WO2021145302A1 - 分析装置、分析装置用プログラム、及び分析方法 - Google Patents

分析装置、分析装置用プログラム、及び分析方法 Download PDF

Info

Publication number
WO2021145302A1
WO2021145302A1 PCT/JP2021/000637 JP2021000637W WO2021145302A1 WO 2021145302 A1 WO2021145302 A1 WO 2021145302A1 JP 2021000637 W JP2021000637 W JP 2021000637W WO 2021145302 A1 WO2021145302 A1 WO 2021145302A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold value
output
value
sample
output values
Prior art date
Application number
PCT/JP2021/000637
Other languages
English (en)
French (fr)
Inventor
田中 秀明
博史 神田
Original Assignee
株式会社堀場アドバンスドテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場アドバンスドテクノ filed Critical 株式会社堀場アドバンスドテクノ
Priority to CN202180007627.8A priority Critical patent/CN114902054A/zh
Priority to JP2021571179A priority patent/JPWO2021145302A1/ja
Publication of WO2021145302A1 publication Critical patent/WO2021145302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an analyzer or the like that analyzes a sample (for example, water quality).
  • this type of analyzer reacts, for example, a step of measuring a certain amount of sample, a step of injecting a reagent into the sample, and a step of reacting the sample and the reagent for each measurement of a predetermined component contained in the sample. It includes various steps such as a step of making the sample and a step of measuring a predetermined component contained in the sample.
  • the output values of various devices are monitored, and when the output value exceeds a preset threshold value, for example, at the time of product shipment, the output value is monitored. There is a method of determining that an abnormality has occurred in the device.
  • the abnormality detected by the preset threshold value is an abnormality in which deterioration gradually appears as an output value such as wear of parts, for example, a pipe clogging or a malfunction of a solenoid valve. Sudden abnormalities are not detected unless the output value at that time exceeds the threshold value.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to detect a sudden abnormality in an analyzer that measures a sample after various treatments without relying on an expert. Is the main issue.
  • the analyzer according to the present invention is an analyzer that measures a predetermined component contained in a sample after performing a series of different treatments on the sample, and is a processing means used for the treatment and the said.
  • a plurality of analytical instruments including measuring means for measuring a predetermined component, a monitoring unit that monitors and stores output values output from one or a plurality of the analytical instruments, and a plurality of past units stored by the monitoring unit. It is characterized by including a threshold setting unit that acquires the output values over a number of measurements and sets the thresholds of one or a plurality of the analytical instruments in a new measurement based on those output values. ..
  • the threshold value in the new measurement is set based on the output value over the past multiple measurements, so that the threshold value set in advance at the time of product shipment or the like is used.
  • a threshold value that takes into account, for example, the latest state of the analytical instrument. From this, for example, if the threshold value is set so that the output value of the analytical instrument at the time of a sudden abnormality exceeds the threshold value, the abnormality can be detected and a margin is provided.
  • a threshold value it is possible to notice a sign (tendency) of the abnormality.
  • the threshold value setting unit sets an allowable range of the output value as the threshold value, and the width of the allowable range fluctuates over the series of processes.
  • the threshold value setting unit sets the threshold value using the output value of the latest measurement as one of the output values over the past plurality of measurements.
  • the threshold value set in the analytical instrument can be set in consideration of the latest state of the analytical instrument, the latest measurement environment, and the like. This makes it possible to prevent erroneous detection of fluctuations in the output value caused by differences in the measurement environment, such as differences in day and night or climate, as abnormalities.
  • the threshold value setting unit updates and sets the threshold value every time a new measurement is performed.
  • the threshold value setting unit sets the threshold value based on the average value and standard deviation of the output values over the past plurality of measurements.
  • the threshold value setting unit sets the threshold value based on the average value and standard deviation of the output values over the past plurality of measurements.
  • the threshold value setting unit predicts an output value in a new measurement from the output value over a plurality of past measurements, and sets the threshold value based on the predicted value. Aspects can be mentioned.
  • a display unit for displaying a graph of the threshold value set in the analysis device as the new output value of the analysis device changes with time is provided, and when the output value exceeds the threshold value, the display unit displays the threshold value. It is preferable to display the output value so as to be distinguishable from other output values. With such a configuration, in a configuration in which the change over time of the output value is displayed as a graph, the output value (abnormal value) exceeding the threshold value is displayed so as to be distinguishable from other output values (normal value). It is possible to grasp which process caused the sudden abnormality.
  • the display unit further includes an abnormality prediction unit that predicts whether or not the output value in a new measurement exceeds the threshold value based on the output value over a plurality of measurements stored by the monitoring unit.
  • an abnormality prediction unit predicts that the output value exceeds the threshold value, it is preferable to output a notice display indicating that fact on the same screen as the graph.
  • the analyzer program according to the present invention is an analyzer that measures a predetermined component contained in a sample after performing a series of different treatments on the sample, and is a processing means used for the processing and a processing means used for the processing.
  • a program used in an analyzer including a plurality of analytical instruments including a measuring means for measuring a predetermined component, and monitors and stores output values output from one or a plurality of the analytical instruments.
  • the feature is that the function as a setting unit is exerted on the computer. According to such a program for an analyzer, it is possible to exert the same effects as those of the above-mentioned analyzer.
  • the analysis method according to the present invention is an analysis method in which a sample is subjected to a series of different treatments and then a predetermined component contained in the sample is measured.
  • a plurality of analytical instruments including a measuring means for measuring a predetermined component, output values output from one or a plurality of the analytical instruments are monitored and stored, and the stored multiple past measurements. It is a method characterized by acquiring the output value over the above and setting a threshold value of one or a plurality of the analytical instruments in a new measurement based on the output value. According to such an analysis method, it is possible to exert the same action and effect as the above-mentioned analyzer.
  • a sudden abnormality can be detected without relying on an expert in an analyzer that measures a sample after various treatments.
  • the analyzer 1 measures the concentration of a predetermined component such as nitrogen or phosphorus contained in a liquid sample (sample) such as tap water or sewage, and is various as shown in FIG. It includes an analytical instrument unit 2 having an analytical instrument and an information processing apparatus 3 for exchanging various signals between the analytical instrument unit 2.
  • a predetermined component such as nitrogen or phosphorus contained in a liquid sample (sample) such as tap water or sewage
  • the analytical instrument unit 2 performs a series of different treatments on the sample, and then measures the concentration of a predetermined component contained in the sample by using, for example, an ultraviolet absorptiometry.
  • the analytical instrument unit 2 is provided with various analytical instruments, and these analytical instruments are represented by reference numerals 4 to 11 in FIG. 1, for example. As shown in FIG. 1, these analytical instruments 4 to 11 are roughly classified into a processing means 2a for performing a series of processing and a measuring means 2b for measuring the concentration of a predetermined component.
  • the processing means 2a is for performing a series of processing while transferring the sample to a plurality of places, and specifically includes a sample measuring mechanism 4, a reagent measuring mechanism 5, a pressure adjusting mechanism 6, and the like.
  • the sample weighing mechanism 4 weighs a sample to a predetermined fixed amount, and here, the sample is diluted to a predetermined concentration, and the diluted sample after dilution is weighed in a fixed amount.
  • this product has a sample container (not shown) for accommodating samples, a dilution cell (not shown) in which a certain amount of sample is supplied from the sample container and a certain amount of diluent is supplied, and dilution.
  • a diluted sample diluted to a predetermined concentration is supplied in the cell, and the diluted sample is temporarily stored and has a measuring unit 4a for measuring a fixed amount.
  • the diluted sample measured by the measuring unit 4a is configured to be introduced into the measuring cell 7 via the sample pipe 4b, and the sample pipe 4b is provided with a first on-off valve 4c for opening and closing the inside of the pipe. Has been done.
  • the reagent measuring mechanism 5 measures a reagent used for measuring the concentration of a predetermined component in a sample to a predetermined fixed amount, and here, for example, a reagent for analyzing a nitrogen component contained in the sample. It measures sodium hydroxide, potassium persulfate, and hydrochloric acid.
  • this product has a reagent container (not shown) for accommodating a reagent, and a measuring unit 5a in which a reagent is supplied from the reagent container and the reagent is temporarily stored and measured in a fixed amount.
  • the reagent measured by the measuring unit 5a is configured to be introduced into the measuring cell 7 via the reagent pipe 5b, and the reagent pipe 5b is provided with a second on-off valve 5c for opening and closing the inside of the pipe. ing. Although the configuration of one reagent measuring mechanism 5 is illustrated in FIG. 1, the reagent measuring mechanism 5 is provided for each reagent.
