WO2021145210A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2021145210A1
WO2021145210A1 PCT/JP2020/049067 JP2020049067W WO2021145210A1 WO 2021145210 A1 WO2021145210 A1 WO 2021145210A1 JP 2020049067 W JP2020049067 W JP 2020049067W WO 2021145210 A1 WO2021145210 A1 WO 2021145210A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cooling water
heat exchange
pipe
heat exchanger
Prior art date
Application number
PCT/JP2020/049067
Other languages
French (fr)
Japanese (ja)
Inventor
彰洋 大井
幸貴 西山
長谷川 学
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020166970A external-priority patent/JP2021113666A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021145210A1 publication Critical patent/WO2021145210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to heat exchangers.
  • the heat exchanger described in Patent Document 1 cools the supercharged intake air by exchanging heat between the supercharged intake air supplied to the internal combustion engine by the supercharger and the cooling water.
  • This heat exchanger has a heat exchange unit composed of a plurality of flow path plates arranged in a laminated manner. Each flow path plate exchanges heat between the cooling water flowing inside the flow path plate and the supercharged intake air flowing outside the flow path plate.
  • As the cooling water a first cooling water and a second cooling water having a temperature higher than that of the first cooling water are used. Inside the flow path plate, a first cooling water flow path through which the first cooling water flows and a second cooling water flow path through which the second cooling water flows are formed.
  • the flow path plate has a first U-turn portion that makes a U-turn of the flow of the first cooling water flowing through the first cooling water flow path and a second U-turn portion that makes a U-turn of the flow of the second cooling water flowing through the second cooling water flow path.
  • the heat exchange section includes a first distribution tank section that distributes cooling water to the first U-turn section of each flow path plate, and a first collecting tank section that collects cooling water that has flowed through the first U-turn section of each flow path plate. It has a second distribution tank portion that distributes cooling water to the second U-turn portion of each flow path plate, and a second collecting tank portion that collects the cooling water that has flowed through the second U-turn portion of each flow path plate.
  • the first inflow pipe and the second inflow pipe for inflowing the cooling water into each distribution tank portion, and each collecting tank portion It is necessary to provide a total of four pipes, a first discharge pipe and a second discharge pipe for discharging the first cooling water.
  • a first discharge pipe and a second discharge pipe for discharging the first cooling water.
  • the purpose of the present disclosure is to provide a heat exchanger capable of securing a space between each pipe.
  • the heat exchanger is a heat exchanger that exchanges heat between the intake air introduced into the internal combustion engine or the fuel cell and the cooling water of the two systems of the first cooling water and the second cooling water, and is heat. It includes an exchange unit, a first inflow pipe, a first outflow pipe, a second inflow pipe, and a second outflow pipe.
  • the heat exchange section has a core section in which a plurality of flow path forming plate members having a first flow path through which the first cooling water flows and a second flow path through which the second cooling water flows are stacked and arranged. , Heat exchange is performed between the first cooling water and the second cooling water flowing inside the flow path forming plate member and the intake air flowing outside the flow path forming plate member.
  • the first inflow pipe causes the first cooling water to flow into the heat exchange section.
  • the first outflow pipe causes the first cooling water to flow out from the heat exchange section.
  • the second inflow pipe causes the second cooling water to flow into the heat exchange section.
  • the second outflow pipe causes the second cooling water to flow out from the heat exchange section.
  • the direction in which a plurality of flow path forming plate members are stacked and arranged is defined as the plate stacking direction
  • the heat exchange portion is defined as the intake flow direction in which the intake air flows
  • the direction orthogonal to both the plate stacking direction and the intake flow direction is determined.
  • the first pipe of the other of the first inflow pipe and the first outflow pipe is provided.
  • Two of the first pipe, the second inflow pipe, and the second outflow pipe are provided on one outer surface in the plate stacking direction at one end of the heat exchange portion.
  • one of the first pipe, the second inflow pipe, and the remaining one of the second outflow pipes is provided.
  • the other first pipe is provided at the other end of the heat exchange portion in the predetermined direction, it is easy to form a space around this pipe. Therefore, it is possible to secure a space between each pipe when the heat exchanger is miniaturized.
  • FIG. 1 is a perspective view showing a perspective structure of the heat exchanger of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the first embodiment.
  • FIG. 3 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the first embodiment.
  • FIG. 4 is a perspective view showing a perspective structure of a second plate piece of the flow path forming plate member of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a cross-sectional structure around a first outflow pipe of the heat exchanger of the first embodiment.
  • FIG. 6 is a front view showing the front structure of the heat exchanger of the first embodiment.
  • FIG. 7 is a rear view showing the rear surface structure of the heat exchanger of the first embodiment.
  • FIG. 8 is a side view showing the right side structure of the heat exchange portion of the first embodiment.
  • FIG. 9 is a diagram schematically showing the structure of the heat exchange portion of the first embodiment.
  • FIG. 10 is a perspective view showing a perspective structure of the heat exchanger of the second embodiment.
  • FIG. 11 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the second embodiment.
  • FIG. 12 is a diagram schematically showing the structure of the heat exchange portion of the second embodiment.
  • FIG. 13 is a cross-sectional view showing a cross-sectional structure around a second outflow pipe of the heat exchanger of the third embodiment.
  • FIG. 14 is a perspective view showing a perspective structure of the spacer of the third embodiment.
  • FIG. 15 is a perspective view showing a perspective structure of the spacer of the third embodiment.
  • FIG. 16 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the fourth embodiment.
  • FIG. 17 is a perspective view showing a perspective structure of a second plate piece of the flow path forming plate member of the fourth embodiment.
  • FIG. 18 is a perspective view showing a perspective structure of the spacer of the fourth embodiment.
  • FIG. 19 is a rear view showing the rear surface structure of the heat exchanger of the fourth embodiment.
  • FIG. 20 is a perspective view showing a perspective structure of the heat exchanger of the fifth embodiment.
  • FIG. 20 is a perspective view showing a perspective structure of the heat exchanger of the fifth embodiment.
  • FIG. 21 is a perspective view showing a cross-sectional perspective structure of the flow path forming plate member of the sixth embodiment.
  • FIG. 22 is a cross-sectional view showing a cross-sectional structure of the flow path forming plate member of the sixth embodiment.
  • FIG. 23 is a cross-sectional view showing a cross-sectional structure along the line XXI-XXI of FIG.
  • FIG. 24 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the seventh embodiment.
  • FIG. 25 is a block diagram showing a schematic configuration of the cooling circuit of the eighth embodiment.
  • FIG. 26 is a perspective view showing a perspective structure of the heat exchanger of another embodiment.
  • the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described.
  • the heat exchanger 10 of the present embodiment is arranged, for example, in the intake passage of the vehicle.
  • the intake passage supplies the intake air supercharged by the supercharger to the internal combustion engine.
  • the heat exchanger 10 exchanges heat between the supercharged intake air flowing through the intake passage and the cooling water.
  • the heat exchanger 10 is a so-called two-temperature heat exchanger in which two systems of cooling water having different temperatures flow.
  • the cooling water having a lower temperature will be referred to as “low temperature side cooling water”, and the cooling water having a higher temperature will be referred to as “high temperature side cooling water”.
  • the high temperature side cooling water corresponds to the first cooling water
  • the low temperature side cooling water corresponds to the second cooling water.
  • the low temperature side cooling water is supplied to the heat exchanger 10 through the low temperature side cooling circuit.
  • the low temperature side cooling circuit is, for example, a circuit for circulating cooling water between the low temperature side radiator and the heat exchanger 10.
  • the high temperature side cooling water is supplied to the heat exchanger 10 through the high temperature side cooling circuit.
  • the high temperature side cooling circuit is a circuit for circulating cooling water between, for example, the high temperature side radiator, the internal combustion engine, and the heat exchanger 10.
  • the heat exchanger 10 cools or heats the intake air by exchanging heat between the two types of cooling water and the intake air.
  • the heat exchanger 10 includes a heat exchange unit 20, caulking plates 22, 23, and tanks 30, 31.
  • the heat exchange unit 20 is formed in a substantially rectangular parallelepiped shape.
  • the heat exchange section 20 is basically formed of an aluminum alloy.
  • the heat exchange unit 20 includes a core unit 21 and pipes 24a, 24b, 25a, 25b.
  • the core portion 21 is a portion that exchanges heat between the intake air and the cooling water. As shown in FIG. 2, the core portion 21 has a plurality of flow path forming plate members 210 and a plurality of outer fins 211.
  • the plurality of flow path forming plate members 210 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z in the drawing.
  • Each flow path forming plate member 210 is formed by joining a plate-shaped first plate piece 210a and a second plate piece 210b.
  • the first plate piece 210a and the second plate piece 210b may be formed separately or integrally.
  • the flow path forming plate member 210 in which the first plate piece 210a and the second plate piece 210b are integrally formed is manufactured, for example, by bending one plate on which the first plate piece 210a and the second plate piece 210b are formed. can.
  • Intake flows in the gap formed between the flow path forming plate members 210 in the direction indicated by the arrow Y in the drawing.
  • the direction indicated by the arrow Y is a direction orthogonal to the direction indicated by the arrow Z.
  • the direction indicated by the arrow Z is referred to as “plate stacking direction Z”
  • the direction indicated by the arrow Y is referred to as “intake flow direction Y”
  • the direction X orthogonal to both the plate stacking direction Z and the intake air flow direction Y is the longitudinal direction of the heat exchange portion 20. Therefore, the direction indicated by the arrow X is referred to as “longitudinal direction X of the heat exchange portion”.
  • the heat exchange portion longitudinal direction X corresponds to a predetermined direction.
  • the first plate piece 210a is made of a plate-shaped member.
  • the first plate piece 210a is formed with a first recess R11 and a second recess R12.
  • the first recess R11 is formed so as to extend linearly from one end E11 to the other end E12 of the first plate piece 210a in the longitudinal direction X of the heat exchange portion.
  • a high temperature side inner fin 216 for increasing the heat transfer area with respect to the high temperature side cooling water is arranged in the first recess R11.
  • a cup portion C11a having a shape protruding in the plate stacking direction Z is formed at one end of the first recess R11.
  • a cup portion C12a having a similar shape is also formed at the other end of the first recess R11.
  • the cup portion C12a is arranged at one end E11 of the first plate piece 210a, and the cup portion C11a is arranged at the other end E12 of the first plate piece 210a.
  • Through holes 212a and 213a are formed in the cup portions C11a and C12a, respectively.
  • the second recess R12 is arranged on the downstream side of the intake flow direction Y with respect to the first recess R11.
  • the second recess R12 includes two straight portions W120 and W121 formed so as to extend linearly in the longitudinal direction X of the heat exchange portion, and a turning portion W122 formed so as to communicate one end portions thereof. There is.
  • the turning portion W122 is located at the other end E12 of the first plate piece 210a.
  • the low temperature side inner fins 217 for increasing the heat transfer area with respect to the low temperature side cooling water are arranged in the straight portions W120 and W121, respectively.
  • a cup portion C13a is also formed at the end portion of the straight portion W120 opposite to the end portion connected to the turning portion W122 as in the case of the first recess R11.
  • a cup portion C14a is also formed at an end portion of the straight portion W121 opposite to the end portion connected to the turning portion W122.
  • the cup portions C13a and C14a are located at one end portion E11 of the first plate piece 210a.
  • Through holes 214a and 215a are formed in the cup portions C13a and C14a, respectively.
  • a plurality of slits S11 are formed between the region A11 in which the first recess R11 is formed and the region A12 in which the second recess R12 is formed in the first plate piece 210a.
  • the slit S11 is provided to suppress heat transfer between the high temperature side region A11 and the low temperature side region A12.
  • the second plate piece 210b is joined to one outer surface of the first plate piece 210a in the plate stacking direction Z by brazing.
  • the space surrounded by the first recess R11 of the first plate piece 210a and the second plate piece 210b forms the high temperature side flow path W11.
  • the high temperature side flow path W11 has a so-called I-flow shape formed in a straight line.
  • the space surrounded by the second recess R12 of the first plate piece 210a and the second plate piece 210b forms the low temperature side flow path W12.
  • the low temperature side flow path W12 has a so-called U flow shape formed in a U shape.
  • the high temperature side flow path W11 corresponds to the first flow path
  • the low temperature side flow path W12 corresponds to the second flow path.
  • the second plate piece 210b faces the region A21 arranged so as to face the high temperature side region A11 of the first plate piece 210a and the low temperature side region A12 of the first plate piece 210a. It has a region A22 arranged in such a manner. Similar to the first plate piece 210a, the second plate piece 210b is also formed with a plurality of slits S21 between the high temperature side region A21 and the low temperature side region A22. In the high temperature side region A21 of the second plate piece 210b, cup portions C11b and C12b are formed at positions corresponding to the cup portions C11a and C12a of the first plate piece 210a.
  • Through holes 212b and 213b are formed in the cup portions C11b and C12b, respectively.
  • cup portions C13b and C14b are formed at positions corresponding to the cup portions C13a and C14a of the first plate piece 210a, respectively.
  • Through holes 214b and 215b are formed in the cup portions C13b and C14b, respectively.
  • the cup portion C12a of the first plate piece 210a projects toward the flow path forming plate member 210 adjacent to the upper side.
  • the cup portion C12a of the second plate piece 210b projects downward toward the adjacent flow path forming plate member 210.
  • the upper surface of the cup portion C12a of the first plate piece 210a is joined to the bottom surface of the cup portion C12b of the second plate piece 210b of the adjacent flow path forming plate member 210 by brazing.
  • the through hole 213a formed in the cup portion C12a of the first plate piece 210a and the through hole 213b formed in the cup portion C12b of the second plate piece 210b communicate with each other.
  • the first collecting tank space T12 is open on the upper surface 20a of the heat exchange section 20.
  • a first outflow pipe 24b is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the first collecting tank space T12.
  • the cup portion C11a of the first plate piece 210a is similarly joined to the cup portion C11b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the cup portions C11a and C11b.
  • the through holes 212a and 212b of the above are communicated with each other.
  • the cup portion C13a of the first plate piece 210a is similarly joined to the cup portion C13b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the through holes 214a of the cup portions C13a and C13b are respectively joined. , 214b communicate with each other.
  • cup portion C14a of the first plate piece 210a is similarly joined to the cup portion C14b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the through holes 215a of the cup portions C14a and C14b, respectively. , 215b communicate with each other.
  • a second distribution tank space T21 and a second assembly tank space T22 are formed at one end E11 of the heat exchange portion 20 so as to be aligned with the first assembly tank space T12 in the intake flow direction Y. ing.
  • the second distribution tank space T21 is composed of a space surrounded by through holes 214a and 214b of each flow path forming plate member 210 and cup portions C13a and C13b.
  • the second collecting tank space T22 is composed of a space surrounded by through holes 215a and 215b of each flow path forming plate member 210 and cup portions C14a and C14b.
  • the second distribution tank space T21 is open on the upper surface 20a of the heat exchange section 20.
  • a second inflow pipe 25a is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the second distribution tank space T21.
  • the second collecting tank space T22 is open at the bottom surface 20b of the heat exchange unit 20.
  • a second outflow pipe 25b is joined to the bottom surface 20b of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the second collecting tank space T22.
  • a first distribution tank space T11 is formed in the other end E12 of the heat exchange unit 20.
  • the first distribution tank space T11 is composed of a space surrounded by through holes 212a and 212b of each flow path forming plate member 210 and cup portions C11a and C11b.
  • the first distribution tank space T11 is open on the upper surface 20a of the heat exchange section 20.
  • a first inflow pipe 24a is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the first distribution tank space T11.
  • the space formed by the cup portions C11a and C11b corresponds to the first inflow portion
  • the space formed by the cup portions C12a and C12b corresponds to the first outflow portion
  • the cup portion corresponds to the cup portion.
  • the space formed by C13a and C13b corresponds to the second inflow portion
  • the space formed by the cup portions C14a and C14b corresponds to the second outflow portion.
  • the high temperature side cooling water flows into the first distribution tank space T11 through the hose connected to the first inflow pipe 24a.
  • the high-temperature side cooling water that has flowed into the first distribution tank space T11 is distributed to the high-temperature side flow path W11 of each flow path forming plate member 210.
  • the high-temperature side cooling water that has flowed through the high-temperature side flow path W11 of each flow path forming plate member 210 is collected in the first collecting tank space T12 and then discharged from the first outflow pipe 24b.
  • the low temperature side cooling water flows into the second distribution tank space T21 through the hose connected to the second inflow pipe 25a.
  • the high-temperature side cooling water that has flowed into the second distribution tank space T21 is distributed to the low-temperature side flow path W12 of each flow path forming plate member 210.
