * 2016-03-25 2017-05-11 한국기계연구원 Finite element analysis techniques for machine tools
KR20170126312A (en) * 2016-05-09 2017-11-17 두산중공업 주식회사 Apparatus and Method for designing automation using FEM

Also Published As

Publication number Publication date
KR20210091489A (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US8786613B2 (en) Method and system for interactive simulation of materials and models
US20020010734A1 (en) Internetworked augmented reality system and method
WO2015174729A1 (en) Augmented reality providing method and system for providing spatial information, and recording medium and file distribution system
WO2011031026A2 (en) 3d avatar service providing system and method using background image
WO2019198850A1 (en) Method and system for generating animal-shaped avatar by using human face
WO2018062679A2 (en) Basic emergency rescue training simulation system
WO2021145513A1 (en) Virtual reality-based fem analysis processing apparatus and method of power device
Rantzau et al. Collaborative and interactive visualization in a distributed high performance software environment
García et al. Computational steering of CFD simulations using a grid computing environment
WO2020060123A1 (en) Device for supporting optimum assembly of materials by using mixed reality technology, and method therefor
CN106067159A (en) Virtual reality, the real-time display method of augmented reality and system
WO2021117963A1 (en) Sph-based simulation device and simulation method for fluid analysis
WO2022239937A1 (en) Designing garment using style line
CN102819971A (en) Test experiment training simulation method of power equipment based on internet
Suzuki et al. Visualization systems on the Information Technology-Based Laboratory
Mark et al. Cosmos: A system for supporting engineering negotiation
Kageyama et al. Scientific visualization in physics research by CompleXcope CAVE system
WO2021117972A1 (en) Lbm-based fluid analysis simulation device, method, and computer program
WO2023068817A1 (en) Method and device for testing rendering results
JP2017138810A (en) Temperature calculation program, temperature calculation method, and information processing device
Amari et al. A virtual reality application for software visualization
Kim et al. Implementation of Local Area VR Environment using Mobile HMD and Multiple Kinects.
WO2023113450A1 (en) Support sink application method for 3d printing heat dissipation analysis
Tam et al. A low-cost PC-oriented virtual environment for operator training [for power stations]
WO2016190457A1 (en) Method for displaying attribute of plane element, and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913137

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20913137

Country of ref document: EP

Kind code of ref document: A1