  • the pressure adjusting mechanism 6 is for transferring various liquids such as a sample, a diluent, a diluted sample, and a reagent from one place to another, and includes a sample container (not shown), a dilution cell (not shown), and the like.
  • a reagent container (not shown) and a pump P for adjusting the internal pressure of the measurement cell 7 or the like to a positive pressure or a negative pressure are provided.
  • the measuring means 2b measures the concentration of a predetermined component contained in the sample after the treatment by the processing means 2a described above. Specifically, the measuring cell 7, the light source 8, the photodetector 9, the heater 10, and the ultraviolet rays. It is provided with a light source 11 and the like.
  • a fixed amount of sample measured by the sample measuring mechanism 4 is injected, and a fixed amount of reagent measured by the reagent measuring mechanism 5 is injected, so that a sample injection step, a reagent injection step, which will be described later, are injected.
  • a reaction step, a pH adjustment step, a measurement step and a waste liquid step are carried out.
  • the light source 8 irradiates the measurement cell 7 with light having a predetermined wavelength (for example, light having an ultraviolet wavelength band such as 220 nm).
  • a predetermined wavelength for example, light having an ultraviolet wavelength band such as 220 nm.
  • a UV lamp such as a xenon lamp, an ultraviolet LED, or the like can be considered.
  • the photodetector 9 detects the light transmitted through the measurement cell 7 by irradiating the measurement cell 7 from the light source 8.
  • the photodetector 9 includes, for example, a photomultiplier tube (PMT) that converts light having a predetermined wavelength (light having an ultraviolet wavelength band) transmitted through the measurement cell 7 into an electric signal (light detection data) according to the light intensity. ) Can be used.
  • PMT photomultiplier tube
  • the heater 10 heats the sample and the reagent mixed in the measurement cell 7. Specifically, the heater 10 is used in a treatment step of hydrolyzing a sample with a reagent and a treatment step of measuring the concentration of a predetermined component contained in the sample, and the measurement cell 7 in each treatment step has a preset temperature. The temperature is adjusted to the range.
  • the ultraviolet light source 11 irradiates the samples and reagents mixed in the measurement cell 7 with ultraviolet rays.
  • the ultraviolet light source 11 is used in the hydrolysis treatment step together with the heater described above, and for example, a UV lamp, an LED, or the like that irradiates a wavelength required for the hydrolysis reaction can be used.
  • a mercury lamp is used. Is conceivable to use.
  • the analytical instrument unit 2 configured in this way is controlled by the control signal output from the information processing apparatus 3.
  • the information processing device 3 is a dedicated or general-purpose computer having a CPU, a memory, an AD converter, and the like, and operates according to a program stored in a predetermined area of the memory, so that at least the analysis control unit 31 is as shown in FIG. It is configured to exhibit the function as the density calculation unit 32.
  • the information processing apparatus 3 here is configured to sequence control the analytical instrument unit 2, and includes a sample injection step, a reagent injection step, a reaction step, a pH adjustment step, and a measurement.
  • a series of analysis processes including steps and waste liquid steps are repeatedly executed. That is, this series of analytical processes includes sample measurement, pretreatment before the measurement step, and post-treatment after the measurement step.
  • the sample injection step is a processing step in which the analysis control unit 31 controls the sample measuring mechanism 4 to inject the measured sample into the measuring cell 7.
  • the sample is diluted to a predetermined concentration, and a constant amount of the diluted sample is weighed and injected into the measurement cell 7.
  • the reagent injection step is a processing step in which the analysis control unit 31 controls the reagent measuring mechanism 5 to inject the measured reagents (sodium hydroxide and potassium persulfate) into the measuring cell 7.
  • the analysis control unit 31 controls the heater 10 to heat the solution composed of the sample and the reagent mixed in the measurement cell 7, and controls the ultraviolet light source 11 to irradiate the solution with ultraviolet rays.
  • This is a treatment step of hydrolyzing the sample contained in the above with a reagent.
  • the pH adjustment step is a treatment step in which the analysis control unit 31 controls the reagent measuring mechanism 5 to add the measured reagent (hydrochloric acid) to the solution to neutralize the solution.
  • the measurement step is a processing step in which the analysis control unit 31 controls the light source 8 to irradiate the measurement cell 7 with light, and the photodetector 9 detects the transmitted light emitted from the measurement cell 7.
  • the photodetection data obtained by the photodetector 9 is output to the density calculation unit 32, and the density calculation unit 32 measures the nitrogen concentration contained in the sample using the photodetector data.
  • the waste liquid step is a processing step of discharging the solution in the measurement cell 7 that has undergone the measurement step.
  • the information processing apparatus 3 of the present embodiment monitors the output values output from one or more analytical instruments as shown in FIG. 3 by operating according to the program stored in the predetermined area of the memory. It further has a function as a monitoring unit 33 for storing information and a threshold value setting unit 34 for setting a threshold value of one or a plurality of analytical instruments.
  • the monitoring unit 33 monitors the output values output from the plurality of analytical instruments and stores them in the actual data storage unit 35 set in the predetermined area of the memory.
  • the monitoring unit 33 monitors the pump pressure, which is the output value from the pump P, which is the analytical instrument, and the light intensity, which is the output value from the photodetector 9, which is the analytical instrument.
  • the monitoring unit 33 here stores the time-series data of the output values output from the analysis device in the series of analysis processes described above as one set of data in the actual data storage unit 35.
  • the monitoring unit 33 stores the time-series data of the output value output from the analysis device as a set of data in the actual data storage unit 35 when measuring the concentration of the predetermined component contained in the sample once. It is a thing. Then, a plurality of sets of time-series data corresponding to a plurality of measurements are stored in the actual data storage unit 35.
  • time-series data is data in which the output value output from the analytical instrument and changing over time and the time when each output value is output are linked. That is, the time-series data here is data consisting of output values output from the analytical instrument during preprocessing, measurement, and postprocessing.
  • the threshold value setting unit 34 acquires the output values stored by the monitoring unit 33 over the past multiple measurements, and sets the threshold value of one or a plurality of analytical instruments in the new measurement based on the output values. It is a thing.
  • the threshold value setting unit 34 is configured to use at least the output value of the latest measurement as one of the output values over a plurality of times in the past. More specifically, the threshold value setting unit 43 acquires a plurality of sets of time-series data corresponding to a plurality of past measurements, and as one of the plurality of sets, the time-series data of the latest measurement is used. include. Here, it is configured to calculate and set a threshold value for a new measurement using the time series data of the output value of each measurement from the latest measurement to the measurement going back a predetermined number of times (for example, several times to several hundred times). ing.
  • the threshold value indicates an allowable range for the output value of the analytical device, and when a sudden abnormality occurs in the analytical device or the device related (connected) to the analytical device.
  • the output value at that time is a value set so as to exceed the threshold value.
  • the threshold setting unit 34 changes with time with respect to the output value that changes with time. It is configured to set the threshold value to be used. That is, the threshold value set by the threshold value setting unit 34 is also time-series data that changes with time.
  • the threshold value setting unit 34 is configured to set the upper limit value and the lower limit value with respect to the output value of the analytical instrument as the threshold value, and here, the threshold value is updated and set every time a new measurement is performed. ..
  • the threshold value setting unit 34 may be configured to set only one of the upper limit value and the lower limit value as the threshold value, or is configured to update the threshold value every time a predetermined number of new measurements are performed. It may have been done.
  • the threshold setting unit 34 here sets the threshold based on the average value and standard deviation of the output values over the past multiple measurements, and the upper limit is the value obtained by adding the standard deviation to the average value. It is configured to be set as a value and the lower limit is set by subtracting the standard deviation from the average value.
  • the threshold value set by the threshold value setting unit 34 will be described by taking, for example, the pump pressure in the sample injection step and the reagent injection step described above as an example (see FIG. 4).
  • these steps when samples, reagents, etc. are supplied to the measuring unit 4a and the measuring unit 5a for weighing, these liquids are transported by the pump P, so that the pump pressure (output value) fluctuates greatly, which causes a large fluctuation.
  • the standard deviation of pump pressure (output value) is large. Therefore, the range of pump pressure thresholds in these steps is relatively wide. Since the physical properties (for example, viscosity) of the liquid to be transported are different between the sample injection step and the reagent injection step, the average value and the standard deviation are different values.
  • the range of the pump pressure threshold becomes relatively wide as in the sample injection step and the reagent injection step described above.
  • the width of the pump pressure threshold in this reaction step is relatively narrow.