  • the low-temperature side cooling water that has flowed through the low-temperature side flow path W12 of each flow path forming plate member 210 is collected in the second collecting tank space T22 and then discharged from the second outflow pipe 25b.
  • the inflow side caulking plate 22 is provided on the outer peripheral portion of the end portion on the upstream side of the intake flow direction Y in the heat exchange core portion 21.
  • the inflow side caulking plate 22 is formed in a square ring shape.
  • a bent portion 220 is formed at one end of the inflow side caulking plate 22 on the downstream side in the intake flow direction Y so as to be bent inward.
  • the inflow side caulking plate 22 is fixed to the heat exchange core portion 21 by joining the tip portion of the bent portion 220 to the heat exchange core portion 21 by brazing.
  • the inflow side tank 30 is inserted into the inflow side caulking plate 22.
  • a packing 32a for sealing the gap between the inflow side caulking plate 22 and the inflow side tank 30 is arranged. As shown in FIG. 1, the inflow side tank 30 is fixed to the heat exchange core portion 21 by caulking the inflow side caulking plate 22 into the inflow side tank 30.
  • the outflow side caulking plate 23 also has the same shape as the inflow side caulking plate 22. That is, the outflow side caulking plate 23 also has a bent portion 230. The bent portion 230 is joined to the heat exchange core portion 21 by brazing, so that the outflow side caulking plate 23 is fixed to the heat exchange core portion 21.
  • the outflow side tank 31 and the packing 32b are inserted into the outflow side caulking plate 23.
  • the outflow side caulking plate 23 is crimped to the outflow side tank 31, so that the outflow side tank 31 is fixed to the heat exchange core portion 21.
  • the caulking plates 22 and 23 correspond to the assembling members to which the tanks 30 and 31 are assembled.
  • the intake air flows in from the opening portion 30a of the inflow side tank 30.
  • the intake air that has flowed into the inflow side tank 30 flows through the gap formed between the flow path forming plate members 210 and flows into the outflow side tank 31, and then flows out as shown in FIG. It is discharged from the opening portion 31a of the side tank 31.
  • the outer fins 211 arranged between the flow path forming plate members 210 increase the heat transfer area with respect to the intake air.
  • the inflow side tank 30 corresponds to a guide unit that guides the introduction of intake air into the heat exchange unit 20.
  • the outflow side tank 31 corresponds to a guide portion that guides the air that has passed through the heat exchange portion 20.
  • the heat exchanger 10 when the intake air flows through the gap formed between the flow path forming plate members 210, the high temperature side cooling water and the low temperature side cooling water flowing inside each flow path forming plate member 210 are The intake air is cooled or heated by exchanging heat with the intake air flowing outside each flow path forming plate member 210. According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (1) to (6) can be obtained.
  • a first outflow pipe 24b, a second inflow pipe 25a, and a second outflow pipe 25b are provided at one end E11 of the heat exchange unit 20.
  • a first inflow pipe 24a is provided at the other end E12 of the heat exchange unit 20.
  • a first outflow pipe 24b and a second inflow pipe 25a are provided on the upper surface 20a of the plate stacking direction Z at one end E11 of the heat exchange portion 20.
  • a second outflow pipe 25b is provided on the bottom surface 20b of the plate stacking direction Z at one end E11 of the heat exchange section 20.
  • the second inflow pipe 25a, and the second outflow pipe 25b are provided on the upper surface 20a of the one end portion E11 of the heat exchange portion 20. It becomes easier to form a space between each pipe. Further, since only the first inflow pipe 24a is provided at the other end E12 of the heat exchange portion 20, it is easy to form a space around the first inflow pipe 24a. Therefore, even when the heat exchanger 10 is miniaturized, it is possible to form a space between the pipes.
  • the caulking plates 22 and 23 are joined to the heat exchange portion 20 by brazing. Since the caulking plates 22 and 23 for assembling the heat exchange portion 20 and the tanks 30 and 31 are required to have a certain degree of durability, a thicker member is used as compared with the flow path forming plate member 210. As a result, the heat capacity of the caulking plates 22 and 23 tends to be large. Therefore, when brazing each part in the manufacturing process of the heat exchanger 10, it is necessary to consider the temperature rising property of the caulking plates 22 and 23. If the high temperature side flow path W11 of the heat exchange unit 20 is formed in a U shape as in the heat exchanger described in Patent Document 1 described above, four pipes are arranged at one end E11 of the heat exchange unit 20.
  • the pipes 24a, 24b, 25a, 25b are dispersedly arranged in the heat exchange section 20 as in the heat exchanger 10 of the present embodiment, the pipes 24a, 24b, 25a, and 25b are locally arranged in a part of the caulking plates 22, 23. Since it is possible to avoid the concentration of residual stress, it is possible to suppress a decrease in the strength of the caulking plates 22 and 23.
  • a so-called case-insertion type heat exchanger having a structure in which a heat exchange portion is inserted and fixed in a box-shaped duct case through which intake air passes.
  • a flange portion is formed in the heat exchange portion, and then the duct case is fastened with bolts via the flange portion.
  • a structure for fixing the duct case and the heat exchange portion, or a structure for fixing the duct case and the heat exchange portion by welding via a flange portion is generally adopted.
  • the duct case has a structure in which a portion where the intake air flows in, a portion where the heat exchange portion is inserted, and a portion where the intake air flows out are integrally formed. Therefore, basically, the inflow portion of the intake air, the insertion portion of the heat exchange portion, and the outflow portion of the intake air are all formed of the same material.
  • the inflow side tank 30 and the outflow side tank 31 are separate bodies, it is possible to form them with different materials.
  • the condensed water can be evaporated. It is possible. As a result, it is unlikely that the condensed water adheres to the outflow side tank 31, so that corrosion due to the adhesion of the condensed water is unlikely to occur in the outflow side tank 31. Therefore, as the material of the outflow side tank 31, it is possible to use an inexpensive material having lower corrosion resistance than the inflow side tank 30, for example, a resin material. Further, since the packing 32b provided between the outflow side tank 31 and the heat exchange section 20 is also less likely to be corroded, it is possible to use an inexpensive material having low corrosion resistance as the material.
  • the high temperature side cooling flowing through the high temperature side flow path W11 is compared with the shape of the U flow.
  • the resistance to water flow is reduced.
  • the high temperature side cooling water flows through the high temperature side flow path W11 from the upstream side to the downstream side while exchanging heat with the intake air, so that the high temperature side flow Deviations are likely to occur in the temperature of the cooling water between the upstream side and the downstream side of the path W11.
  • the outer shape of the heat exchange core portion 21 is deformed from the shape shown by the alternate long and short dash line to the shape shown by the solid line, that is, deformed so as to shrink in the plate stacking direction Z. If a gap is formed between the heat exchange core portion 21 and the caulking plates 22 and 23 as a result of such a subduction phenomenon of the heat exchange core portion 21, there is a concern that they cannot be brazed. In order to eliminate this concern, the heat exchanger 10 of the present embodiment has a structure as shown in FIG.
  • the heat exchanger 10 of the present embodiment includes a duct case 60 arranged so as to surround the heat exchange core portion 21.
  • the duct case 60 is composed of an upper duct plate member 61 and a lower duct plate member 62.
  • the lower duct plate member 62 is composed of a plate-shaped member formed in a concave shape, and is formed on the bottom surface of the heat exchange core portion 21 in the plate stacking direction Z and on both side surfaces of the heat exchange core portion 21 in the heat exchange portion longitudinal direction X. They are arranged so as to face each other.
  • the upper duct plate member 61 is made of a plate-shaped member, and is arranged so as to face the upper surface of the heat exchange core portion 21 in the plate stacking direction Z.
  • the duct case 60 is formed in a square ring shape as a whole by joining the upper duct plate member 61 to the lower duct plate member 62 so as to close the upper opening portion of the lower duct plate member 62.
  • bent portions 611 and 612 are formed at both ends of the upper duct plate member 61 in the intake flow direction Y so as to be bent outward.
  • the bent portions 611 and 612 are joined to the bent portions 220 and 230 of the caulking plates 22 and 23 by surface contact and brazing, respectively.
  • the heat exchange core portion 21 temporarily changed from the shape shown by the alternate long and short dash line to the shape shown by the solid line during the brazing step. Even so, it is possible to secure a state in which the bent portion 611 of the upper duct plate member 61 is in contact with the bent portion 220 of the inflow side caulking plate 22. Similarly, it is possible to secure a state in which the bent portion 612 of the upper duct plate member 61 is in contact with the bent portion 230 of the inflow side caulking plate 22.
  • the bent portions 611 and 612 of the upper duct plate member 61 and the bent portions 220 and 230 of the caulking plates 22 and 23 are more reliably joined by brazing, the heat exchange core portion 21 and the caulking plates 22 and 23 are joined. The state of joining with can be maintained.
  • the heat exchange unit 20 further includes a duct case 60 provided so as to surround the outer periphery of the heat exchange core unit 21. According to such a configuration, the flow of intake air can be guided by the duct case 60, so that the heat exchange performance of the heat exchanger 10 can be improved.
  • a third embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the second embodiment will be mainly described.
  • a sacrificial layer may be applied to the inner surface of the core material.
  • the sacrificial layer is made of a metal containing a material that is potentially lower than the core material in a predetermined ratio, for example, an aluminum alloy containing zinc (Zn).
  • Zn aluminum alloy containing zinc
  • the ends of the plate pieces 210a and 210b of each flow path forming plate member 210 are in contact with each other. Therefore, when the sacrificial layer is applied to the surface of the core material of the plate pieces 210a and 210b, the sacrificial layers of the plate pieces 210a and 210b come into contact with each other. In the case of such a structure, there is a concern that zinc is locally concentrated at the portion where the sacrificial layers of the plate pieces 210a and 210b are in contact with each other, and the corrosion resistance is significantly lowered at that portion.
  • a spacer is provided between one end of the first plate piece 210a and one end of the second plate piece 210b of each flow path forming plate member 210. 40 are arranged.
  • the spacer 40 is arranged so as to be sandwiched between the bottom surfaces of the cup portions C12a, C13a, and C14a of the first plate piece 210a and the second plate piece 210b.
  • the spacer 40 is made of a plate-shaped member. Through holes 401, 402, and 403 are formed in the spacer 40 at positions corresponding to the first collecting tank space T12, the second distribution tank space T21, and the second collecting tank space T22 of the heat exchange core portion 21, respectively. ..
  • a spacer 41 as shown in FIG. 15 is also arranged between the other end of the first plate piece 210a and the other end of the second plate piece 210b of each flow path forming plate member 210.
  • a through hole 411 is formed in the spacer 41 at a position corresponding to the first distribution tank space T11 of the heat exchange core portion 21.
  • the spacer 41 is formed with a base portion 412 on which a through hole 411 is formed and a protruding portion 413 protruding from the base portion 412 in the plate stacking direction Z.
  • the bottom surface of the base portion 412 of the spacer 41 is joined to the upper surface of the second plate piece 210b by brazing.
  • the upper surface of the protruding portion 413 is joined to the lower surface of the turning portion W122 of the first plate piece 210a by brazing. Therefore, the spacer 41 is arranged so as to be sandwiched between the other end of the first plate piece 210a and the other end of the second plate piece 210b.
  • a fourth embodiment of the heat exchanger 10 will be described.
  • the differences from the heat exchanger 10 of the third embodiment will be mainly described.
  • cup portions C15a and C16a are further formed in a portion where the turning portion W122 is formed.
  • Through holes 218a and 219a are formed in the cup portions C15a and C16a, respectively.
  • the second plate piece 210b is further formed with cup portions C15b and C16b at positions facing the turning portion W12. Through holes 218b and 219b are formed in the cup portions C15b and C16b, respectively.
  • the cup portions C15a and C16a of the first plate piece 210a are formed so as to project in the plate stacking direction Z toward the adjacent flow path forming plate member 210, and the second plate of the adjacent flow path forming plate member 210 is formed. It is joined to the cup portions C15b and C16b of the piece 210b, respectively.
  • the through hole 218a formed in the cup portion C15a of the first plate piece 210a communicates with the through hole 218b formed in the cup portion C15b of the second plate piece 210b of the adjacent flow path forming plate member 210.
  • the through hole 219a formed in the cup portion C16a of the first plate piece 210a communicates with the through hole 219b formed in the cup portion C16b of the second plate piece 210b of the adjacent flow path forming plate member 210.
  • through holes 414 are formed in the spacer 41 at positions corresponding to the through holes 218a and 218b of the plate pieces 210a and 210b, and the through holes 219a of the plate pieces 210a and 210b are formed.
  • a through hole 415 is formed at a position corresponding to 219b.
  • the cup portions C15a and C15b correspond to the cup portions C13a and C13b corresponding to the second inflow portion and the cup portions facing each other in the heat exchange portion longitudinal direction X. Further, the cup portions C16a and C16b correspond to the cup portions C14a and C14b corresponding to the second outflow portion and the cup portions facing each other in the heat exchange portion longitudinal direction X.
  • the through hole 218a of the first plate piece 210a, the through hole 218b of the second plate piece 210b, and the through hole 414 of the spacer 41 communicate with each other, so that the intermediate tank space T23 as shown in FIG. 19 has a heat exchange core portion. It is formed inside 21. Further, the through hole 219a of the first plate piece 210a, the through hole 219b of the second plate piece 210b, and the through hole 415 of the spacer 41 communicate with each other, so that the intermediate tank space T24 as shown in FIG. 19 exchanges heat. It is formed inside the core portion 21.
  • the low temperature side flow paths W12 of each flow path forming plate member 210 communicate with each other through the intermediate tank spaces T23 and T24. In the present embodiment, the intermediate tank spaces T23 and T24 correspond to the communication portions formed between the second distribution tank space T21 and the second collecting tank space T22 in the low temperature side flow path W12.
  • the actions and effects shown in the following (10) to (12) can be further obtained.
  • (10) In the low temperature side flow path W12 formed in a U shape, the flow of the cooling water tends to stagnate at the turning portion W122, and the air contained in the cooling water tends to accumulate in that portion. If air accumulates in the turning portion W122, there is a concern that the heat exchange performance with the intake air may be significantly deteriorated in that portion.
  • the heat exchanger 10 of the present embodiment since the intermediate tank spaces T23 and T24 are formed in the turning portion W122, the cooling water passes through the intermediate tank spaces T23 and T24 in the turning portion of each flow path forming plate member 210. It will flow between W122. As a result, stagnation is less likely to occur in the cooling water flowing through the turning portion W122, so that air is less likely to accumulate in the turning portion W122. Therefore, it is possible to avoid deterioration of the heat exchange performance of the heat exchanger 10.
  • the cup portions C15a and C16a of the flow path forming plate member 210 are the cup portions C15b and C16b of the adjacent flow path forming plate member 210. It is joined to.
  • the strength in the plate stacking direction Z is ensured particularly in the portion of the flow path forming plate member 210 where the turning portion W12 is arranged, as compared with the structure in which the cup portions C15a, C16a, C15b, and C16b are not provided.
  • a compressive force is applied to the heat exchanger 10 in the plate stacking direction Z in order to bring the parts into close contact with each other in the brazing process at the time of manufacture. If the strength in the plate stacking direction Z can be ensured in the heat exchanger 10, it is possible to prevent the heat exchanger 10 from being deformed when a compressive force is applied to the heat exchanger 10 in the brazing step. can.
  • the end portion E12 of the flow path forming plate member 210 is provided with cup portions C15a and C15b at positions facing the cup portions C13a and C13b in the heat exchange portion longitudinal direction X, and in the heat exchange portion longitudinal direction X. Cup portions C16a and C16b are provided at positions facing the cup portions C14a and C14b.
  • the spacer 41 as shown in FIG. 18 can be used.
  • the spacer 41 shown in FIG. 18 has the same shape as the spacer 40 shown in FIG. That is, since the spacers 40 and 41 arranged at both ends E11 and E12 of the heat exchange unit 20 can be shared, the manufacturing cost can be reduced.
  • the heat exchanger 10 may have a structure that does not have intermediate tank spaces T23 and T24. Specifically, the through holes 218a and 219a may not be formed in the cup portions C15a and C16a of the first plate piece 210a of the fourth embodiment. Similarly, through holes 218b and 219b may not be formed in the cup portions C15b and C16b of the second plate piece 210b. Even with such a structure, it is possible to exert the actions and effects shown in the above (11) and (12).
  • a communication passage 613 is further formed in the upper duct plate member 61 of the heat exchange unit 20 of the present embodiment.