  • the width of the pump pressure threshold in this measurement step is relatively narrow.
  • the output value of the analytical instrument the output value of the above-mentioned measuring means 2b, more specifically, the light intensity which is the output value of the photodetector 9, will be focused on, and the threshold value for the photodetector 9 will be described (). (See FIG. 5). Since the light source 8 irradiates light in the reaction step and the measurement step, the output value of the photodetector 9 has a larger variation than the other steps, so that the standard deviation of the output value of the photodetector 9 is large. Therefore, the threshold range of the photodetector 9 in these reaction steps and measurement steps is relatively wide.
  • the output value of the photodetector 9 fluctuates because there is no light irradiation from the light source 8. It is small, the standard deviation is small, and the threshold width of the photodetector 9 is relatively narrow.
  • the one shown in FIG. 6 can be given as an example, and a series of output values (for example, 100 points) in a step having a small standard deviation can be mentioned.
  • the output value of the one shown in FIG. 7 can be given as an example.
  • the difference between the upper limit value and the lower limit value set by the threshold value setting unit 34 in this way that is, the width of the allowable range set as the threshold value fluctuates with time.
  • the information processing apparatus 3 of the present embodiment has a display unit 36 that displays a graph of changes in the output value output from the analysis device over time, and the output value in the new measurement sets a threshold value. It further has a function as an abnormality prediction unit 37 that predicts whether or not it exceeds the limit.
  • the display unit 36 displays a graph in which one axis is set to time and the other axis is set to the output value on the screen, and the time-dependent change of the output value of the analytical instrument is displayed on this graph. Output.
  • the display unit 36 is configured to display the time-dependent change of the threshold value set by the threshold value setting unit 34 on the graph, and here, the average value used for setting the threshold value is also displayed on the graph. indicate.
  • the display unit 36 is configured to display the output value so as to be distinguishable from other output values.
  • the display unit 36 displays a display mode of an output value (abnormal value) exceeding the threshold value, such as a color or a plot shape, in a graph showing a change with time of the output value. It is configured to be different from the display mode of other output values (normal values). As a result, it becomes possible to intuitively recognize the timing when the output value exceeds the threshold value, that is, in which process the output value exceeds the threshold value.
  • the output value plotted by the black circle is displayed as an abnormal value exceeding the threshold value.
  • the display unit 36 may change the display mode such as the color and shape of the plot to be displayed corresponding to the analysis device, for example, according to the number of times the output value of the analysis device exceeds the threshold value. In this way, the priority of the analytical instrument to be confirmed and the urgency of confirmation can be grasped from the display mode of the plot.
  • the display unit 36 is configured to enlarge or reduce the above-mentioned graph based on an operation signal input via an input means such as a mouse or a touch panel. There is.
  • an output value exceeding the threshold value can be selected by an input means such as a mouse or a touch panel, and the display unit 36 is a processing step in which the selected output value is output. And the abnormal contents such as the output value are displayed on the same screen as the graph (here, on the graph).
  • the abnormality prediction unit 37 predicts whether or not the output value in the new measurement exceeds the threshold value based on the output value stored in the monitoring unit 33 over the past multiple measurements.
  • the abnormality prediction unit 37 is obtained by the output value of each measurement from the latest measurement to the measurement retroactively performed a predetermined number of times (for example, several times) in the past, and the threshold value setting unit 34 described above. It is configured to predict whether or not the output value in the new measurement exceeds the threshold value by comparing with the average value.
  • the subsequent output values For example, when all the output values in the predetermined number of measurements are lower than the average value, or when all the output values in the predetermined number of measurements are higher than the average value, the subsequent output values. Examples include methods such as predicting that will exceed the threshold.
  • the display unit 36 described above displays a notice display X indicating that on the same screen as the graph. Output.
  • the output value of a plurality of past measurements used when the subsequent output value is predicted to exceed the threshold value may be displayed so as to be distinguishable from other output values.
  • a display mode of the direct value a color, a plot shape, and the like can be mentioned.
  • the notice display X is not limited to the mode shown in FIG. 9, and may be changed as appropriate.
  • the threshold value in the new measurement is set based on the output value over the past multiple measurements, it is different from the threshold value set in advance at the time of product shipment or the like.
  • the latest state of the analytical instrument can be set as a threshold value.
  • the threshold value is set so that the behavior of the new output value exceeds the threshold value.
  • the threshold value setting unit 34 sets the threshold value based on the average value and the standard deviation of the output values over the past multiple measurements, the width of the allowable range set as the threshold value is a series of processes. Will fluctuate over. As a result, it is possible to set an appropriate threshold value for each process for an analytical device whose output value fluctuation range changes for each process, such as a pump P.
  • the threshold value setting unit 34 sets the threshold value using the output value of the latest measurement as one of the output values over the past multiple measurements, the threshold value is the latest state of the analytical instrument. And the measurement environment will be taken into consideration. This makes it possible to prevent erroneous detection of fluctuations in the output value caused by, for example, differences in the measurement environment as abnormalities.
  • the threshold value setting unit 34 updates and sets the threshold value every time a new measurement is made, it is possible to more reliably detect a sudden abnormality occurring in the analytical instrument.
  • the display unit 36 displays the output value so that it can be distinguished from other output values, so that the process in which the sudden abnormality occurred can be determined. It can be grasped intuitively.
  • the display unit 36 outputs a notice display X indicating that fact on the same screen as the graph. It is possible to know that there is a high probability that the output value in the new measurement will exceed the threshold value, and it is possible to prevent sudden abnormalities and the like.
  • the present invention is not limited to the above embodiment.
  • the threshold value setting unit 34 sets the threshold value by using the average value and the standard deviation of the output values over the past multiple measurements, but as shown in FIG. It may be configured to predict the output value in a new measurement from the output value over one measurement and set the threshold value based on the predicted value. With such a configuration, for example, it is possible to predict how many days after which the abnormality will occur, and it is possible to make a repair or maintenance plan according to the prediction.
  • the threshold setting unit 34 uses machine learning appropriately selected such as supervised learning, unsupervised learning, reinforcement learning, and deep learning, and uses, for example, the output value in the past measurement as an explanatory variable. It may generate a learning algorithm using the predicted value of the output value in the new measurement as the objective variable.
  • the threshold value setting unit 34 sets the threshold value using the average value and the standard deviation of the output values over the past multiple measurements, but instead of the standard deviation, a dispersion value or the like is used. It may be configured to set the threshold value using an index showing the variation.
  • the analytical instrument may be set with a second threshold value different from the threshold value set by the threshold value setting unit 34 of the embodiment.
  • the second threshold value is, for example, an upper limit value and / or a lower limit value preset at the time of product shipment, and detects an abnormality such as wear of a part in which deterioration gradually appears as an output value.
  • the information processing device 3 may have a function as a notification unit (not shown) for notifying the user when the output value of the analysis device exceeds the threshold value.
  • the notification unit may be configured to notify when the number of abnormalities, which is the number of times the output value exceeds the threshold value, reaches a predetermined upper limit.
  • the degree of urgency for example, a mode in which the degree of urgency is set high for parts related to waste liquid can be mentioned.
  • the information processing device 3 described in the above embodiment may be provided in a computer or the like other than the information processing device 3.
  • the actual data storage unit 35 may be provided in, for example, a cloud server other than the information processing device 3.
  • the analyzer 1 analyzes nitrogen, phosphorus, etc. contained in the liquid sample in the above embodiment, it may analyze TOC, COD, etc. contained in the liquid sample, or the gas sample.
  • a solid sample, or a gel-like sample may be analyzed.
  • the analyzer 1 for analyzing a gas sample include an analyzer 1 for analyzing a gas sample such as CO 2 , CO, SO 2 , N 2 , and H 2 obtained by burning a solid material. More specifically, it measures impurities and the like contained in a solid material, and includes a combustion step of burning the solid material, a removal step of removing impurities, an extraction step of extracting a predetermined component contained in a gas sample, and the above-mentioned predetermined. Examples thereof include those that perform a measurement step of measuring the concentration of a component or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

サンプルに種々の処理をしてから測定する分析装置において、有識者に頼ることなく、突発的な異常を検知できるようにするべく、サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析装置1であって、処理に用いられる処理手段2a、及び、所定成分を測定する測定手段2bを含む複数の分析用機器と、1又は複数の分析用機器から出力される出力値をモニタリングして記憶するモニタリング部33と、モニタリング部33により記憶された過去の複数回の測定に亘る出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の分析用機器の閾値を設定する閾値設定部34とを備える、分析装置。

Description

分析装置、分析装置用プログラム、及び分析方法
 本発明は、サンプル(例えば水質等)を分析する分析装置等に関するものである。
 この種の分析装置は、特許文献1に示すように、サンプルに含まれる所定成分の測定1回につき、例えば一定量のサンプルを計量する工程、サンプルに試薬を注入する工程、サンプル及び試薬を反応させる工程、サンプルに含まれる所定成分を測定する工程など、種々の工程が含まれている。
 このように、種々の処理をしてから測定する分析装置において、不測な測定結果が得られた場合、装置を構成する種々の機器のどこかに異常が発生していることが推定される。
 そこで、異常が発生したことやその異常箇所を特定する方法として、種々の機器の出力値をモニタリングしておき、この出力値が例えば製品出荷時等に予め設定した閾値を超えた場合に、その機器に異常が発生したと判断する方法が挙げられる。
 しかしながら、このように予め設定した閾値により検出される異常は、例えば部品の摩耗等のように徐々に劣化が出力値として現れるような異常であり、例えば配管詰まりや電磁弁の動作不良のように突発的な異常は、その時の出力値が閾値を超えない限り検出されることはない。
 そのために、このような突発的な異常が生じたことや生じそうであるといった予兆に気付くには、或いは、その異常の原因が装置のどこにあるかを突き止めるには、例えば異常時とその直近の正常時との出力値をあらゆる工程に亘って見比べ、その僅かな違いから異常の原因等を特定することになる。
 このことから、突発的な異常に関し、ユーザが現場で検知することは難しく、例えば製造側の有識者に機器内のデータ解析を依頼しなければならないといった問題がある。
特開2015-25794号公報
 そこで本発明は、上記問題点を解決すべくなされたものであり、サンプルに種々の処理をしてから測定する分析装置において、有識者に頼ることなく、突発的な異常を検知できるようにすることをその主たる課題とするものである。
 すなわち本発明に係る分析装置は、サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析装置であって、前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器と、1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶するモニタリング部と、前記モニタリング部により記憶された過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定する閾値設定部とを備えることを特徴とするものである。
 このように構成された分析装置によれば、過去の複数回の測定に亘る出力値に基づいて、新たな測定における閾値を設定しているので、製品出荷時等に予め設定される閾値とは異なり、分析用機器の例えば直近の状態を加味した閾値を設定することができる。
 このことから、例えば、突発的な異常時における分析用機器の出力値が閾値を超えるように、閾値の値を設定しておけば、その異常を検出できるし、それよりもマージンを持たせて閾値を設定すれば、その異常が生じる予兆(傾向)に気付くことができる。
 これにより、新たな測定において突発的な異常を含めた種々の異常が発生した場合に、有識者を頼ることなく、その異常が生じたことやその予兆に気付くことができ、ひいてはその異常原因を特定することや異常が発生する前の対処をすることができるようになる。
 ここで、分析用機器の1つとして例えばサンプルを輸送するためのポンプに着目すると、一連の処理の中には、ポンプの圧力変動が殆どなく行われる処理もあれば、大きな圧力変動を伴って行われる処理もある。
 そこで、前記閾値設定部が、前記閾値として前記出力値の許容範囲を設定するものであり、前記許容範囲の幅が、前記一連の処理に亘って変動することが好ましい。
 このような構成であれば、上述したポンプを例に挙げて説明したように、出力値の変動幅が大きい処理では許容範囲を広くし、出力値の変動幅が小さい処理では許容範囲を狭くすることができ、処理ごとに適切な閾値を設定することで、突発的な異常をより確実に検知することができる。
 前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値の1つとして、最新の測定の出力値を用いて前記閾値を設定することが好ましい。
 このような構成であれば、分析用機器に設定される閾値が、当該分析用機器の直近の状態や直近の測定環境などを加味したものとして設定することができる。これにより、例えば昼と夜或いは気候の違いなど、測定環境の違いにより生じる出力値の変動を誤って異常として検知してしまうことを防ぐことができる。
 突発的な異常をより確実に検知できるようにするためには、前記閾値設定部が、新たな測定の度に閾値を更新して設定することが好ましい。
 具体的な実施態様としては、前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値の平均値及び標準偏差に基づいて前記閾値を設定することが好ましい。
 これならば、先にポンプを例に挙げて説明したように、処理ごとに出力値の変動幅が変わる分析用機器に対して、処理ごとに適切な閾値を設定することができる。
 また、別の実施態様としては、前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値から、新たな測定における出力値を予測し、その予測値に基づいて前記閾値を設定する態様を挙げることができる。
 前記分析用機器の新たな出力値の経時変化とともに、当該分析用機器に設定された前記閾値をグラフ表示する表示部を備え、前記出力値が前記閾値を超えた場合に、前記表示部が、その出力値を他の出力値とは識別可能に表示することが好ましい。
 このような構成であれば、出力値の経時変化がグラフ表示されている構成において、閾値を超えた出力値(異常値)が他の出力値(正常値)と識別可能に表示されるので、突発的な異常がどの処理で生じたかを把握することができる。
 前記モニタリング部により記憶された複数回の測定に亘る前記出力値に基づいて、新たな測定における前記出力値が前記閾値を超えるか否かを予測する異常予測部をさらに備え、前記表示部が、前記異常予測部によって前記出力値が前記閾値を超えると予測された場合に、そのことを示す予告表示を前記グラフと同一画面上に出力することが好ましい。
 このような構成であれば、画面上に出力された予告表示により、新たな測定における出力値が閾値を超える蓋然性が高いことを知ることができ、突発的な異常等を未然に防ぐことができる。
 また、本発明に係る分析装置用プログラムは、サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析装置であり、前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器を具備する分析装置に用いられるプログラムであって、1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶するモニタリング部と、前記モニタリング部により記憶された過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定する閾値設定部としての機能をコンピュータに発揮させることを特徴とするものである。