  • the communication passage 613 is formed so as to extend from the upper end portion of the second distribution tank space T21 in the longitudinal direction X of the heat exchange portion.
  • the upper end of the second distribution tank space T21 is connected to one end of the communication passage 613.
  • a second inflow pipe 25a is connected to the other end of the communication passage 613.
  • the second distribution tank space T21 corresponds to a specific tank space.
  • the actions and effects shown in (13) below can be further obtained.
  • the second inflow pipe 25a and the second distribution tank space T21 can be arranged at positions shifted from each other in the plate stacking direction Z. Therefore, since the degree of freedom in arranging the second inflow pipe 25a can be improved, it is possible to easily secure a space for the hose attached to the second inflow pipe 25a.
  • the flow path forming plate member 210 has a structure as shown in FIGS. 21 and 22.
  • an erection portion 50 is formed between the high temperature side region A1 and the low temperature side region A2.
  • the erection portion 50 is a portion provided between the plurality of slits S1 in the flow path forming plate member 210 as shown in FIG. 21.
  • the erection portion 50 is formed with a claw portion 51 so as to be bent in the plate stacking direction Z.
  • the claw portion 51 is formed so as to be bent in the direction in which the recesses R11 and R12 protrude in the first plate piece 210a, in other words, in the height direction of the respective flow paths W11 and W12.
  • the claw portion 51 is formed by double bending the erection portion 50a of the first plate piece 210a and the erection portion 50b of the second plate piece 210b.
  • the actions and effects shown in the following (14) to (17) can be further obtained.
  • a sacrificial layer may be provided on the inner surface of each of the plate pieces 210a and 210b in order to ensure corrosiveness to cooling water.
  • the outer surface of each plate piece 210a, 210b is usually not provided with a sacrificial layer.
  • the "inner surface” here is the surface of the plate pieces 210a and 210b in the thickness direction that the cooling water comes into contact with.
  • the “outer surface” is the surface of each of the plate pieces 210a and 210b in the thickness direction that the intake air comes into contact with.
  • the erection portions 50a and 50b are bent in such plate pieces 210a and 210b, if the inner surface and the outer surface of the erection portions 50a and 50b come into contact with each other, the sacrificial layer on the inner surface of the erection portions 50a and 50b comes into contact with the outer surface. , The corrosion resistance of the outer surfaces of the erection portions 50a and 50b is lowered.
  • the erection portion 50a of the first plate piece 210a and the erection portion 50b of the second plate piece 210b are doubly bent to form a claw portion.
  • the 51 is formed, it is possible to avoid contact between the inner surface and the outer surface of the erection portions 50a and 50b. Therefore, it is possible to avoid a decrease in corrosion resistance of the outer surfaces of the erection portions 50a and 50b as described above.
  • the claw portion 51 is formed so as to be bent in the height direction of each of the flow paths W11 and W12. As a result, it is possible to prevent the claw portion 51 from protruding from the flow path forming plate member 210 in the plate stacking direction Z, so that the claw portion 51 is less likely to come into contact with other parts, for example, when manufacturing the heat exchanger 10. Therefore, the claw portion 51 is less likely to be damaged.
  • a plurality of protrusions 70 are formed in the high temperature side flow path W11 of the first plate piece 210a of the present embodiment in place of the high temperature side inner fins 216. According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in (18) below can be obtained.
  • the inner fin 216 Since the inner fin 216 is not arranged in the high temperature side flow path W11, the water flow resistance of the high temperature side flow path W11 can be reduced. Further, by eliminating the inner fin 216, the heat transfer area for the cooling water is reduced, but in the heat exchanger 10 of the present embodiment, the heat is promoted by promoting the turbulent flow of the cooling water by the plurality of protruding portions 70. The transmission rate can be increased.
  • the heat exchanger 10 of each embodiment can be used as a heat exchanger that exchanges heat between the supercharged intake air supplied to the internal combustion engine of the vehicle and the cooling water.
  • a fuel cell instead, for example, a fuel cell. It can also be used as a heat exchanger that exchanges heat between the supercharged intake air supplied to the engine and the cooling water.
  • the fuel cell to which the heat exchanger 10 of each embodiment is applicable is not limited to the fuel cell mounted on the vehicle, and may be a fuel cell mounted on a vehicle other than the vehicle. As an example, the configuration when the heat exchanger 10 of each embodiment is mounted on the fuel cell vehicle will be described below.
  • the fuel cell vehicle has an intake passage 82 for supplying supercharged intake air to the fuel cell stack 81 and an exhaust passage 83 for discharging the exhaust gas of the fuel cell stack 81 to the outside.
  • a heat exchanger 10 is provided in the intake passage 82. The heat exchanger 10 cools the supercharged intake air by exchanging heat between the supercharged intake air flowing through the intake air passage 82 and the cooling water.
  • the heat exchanger 10 includes a high temperature side heat exchange unit 20A and a low temperature side heat exchange unit 20B.
  • the high temperature side heat exchange section 20A is arranged on the upstream side in the air flow direction with respect to the low temperature side heat exchange section 20B.
  • the high temperature side heat exchange unit 20A corresponds to a portion where the high temperature side flow path W11 is formed in the heat exchange unit 20 of the heat exchanger 10 of each embodiment. Cooling water flows into the high temperature side heat exchange section 20A through the first inflow pipe 24a. Further, the cooling water that has flowed through the high temperature side heat exchange unit 20A is discharged through the first outflow pipe 24b.
  • the low temperature side heat exchange unit 20B corresponds to a portion where the low temperature side flow path W12 is formed in the heat exchange unit 20 of the heat exchanger 10 of each embodiment. Cooling water flows into the low temperature side heat exchange section 20B through the second inflow pipe 25a. Further, the cooling water that has flowed through the low temperature side heat exchange section 20B is discharged through the second outflow pipe 25b.
  • the fuel cell vehicle is equipped with a cooling circuit 90 for circulating cooling water in the heat exchanger 10.
  • the cooling circuit 90 is composed of a high temperature side cooling circuit 100 and a low temperature side cooling circuit 110.
  • the high temperature side cooling circuit 100 includes a high temperature side radiator 101, a pump 102, a fuel cell stack 81, and a high temperature side heat exchange unit 20A. High temperature side cooling water circulates in these elements.
  • the high temperature side radiator 101 cools the high temperature side cooling water by exchanging heat between the high temperature side cooling water flowing inside the radiator 101 and the air flowing outside the high temperature side cooling water.
  • the pump 102 sucks in and discharges the high-temperature side cooling water cooled by the high-temperature side radiator 101.
  • the fuel cell stack 81 and the high temperature side heat exchange unit 20A are connected in parallel to the pump 102. Therefore, the high-temperature side cooling water discharged from the pump 102 is supplied to the fuel cell stack 81 and the high-temperature side heat exchange unit 20A, respectively.
  • the fuel cell stack 81 is cooled by absorbing its heat by the high-temperature side cooling water.
  • the high temperature side heat exchange unit 20A cools the supercharged intake air by exchanging heat between the high temperature side cooling water flowing inside the high temperature side cooling water and the supercharged intake air flowing through the intake passage 82.
  • the low temperature side cooling circuit 110 includes a low temperature side radiator 111, a pump 112, and a low temperature side heat exchange unit 20B. Cooling water on the low temperature side circulates in these elements.
  • the low temperature side radiator 111 cools the low temperature side cooling water by exchanging heat between the low temperature side cooling water flowing inside the radiator 111 and the air flowing outside the low temperature side cooling water.
  • the pump 112 sucks in and discharges the low temperature side cooling water cooled by the low temperature side radiator 111.
  • the low temperature side cooling water discharged from the pump 112 flows into the low temperature side heat exchange unit 20B.
  • the low temperature side heat exchange unit 20B cools the supercharged intake air by exchanging heat between the low temperature side cooling water flowing inside the low temperature side cooling water and the supercharged intake air flowing through the intake passage 82.
  • the low temperature side cooling water discharged from the low temperature side heat exchange unit 20B is supplied to the low temperature side radiator 111 and is cooled again.
  • the temperature of the high temperature side cooling water supplied to the high temperature side heat exchange unit 20A through the high temperature side cooling circuit 100 is higher than the temperature of the low temperature side cooling water supplied to the low temperature side heat exchange unit 20B through the low temperature side cooling circuit 110.
  • the temperature of the water is lower. Therefore, after the rough heat of the supercharged intake air flowing through the intake passage 82 is removed by the high temperature side heat exchange unit 20A, the heat of the supercharged intake air from which the rough heat is removed is further removed by the low temperature side heat exchange unit 20B. Will be.
  • the supercharged intake air can be efficiently cooled, so that the oxygen density in the air supplied to the fuel cell stack 81 can be increased. As a result, the power generation performance of the fuel cell stack 81 can be improved.
  • the low temperature side cooling water flows in the low temperature side heat exchange unit 20B arranged on the outlet side of the supercharged intake air in a U-turn shape or in a countercurrent form.
  • the temperature of the supercharged intake air that has passed through the heat exchanger 10 can be easily made uniform, and the oxygen concentration thereof can also be made uniform. As a result, the concentration overvoltage is less likely to occur in the fuel cell stack 81, so that the power generation performance of the fuel cell stack 81 can be improved.
  • the spacers 40 and 41 may be composed of a plurality of spacer pieces made of separate bodies.
  • the spacer 40 may be composed of three parts: a spacer piece on which the through hole 401 is formed, a spacer piece on which the through hole 402 is formed, and a spacer piece on which the through hole 403 is formed. According to such a configuration, the spacer pieces can be arranged only at the necessary positions of the heat exchange section 20, so that the materials required for the spacers 40 and 41 can be reduced.
  • the heat exchanger 10 of the fifth embodiment is not limited to a structure in which a communication passage 613 is formed with respect to the second inflow pipe 25a, and a communication portion is formed with other pipes 24a, 24b, 25b. It may have a structure that is present. -The positions of the pipes 24a, 24b, 25a, and 25b can be changed as appropriate.
  • one end E11 of the heat exchange section 20 is provided with the first pipe of one of the first inflow pipe 24a and the first outflow pipe 24b, the second inflow pipe 25a, and the second outflow pipe 25b. I just need to be there.
  • the other end E12 of the heat exchange unit 20 may be provided with the other first pipe of the first inflow pipe 24a and the first outflow pipe 24b.
  • two of the first pipe, the second inflow pipe 25a, and the second outflow pipe 25b are provided on one outer surface of the plate stacking direction Z at one end E11 of the heat exchange portion 20. Just do it. Further, on the other outer surface of the plate stacking direction Z at one end E11 of the heat exchange section 20, the remaining one of the one first pipe, the second inflow pipe 25a, and the second outflow pipe 25b is provided. It suffices if it is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (10), provided with a heat exchange unit (20), a first inflow pipe (24a), a first outflow pipe (24b), a second inflow pipe (25a), and a second outflow pipe (25b). The second inflow pipe, the second outflow pipe, and a first pipe, which is one of the first inflow pipe and the first outflow pipe, are provided at one end section of the heat exchange unit. The other first pipe, which is the other of the first inflow pipe and the first outflow pipe, is provided at the other end section of the heat exchange unit. Two pipes, from among one of the first pipes, the second inflow pipe, and the second outflow pipe, are provided on one of the outer surfaces of one end section of the heat exchange unit. The one remaining pipe, from among one of the first pipes, the second inflow pipe, and the second outflow pipe, is provided on the other outer surface of the one end section of the heat exchange unit.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年1月17日に出願された日本国特許出願2020-005719号と、2020年10月1日に出願された日本国特許出願2020-166970号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2020-005719 filed on January 17, 2020 and Japanese Patent Application No. 2020-166970 filed on October 1, 2020. , Claiming the benefit of that priority, the entire contents of that patent application are incorporated herein by reference.
 本開示は、熱交換器に関する。 This disclosure relates to heat exchangers.
 従来、下記の特許文献1に記載の熱交換器がある。特許文献1に記載の熱交換器は、過給機により内燃機関に過給される過給吸気と冷却水との間で熱交換を行うことで過給吸気を冷却する。この熱交換器は、積層して配置される複数の流路プレートにより構成される熱交換部を有している。各流路プレートは、その内部を流れる冷却水と、その外部を流れる過給吸気とを熱交換させる。冷却水には、第1冷却水と、第1冷却水よりも温度の高い第2冷却水とが用いられている。流路プレートの内部には、第1冷却水が流れる第1冷却水流路と、第2冷却水が流れる第2冷却水流路とが形成されている。流路プレートは、第1冷却水流路を流通する第1冷却水の流れをUターンさせる第1Uターン部と、第2冷却水流路を流通する第2冷却水の流れをUターンさせる第2Uターン部とを有している。熱交換部は、各流路プレートの第1Uターン部に冷却水を分配させる第1分配タンク部と、各流路プレートの第1Uターン部を流れた冷却水を集合させる第1集合タンク部と、各流路プレートの第2Uターン部に冷却水を分配させる第2分配タンク部と、各流路プレートの第2Uターン部を流れた冷却水を集合させる第2集合タンク部とを有している。 Conventionally, there is a heat exchanger described in Patent Document 1 below. The heat exchanger described in Patent Document 1 cools the supercharged intake air by exchanging heat between the supercharged intake air supplied to the internal combustion engine by the supercharger and the cooling water. This heat exchanger has a heat exchange unit composed of a plurality of flow path plates arranged in a laminated manner. Each flow path plate exchanges heat between the cooling water flowing inside the flow path plate and the supercharged intake air flowing outside the flow path plate. As the cooling water, a first cooling water and a second cooling water having a temperature higher than that of the first cooling water are used. Inside the flow path plate, a first cooling water flow path through which the first cooling water flows and a second cooling water flow path through which the second cooling water flows are formed. The flow path plate has a first U-turn portion that makes a U-turn of the flow of the first cooling water flowing through the first cooling water flow path and a second U-turn portion that makes a U-turn of the flow of the second cooling water flowing through the second cooling water flow path. Has a part. The heat exchange section includes a first distribution tank section that distributes cooling water to the first U-turn section of each flow path plate, and a first collecting tank section that collects cooling water that has flowed through the first U-turn section of each flow path plate. It has a second distribution tank portion that distributes cooling water to the second U-turn portion of each flow path plate, and a second collecting tank portion that collects the cooling water that has flowed through the second U-turn portion of each flow path plate. There is.
特許第6281467号公報Japanese Patent No. 6281467
 特許文献1に記載されるような2種類の冷却水が流れる熱交換器には、各分配タンク部に冷却水を流入させるための第1流入パイプ及び第2流入パイプ、並びに各集合タンク部から第1冷却水を排出するための第1排出パイプ及び第2排出パイプの合計4つのパイプを設ける必要がある。この点、特許文献1に記載の熱交換器のように、2つの分配タンク部及び2つの集合タンク部が熱交換器の一端部に並べて形成されている場合、例えば熱交換器の一端部の上面に4つのパイプを設ける必要がある。 In the heat exchanger through which two types of cooling water flow as described in Patent Document 1, the first inflow pipe and the second inflow pipe for inflowing the cooling water into each distribution tank portion, and each collecting tank portion It is necessary to provide a total of four pipes, a first discharge pipe and a second discharge pipe for discharging the first cooling water. In this regard, when the two distribution tank portions and the two collecting tank portions are formed side by side at one end of the heat exchanger as in the heat exchanger described in Patent Document 1, for example, one end of the heat exchanger. It is necessary to provide four pipes on the upper surface.
 一方、各パイプにはホースが接続されるため、各パイプの周囲には自由空間が設けられている必要がある。一般的には、パイプの周囲には、パイプ径の2倍程度の自由空間が必要となる。この点、熱交換器の上面に4つのパイプが並べて設けられている場合、各パイプの間に空間を設けることが困難となる。特に、近年は熱交換器自体の小型化が求められているため、各パイプの間に空間を設けることが更に困難となっている。 On the other hand, since a hose is connected to each pipe, it is necessary to provide a free space around each pipe. Generally, a free space about twice the diameter of the pipe is required around the pipe. In this respect, when four pipes are provided side by side on the upper surface of the heat exchanger, it becomes difficult to provide a space between the pipes. In particular, in recent years, since the heat exchanger itself has been required to be miniaturized, it has become more difficult to provide a space between each pipe.
 本開示の目的は、各パイプの間に空間を確保することが可能な熱交換器を提供することにある。 The purpose of the present disclosure is to provide a heat exchanger capable of securing a space between each pipe.