 このような分析装置用プログラムによれば、上述した分析装置と同様の作用効果を発揮させることができる。
 さらに、本発明に係る分析方法は、サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析方法であって、前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器のうちの、1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶させ、その記憶させた過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定することを特徴とする方法である。
 このような分析方法によれば、上述した分析装置と同様の作用効果を発揮させることができる。
 このように構成した本発明によれば、サンプルに種々の処理をしてから測定する分析装置において、有識者に頼ることなく、突発的な異常を検知することができる。
一実施形態の分析装置の構成を示す概略図。 同実施形態の分析装置を用いた分析方法を示すフローチャート。 同実施形態の情報処理装置の機能を示す機能ブロック図。 同実施形態の分析装置におけるポンプの出力値を示すグラフ。 同実施形態の分析装置における光検出器の出力値を示すグラフ。 同実施形態において標準偏差の大きい場合の出力値の一例を示すグラフ。 同実施形態において標準偏差の小さい場合の出力値の一例を示すグラフ。 同実施形態の分析装置におけるポンプの出力値を示すグラフ。 同実施形態の分析装置におけるポンプの出力値を示すグラフ。 別の実施形態の分析装置におけるポンプの出力値を示すグラフ。 別の実施形態の分析装置におけるポンプの出力値を示すグラフ。
1  ・・・分析装置
2  ・・・分析機器ユニット
2a ・・・処理手段
2b ・・・測定手段
3  ・・・情報処理装置
31 ・・・分析制御部
32 ・・・濃度演算部
33 ・・・モニタリング部
34 ・・・閾値設定部
35 ・・・実データ格納部
36 ・・・表示部
37 ・・・異常予測部
 以下に本発明に係る分析装置の一実施形態について図面を参照して説明する。
 本実施形態に係る分析装置1は、例えば上水や下水等の液体試料(サンプル)に含まれる窒素やリン等の所定成分の濃度を測定するものであり、図1に示すように、種々の分析用機器を有する分析機器ユニット2と、分析機器ユニット2との間で種々の信号を授受する情報処理装置3とを備えている。
 分析機器ユニット2は、サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分の濃度を例えば紫外線吸光光度法を用いて測定するものである。
 具体的にこの分析機器ユニット2は、上述したように、種々の分析用機器を備えており、これらの分析用機器は、例えば図1において符号4~11で示されるものである。そして、これらの分析用機器4~11は、図1に示すように、一連の処理をするための処理手段2a、及び、所定成分の濃度を測定するための測定手段2bに大別される。
 まず、処理手段2aについて説明する。
 この処理手段2aは、サンプルを複数の箇所に移送しながら一連の処理をするためのものであり、具体的にはサンプル計量機構4、試薬計量機構5、圧力調整機構6などを備えている。
 サンプル計量機構4は、サンプルを所定の一定量に計量するものであって、ここでは、サンプルを所定の濃度に希釈し、希釈後の希釈サンプルを一定量計量するものである。
 具体的にこのものは、サンプルを収容するサンプル容器(不図示)と、サンプル容器から一定量のサンプルが供給されるとともに、一定量の希釈液が供給される希釈セル(不図示)と、希釈セルで所定濃度に希釈された希釈後のサンプルが供給されて、この希釈サンプルを一時的に貯留して一定量計量する計量部4aとを有する。計量部4aで計量された希釈サンプルは、サンプル配管4bを介して測定セル7へ導入されるように構成されており、このサンプル配管4bには、管内の開閉を行う第1開閉弁4cが設けられている。
 試薬計量機構5は、サンプル中の所定成分濃度を測定するために用いられる試薬を所定の一定量に計量するものであって、ここでは、サンプルに含まれる窒素成分分析するための試薬である例えば水酸化ナトリウム、ペルオキソ二硫酸カリウム及び塩酸を計量するものである。
 具体的にこのものは、試薬を収容する試薬容器(不図示)と、試薬容器から試薬が供給されて、この試薬を一時的に貯留して一定量計量する計量部5aとを有する。計量部5aで計量された試薬は、試薬配管5bを介して測定セル7へ導入されるように構成されており、この試薬配管5bには、管内の開閉を行う第2開閉弁5cが設けられている。なお、図1においては、1つの試薬計量機構5の構成を例示してあるが、この試薬計量機構5は試薬ごとに設けられている。
 圧力調整機構6は、サンプル、希釈液、希釈サンプル、試薬などの各種液体を一の箇所から他の箇所へ移送するためのものであり、サンプル容器(不図示)、希釈セル(不図示)、試薬容器(不図示)、及び測定セル7などの内部圧力を正圧又は負圧に調整するポンプPを備えている。
 次に、測定手段2bについて説明する。
 この測定手段2bは、上述した処理手段2aによる処理後のサンプルに含まれる所定成分の濃度を測定するものであり、具体的には測定セル7、光源8、光検出器9、ヒータ10、紫外線光源11などを備えている。
 測定セル7は、サンプル計量機構4により計量された一定量のサンプルが注入されるとともに、試薬計量機構5により計量された一定量の試薬が注入されて、後述するサンプル注入ステップ、試薬注入ステップ、反応ステップ、pH調整ステップ、測定ステップ及び廃液ステップが行われるものである。
 光源8は、測定セル7に所定波長の光(例えば220nm等の紫外線波長帯域を有する光)を照射するものである。この光源としては、例えばキセノンランプ等のUVランプや紫外線LED等を用いることが考えられる。
 光検出器9は、光源8から測定セル7に照射されて、当該測定セル7を透過した光を検出するものである。この光検出器9としては、例えば測定セル7を透過した所定波長の光(紫外線波長帯域を有する光)をその光強度に応じた電気信号(光検出データ)に変換する光電子増倍管(PMT)を用いることが考えられる。
 ヒータ10は、測定セル7内で混合されたサンプル及び試薬を加熱するものである。具体的にこのヒータ10は、サンプルを試薬によって加水分解する処理工程や、サンプルに含まれる所定成分の濃度を測定する処理工程において用いられ、それぞれの処理工程における測定セル7を予め設定された温度範囲に温調するものである。
 紫外線光源11は、測定セル7内で混合されたサンプル及び試薬に紫外線照射を行うものである。この紫外線光源11は、上述したヒータとともに加水分解の処理工程において用いられるものであり、加水分解反応に必要な波長を照射する例えばUVランプ、LED等を用いることができ、本実施形態では水銀ランプを用いることが考えられる。
 このように構成された分析機器ユニット2は、情報処理装置3から出力される制御信号により制御される。
 情報処理装置3は、CPU、メモリ、ADコンバータ等を有する専用乃至汎用のコンピュータであり、前記メモリの所定領域に格納したプログラムに従って動作することで、図1に示すように、少なくとも分析制御部31や濃度演算部32としての機能を発揮するように構成されたものである。
 具体的にここでの情報処理装置3は、図2に示すように、分析機器ユニット2をシーケンス制御するように構成されており、サンプル注入ステップ、試薬注入ステップ、反応ステップ、pH調整ステップ、測定ステップ及び廃液ステップからなる一連の分析処理を繰り返し実行させるものである。すなわち、この一連の分析処理には、サンプルの測定の他、測定ステップよりも前の前処理や測定ステップよりも後の後処理が含まれている。
 サンプル注入ステップは、分析制御部31がサンプル計量機構4を制御して、計量されたサンプルを測定セル7内に注入する処理工程である。なお、この実施形態では上述したように、サンプルを所定の濃度に希釈し、希釈後の希釈サンプルを一定量計量して測定セル7内に注入する。
 試薬注入ステップは、分析制御部31が試薬計量機構5を制御して、計量された試薬(水酸化ナトリウム及びペルオキソ二硫酸カリウム)を測定セル7内に注入する処理工程である。
 反応ステップは、分析制御部31がヒータ10を制御して、測定セル7内で混合されたサンプル及び試薬からなる溶液を加熱するとともに、紫外線光源11を制御して溶液に紫外線照射を行い、溶液に含まれるサンプルを試薬によって加水分解する処理工程である。
 pH調整ステップは、分析制御部31が試薬計量機構5を制御して、計量された試薬(塩酸)を溶液に添加して、溶液を中和する処理工程である。
 測定ステップは、分析制御部31が光源8を制御して測定セル7に光を照射し、測定セル7から出た透過光を光検出器9により検出する処理工程である。この光検出器9により得られた光検出データは濃度演算部32に出力されて、濃度演算部32が当該光検出データを用いてサンプルに含まれる窒素濃度を測定する。
 廃液ステップは、測定ステップを経た測定セル7内の溶液を排出する処理工程である。
 然して、本実施形態の情報処理装置3は、前記メモリの所定領域に格納したプログラムに従って動作することで、図3に示すように、1又は複数の分析用機器から出力される出力値をモニタリングして記憶するモニタリング部33と、1又は複数の分析用機器の閾値を設定する閾値設定部34としての機能をさらに備えている。
 モニタリング部33は、ここでは複数の分析用機器から出力される出力値をモニタリングして、前記メモリの所定領域に設定された実データ格納部35に記憶するものである。
 具体的にこのモニタリング部33は、分析用機器たるポンプPからの出力値であるポンプ圧や、分析用機器たる光検出器9からの出力値である光強度などをモニタリングしている。
 ここでのモニタリング部33は、上述した一連の分析処理において分析用機器から出力される出力値の時系列データを1セットのデータとして実データ格納部35に記憶するものである。
 言い換えれば、モニタリング部33は、サンプルに含まれる所定成分の濃度を1回測定するうえで分析用機器から出力される出力値の時系列データを1セットのデータとして実データ格納部35に記憶するものである。そして、実データ格納部35には、複数回の測定に対応する複数セットの時系列データが記憶される。
 1セットの時系列データは、分析用機器から出力されて経時的に変化する出力値と、それぞれの出力値が出力された時間とが結び付けられたデータである。すなわち、ここでの時系列データは、前処理時、測定時、及び後処理時に亘って分析用機器から出力される出力値からなるデータである。
 閾値設定部34は、モニタリング部33により記憶された過去の複数回の測定に亘る出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の分析用機器の閾値を設定するものである。
 この閾値設定部34は、過去の複数回に亘る出力値の1つとして、少なくとも最新の測定の出力値を用いるように構成されている。より具体的には、閾値設定部43は、過去の複数回の測定に対応する複数セットの時系列データを取得するものであり、その複数セットの1つとして、最新の測定の時系列データが含まれている。ここでは最新の測定から過去所定回(例えば数回~数100回)遡った測定までの各測定の出力値の時系列データを用いて、新たな測定に対する閾値を算出し設定するように構成されている。
 ここで、閾値とは、分析用機器の出力値に対する許容範囲を示すものであり、その分析用機器或いはその分析用機器に関連する(接続されている)機器に突発的な異常が生じた場合に、その時の出力値が当該閾値を超えるように設定される値である。
 本実施形態では、上述したように、分析用機器から出力される出力値が経時的に変化することから、閾値設定部34は、この経時的に変化する出力値に対して、経時的に変化する閾値を設定するように構成されている。つまり、この閾値設定部34により設定された閾値もまた、経時的に変化する時系列データである。
 この実施形態では、閾値設定部34は、分析用機器の出力値に対する上限値及び下限値を閾値として設定するように構成されており、ここでは新たな測定の度に閾値を更新して設定する。ただし、閾値設定部34としては、上限値又は下限値の何れか一方のみを閾値として設定するように構成されていても良いし、新たな測定を所定回数行うごとに閾値を更新するように構成されていても良い。
 具体的にここでの閾値設定部34は、過去の複数回の測定に亘る出力値の平均値及び標準偏差に基づいて閾値を設定するものであり、平均値に標準偏差を加算した値を上限値として設定するとともに、平均値から標準偏差を差し引いた値を下限値として設定するように構成されている。
 ここで、閾値設定部34により設定される閾値について、例えば上述したサンプル注入ステップや試薬注入ステップにおけるポンプ圧を例に挙げて説明する(図4参照)。
 これらのステップにおいて、サンプルや試薬などを計量部4a、計量部5aに供給して計量する際は、これらの液をポンプPにより輸送するので、ポンプ圧(出力値)の変動は大きく、これによりポンプ圧(出力値)の標準偏差は大きい。従って、これらのステップにおけるポンプ圧の閾値の幅は比較的広くなる。
 なお、サンプル注入ステップと試薬注入ステップとでは、輸送する液の物性(例えば粘性等)が異なるため、平均値や標準偏差は異なる値になる。
 また、pH調整ステップや廃液ステップにおいても、各種液体をポンプPにより輸送するので、上述したサンプル注入ステップや試薬注入ステップと同様に、ポンプ圧の閾値の幅は比較的広くなる。
 一方、反応ステップにおいては、例えばサンプルと試薬とを撹拌する場合などポンプPによる液の輸送は行われないため、ポンプ圧(出力値)の変動は少なく、これによりポンプ圧(出力値)の標準偏差は小さい。従って、この反応ステップにおけるポンプ圧の閾値の幅は比較的狭くなる。
 また、測定ステップにおいても、反応ステップと同様に、ポンプPが用いられないため、ポンプ圧(出力値)の変動は少なく、これによりポンプ圧(出力値)の標準偏差は小さい。従って、この測定ステップにおけるポンプ圧の閾値の幅は比較的狭くなる。
 次に、分析用機器の出力値として、上述した測定手段2bの出力値、より具体的には光検出器9の出力値である光強度について着目し、光検出器9に対する閾値について説明する(図5参照)。
 光検出器9の出力値は、反応ステップ及び測定ステップにおいて、光源8から光照射するために、その他のステップよりも変動が大きく、これにより光検出器9の出力値の標準偏差は大きい。従って、これらの反応ステップ及び測定ステップにおける光検出器9の閾値の幅は比較的広くなる。
 一方、反応ステップ及び測定ステップ以外のステップであるサンプル注入ステップ、試薬注入ステップ、pH調整ステップ、廃液ステップにおいては、光源8からの光照射がないため、光検出器9の出力値は、変動が小さく、標準偏差が小さくなり、光検出器9の閾値の幅は比較的狭くなる。
 なお、標準偏差が大きいステップにおける一連の出力値(例えば100点の出力値)としては、図6に示すものを一例として挙げることができ、標準偏差が小さいステップにおける一連の出力値(例えば100点の出力値)としては、図7に示すものを一例として挙げることができる。
 このように閾値設定部34により設定された上限値及び下限値の差分、すなわち閾値として設定された許容範囲の幅は、経時的に変動するものとなる。
 ここで、本実施形態の情報処理装置3は、図3に示すように、分析用機器から出力される出力値の経時変化をグラフ表示する表示部36や、新たな測定における出力値が閾値を超えるか否かを予測する異常予測部37としての機能をさらに備えている。
 表示部36は、図4に示すように、一方の軸が時間、他方の軸が出力値に設定されたグラフを画面上に表示するとともに、このグラフに分析用機器の出力値の経時変化を出力する。
 この表示部36は、閾値設定部34により設定された閾値の経時変化をも前記グラフ上に表示するように構成されており、ここでは閾値を設定するうえで用いられた平均値もグラフ上に表示する。