 本開示の一態様による熱交換器は、内燃機関又は燃料電池に導入される吸気と第1冷却水及び第2冷却水の2系統の冷却水とを熱交換させる熱交換器であって、熱交換部と、第1流入パイプと、第1流出パイプと、第2流入パイプと、第2流出パイプと、を備える。熱交換部は、第1冷却水が流通する第1流路、及び第2冷却水が流通する第2流路を内部に有する複数の流路形成プレート部材が積層配置されたコア部を有し、流路形成プレート部材の内部を流れる第1冷却水及び第2冷却水と流路形成プレート部材の外部を流れる吸気との間で熱交換を行う。第1流入パイプは、熱交換部に第1冷却水を流入させる。第1流出パイプは、熱交換部から第1冷却水を流出させる。第2流入パイプは、熱交換部に第2冷却水を流入させる。第2流出パイプは、熱交換部から第2冷却水を流出させる。複数の流路形成プレート部材が積層して配置される方向をプレート積層方向とし、熱交換部を吸気が流れる方向を吸気流れ方向とし、プレート積層方向及び吸気流れ方向の両方に直交する方向を所定方向とするとき、所定方向における熱交換部の一端部には、第1流入パイプ及び第1流出パイプのうちの一方の第1パイプと、第2流入パイプと、第2流出パイプとが設けられる。所定方向における熱交換部の他端部には、第1流入パイプ及び第1流出パイプのうちの他方の第1パイプが設けられる。熱交換部の一端部におけるプレート積層方向の一方の外面には、一方の第1パイプ、第2流入パイプ、及び第2流出パイプのうちの2つのパイプが設けられる。熱交換部の一端部におけるプレート積層方向の他方の外面には、一方の第1パイプ、第2流入パイプ、及び第2流出パイプのうちの残りの1つのパイプが設けられる。 The heat exchanger according to one aspect of the present disclosure is a heat exchanger that exchanges heat between the intake air introduced into the internal combustion engine or the fuel cell and the cooling water of the two systems of the first cooling water and the second cooling water, and is heat. It includes an exchange unit, a first inflow pipe, a first outflow pipe, a second inflow pipe, and a second outflow pipe. The heat exchange section has a core section in which a plurality of flow path forming plate members having a first flow path through which the first cooling water flows and a second flow path through which the second cooling water flows are stacked and arranged. , Heat exchange is performed between the first cooling water and the second cooling water flowing inside the flow path forming plate member and the intake air flowing outside the flow path forming plate member. The first inflow pipe causes the first cooling water to flow into the heat exchange section. The first outflow pipe causes the first cooling water to flow out from the heat exchange section. The second inflow pipe causes the second cooling water to flow into the heat exchange section. The second outflow pipe causes the second cooling water to flow out from the heat exchange section. The direction in which a plurality of flow path forming plate members are stacked and arranged is defined as the plate stacking direction, the heat exchange portion is defined as the intake flow direction in which the intake air flows, and the direction orthogonal to both the plate stacking direction and the intake flow direction is determined. When the direction is set, one of the first inflow pipe and the first outflow pipe, the second inflow pipe, and the second outflow pipe are provided at one end of the heat exchange portion in the predetermined direction. .. At the other end of the heat exchange portion in the predetermined direction, the first pipe of the other of the first inflow pipe and the first outflow pipe is provided. Two of the first pipe, the second inflow pipe, and the second outflow pipe are provided on one outer surface in the plate stacking direction at one end of the heat exchange portion. On the other outer surface in the plate stacking direction at one end of the heat exchange portion, one of the first pipe, the second inflow pipe, and the remaining one of the second outflow pipes is provided.
 この構成によれば、熱交換部の一端部におけるプレート積層方向の一方の外面に一方の第1パイプ、第2流入パイプ、及び第2流出パイプの全てが設けられている場合と比較すると、各パイプの間に空間を形成し易くなる。また、所定方向における熱交換部の他端部には他方の第1パイプのみが設けられているため、このパイプの周辺にも空間を形成し易い。よって、熱交換器を小型化する際に各パイプの間に空間を確保することが可能である。 According to this configuration, as compared with the case where all of the one first pipe, the second inflow pipe, and the second outflow pipe are provided on one outer surface in the plate stacking direction at one end of the heat exchange portion, each It becomes easier to form a space between the pipes. Further, since only the other first pipe is provided at the other end of the heat exchange portion in the predetermined direction, it is easy to form a space around this pipe. Therefore, it is possible to secure a space between each pipe when the heat exchanger is miniaturized.
図1は、第1実施形態の熱交換器の斜視構造を示す斜視図である。FIG. 1 is a perspective view showing a perspective structure of the heat exchanger of the first embodiment. 図2は、第1実施形態の熱交換器の断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the first embodiment. 図3は、第1実施形態の流路形成プレート部材の第1プレート片の平面構造を示す平面図である。FIG. 3 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the first embodiment. 図4は、第1実施形態の流路形成プレート部材の第2プレート片の斜視構造を示す斜視図である。FIG. 4 is a perspective view showing a perspective structure of a second plate piece of the flow path forming plate member of the first embodiment. 図5は、第1実施形態の熱交換器の第1流出パイプ周辺の断面構造を示す断面図である。FIG. 5 is a cross-sectional view showing a cross-sectional structure around a first outflow pipe of the heat exchanger of the first embodiment. 図6は、第1実施形態の熱交換器の正面構造を示す正面図である。FIG. 6 is a front view showing the front structure of the heat exchanger of the first embodiment. 図7は、第1実施形態の熱交換器の背面構造を示す背面図である。FIG. 7 is a rear view showing the rear surface structure of the heat exchanger of the first embodiment. 図8は、第1実施形態の熱交換部の右側面構造を示す側面図である。FIG. 8 is a side view showing the right side structure of the heat exchange portion of the first embodiment. 図9は、第1実施形態の熱交換部の構造を模式的に示す図である。FIG. 9 is a diagram schematically showing the structure of the heat exchange portion of the first embodiment. 図10は、第2実施形態の熱交換器の斜視構造を示す斜視図である。FIG. 10 is a perspective view showing a perspective structure of the heat exchanger of the second embodiment. 図11は、第2実施形態の熱交換器の断面構造を示す断面図である。FIG. 11 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the second embodiment. 図12は、第2実施形態の熱交換部の構造を模式的に示す図である。FIG. 12 is a diagram schematically showing the structure of the heat exchange portion of the second embodiment. 図13は、第3実施形態の熱交換器の第2流出パイプ周辺の断面構造を示す断面図である。FIG. 13 is a cross-sectional view showing a cross-sectional structure around a second outflow pipe of the heat exchanger of the third embodiment. 図14は、第3実施形態のスペーサの斜視構造を示す斜視図である。FIG. 14 is a perspective view showing a perspective structure of the spacer of the third embodiment. 図15は、第3実施形態のスペーサの斜視構造を示す斜視図である。FIG. 15 is a perspective view showing a perspective structure of the spacer of the third embodiment. 図16は、第4実施形態の流路形成プレート部材の第1プレート片の平面構造を示す平面図である。FIG. 16 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the fourth embodiment. 図17は、第4実施形態の流路形成プレート部材の第2プレート片の斜視構造を示す斜視図である。FIG. 17 is a perspective view showing a perspective structure of a second plate piece of the flow path forming plate member of the fourth embodiment. 図18は、第4実施形態のスペーサの斜視構造を示す斜視図である。FIG. 18 is a perspective view showing a perspective structure of the spacer of the fourth embodiment. 図19は、第4実施形態の熱交換器の背面構造を示す背面図である。FIG. 19 is a rear view showing the rear surface structure of the heat exchanger of the fourth embodiment. 図20は、第5実施形態の熱交換器の斜視構造を示す斜視図である。FIG. 20 is a perspective view showing a perspective structure of the heat exchanger of the fifth embodiment. 図21は、第6実施形態の流路形成プレート部材の断面斜視構造を示す斜視図である。FIG. 21 is a perspective view showing a cross-sectional perspective structure of the flow path forming plate member of the sixth embodiment. 図22は、第6実施形態の流路形成プレート部材の断面構造を示す断面図である。FIG. 22 is a cross-sectional view showing a cross-sectional structure of the flow path forming plate member of the sixth embodiment. 図23は、図20のXXI-XXI線に沿った断面構造を示す断面図である。FIG. 23 is a cross-sectional view showing a cross-sectional structure along the line XXI-XXI of FIG. 図24は、第7実施形態の流路形成プレート部材の第1プレート片の平面構造を示す平面図である。FIG. 24 is a plan view showing the planar structure of the first plate piece of the flow path forming plate member of the seventh embodiment. 図25は、第8実施形態の冷却回路の概略構成を示すブロック図である。FIG. 25 is a block diagram showing a schematic configuration of the cooling circuit of the eighth embodiment. 図26は、他の実施形態の熱交換器の斜視構造を示す斜視図である。FIG. 26 is a perspective view showing a perspective structure of the heat exchanger of another embodiment.
 以下、熱交換器の一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の熱交換器10について説明する。本実施形態の熱交換器10は、例えば車両の吸気通路に配置される。吸気通路は、過給機により過給された吸気を内燃機関に供給する。熱交換器10は、吸気通路を流れる過給吸気と冷却水との間で熱交換を行う。熱交換器10は、温度の異なる2系統の冷却水が流れる、いわゆる2温式熱交換器である。以下では、2種類の冷却水のうち、より温度の低い冷却水を「低温側冷却水」と称し、より温度の高い冷却水を「高温側冷却水」と称する。本実施形態では、高温側冷却水が第1冷却水に相当し、低温側冷却水が第2冷却水に相当する。低温側冷却水は低温側冷却回路を通じて熱交換器10に供給される。低温側冷却回路は、例えば低温側ラジエータ及び熱交換器10の間で冷却水を循環させる回路である。高温側冷却水は高温側冷却回路を通じて熱交換器10に供給される。高温側冷却回路は、例えば高温側ラジエータ、内燃機関、及び熱交換器10の間で冷却水を循環させる回路である。熱交換器10は2種類の冷却水と吸気との間で熱交換を行うことにより吸気を冷却又は加熱する。
Hereinafter, an embodiment of the heat exchanger will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described. The heat exchanger 10 of the present embodiment is arranged, for example, in the intake passage of the vehicle. The intake passage supplies the intake air supercharged by the supercharger to the internal combustion engine. The heat exchanger 10 exchanges heat between the supercharged intake air flowing through the intake passage and the cooling water. The heat exchanger 10 is a so-called two-temperature heat exchanger in which two systems of cooling water having different temperatures flow. In the following, of the two types of cooling water, the cooling water having a lower temperature will be referred to as "low temperature side cooling water", and the cooling water having a higher temperature will be referred to as "high temperature side cooling water". In the present embodiment, the high temperature side cooling water corresponds to the first cooling water, and the low temperature side cooling water corresponds to the second cooling water. The low temperature side cooling water is supplied to the heat exchanger 10 through the low temperature side cooling circuit. The low temperature side cooling circuit is, for example, a circuit for circulating cooling water between the low temperature side radiator and the heat exchanger 10. The high temperature side cooling water is supplied to the heat exchanger 10 through the high temperature side cooling circuit. The high temperature side cooling circuit is a circuit for circulating cooling water between, for example, the high temperature side radiator, the internal combustion engine, and the heat exchanger 10. The heat exchanger 10 cools or heats the intake air by exchanging heat between the two types of cooling water and the intake air.
 図1に示されるように、熱交換器10は、熱交換部20と、かしめプレート22,23と、タンク30,31とを備えている。
 熱交換部20は略直方体状に形成されている。熱交換部20は基本的にはアルミニウム合金により形成されている。熱交換部20は、コア部21と、パイプ24a,24b,25a,25bとを備えている。
As shown in FIG. 1, the heat exchanger 10 includes a heat exchange unit 20, caulking plates 22, 23, and tanks 30, 31.
The heat exchange unit 20 is formed in a substantially rectangular parallelepiped shape. The heat exchange section 20 is basically formed of an aluminum alloy. The heat exchange unit 20 includes a core unit 21 and pipes 24a, 24b, 25a, 25b.
 コア部21は、吸気と冷却水との間で熱交換を行う部分である。図2に示されるように、コア部21は、複数の流路形成プレート部材210と、複数のアウタフィン211とを有している。
 複数の流路形成プレート部材210は、図中に矢印Zで示される方向に所定の間隔を空けて積層配置されている。各流路形成プレート部材210は、板状の第1プレート片210a及び第2プレート片210bを接合させることで構成されている。なお、第1プレート片210a及び第2プレート片210bは、別体で構成されていてもよいし、一体で構成されていてもよい。第1プレート片210a及び第2プレート片210bが一体で構成される流路形成プレート部材210は、例えば第1プレート片210a及び第2プレート片210bが形成された一枚のプレートを折り曲げることで製造できる。各流路形成プレート部材210の間に形成される隙間には、図中に矢印Yで示される方向に吸気が流れる。矢印Yで示される方向は、矢印Zで示される方向に直交する方向である。
The core portion 21 is a portion that exchanges heat between the intake air and the cooling water. As shown in FIG. 2, the core portion 21 has a plurality of flow path forming plate members 210 and a plurality of outer fins 211.
The plurality of flow path forming plate members 210 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z in the drawing. Each flow path forming plate member 210 is formed by joining a plate-shaped first plate piece 210a and a second plate piece 210b. The first plate piece 210a and the second plate piece 210b may be formed separately or integrally. The flow path forming plate member 210 in which the first plate piece 210a and the second plate piece 210b are integrally formed is manufactured, for example, by bending one plate on which the first plate piece 210a and the second plate piece 210b are formed. can. Intake flows in the gap formed between the flow path forming plate members 210 in the direction indicated by the arrow Y in the drawing. The direction indicated by the arrow Y is a direction orthogonal to the direction indicated by the arrow Z.
 以下では、矢印Zで示される方向を「プレート積層方向Z」と称し、矢印Yで示される方向を「吸気流れ方向Y」と称する。また、プレート積層方向Z及び吸気流れ方向Yの両方に直交する方向Xは熱交換部20の長手方向となっている。そのため、矢印Xで示される方向を「熱交換部長手方向X」と称する。本実施形態では、熱交換部長手方向Xが所定方向に相当する。 Hereinafter, the direction indicated by the arrow Z is referred to as "plate stacking direction Z", and the direction indicated by the arrow Y is referred to as "intake flow direction Y". Further, the direction X orthogonal to both the plate stacking direction Z and the intake air flow direction Y is the longitudinal direction of the heat exchange portion 20. Therefore, the direction indicated by the arrow X is referred to as "longitudinal direction X of the heat exchange portion". In the present embodiment, the heat exchange portion longitudinal direction X corresponds to a predetermined direction.
 図3に示されるように、第1プレート片210aは板状の部材からなる。第1プレート片210aには、第1凹部R11及び第2凹部R12が形成されている。
 第1凹部R11は、第1プレート片210aの一端部E11から他端部E12まで熱交換部長手方向Xに直線状に延びるように形成されている。第1凹部R11には、高温側冷却水に対する伝熱面積を増加させるための高温側インナーフィン216が配置されている。第1凹部R11の一端部には、プレート積層方向Zに突出した形状を有するカップ部C11aが形成されている。第1凹部R11の他端部にも、同様の形状を有するカップ部C12aが形成されている。カップ部C12aは第1プレート片210aの一端部E11に配置され、カップ部C11aは第1プレート片210aの他端部E12に配置されている。カップ部C11a,C12aには貫通孔212a,213aがそれぞれ形成されている。
As shown in FIG. 3, the first plate piece 210a is made of a plate-shaped member. The first plate piece 210a is formed with a first recess R11 and a second recess R12.
The first recess R11 is formed so as to extend linearly from one end E11 to the other end E12 of the first plate piece 210a in the longitudinal direction X of the heat exchange portion. In the first recess R11, a high temperature side inner fin 216 for increasing the heat transfer area with respect to the high temperature side cooling water is arranged. A cup portion C11a having a shape protruding in the plate stacking direction Z is formed at one end of the first recess R11. A cup portion C12a having a similar shape is also formed at the other end of the first recess R11. The cup portion C12a is arranged at one end E11 of the first plate piece 210a, and the cup portion C11a is arranged at the other end E12 of the first plate piece 210a. Through holes 212a and 213a are formed in the cup portions C11a and C12a, respectively.
 第2凹部R12は、第1凹部R11に対して吸気流れ方向Yの下流側に配置されている。第2凹部R12は、熱交換部長手方向Xに直線状に延びるように形成される2つの直線部W120,W121と、それらの一端部を連通するように形成される転向部W122とを備えている。転向部W122は第1プレート片210aの他端部E12に位置している。直線部W120,W121には、低温側冷却水に対する伝熱面積を増加させるための低温側インナーフィン217がそれぞれ配置されている。直線部W120における転向部W122に接続される端部と反対の端部にも第1凹部R11と同様にカップ部C13aが形成されている。また、直線部W121における転向部W122に接続される端部と反対の端部にもカップ部C14aが形成されている。カップ部C13a,C14aは第1プレート片210aの一端部E11に位置している。カップ部C13a,C14aには貫通孔214a,215aがそれぞれ形成されている。 The second recess R12 is arranged on the downstream side of the intake flow direction Y with respect to the first recess R11. The second recess R12 includes two straight portions W120 and W121 formed so as to extend linearly in the longitudinal direction X of the heat exchange portion, and a turning portion W122 formed so as to communicate one end portions thereof. There is. The turning portion W122 is located at the other end E12 of the first plate piece 210a. The low temperature side inner fins 217 for increasing the heat transfer area with respect to the low temperature side cooling water are arranged in the straight portions W120 and W121, respectively. A cup portion C13a is also formed at the end portion of the straight portion W120 opposite to the end portion connected to the turning portion W122 as in the case of the first recess R11. Further, a cup portion C14a is also formed at an end portion of the straight portion W121 opposite to the end portion connected to the turning portion W122. The cup portions C13a and C14a are located at one end portion E11 of the first plate piece 210a. Through holes 214a and 215a are formed in the cup portions C13a and C14a, respectively.
 第1プレート片210aにおいて第1凹部R11が形成される領域A11と第2凹部R12が形成される領域A12との間には複数のスリットS11が形成されている。スリットS11は高温側領域A11と低温側領域A12との間での熱伝達を抑制するために設けられている。 A plurality of slits S11 are formed between the region A11 in which the first recess R11 is formed and the region A12 in which the second recess R12 is formed in the first plate piece 210a. The slit S11 is provided to suppress heat transfer between the high temperature side region A11 and the low temperature side region A12.
 図2に示されるように、第2プレート片210bは、プレート積層方向Zにおける第1プレート片210aの一方の外面にろう付けにより接合されている。第1プレート片210aの第1凹部R11と第2プレート片210bとにより囲まれる空間は高温側流路W11を形成している。高温側流路W11は、直線状に形成された、いわゆるIフローの形状を有している。第1プレート片210aの第2凹部R12と第2プレート片210bとにより囲まれる空間は低温側流路W12を形成している。低温側流路W12は、U字状に形成された、いわゆるUフローの形状を有している。本実施形態では、高温側流路W11が第1流路に相当し、低温側流路W12が第2流路に相当する。 As shown in FIG. 2, the second plate piece 210b is joined to one outer surface of the first plate piece 210a in the plate stacking direction Z by brazing. The space surrounded by the first recess R11 of the first plate piece 210a and the second plate piece 210b forms the high temperature side flow path W11. The high temperature side flow path W11 has a so-called I-flow shape formed in a straight line. The space surrounded by the second recess R12 of the first plate piece 210a and the second plate piece 210b forms the low temperature side flow path W12. The low temperature side flow path W12 has a so-called U flow shape formed in a U shape. In the present embodiment, the high temperature side flow path W11 corresponds to the first flow path, and the low temperature side flow path W12 corresponds to the second flow path.
 図4に示されるように、第2プレート片210bは、第1プレート片210aの高温側領域A11に対向するように配置される領域A21と、第1プレート片210aの低温側領域A12に対向するように配置される領域A22とを有している。第2プレート片210bにも、第1プレート片210aと同様に、その高温側領域A21と低温側領域A22との間に複数のスリットS21が形成されている。第2プレート片210bの高温側領域A21には、第1プレート片210aのカップ部C11a,C12aに対応する位置にカップ部C11b,C12bが形成されている。カップ部C11b,C12bには貫通孔212b,213bがそれぞれ形成されている。第2プレート片210bの低温側領域A22には、第1プレート片210aのカップ部C13a,C14aに対応する位置にカップ部C13b,C14bがそれぞれ形成されている。カップ部C13b,C14bには貫通孔214b,215bがそれぞれ形成されている。 As shown in FIG. 4, the second plate piece 210b faces the region A21 arranged so as to face the high temperature side region A11 of the first plate piece 210a and the low temperature side region A12 of the first plate piece 210a. It has a region A22 arranged in such a manner. Similar to the first plate piece 210a, the second plate piece 210b is also formed with a plurality of slits S21 between the high temperature side region A21 and the low temperature side region A22. In the high temperature side region A21 of the second plate piece 210b, cup portions C11b and C12b are formed at positions corresponding to the cup portions C11a and C12a of the first plate piece 210a. Through holes 212b and 213b are formed in the cup portions C11b and C12b, respectively. In the low temperature side region A22 of the second plate piece 210b, cup portions C13b and C14b are formed at positions corresponding to the cup portions C13a and C14a of the first plate piece 210a, respectively. Through holes 214b and 215b are formed in the cup portions C13b and C14b, respectively.
 図5に示されるように、第1プレート片210aのカップ部C12aは、上方に隣接する流路形成プレート部材210に向かって突出している。第2プレート片210bのカップ部C12aは、下方に隣接する流路形成プレート部材210に向かって突出している。第1プレート片210aのカップ部C12aの上面は、隣接する流路形成プレート部材210の第2プレート片210bのカップ部C12bの底面にろう付けにより接合されている。第1プレート片210aのカップ部C12aに形成される貫通孔213aと、第2プレート片210bのカップ部C12bに形成される貫通孔213bとは互いに連通されている。各流路形成プレート部材210の貫通孔213a,213b及びカップ部C12a,C12bにより囲まれる空間は第1集合タンク空間T12を形成している。第1集合タンク空間T12は熱交換部20の上面20aにおいて開口している。熱交換部20の上面20aには、第1集合タンク空間T12の開口部分に連通するように第1流出パイプ24bがろう付けにより接合されている。 As shown in FIG. 5, the cup portion C12a of the first plate piece 210a projects toward the flow path forming plate member 210 adjacent to the upper side. The cup portion C12a of the second plate piece 210b projects downward toward the adjacent flow path forming plate member 210. The upper surface of the cup portion C12a of the first plate piece 210a is joined to the bottom surface of the cup portion C12b of the second plate piece 210b of the adjacent flow path forming plate member 210 by brazing. The through hole 213a formed in the cup portion C12a of the first plate piece 210a and the through hole 213b formed in the cup portion C12b of the second plate piece 210b communicate with each other. The space surrounded by the through holes 213a and 213b and the cup portions C12a and C12b of each flow path forming plate member 210 forms the first collecting tank space T12. The first collecting tank space T12 is open on the upper surface 20a of the heat exchange section 20. A first outflow pipe 24b is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the first collecting tank space T12.
 なお、図示は省略するが、第1プレート片210aのカップ部C11aは、同様に隣接する流路形成プレート部材210の第2プレート片210bのカップ部C11bに接合されるとともに、カップ部C11a,C11bのそれぞれの貫通孔212a,212bが互いに連通されている。また、第1プレート片210aのカップ部C13aは、同様に隣接する流路形成プレート部材210の第2プレート片210bのカップ部C13bに接合されるとともに、カップ部C13a,C13bのそれぞれの貫通孔214a,214bが互いに連通されている。さらに、第1プレート片210aのカップ部C14aは、同様に隣接する流路形成プレート部材210の第2プレート片210bのカップ部C14bに接合されるとともに、カップ部C14a,C14bのそれぞれの貫通孔215a,215bが互いに連通されている。 Although not shown, the cup portion C11a of the first plate piece 210a is similarly joined to the cup portion C11b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the cup portions C11a and C11b. The through holes 212a and 212b of the above are communicated with each other. Further, the cup portion C13a of the first plate piece 210a is similarly joined to the cup portion C13b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the through holes 214a of the cup portions C13a and C13b are respectively joined. , 214b communicate with each other. Further, the cup portion C14a of the first plate piece 210a is similarly joined to the cup portion C14b of the second plate piece 210b of the adjacent flow path forming plate member 210, and the through holes 215a of the cup portions C14a and C14b, respectively. , 215b communicate with each other.
 図6に示されるように、熱交換部20の一端部E11には、吸気流れ方向Yにおいて第1集合タンク空間T12と並ぶように第2分配タンク空間T21及び第2集合タンク空間T22が形成されている。第2分配タンク空間T21は、各流路形成プレート部材210の貫通孔214a,214b及びカップ部C13a,C13bによって囲まれる空間により構成されている。第2集合タンク空間T22は、各流路形成プレート部材210の貫通孔215a,215b及びカップ部C14a,C14bにより囲まれる空間により構成されている。第2分配タンク空間T21は熱交換部20の上面20aにおいて開口している。熱交換部20の上面20aには、第2分配タンク空間T21の開口部分に連通するように第2流入パイプ25aがろう付けにより接合されている。第2集合タンク空間T22は熱交換部20の底面20bにおいて開口している。熱交換部20の底面20bには、第2集合タンク空間T22の開口部分に連通するように第2流出パイプ25bがろう付けにより接合されている。 As shown in FIG. 6, a second distribution tank space T21 and a second assembly tank space T22 are formed at one end E11 of the heat exchange portion 20 so as to be aligned with the first assembly tank space T12 in the intake flow direction Y. ing. The second distribution tank space T21 is composed of a space surrounded by through holes 214a and 214b of each flow path forming plate member 210 and cup portions C13a and C13b. The second collecting tank space T22 is composed of a space surrounded by through holes 215a and 215b of each flow path forming plate member 210 and cup portions C14a and C14b. The second distribution tank space T21 is open on the upper surface 20a of the heat exchange section 20. A second inflow pipe 25a is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the second distribution tank space T21. The second collecting tank space T22 is open at the bottom surface 20b of the heat exchange unit 20. A second outflow pipe 25b is joined to the bottom surface 20b of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the second collecting tank space T22.
 図7に示されるように、熱交換部20の他端部E12には第1分配タンク空間T11が形成されている。第1分配タンク空間T11は、各流路形成プレート部材210の貫通孔212a,212b及びカップ部C11a,C11bによって囲まれる空間により構成されている。第1分配タンク空間T11は熱交換部20の上面20aにおいて開口している。熱交換部20の上面20aには、第1分配タンク空間T11の開口部分に連通するように第1流入パイプ24aがろう付けにより接合されている。 As shown in FIG. 7, a first distribution tank space T11 is formed in the other end E12 of the heat exchange unit 20. The first distribution tank space T11 is composed of a space surrounded by through holes 212a and 212b of each flow path forming plate member 210 and cup portions C11a and C11b. The first distribution tank space T11 is open on the upper surface 20a of the heat exchange section 20. A first inflow pipe 24a is joined to the upper surface 20a of the heat exchange portion 20 by brazing so as to communicate with the opening portion of the first distribution tank space T11.
 本実施形態の熱交換器10では、カップ部C11a,C11bにより形成される空間が第1流入部に相当し、カップ部C12a,C12bにより形成される空間が第1流出部に相当し、カップ部C13a,C13bにより形成される空間が第2流入部に相当し、カップ部C14a,C14bにより形成される空間が第2流出部に相当する。 In the heat exchanger 10 of the present embodiment, the space formed by the cup portions C11a and C11b corresponds to the first inflow portion, the space formed by the cup portions C12a and C12b corresponds to the first outflow portion, and the cup portion. The space formed by C13a and C13b corresponds to the second inflow portion, and the space formed by the cup portions C14a and C14b corresponds to the second outflow portion.
 熱交換部20では、第1流入パイプ24aに接続されるホースを通じて第1分配タンク空間T11に高温側冷却水が流入する。第1分配タンク空間T11に流入した高温側冷却水は、各流路形成プレート部材210の高温側流路W11に分配される。各流路形成プレート部材210の高温側流路W11を流れた高温側冷却水は、第1集合タンク空間T12において集合した後、第1流出パイプ24bから排出される。 In the heat exchange unit 20, the high temperature side cooling water flows into the first distribution tank space T11 through the hose connected to the first inflow pipe 24a. The high-temperature side cooling water that has flowed into the first distribution tank space T11 is distributed to the high-temperature side flow path W11 of each flow path forming plate member 210. The high-temperature side cooling water that has flowed through the high-temperature side flow path W11 of each flow path forming plate member 210 is collected in the first collecting tank space T12 and then discharged from the first outflow pipe 24b.
 また、熱交換部20では、第2流入パイプ25aに接続されるホースを通じて第2分配タンク空間T21に低温側冷却水が流入する。第2分配タンク空間T21に流入した高温側冷却水は、各流路形成プレート部材210の低温側流路W12に分配される。各流路形成プレート部材210の低温側流路W12を流れた低温側冷却水は、第2集合タンク空間T22において集合した後、第2流出パイプ25bから排出される。 Further, in the heat exchange unit 20, the low temperature side cooling water flows into the second distribution tank space T21 through the hose connected to the second inflow pipe 25a. The high-temperature side cooling water that has flowed into the second distribution tank space T21 is distributed to the low-temperature side flow path W12 of each flow path forming plate member 210. The low-temperature side cooling water that has flowed through the low-temperature side flow path W12 of each flow path forming plate member 210 is collected in the second collecting tank space T22 and then discharged from the second outflow pipe 25b.
 図2に示されるように、流入側かしめプレート22は、熱交換コア部21における吸気流れ方向Yの上流側の端部の外周部分に設けられている。図8に示されるように、流入側かしめプレート22は四角環状に形成されている。図2に示されるように、吸気流れ方向Yの下流側における流入側かしめプレート22の一端部には、内側に折り曲げられるように屈曲部220が形成されている。屈曲部220の先端部が熱交換コア部21にろう付けにより接合されることで、流入側かしめプレート22が熱交換コア部21に対して固定されている。流入側かしめプレート22には流入側タンク30が挿入されている。流入側かしめプレート22と流入側タンク30との間には、それらの間の隙間をシールするためのパッキン32aが配置されている。図1に示されるように、流入側かしめプレート22が流入側タンク30にかしめられることにより、熱交換コア部21に対して流入側タンク30が固定されている。 As shown in FIG. 2, the inflow side caulking plate 22 is provided on the outer peripheral portion of the end portion on the upstream side of the intake flow direction Y in the heat exchange core portion 21. As shown in FIG. 8, the inflow side caulking plate 22 is formed in a square ring shape. As shown in FIG. 2, a bent portion 220 is formed at one end of the inflow side caulking plate 22 on the downstream side in the intake flow direction Y so as to be bent inward. The inflow side caulking plate 22 is fixed to the heat exchange core portion 21 by joining the tip portion of the bent portion 220 to the heat exchange core portion 21 by brazing. The inflow side tank 30 is inserted into the inflow side caulking plate 22. A packing 32a for sealing the gap between the inflow side caulking plate 22 and the inflow side tank 30 is arranged. As shown in FIG. 1, the inflow side tank 30 is fixed to the heat exchange core portion 21 by caulking the inflow side caulking plate 22 into the inflow side tank 30.
 図2に示されるように、流出側かしめプレート23も、流入側かしめプレート22と同様の形状を有している。すなわち、流出側かしめプレート23も屈曲部230を有している。この屈曲部230が熱交換コア部21にろう付けにより接合されることで、流出側かしめプレート23が熱交換コア部21に対して固定されている。流出側かしめプレート23には流出側タンク31及びパッキン32bが挿入されている。図1に示されるように、流出側かしめプレート23が流出側タンク31にかしめられることにより、熱交換コア部21に対して流出側タンク31が固定されている。本実施形態では、かしめプレート22,23が、タンク30,31が組み付けられる組み付け部材に相当する。 As shown in FIG. 2, the outflow side caulking plate 23 also has the same shape as the inflow side caulking plate 22. That is, the outflow side caulking plate 23 also has a bent portion 230. The bent portion 230 is joined to the heat exchange core portion 21 by brazing, so that the outflow side caulking plate 23 is fixed to the heat exchange core portion 21. The outflow side tank 31 and the packing 32b are inserted into the outflow side caulking plate 23. As shown in FIG. 1, the outflow side caulking plate 23 is crimped to the outflow side tank 31, so that the outflow side tank 31 is fixed to the heat exchange core portion 21. In the present embodiment, the caulking plates 22 and 23 correspond to the assembling members to which the tanks 30 and 31 are assembled.