 そして、表示部36は、新たな測定における出力値が閾値を超えた場合に、その出力値を他の出力値とは識別可能に表示するように構成されている。
 より具体的に説明すると、表示部36は、図4に示すように、出力値の経時変化を示すグラフにおいて、閾値を超えた出力値(異常値)の例えば色やプロット形状などの表示態様を他の出力値(正常値)の表示態様と異ならせるように構成されている。これにより、出力値が閾値を超えたタイミング、すなわちどの処理で出力値が閾値を超えたかが直感的に認識できるようになる。なお、図4においては、黒丸でプロットされた出力値が閾値を超えた異常値として表示されている。表示部36としては、例えば分析用機器の出力値が閾値を超えた回数に応じて、その分析用機器に対応して表示させるプロットの色や形状などの表示態様を変更させても良い。このようにすれば、プロットの表示態様により、確認すべき分析用機器の優先度や確認の緊急度を把握することができる。
 また、この表示部36は、図8に示すように、例えばマウスやタッチパネル等の入力手段を介して入力された操作信号に基づいて、上述したグラフを拡大表示或いは縮小表示するように構成されている。
 さらにここでは、同図8に示すように、閾値を超えた出力値をマウスやタッチパネル等の入力手段により選択することができ、表示部36は、その選択された出力値が出力された処理工程や出力値などの異常内容を、グラフと同一画面上(ここではグラフ上)に表示する。
 異常予測部37は、モニタリング部33により記憶された過去の複数回の測定に亘る出力値に基づいて、新たな測定における出力値が閾値を超えるか否かを予測するものである。
 具体的にこの異常予測部37は、図9に示すように、最新の測定から過去所定回(例えば数回)遡った測定までの各測定の出力値と、上述した閾値設定部34により得られた平均値とを比較して、新たな測定における出力値が閾値を超えるか否かを予測するように構成されている。
 具体的な予測方法としては、例えば所定回数の測定における出力値の全てが平均値よりも低い場合、又は、所定回数の測定における出力値の全てが平均値よりも高い場合に、その後の出力値が閾値を超えると予測するなどの方法を挙げることができる。
 このように、異常予測部37がその後の出力値が閾値を超えると予測した場合、図9に示すように、上述した表示部36が、そのことを示す予告表示Xをグラフと同一画面上に出力する。
 この予告表示Xとしては、例えばその後の出力値が閾値を超えると予測した際に用いられた過去の複数回の測定の出力値を、他の出力値と識別可能に表示したものを挙げることができる。なお、出直値の表示態様としては、色やプロット形状などを挙げることができる。なお、この予告表示Xは、図9で示した態様に限らず、適宜変更して構わない。
 以上に述べた分析装置1によれば、過去の複数回の測定に亘る出力値に基づいて、新たな測定における閾値を設定しているので、製品出荷時等に予め設定される閾値とは異なり、分析用機器の例えば直近の状態を加味した閾値として設定することができる。
 これにより、例えば、新たな測定における出力値の挙動が、過去の測定における出力値の挙動と異なる場合に、その新たな出力値の挙動が閾値を超えるように、閾値の値を設定しておくことで、新たな測定において突発的な異常が発生した場合に、有識者を頼ることなく、その異常やその異常原因を特定することができるようになる。
 また、閾値設定部34が、過去の複数回の測定に亘る出力値の平均値及び標準偏差に基づいて閾値を設定しているので、その閾値として設定された許容範囲の幅は、一連の処理に亘って変動することになる。
 これにより、例えばポンプPのように、処理ごとに出力値の変動幅が変わる分析用機器に対して、処理ごとに適切な閾値を設定することができる。
 さらに、閾値設定部34が、過去の複数回の測定に亘る出力値の1つとして、最新の測定の出力値を用いて閾値を設定するので、その閾値は、当該分析用機器の直近の状態や測定環境などを加味したものとして設定されることなる。
 これにより、例えば測定環境の違いにより生じる出力値の変動などを誤って異常として検知してしまうことを防ぐことができる。
 そのうえ、閾値設定部34が、新たな測定の度に閾値を更新して設定するので、分析用機器に生じる突発的な異常をより確実に検知できる。
 加えて、表示部36が、新たな測定における出力値が閾値を超えた場合に、その出力値を他の出力値とは識別可能に表示するので、突発的な異常がどの処理で生じたかを直感的に把握することができる。
 さらに加えて、異常予測部37によって出力値が閾値を超えると予測された場合に、表示部36がそのことを示す予告表示Xをグラフと同一画面上に出力するので、その予告表示Xにより、新たな測定における出力値が閾値を超える蓋然性が高いことを知ることができ、突発的な異常等を未然に防ぐことができる。
 なお、本発明は前記実施形態に限られるものではない。
 例えば、閾値設定部34は、前記実施形態では、過去の複数回の測定に亘る出力値の平均値及び標準偏差を用いて閾値を設定していたが、図10に示すように、過去の複数回の測定に亘る出力値から、新たな測定における出力値を予測し、その予測値に基づいて閾値を設定するように構成されていても良い。
 このような構成であれば、例えば何日後に異常が生じるかを予測することができ、それに合わせた修理やメンテナンスの計画などを立てることができる。
 なお、上述した構成においては、閾値設定部34が、教師あり学習、教師なし学習、強化学習、深層学習など適宜選択された機械学習を用いて、例えば過去の測定における出力値を説明変数とし、新たな測定における出力値の予測値を目的変数とする学習アルゴリズムを生成するものであっても良い。
 さらに、閾値設定部34は、前記実施形態では、過去の複数回の測定に亘る出力値の平均値及び標準偏差を用いて閾値を設定していたが、標準偏差の代わりに、分散値などのばらつきを表す指標を用いて閾値を設定するように構成されていても良い。
 また、分析用機器には、図11に示すように、前記実施形態の閾値設定部34が設定した閾値とは別の第2閾値が設定されていても良い。
 この場合の第2閾値としては、例えば製品出荷時等に予め設定した上限値及び/又は下限値であり、例えば部品の摩耗等のように徐々に劣化が出力値として現れるような異常を検知するための閾値を挙げることができる。
 加えて、情報処理装置3としては、分析用機器の出力値が閾値を超えた場合に、そのことをユーザに報知する報知部(不図示)としての機能を備えたものであっても良い。
 具体的に報知部としては、出力値が閾値を超えた回数である異常回数が所定の上限回数に達したことを契機に報知するように構成されていても良い。
 かかる構成において、予め分析用機器ごとに緊急度を設けておき、緊急度が高いものほど上限回数を低くしておくことが望ましい。なお、緊急度としては、例えば廃液に関わる部品に対して緊急度を高く設定する態様を挙げることができる。
 さらに加えて、前記実施形態で述べた情報処理装置3の機能の一部は、情報処理装置3とは別のコンピュータ等に備えさせても良い。その一例としては、実データ格納部35を、情報処理装置3とは別の例えばクラウドサーバ等に備えさせても良い。
 また、分析装置1は、前記実施形態では液体試料に含まれる窒素やリン等を分析するものであったが、液体試料に含まれるTOCやCODを分析するものであっても良いし、気体試料、固体試料、或いはゲル状の試料を分析するものであっても良い。
 なお、気体試料を分析する分析装置1としては、固体材料を燃焼させてなるCO、CO、SO、N、H等の気体試料を分析するものを挙げることができる。より具体的には、固体材料に含まれる不純物等を測定するものであり、固体材料を燃焼させる燃焼工程、不純物を除去する除去工程、気体試料に含まれる所定成分の抽出する抽出工程、前記所定成分の濃度等を測定する測定工程などを行うものを挙げることができる。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 サンプルに種々の処理をしてから測定する分析装置において、有識者に頼ることなく、突発的な異常を検知することができる。