 図1に示されるように、熱交換器10では、流入側タンク30の開口部分30aから吸気が流入する。図2に示されるように、流入側タンク30に流入した吸気は、各流路形成プレート部材210の間に形成される隙間を流れて流出側タンク31に流入した後、図1に示される流出側タンク31の開口部分31aから排出される。図2に示されるように、各流路形成プレート部材210の間に配置されるアウタフィン211は、吸気に対する伝熱面積を増加させている。本実施形態では、流入側タンク30が、熱交換部20への吸気の導入を案内するガイド部に相当する。また、流出側タンク31が、熱交換部20を通過した空気を案内するガイド部に相当する。 As shown in FIG. 1, in the heat exchanger 10, the intake air flows in from the opening portion 30a of the inflow side tank 30. As shown in FIG. 2, the intake air that has flowed into the inflow side tank 30 flows through the gap formed between the flow path forming plate members 210 and flows into the outflow side tank 31, and then flows out as shown in FIG. It is discharged from the opening portion 31a of the side tank 31. As shown in FIG. 2, the outer fins 211 arranged between the flow path forming plate members 210 increase the heat transfer area with respect to the intake air. In the present embodiment, the inflow side tank 30 corresponds to a guide unit that guides the introduction of intake air into the heat exchange unit 20. Further, the outflow side tank 31 corresponds to a guide portion that guides the air that has passed through the heat exchange portion 20.
 熱交換器10では、各流路形成プレート部材210の間に形成される隙間を吸気が流れる際に、各流路形成プレート部材210の内部を流通する高温側冷却水及び低温側冷却水と、各流路形成プレート部材210の外部を流れる吸気との間で熱交換が行われることにより、吸気が冷却又は加熱される。
 以上説明した本実施形態の熱交換器10によれば、以下の(1)~(6)に示される作用及び効果を得ることができる。
In the heat exchanger 10, when the intake air flows through the gap formed between the flow path forming plate members 210, the high temperature side cooling water and the low temperature side cooling water flowing inside each flow path forming plate member 210 are The intake air is cooled or heated by exchanging heat with the intake air flowing outside each flow path forming plate member 210.
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (1) to (6) can be obtained.
 (1)熱交換部20の一端部E11には第1流出パイプ24b、第2流入パイプ25a、及び第2流出パイプ25bが設けられている。熱交換部20の他端部E12には第1流入パイプ24aが設けられている。熱交換部20の一端部E11におけるプレート積層方向Zの上面20aには第1流出パイプ24b及び第2流入パイプ25aが設けられている。熱交換部20の一端部E11におけるプレート積層方向Zの底面20bには第2流出パイプ25bが設けられている。このような構成によれば、熱交換部20の一端部E11の上面20aに第1流出パイプ24b、第2流入パイプ25a、及び第2流出パイプ25bの全てが設けられている場合と比較すると、各パイプの間に空間を形成し易くなる。また、熱交換部20の他端部E12には第1流入パイプ24aのみが設けられているため、この第1流入パイプ24aの周辺にも空間を形成し易い。よって、熱交換器10を小型化する場合であっても、各パイプの間に空間を形成することが可能である。 (1) A first outflow pipe 24b, a second inflow pipe 25a, and a second outflow pipe 25b are provided at one end E11 of the heat exchange unit 20. A first inflow pipe 24a is provided at the other end E12 of the heat exchange unit 20. A first outflow pipe 24b and a second inflow pipe 25a are provided on the upper surface 20a of the plate stacking direction Z at one end E11 of the heat exchange portion 20. A second outflow pipe 25b is provided on the bottom surface 20b of the plate stacking direction Z at one end E11 of the heat exchange section 20. According to such a configuration, as compared with the case where all of the first outflow pipe 24b, the second inflow pipe 25a, and the second outflow pipe 25b are provided on the upper surface 20a of the one end portion E11 of the heat exchange portion 20. It becomes easier to form a space between each pipe. Further, since only the first inflow pipe 24a is provided at the other end E12 of the heat exchange portion 20, it is easy to form a space around the first inflow pipe 24a. Therefore, even when the heat exchanger 10 is miniaturized, it is possible to form a space between the pipes.
 (2)かしめプレート22,23は、熱交換部20に対してろう付けにより接合されている。熱交換部20とタンク30,31とを組み付けるためのかしめプレート22,23は、ある程度の耐久性が求められるため、流路形成プレート部材210と比較すると、より板厚の厚い部材が用いられる。その結果、かしめプレート22,23の熱容量は大きくなり易いため、熱交換器10の製造工程において各部品をろう付けする際に、かしめプレート22,23の昇温性に配慮する必要がある。仮に上述の特許文献1に記載の熱交換器のように熱交換部20の高温側流路W11をU字状に形成した場合、熱交換部20の一端部E11に4つのパイプが配置される可能性がある。このような構造の場合、ろう付けのために熱交換器10を炉に投入して加熱する際に、熱容量の大きい4つのパイプへの熱移動により、4つのパイプが配置されている部分周辺でかしめプレートが昇温し難くなる懸念がある。結果として、ろう付け不足が生じるおそれがある。この点、本実施形態の熱交換器10のように、熱交換部20においてパイプ24a,24b,25a,25bが分散して配置されていれば、かしめプレート22,23が部分的に昇温し難くなるような状況を回避できるため、より確実にかしめプレート22,23を熱交換部20にろう付けさせることができる。結果的に、熱交換器10の製造性を向上させることができる。 (2) The caulking plates 22 and 23 are joined to the heat exchange portion 20 by brazing. Since the caulking plates 22 and 23 for assembling the heat exchange portion 20 and the tanks 30 and 31 are required to have a certain degree of durability, a thicker member is used as compared with the flow path forming plate member 210. As a result, the heat capacity of the caulking plates 22 and 23 tends to be large. Therefore, when brazing each part in the manufacturing process of the heat exchanger 10, it is necessary to consider the temperature rising property of the caulking plates 22 and 23. If the high temperature side flow path W11 of the heat exchange unit 20 is formed in a U shape as in the heat exchanger described in Patent Document 1 described above, four pipes are arranged at one end E11 of the heat exchange unit 20. there is a possibility. In the case of such a structure, when the heat exchanger 10 is put into the furnace for brazing and heated, the heat is transferred to the four pipes having a large heat capacity, and the area around the portion where the four pipes are arranged. There is a concern that the temperature of the caulking plate will not rise easily. As a result, insufficient brazing may occur. In this regard, if the pipes 24a, 24b, 25a, 25b are dispersedly arranged in the heat exchange section 20 as in the heat exchanger 10 of the present embodiment, the caulking plates 22 and 23 are partially heated. Since it is possible to avoid a difficult situation, the caulking plates 22 and 23 can be brazed to the heat exchange unit 20 more reliably. As a result, the manufacturability of the heat exchanger 10 can be improved.
 (3)かしめプレート22,23の強度を向上させるためには、それらに発生する残留応力を極力減らすことが重要となる。この点、熱交換器10が車両に搭載される際には、各パイプ24a,24b,25a,25bに冷却水用のホースが接続されるため、その際に各パイプに加わる外力により、熱交換部20における各パイプの周辺の部分に残留応力が発生し易い。仮に熱交換部20の一端部E11に4つのパイプが配置されている場合、熱交換部20の一端部E11付近に配置されるかしめプレート22,23の一端部に局所的に残留応力が集中するため、その部分でかしめプレート22,23の強度が低下することが懸念される。この点、本実施形態の熱交換器10のように、熱交換部20においてパイプ24a,24b,25a,25bが分散して配置されていれば、かしめプレート22,23の一部に局所的に残留応力が集中することを回避できるため、かしめプレート22,23の強度の低下を抑制できる。 (3) In order to improve the strength of the caulking plates 22 and 23, it is important to reduce the residual stress generated in them as much as possible. In this regard, when the heat exchanger 10 is mounted on the vehicle, hoses for cooling water are connected to the pipes 24a, 24b, 25a, 25b, and therefore heat exchange is performed by an external force applied to each pipe at that time. Residual stress is likely to occur in the peripheral portion of each pipe in the portion 20. If four pipes are arranged at one end E11 of the heat exchange unit 20, residual stress is locally concentrated at one end of the caulking plates 22 and 23 arranged near one end E11 of the heat exchange unit 20. Therefore, there is a concern that the strength of the caulking plates 22 and 23 will decrease at that portion. In this regard, if the pipes 24a, 24b, 25a, 25b are dispersedly arranged in the heat exchange section 20 as in the heat exchanger 10 of the present embodiment, the pipes 24a, 24b, 25a, and 25b are locally arranged in a part of the caulking plates 22, 23. Since it is possible to avoid the concentration of residual stress, it is possible to suppress a decrease in the strength of the caulking plates 22 and 23.
 (4)吸気と冷却水とを熱交換させる熱交換器としては、例えば吸気が通過する箱状のダクトケースに熱交換部を挿入して固定した構造からなる、いわゆるケース挿入式の熱交換器がある。このようなケース挿入式の熱交換器では、ダクトケースと熱交換部とのシール性を確保するために、熱交換部にフランジ部を形成した上で、フランジ部を介してボルト締結によりダクトケースと熱交換部とを固定する構造、あるいはフランジ部を介して溶接によりダクトケースと熱交換部とを固定する構造が一般的に採用される。そのため、フランジ部の周縁にボルト穴又は溶接部を設ける必要がある。結果としてフランジ部の幅が長くなるため、熱交換部のサイズが小さくなるという課題が生じる。この点、本実施形態の熱交換器10のように、かしめプレート22,23を介して熱交換部20とタンク30,31とを組み付ける構造であれば、熱交換部20にフランジ部を設ける必要がないため、上述したような熱交換部20のサイズが小さくなるという課題を解消することができる。 (4) As a heat exchanger that exchanges heat between intake air and cooling water, for example, a so-called case-insertion type heat exchanger having a structure in which a heat exchange portion is inserted and fixed in a box-shaped duct case through which intake air passes. There is. In such a case-insertion type heat exchanger, in order to ensure the sealing property between the duct case and the heat exchange portion, a flange portion is formed in the heat exchange portion, and then the duct case is fastened with bolts via the flange portion. A structure for fixing the duct case and the heat exchange portion, or a structure for fixing the duct case and the heat exchange portion by welding via a flange portion is generally adopted. Therefore, it is necessary to provide a bolt hole or a welded portion on the peripheral edge of the flange portion. As a result, the width of the flange portion becomes long, which causes a problem that the size of the heat exchange portion becomes small. In this regard, in the case of a structure in which the heat exchange section 20 and the tanks 30 and 31 are assembled via the caulking plates 22 and 23 as in the heat exchanger 10 of the present embodiment, it is necessary to provide a flange portion in the heat exchange section 20. Therefore, it is possible to solve the problem that the size of the heat exchange unit 20 is reduced as described above.
 (5)ケース挿入式の熱交換器では、ダクトケースが、吸気が流入する部分、熱交換部が挿入される部分、及び吸気が流出する部分が一体的に形成された構造からなる。よって、基本的には吸気の流入部、熱交換部の挿入部、及び吸気の流出部の全てが同一の材料で形成されることになる。一方、本実施形態の熱交換器10では、流入側タンク30と流出側タンク31とが別体であるため、それらを異なる材料で形成することが可能となる。流入側タンク30では、高温側流路W11を流れる冷却水により吸気を暖気することができるため、仮に流入側タンク30で凝縮水が発生した場合であっても、その凝縮水を蒸発させることが可能である。結果として、流出側タンク31に凝縮水が付着する可能性が低いため、凝縮水の付着に起因する腐食が流出側タンク31では発生し難い。そのため、流出側タンク31の材料として、流入側タンク30よりも耐腐食性の低い安価な材料、例えば樹脂材料を用いることが可能となる。また、流出側タンク31と熱交換部20との間に設けられるパッキン32bも腐食し難くなるため、その材料として耐腐食性の低い安価な材料を用いることが可能となる。 (5) In the case-insertion type heat exchanger, the duct case has a structure in which a portion where the intake air flows in, a portion where the heat exchange portion is inserted, and a portion where the intake air flows out are integrally formed. Therefore, basically, the inflow portion of the intake air, the insertion portion of the heat exchange portion, and the outflow portion of the intake air are all formed of the same material. On the other hand, in the heat exchanger 10 of the present embodiment, since the inflow side tank 30 and the outflow side tank 31 are separate bodies, it is possible to form them with different materials. In the inflow side tank 30, since the intake air can be warmed up by the cooling water flowing through the high temperature side flow path W11, even if condensed water is generated in the inflow side tank 30, the condensed water can be evaporated. It is possible. As a result, it is unlikely that the condensed water adheres to the outflow side tank 31, so that corrosion due to the adhesion of the condensed water is unlikely to occur in the outflow side tank 31. Therefore, as the material of the outflow side tank 31, it is possible to use an inexpensive material having lower corrosion resistance than the inflow side tank 30, for example, a resin material. Further, since the packing 32b provided between the outflow side tank 31 and the heat exchange section 20 is also less likely to be corroded, it is possible to use an inexpensive material having low corrosion resistance as the material.
 (6)本実施形態の熱交換器10のように、高温側流路W11がIフローの形状を有していれば、Uフローの形状と比較すると、高温側流路W11を流れる高温側冷却水が受ける通水抵抗が小さくなる。これにより、高温側冷却回路において冷却水を圧送するポンプを小型化できる等の利点がある。但し、高温側流路W11がIフローの形状を有している場合、高温側冷却水が吸気と熱交換しつつ高温側流路W11を上流側から下流側に向かって流れるため、高温側流路W11の上流側と下流側とでは冷却水の温度に偏差が生じ易くなる。これは熱交換部長手方向Xにおいて吸気の温度分布に偏差を生じさせる要因となる。この点、本実施形態の熱交換器10では、吸気流れ方向Yにおいて高温側流路W11の下流側に配置される低温側流路W12がUフローの形状を有しているため、仮に高温側流路W11を通過した吸気の温度分布に偏差が生じた場合であっても、その吸気が低温側流路W12を流れる低温側冷却水と熱交換することにより、吸気の温度分布の偏差が緩和され易くなる。 (6) If the high temperature side flow path W11 has the shape of the I flow as in the heat exchanger 10 of the present embodiment, the high temperature side cooling flowing through the high temperature side flow path W11 is compared with the shape of the U flow. The resistance to water flow is reduced. This has the advantage that the pump that pumps the cooling water in the high-temperature side cooling circuit can be miniaturized. However, when the high temperature side flow path W11 has the shape of an I flow, the high temperature side cooling water flows through the high temperature side flow path W11 from the upstream side to the downstream side while exchanging heat with the intake air, so that the high temperature side flow Deviations are likely to occur in the temperature of the cooling water between the upstream side and the downstream side of the path W11. This causes a deviation in the temperature distribution of the intake air in the longitudinal direction X of the heat exchange portion. In this regard, in the heat exchanger 10 of the present embodiment, since the low temperature side flow path W12 arranged on the downstream side of the high temperature side flow path W11 in the intake flow direction Y has a U flow shape, it is assumed that the high temperature side is on the high temperature side. Even if there is a deviation in the temperature distribution of the intake air that has passed through the flow path W11, the deviation in the temperature distribution of the intake air is alleviated by exchanging heat with the low temperature side cooling water that flows through the low temperature side flow path W12. It becomes easy to be done.
 <第2実施形態>
 次に、熱交換器10の第2実施形態について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
 図2に示されるような構造を有する第1実施形態の熱交換器10では、製造工程において熱交換部の各部品をろう付けする際に熱交換部20の各部品のろう材が溶けると、部品間の隙間が縮まる。特に、熱交換部20のコア部21のように複数の流路形成プレート部材210が配置されている部分では、部品間の隙間が縮まる箇所が多い。そのため、図9に示されるように、熱交換コア部21の外形は、二点鎖線で示される形状から実線で示される形状に変形、すなわちプレート積層方向Zに縮まるように変形する。このような熱交換コア部21の沈み込み現象が発生する結果、熱交換コア部21とかしめプレート22,23との間に隙間が形成されると、それらをろう付けできなくなる懸念がある。この懸念を解消するために、本実施形態の熱交換器10は図10に示されるような構造を有している。
<Second Embodiment>
Next, a second embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
In the heat exchanger 10 of the first embodiment having a structure as shown in FIG. 2, when the brazing material of each part of the heat exchange part 20 is melted when brazing each part of the heat exchange part in the manufacturing process, The gap between the parts is reduced. In particular, in a portion where a plurality of flow path forming plate members 210 are arranged, such as the core portion 21 of the heat exchange portion 20, there are many places where the gap between the parts is reduced. Therefore, as shown in FIG. 9, the outer shape of the heat exchange core portion 21 is deformed from the shape shown by the alternate long and short dash line to the shape shown by the solid line, that is, deformed so as to shrink in the plate stacking direction Z. If a gap is formed between the heat exchange core portion 21 and the caulking plates 22 and 23 as a result of such a subduction phenomenon of the heat exchange core portion 21, there is a concern that they cannot be brazed. In order to eliminate this concern, the heat exchanger 10 of the present embodiment has a structure as shown in FIG.