Claims (10)

  1.  サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析装置であって、
     前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器と、
     1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶するモニタリング部と、
     前記モニタリング部により記憶された過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定する閾値設定部とを備える、分析装置。
  2.  前記閾値設定部が、前記閾値として前記出力値の許容範囲を設定するものであり、
     前記許容範囲の幅が、前記一連の処理に亘って変動する、請求項1記載の分析装置。
  3.  前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値の1つとして、最新の測定の出力値を用いて前記閾値を設定する、請求項1又は2記載の分析装置。
  4.  前記閾値設定部が、新たな測定の度に閾値を更新して設定する、請求項1乃至3のうち何れか一項に記載の分析装置。
  5.  前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値の平均値及び標準偏差に基づいて前記閾値を設定する、請求項1乃至4のうち何れか一項に記載の分析装置。
  6.  前記閾値設定部が、前記過去の複数回の測定に亘る前記出力値から、新たな測定における出力値を予測し、その予測値に基づいて前記閾値を設定する、請求項1乃至5のうち何れか一項に記載の分析装置。
  7.  前記分析用機器の新たな出力値の経時変化とともに、当該分析用機器に設定された前記閾値をグラフ表示する表示部を備え、
     前記出力値が前記閾値を超えた場合に、前記表示部が、その出力値を他の出力値とは識別可能に表示する、請求項1乃至6のうち何れか一項に記載の分析装置。
  8.  前記モニタリング部により記憶された過去の複数回の測定に亘る前記出力値に基づいて、新たな測定における前記出力値が前記閾値を超えるか否かを予測する異常予測部をさらに備え、
     前記表示部が、前記異常予測部によって前記出力値が前記閾値を超えると予測された場合に、そのことを示す予告表示を前記グラフと同一画面上に出力する、請求項7記載の分析装置。
  9.  サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定するものであり、前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器を具備する分析装置に用いられるプログラムであって、
     1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶するモニタリング部と、
     前記モニタリング部により記憶された過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定する閾値設定部としての機能をコンピュータに発揮させる、分析装置用プログラム。
  10.  サンプルに対して互いに異なる一連の処理を施したあと、そのサンプルに含まれる所定成分を測定する分析方法であって、
     前記処理に用いられる処理手段、及び、前記所定成分を測定する測定手段を含む複数の分析用機器のうちの、1又は複数の前記分析用機器から出力される出力値をモニタリングして記憶させ、
     その記憶させた過去の複数回の測定に亘る前記出力値を取得し、それらの出力値に基づいて新たな測定における1又は複数の前記分析用機器の閾値を設定する、分析方法。
PCT/JP2021/000637 2020-01-15 2021-01-12 分析装置、分析装置用プログラム、及び分析方法 WO2021145302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180007627.8A CN114902054A (zh) 2020-01-15 2021-01-12 分析装置、分析装置用程序、以及分析方法
JP2021571179A JPWO2021145302A1 (ja) 2020-01-15 2021-01-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-004707 2020-01-15
JP2020004707 2020-01-15

Publications (1)

Publication Number Publication Date
WO2021145302A1 true WO2021145302A1 (ja) 2021-07-22

Family

ID=76863798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000637 WO2021145302A1 (ja) 2020-01-15 2021-01-12 分析装置、分析装置用プログラム、及び分析方法

Country Status (3)

Country Link
JP (1) JPWO2021145302A1 (ja)
CN (1) CN114902054A (ja)
WO (1) WO2021145302A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271318A (ja) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd 分注装置及びこの分注装置を構成要素とする分析装置
JP2017106791A (ja) * 2015-12-09 2017-06-15 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析装置の異常判定方法
US20190212352A1 (en) * 2018-01-05 2019-07-11 Illumina, Inc. Predicting Reagent Chiller Instability and Flow Cell Heater Failure in Sequencing Systems
JP2019174424A (ja) * 2018-03-29 2019-10-10 シスメックス株式会社 検体分析装置のモニタリングデータの生成装置、検体分析装置、検体分析装置のモニタリングデータ生成システム、前記システムの構築方法、検体分析装置のモニタリングデータの生成方法及び検体分析装置のモニタリング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271318A (ja) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd 分注装置及びこの分注装置を構成要素とする分析装置
JP2017106791A (ja) * 2015-12-09 2017-06-15 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析装置の異常判定方法
US20190212352A1 (en) * 2018-01-05 2019-07-11 Illumina, Inc. Predicting Reagent Chiller Instability and Flow Cell Heater Failure in Sequencing Systems
JP2019174424A (ja) * 2018-03-29 2019-10-10 シスメックス株式会社 検体分析装置のモニタリングデータの生成装置、検体分析装置、検体分析装置のモニタリングデータ生成システム、前記システムの構築方法、検体分析装置のモニタリングデータの生成方法及び検体分析装置のモニタリング方法

Also Published As

Publication number Publication date
JPWO2021145302A1 (ja) 2021-07-22
CN114902054A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN110023764B (zh) 用于分析生物样本的自动分析仪的故障状态预测
JP5975883B2 (ja) 故障している計器を検出する方法及び装置
JP4604987B2 (ja) 水処理プラントの運転管理方法および装置
CN102422162B (zh) 自动分析装置及分析方法
JP7076440B2 (ja) ガス分析器の構成部品をモニタリングする方法
RU2644441C2 (ru) Разработка конструкции и реализация системы и алгоритма управления на основе анализатора
JP6257418B2 (ja) 自動分析装置
CN113252544A (zh) 一种炼油装置腐蚀监测系统和方法
US11041840B2 (en) Process for monitoring the concentration of bacteria in a water distribution network
JP2007248089A (ja) 自己診断型自動分析装置
KR20230170727A (ko) 부품 마모를 추정하기 위한 방법
JP6965502B2 (ja) 水質分析計
KR20210158285A (ko) 수질 모니터링 시스템의 메인터넌스 방법
WO2021145302A1 (ja) 分析装置、分析装置用プログラム、及び分析方法
US20130048535A1 (en) Design development and implementation of analyzer based control system and algorithm
US20230161679A1 (en) Method of determining application-specific total plausibilities of measured values of at least one measurand measured by a measurement system in a specific application
Rieger et al. Computer-aided monitoring and operation of continuous measuring devices
de León Hijes et al. Assessment of functional condition of equipment in industrial plants based on multiple measurements
US20240117514A1 (en) Method of operating an electrolyzer system and electrolyzer system
Thompson et al. Protecting water quality and public health using a smart grid
JP2010038708A (ja) 金属濃度監視装置
US20240200990A1 (en) Method of measuring measurands of a medium and a measurement system configured to perform this method
KR102671234B1 (ko) 압력모니터링을 이용한 연소관의 수명 예측시스템과 연소관의 수명 예측방법 그리고 이것이 구비된 총유기탄소 분석기
CN117670578B (zh) 一种基于信息自动化的颗粒冲剂生产监管方法
WO2024142652A1 (ja) 分析装置、分析方法、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740658

Country of ref document: EP

Kind code of ref document: A1