 図10に示されるように、本実施形態の熱交換器10は、熱交換コア部21の周囲を囲うように配置されるダクトケース60を備えている。ダクトケース60は、上側ダクトプレート部材61と下側ダクトプレート部材62とにより構成されている。下側ダクトプレート部材62は、凹状に形成された板状の部材からなり、プレート積層方向Zにおける熱交換コア部21の底面、及び熱交換部長手方向Xにおける熱交換コア部21の両側面に対向するように配置されている。上側ダクトプレート部材61は、板状の部材からなり、プレート積層方向Zにおける熱交換コア部21の上面に対向するように配置されている。上側ダクトプレート部材61が下側ダクトプレート部材62の上方の開口部分を閉塞するように下側ダクトプレート部材62に接合されることで、ダクトケース60は全体として四角環状に形成されている。 As shown in FIG. 10, the heat exchanger 10 of the present embodiment includes a duct case 60 arranged so as to surround the heat exchange core portion 21. The duct case 60 is composed of an upper duct plate member 61 and a lower duct plate member 62. The lower duct plate member 62 is composed of a plate-shaped member formed in a concave shape, and is formed on the bottom surface of the heat exchange core portion 21 in the plate stacking direction Z and on both side surfaces of the heat exchange core portion 21 in the heat exchange portion longitudinal direction X. They are arranged so as to face each other. The upper duct plate member 61 is made of a plate-shaped member, and is arranged so as to face the upper surface of the heat exchange core portion 21 in the plate stacking direction Z. The duct case 60 is formed in a square ring shape as a whole by joining the upper duct plate member 61 to the lower duct plate member 62 so as to close the upper opening portion of the lower duct plate member 62.
 図11に示されるように、吸気流れ方向Yにおける上側ダクトプレート部材61の両端部には、外側に向かって折り曲げられるように曲げ部611,612がそれぞれ形成されている。曲げ部611,612は、かしめプレート22,23の屈曲部220,230にそれぞれ面接触してろう付けにより接合されている。 As shown in FIG. 11, bent portions 611 and 612 are formed at both ends of the upper duct plate member 61 in the intake flow direction Y so as to be bent outward. The bent portions 611 and 612 are joined to the bent portions 220 and 230 of the caulking plates 22 and 23 by surface contact and brazing, respectively.
 以上説明した本実施形態の熱交換器10によれば、以下の(7)及び(8)に示される作用及び効果を更に得ることができる。
 (7)本実施形態の熱交換器10では、図12に示されるように、仮にろう付け工程の際に熱交換コア部21が二点鎖線で示される形状から実線で示される形状に変化したとしても、上側ダクトプレート部材61の曲げ部611が流入側かしめプレート22の屈曲部220に接触した状態を確保できる。同様に、上側ダクトプレート部材61の曲げ部612が流入側かしめプレート22の屈曲部230に接触した状態も確保できる。よって、より確実に上側ダクトプレート部材61の曲げ部611,612と、かしめプレート22,23の屈曲部220,230とがろう付けにより接合されるため、熱交換コア部21とかしめプレート22,23との接合状態を維持することができる。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (7) and (8) can be further obtained.
(7) In the heat exchanger 10 of the present embodiment, as shown in FIG. 12, the heat exchange core portion 21 temporarily changed from the shape shown by the alternate long and short dash line to the shape shown by the solid line during the brazing step. Even so, it is possible to secure a state in which the bent portion 611 of the upper duct plate member 61 is in contact with the bent portion 220 of the inflow side caulking plate 22. Similarly, it is possible to secure a state in which the bent portion 612 of the upper duct plate member 61 is in contact with the bent portion 230 of the inflow side caulking plate 22. Therefore, since the bent portions 611 and 612 of the upper duct plate member 61 and the bent portions 220 and 230 of the caulking plates 22 and 23 are more reliably joined by brazing, the heat exchange core portion 21 and the caulking plates 22 and 23 are joined. The state of joining with can be maintained.
 (8)熱交換部20は、熱交換コア部21の外周を囲うように設けられるダクトケース60を更に備える。このような構成によれば、吸気の流れをダクトケース60により案内することができるため、熱交換器10の熱交換性能を向上させることができる。
 <第3実施形態>
 次に、熱交換器10の第3実施形態について説明する。以下、第2実施形態の熱交換器10との相違点を中心に説明する。
(8) The heat exchange unit 20 further includes a duct case 60 provided so as to surround the outer periphery of the heat exchange core unit 21. According to such a configuration, the flow of intake air can be guided by the duct case 60, so that the heat exchange performance of the heat exchanger 10 can be improved.
<Third Embodiment>
Next, a third embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the second embodiment will be mainly described.
 各流路形成プレート部材210のプレート片210a,210bでは、その芯材の内面に犠牲層が塗布されることがある。犠牲層は、芯材よりも電位的に卑な素材が所定の割合で含有された金属、例えば亜鉛(Zn)が含有されたアルミニウム合金からなる。このような構造からなるプレート片210a,210bでは、高温側流路W11及び低温側流路W12を流れる冷却水と犠牲層とが接触する。これにより芯材よりも犠牲層が優先的に腐食することとなるため、芯材が腐食し難くなる。 In the plate pieces 210a and 210b of each flow path forming plate member 210, a sacrificial layer may be applied to the inner surface of the core material. The sacrificial layer is made of a metal containing a material that is potentially lower than the core material in a predetermined ratio, for example, an aluminum alloy containing zinc (Zn). In the plate pieces 210a and 210b having such a structure, the cooling water flowing through the high temperature side flow path W11 and the low temperature side flow path W12 comes into contact with the sacrificial layer. As a result, the sacrificial layer is preferentially corroded over the core material, so that the core material is less likely to be corroded.
 ところで、図5に示される熱交換器10では、各流路形成プレート部材210のプレート片210a,210bのそれぞれの端部が接触している。そのため、プレート片210a,210bの芯材の表面に犠牲層を塗布した場合、各プレート片210a,210bの犠牲層同士が接触することとなる。このような構造の場合、各プレート片210a,210bの犠牲層同士が接触する部分で亜鉛が局所的に濃縮して、その部分で耐食性が著しく低下する懸念がある。 By the way, in the heat exchanger 10 shown in FIG. 5, the ends of the plate pieces 210a and 210b of each flow path forming plate member 210 are in contact with each other. Therefore, when the sacrificial layer is applied to the surface of the core material of the plate pieces 210a and 210b, the sacrificial layers of the plate pieces 210a and 210b come into contact with each other. In the case of such a structure, there is a concern that zinc is locally concentrated at the portion where the sacrificial layers of the plate pieces 210a and 210b are in contact with each other, and the corrosion resistance is significantly lowered at that portion.
 そこで、本実施形態の熱交換器10では、図13に示されるように、各流路形成プレート部材210の第1プレート片210aの一端部と第2プレート片210bの一端部との間にスペーサ40が配置されている。スペーサ40は、第1プレート片210aのカップ部C12a,C13a,C14aのそれぞれの底面と第2プレート片210bとの間に挟まれるように配置されている。 Therefore, in the heat exchanger 10 of the present embodiment, as shown in FIG. 13, a spacer is provided between one end of the first plate piece 210a and one end of the second plate piece 210b of each flow path forming plate member 210. 40 are arranged. The spacer 40 is arranged so as to be sandwiched between the bottom surfaces of the cup portions C12a, C13a, and C14a of the first plate piece 210a and the second plate piece 210b.
 図14に示されるようにスペーサ40は板状の部材からなる。スペーサ40には、熱交換コア部21の第1集合タンク空間T12、第2分配タンク空間T21、及び第2集合タンク空間T22に対応する位置に貫通孔401,402,403がそれぞれ形成されている。 As shown in FIG. 14, the spacer 40 is made of a plate-shaped member. Through holes 401, 402, and 403 are formed in the spacer 40 at positions corresponding to the first collecting tank space T12, the second distribution tank space T21, and the second collecting tank space T22 of the heat exchange core portion 21, respectively. ..
 また、各流路形成プレート部材210の第1プレート片210aの他端部と第2プレート片210bの他端部との間にも、同様に図15に示されるようなスペーサ41が配置されている。スペーサ41には、熱交換コア部21の第1分配タンク空間T11に対応する位置に貫通孔411が形成されている。スペーサ41には、貫通孔411が形成されるベース部412と、ベース部412に対してプレート積層方向Zに突出する突出部413とが形成されている。スペーサ41のベース部412の底面は第2プレート片210bの上面にろう付けにより接合されている。突出部413の上面は第1プレート片210aの転向部W122の底面にろう付けにより接合されている。よって、スペーサ41は、第1プレート片210aの他端部と第2プレート片210bの他端部との間に挟まれるように配置されている。 Similarly, a spacer 41 as shown in FIG. 15 is also arranged between the other end of the first plate piece 210a and the other end of the second plate piece 210b of each flow path forming plate member 210. There is. A through hole 411 is formed in the spacer 41 at a position corresponding to the first distribution tank space T11 of the heat exchange core portion 21. The spacer 41 is formed with a base portion 412 on which a through hole 411 is formed and a protruding portion 413 protruding from the base portion 412 in the plate stacking direction Z. The bottom surface of the base portion 412 of the spacer 41 is joined to the upper surface of the second plate piece 210b by brazing. The upper surface of the protruding portion 413 is joined to the lower surface of the turning portion W122 of the first plate piece 210a by brazing. Therefore, the spacer 41 is arranged so as to be sandwiched between the other end of the first plate piece 210a and the other end of the second plate piece 210b.
 以上説明した本実施形態の熱交換器10によれば、以下の(9)に示される作用及び効果を更に得ることができる。
 (9)第1プレート片210aの両端部と第2プレート片210bの両端部との間にスペーサ40,41がそれぞれ配置されている。これにより、第1プレート片210aの両端部と第2プレート片210bの両端部とが直接接触することを回避できるため、上述したような亜鉛が局所的に濃縮するような現象が発生し難くなる。よって、熱交換コア部21の耐食性の低下を回避できる。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in (9) below can be further obtained.
(9) Spacers 40 and 41 are arranged between both ends of the first plate piece 210a and both ends of the second plate piece 210b, respectively. As a result, it is possible to avoid direct contact between both ends of the first plate piece 210a and both ends of the second plate piece 210b, so that the above-mentioned phenomenon of local concentration of zinc is less likely to occur. .. Therefore, it is possible to avoid a decrease in the corrosion resistance of the heat exchange core portion 21.
 <第4実施形態>
 次に、熱交換器10の第4実施形態について説明する。以下、第3実施形態の熱交換器10との相違点を中心に説明する。
 図16に示されるように、本実施形態の熱交換器10の第1プレート片210aには、転向部W122が形成される部分にカップ部C15a,C16aが更に形成されている。カップ部C15a,C16aには貫通孔218a,219aがそれぞれ形成されている。図17に示されるように、第2プレート片210bには、転向部W12に対向する位置にカップ部C15b,C16bが更に形成されている。カップ部C15b,C16bには貫通孔218b,219bがそれぞれ形成されている。第1プレート片210aのカップ部C15a,C16aは、隣接する流路形成プレート部材210に向かってプレート積層方向Zに突出するように形成されており、隣接する流路形成プレート部材210の第2プレート片210bのカップ部C15b,C16bにそれぞれ接合されている。第1プレート片210aのカップ部C15aに形成される貫通孔218aは、隣接する流路形成プレート部材210の第2プレート片210bのカップ部C15bに形成される貫通孔218bに連通されている。同様に、第1プレート片210aのカップ部C16aに形成される貫通孔219aは、隣接する流路形成プレート部材210の第2プレート片210bのカップ部C16bに形成される貫通孔219bに連通されている。図18に示されるように、スペーサ41には、各プレート片210a,210bの貫通孔218a,218bに対応する位置に貫通孔414が形成されるとともに、各プレート片210a,210bの貫通孔219a,219bに対応する位置に貫通孔415が形成されている。
<Fourth Embodiment>
Next, a fourth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the third embodiment will be mainly described.
As shown in FIG. 16, in the first plate piece 210a of the heat exchanger 10 of the present embodiment, cup portions C15a and C16a are further formed in a portion where the turning portion W122 is formed. Through holes 218a and 219a are formed in the cup portions C15a and C16a, respectively. As shown in FIG. 17, the second plate piece 210b is further formed with cup portions C15b and C16b at positions facing the turning portion W12. Through holes 218b and 219b are formed in the cup portions C15b and C16b, respectively. The cup portions C15a and C16a of the first plate piece 210a are formed so as to project in the plate stacking direction Z toward the adjacent flow path forming plate member 210, and the second plate of the adjacent flow path forming plate member 210 is formed. It is joined to the cup portions C15b and C16b of the piece 210b, respectively. The through hole 218a formed in the cup portion C15a of the first plate piece 210a communicates with the through hole 218b formed in the cup portion C15b of the second plate piece 210b of the adjacent flow path forming plate member 210. Similarly, the through hole 219a formed in the cup portion C16a of the first plate piece 210a communicates with the through hole 219b formed in the cup portion C16b of the second plate piece 210b of the adjacent flow path forming plate member 210. There is. As shown in FIG. 18, through holes 414 are formed in the spacer 41 at positions corresponding to the through holes 218a and 218b of the plate pieces 210a and 210b, and the through holes 219a of the plate pieces 210a and 210b are formed. A through hole 415 is formed at a position corresponding to 219b.
 なお、本実施形態では、カップ部C15a,C15bが、第2流入部に相当するカップ部C13a,C13bと熱交換部長手方向Xにおいて対向するカップ部に相当する。また、カップ部C16a,C16bが、第2流出部に相当するカップ部C14a,C14bと熱交換部長手方向Xにおいて対向するカップ部に相当する。 In the present embodiment, the cup portions C15a and C15b correspond to the cup portions C13a and C13b corresponding to the second inflow portion and the cup portions facing each other in the heat exchange portion longitudinal direction X. Further, the cup portions C16a and C16b correspond to the cup portions C14a and C14b corresponding to the second outflow portion and the cup portions facing each other in the heat exchange portion longitudinal direction X.
 第1プレート片210aの貫通孔218a、第2プレート片210bの貫通孔218b、及びスペーサ41の貫通孔414が互いに連通することにより、図19に示されるような中間タンク空間T23が熱交換コア部21の内部に形成されている。また、第1プレート片210aの貫通孔219a、第2プレート片210bの貫通孔219b、及びスペーサ41の貫通孔415が互いに連通することにより、図19に示されるような中間タンク空間T24が熱交換コア部21の内部に形成されている。各流路形成プレート部材210の低温側流路W12は、中間タンク空間T23,T24を通じて互いに連通されている。本実施形態では、中間タンク空間T23,T24が、低温側流路W12において第2分配タンク空間T21と第2集合タンク空間T22との間に形成される連通部に相当する。 The through hole 218a of the first plate piece 210a, the through hole 218b of the second plate piece 210b, and the through hole 414 of the spacer 41 communicate with each other, so that the intermediate tank space T23 as shown in FIG. 19 has a heat exchange core portion. It is formed inside 21. Further, the through hole 219a of the first plate piece 210a, the through hole 219b of the second plate piece 210b, and the through hole 415 of the spacer 41 communicate with each other, so that the intermediate tank space T24 as shown in FIG. 19 exchanges heat. It is formed inside the core portion 21. The low temperature side flow paths W12 of each flow path forming plate member 210 communicate with each other through the intermediate tank spaces T23 and T24. In the present embodiment, the intermediate tank spaces T23 and T24 correspond to the communication portions formed between the second distribution tank space T21 and the second collecting tank space T22 in the low temperature side flow path W12.
 以上説明した本実施形態の熱交換器10によれば、以下の(10)~(12)に示される作用及び効果を更に得ることができる。
 (10)U字状に形成される低温側流路W12では、その転向部W122において冷却水の流れに淀みが生じ、その部分に、冷却水に含まれる空気が溜まりやすい傾向がある。転向部W122に空気が溜まると、その部分で吸気との熱交換性能が著しく低下する懸念がある。この点、本実施形態の熱交換器10では、転向部W122に中間タンク空間T23,T24が形成されているため、中間タンク空間T23,T24を通じて冷却水が各流路形成プレート部材210の転向部W122の間を流れるようになる。これにより、転向部W122を流れる冷却水に淀みが発生し難くなるため、転向部W122に空気が溜まり難くなる。よって、熱交換器10の熱交換性能の低下を回避することができる。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (10) to (12) can be further obtained.
(10) In the low temperature side flow path W12 formed in a U shape, the flow of the cooling water tends to stagnate at the turning portion W122, and the air contained in the cooling water tends to accumulate in that portion. If air accumulates in the turning portion W122, there is a concern that the heat exchange performance with the intake air may be significantly deteriorated in that portion. In this regard, in the heat exchanger 10 of the present embodiment, since the intermediate tank spaces T23 and T24 are formed in the turning portion W122, the cooling water passes through the intermediate tank spaces T23 and T24 in the turning portion of each flow path forming plate member 210. It will flow between W122. As a result, stagnation is less likely to occur in the cooling water flowing through the turning portion W122, so that air is less likely to accumulate in the turning portion W122. Therefore, it is possible to avoid deterioration of the heat exchange performance of the heat exchanger 10.
 (11)各流路形成プレート部材210における転向部W12が形成されている部分では、流路形成プレート部材210のカップ部C15a,C16aが、隣接する流路形成プレート部材210のカップ部C15b,C16bに接合されている。これにより、カップ部C15a,C16a,C15b,C16bが設けられていない構造と比較すると、流路形成プレート部材210において転向部W12が配置されている部分において特にプレート積層方向Zの強度を確保することができる。熱交換器10には、その製造時のろう付け工程において各部品を密着させるためにプレート積層方向Zに圧縮力が付与される。熱交換器10においてプレート積層方向Zの強度を確保することができれば、ろう付け工程において熱交換器10に圧縮力が付与された際に熱交換器10が変形することを未然に回避することができる。 (11) In the portion of each flow path forming plate member 210 where the turning portion W12 is formed, the cup portions C15a and C16a of the flow path forming plate member 210 are the cup portions C15b and C16b of the adjacent flow path forming plate member 210. It is joined to. As a result, the strength in the plate stacking direction Z is ensured particularly in the portion of the flow path forming plate member 210 where the turning portion W12 is arranged, as compared with the structure in which the cup portions C15a, C16a, C15b, and C16b are not provided. Can be done. A compressive force is applied to the heat exchanger 10 in the plate stacking direction Z in order to bring the parts into close contact with each other in the brazing process at the time of manufacture. If the strength in the plate stacking direction Z can be ensured in the heat exchanger 10, it is possible to prevent the heat exchanger 10 from being deformed when a compressive force is applied to the heat exchanger 10 in the brazing step. can.
 (12)流路形成プレート部材210の端部E12には、熱交換部長手方向Xにおいてカップ部C13a,C13bに対向する位置にカップ部C15a,C15bが設けられるとともに、熱交換部長手方向Xにおいてカップ部C14a,C14bに対向する位置にカップ部C16a,C16bが設けられている。これにより、図18に示されるようなスペーサ41を用いることができる。図18に示されるスペーサ41は、図14に示されるスペーサ40と同一の形状を有している。すなわち、熱交換部20の両端部E11,E12にそれぞれ配置されるスペーサ40,41を共通化することができるため、製造コストを低減することができる。 (12) The end portion E12 of the flow path forming plate member 210 is provided with cup portions C15a and C15b at positions facing the cup portions C13a and C13b in the heat exchange portion longitudinal direction X, and in the heat exchange portion longitudinal direction X. Cup portions C16a and C16b are provided at positions facing the cup portions C14a and C14b. As a result, the spacer 41 as shown in FIG. 18 can be used. The spacer 41 shown in FIG. 18 has the same shape as the spacer 40 shown in FIG. That is, since the spacers 40 and 41 arranged at both ends E11 and E12 of the heat exchange unit 20 can be shared, the manufacturing cost can be reduced.
 (変形例)
 次に、第4実施形態の熱交換器10の変形例について説明する。
 熱交換器10は、中間タンク空間T23,T24を有していない構造であってもよい。具体的には、第4実施形態の第1プレート片210aのカップ部C15a,C16aには貫通孔218a,219aが形成されていなくてもよい。同様に、第2プレート片210bのカップ部C15b,C16bには貫通孔218b,219bが形成されていなくてもよい。このような構造であっても、上記の(11),(12)に示される作用及び効果を奏することは可能である。
(Modification example)
Next, a modification of the heat exchanger 10 of the fourth embodiment will be described.
The heat exchanger 10 may have a structure that does not have intermediate tank spaces T23 and T24. Specifically, the through holes 218a and 219a may not be formed in the cup portions C15a and C16a of the first plate piece 210a of the fourth embodiment. Similarly, through holes 218b and 219b may not be formed in the cup portions C15b and C16b of the second plate piece 210b. Even with such a structure, it is possible to exert the actions and effects shown in the above (11) and (12).
 <第5実施形態>
 次に、熱交換器10の第5実施形態について説明する。以下、第4実施形態の熱交換器10との相違点を中心に説明する。
 図20に示されるように、本実施形態の熱交換部20の上側ダクトプレート部材61には連通路613が更に形成されている。連通路613は、第2分配タンク空間T21の上端部から熱交換部長手方向Xに延びるように形成されている。連通路613の一端部には第2分配タンク空間T21の上端部が接続されている。連通路613の他端部には第2流入パイプ25aが接続されている。本実施形態では、第2分配タンク空間T21が特定のタンク空間に相当する。
<Fifth Embodiment>
Next, a fifth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the fourth embodiment will be mainly described.
As shown in FIG. 20, a communication passage 613 is further formed in the upper duct plate member 61 of the heat exchange unit 20 of the present embodiment. The communication passage 613 is formed so as to extend from the upper end portion of the second distribution tank space T21 in the longitudinal direction X of the heat exchange portion. The upper end of the second distribution tank space T21 is connected to one end of the communication passage 613. A second inflow pipe 25a is connected to the other end of the communication passage 613. In the present embodiment, the second distribution tank space T21 corresponds to a specific tank space.
 以上説明した本実施形態の熱交換器10によれば、以下の(13)に示される作用及び効果を更に得ることができる。
 (13)本実施形態の熱交換器10では、プレート積層方向Zにおいて第2流入パイプ25aと第2分配タンク空間T21とをずれた位置に配置することができる。よって、第2流入パイプ25aの配置の自由度を向上させることができるため、第2流入パイプ25aに装着されるホース用の空間を容易に確保することが可能である。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in (13) below can be further obtained.
(13) In the heat exchanger 10 of the present embodiment, the second inflow pipe 25a and the second distribution tank space T21 can be arranged at positions shifted from each other in the plate stacking direction Z. Therefore, since the degree of freedom in arranging the second inflow pipe 25a can be improved, it is possible to easily secure a space for the hose attached to the second inflow pipe 25a.
 <第6実施形態>
 次に、熱交換器10の第6実施形態について説明する。以下、第5実施形態の熱交換器10との相違点を中心に説明する。
 流路形成プレート部材210に図3及び図4に示されるようなスリットS11,S12が形成されている場合、その部分では第1プレート片210aと第2プレート片210bとが接触しない。結果的に、第1プレート片210a及び第2プレート片210bの接触箇所が減少することとなる。各部品をろう付けにより接合させる熱交換器10では、第1プレート片210aと第2プレート片210bとの接触箇所がろう付けの起点となることにより各部品がろう付けされる。しかしながら、スリットS11,S12の形成により第1プレート片210a及び第2プレート片210bの接触箇所が減少すると、ろう付けの起点となる箇所が減少することとなる。これは、熱交換部20の内側の部分で未ろう付けとなる部分を発生させる要因となる。これを改善するために、本実施形態の熱交換器10では、流路形成プレート部材210が図21及び図22に示されるような構造を有している。
<Sixth Embodiment>
Next, a sixth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the fifth embodiment will be mainly described.
When the slits S11 and S12 as shown in FIGS. 3 and 4 are formed in the flow path forming plate member 210, the first plate piece 210a and the second plate piece 210b do not come into contact with each other at that portion. As a result, the contact points between the first plate piece 210a and the second plate piece 210b are reduced. In the heat exchanger 10 in which the parts are joined by brazing, each part is brazed by the contact point between the first plate piece 210a and the second plate piece 210b as the starting point of brazing. However, when the contact points between the first plate piece 210a and the second plate piece 210b are reduced due to the formation of the slits S11 and S12, the points serving as the starting point of brazing are reduced. This causes an unbrazed portion to be generated in the inner portion of the heat exchange portion 20. In order to improve this, in the heat exchanger 10 of the present embodiment, the flow path forming plate member 210 has a structure as shown in FIGS. 21 and 22.
 図22に示されるように、本実施形態の流路形成プレート部材210には、その高温側領域A1と低温側領域A2との間に架設部50が形成されている。架設部50は、図21に示されるような流路形成プレート部材210において複数のスリットS1の間に設けられている部分である。図22に示されるように、架設部50には、プレート積層方向Zに折り曲げられるように爪部51が形成されている。爪部51は、第1プレート片210aにおいて凹部R11,R12が突出している方向に、換言すれば各流路W11,W12の高さ方向に折り曲げられるように形成されている。図23に示されるように、爪部51は、第1プレート片210aの架設部50a及び第2プレート片210bの架設部50bを二重に折り曲げることにより形成されている。 As shown in FIG. 22, in the flow path forming plate member 210 of the present embodiment, an erection portion 50 is formed between the high temperature side region A1 and the low temperature side region A2. The erection portion 50 is a portion provided between the plurality of slits S1 in the flow path forming plate member 210 as shown in FIG. 21. As shown in FIG. 22, the erection portion 50 is formed with a claw portion 51 so as to be bent in the plate stacking direction Z. The claw portion 51 is formed so as to be bent in the direction in which the recesses R11 and R12 protrude in the first plate piece 210a, in other words, in the height direction of the respective flow paths W11 and W12. As shown in FIG. 23, the claw portion 51 is formed by double bending the erection portion 50a of the first plate piece 210a and the erection portion 50b of the second plate piece 210b.
 以上説明した本実施形態の熱交換器10によれば、以下の(14)~(17)に示される作用及び効果を更に得ることができる。
 (14)流路形成プレート部材210の爪部51において第1プレート片210aの架設部50aと第2プレート片210bの架設部50bとをより確実に接触させることができるため、その箇所でろう付けの起点が設けられ易くなる。よって、流路形成プレート部材210に複数のスリットS1が形成されている場合であっても、ろう付け性を確保することができる。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (14) to (17) can be further obtained.
(14) Since the erection portion 50a of the first plate piece 210a and the erection portion 50b of the second plate piece 210b can be more reliably brought into contact with each other at the claw portion 51 of the flow path forming plate member 210, brazing is performed at that location. The starting point of is easily provided. Therefore, even when a plurality of slits S1 are formed in the flow path forming plate member 210, the brazing property can be ensured.
 (15)上述の通り、各プレート片210a,210bの内面には、冷却水に対する腐食性を確保するために犠牲層が設けられることがある。これに対し、各プレート片210a,210bの外面には通常、犠牲層が設けられていない。なお、ここでの「内面」とは、各プレート片210a,210bの厚さ方向の両面のうち、冷却水が接触する面である。一方、「外面」とは、各プレート片210a,210bの厚さ方向の両面のうち、吸気が接触する面である。このようなプレート片210a,210bにおいて架設部50a,50bを折り曲げる際に、仮に架設部50a,50bの内面と外面とが接触すると、架設部50a,50bの内面の犠牲層が外面に接触するため、架設部50a,50bの外面の耐腐食性が低下する。この点、本実施形態の熱交換器10では、図23に示されるように、第1プレート片210aの架設部50a及び第2プレート片210bの架設部50bが二重に折り曲げられることにより爪部51が形成されているため、架設部50a,50bの内面と外面との接触を回避することができる。よって、上述のような架設部50a,50bの外面の耐腐食性の低下を回避することができる。 (15) As described above, a sacrificial layer may be provided on the inner surface of each of the plate pieces 210a and 210b in order to ensure corrosiveness to cooling water. On the other hand, the outer surface of each plate piece 210a, 210b is usually not provided with a sacrificial layer. The "inner surface" here is the surface of the plate pieces 210a and 210b in the thickness direction that the cooling water comes into contact with. On the other hand, the "outer surface" is the surface of each of the plate pieces 210a and 210b in the thickness direction that the intake air comes into contact with. When the erection portions 50a and 50b are bent in such plate pieces 210a and 210b, if the inner surface and the outer surface of the erection portions 50a and 50b come into contact with each other, the sacrificial layer on the inner surface of the erection portions 50a and 50b comes into contact with the outer surface. , The corrosion resistance of the outer surfaces of the erection portions 50a and 50b is lowered. In this regard, in the heat exchanger 10 of the present embodiment, as shown in FIG. 23, the erection portion 50a of the first plate piece 210a and the erection portion 50b of the second plate piece 210b are doubly bent to form a claw portion. Since the 51 is formed, it is possible to avoid contact between the inner surface and the outer surface of the erection portions 50a and 50b. Therefore, it is possible to avoid a decrease in corrosion resistance of the outer surfaces of the erection portions 50a and 50b as described above.
 (16)爪部51は各流路W11,W12の高さ方向に折り曲げられるように形成されている。これにより、プレート積層方向Zにおける流路形成プレート部材210からの爪部51の飛び出しを回避できるため、例えば熱交換器10の製造の際に爪部51が他部品と接触し難くなる。よって、爪部51が破損し難くなる。 (16) The claw portion 51 is formed so as to be bent in the height direction of each of the flow paths W11 and W12. As a result, it is possible to prevent the claw portion 51 from protruding from the flow path forming plate member 210 in the plate stacking direction Z, so that the claw portion 51 is less likely to come into contact with other parts, for example, when manufacturing the heat exchanger 10. Therefore, the claw portion 51 is less likely to be damaged.
 (17)図21に示されるように、複数の爪部51の全てがプレート積層方向Zの一方向に折り曲げられる構造であれば、爪部51の成形が容易であるため、熱交換器10の製造性を改善することができる。
 <第7実施形態>
 次に、熱交換器10の第7実施形態について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
(17) As shown in FIG. 21, if all of the plurality of claws 51 are bent in one direction of the plate stacking direction Z, the claws 51 can be easily formed, so that the heat exchanger 10 can be formed. Manufacturability can be improved.
<7th Embodiment>
Next, a seventh embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図24に示されるように、本実施形態の第1プレート片210aの高温側流路W11には、高温側インナーフィン216に代えて、複数の突出部70が形成されている。
 以上説明した本実施形態の熱交換器10によれば、以下の(18)に示される作用及び効果を得ることができる。
As shown in FIG. 24, a plurality of protrusions 70 are formed in the high temperature side flow path W11 of the first plate piece 210a of the present embodiment in place of the high temperature side inner fins 216.
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in (18) below can be obtained.
 (18)高温側流路W11にインナーフィン216が配置されていないため、高温側流路W11の通水抵抗を低下させることができる。また、インナーフィン216を排除することにより冷却水に対する伝熱面積が減ることとなるが、本実施形態の熱交換器10では、複数の突出部70により冷却水の乱流を促進することで熱伝達率を上昇させることができる。 (18) Since the inner fin 216 is not arranged in the high temperature side flow path W11, the water flow resistance of the high temperature side flow path W11 can be reduced. Further, by eliminating the inner fin 216, the heat transfer area for the cooling water is reduced, but in the heat exchanger 10 of the present embodiment, the heat is promoted by promoting the turbulent flow of the cooling water by the plurality of protruding portions 70. The transmission rate can be increased.
 <第8実施形態>
 次に、熱交換器10の第8実施形態について説明する。
 各実施形態の熱交換器10は、車両の内燃機関に供給される過給吸気と冷却水とで熱交換を行う熱交換器として用いることが可能であるが、これに代えて、例えば燃料電池に供給される過給吸気と冷却水とで熱交換を行う熱交換器としても用いることが可能である。なお、各実施形態の熱交換器10が適用可能な燃料電池は、車両に搭載される燃料電池に限らず、車両以外に搭載される燃料電池であってもよい。一例として、各実施形態の熱交換器10が燃料電池車両に搭載された場合の構成について以下に説明する。
<8th Embodiment>
Next, an eighth embodiment of the heat exchanger 10 will be described.
The heat exchanger 10 of each embodiment can be used as a heat exchanger that exchanges heat between the supercharged intake air supplied to the internal combustion engine of the vehicle and the cooling water. Instead, for example, a fuel cell. It can also be used as a heat exchanger that exchanges heat between the supercharged intake air supplied to the engine and the cooling water. The fuel cell to which the heat exchanger 10 of each embodiment is applicable is not limited to the fuel cell mounted on the vehicle, and may be a fuel cell mounted on a vehicle other than the vehicle. As an example, the configuration when the heat exchanger 10 of each embodiment is mounted on the fuel cell vehicle will be described below.
 図25に示されるように、燃料電池車両には、その燃料電池スタック81に過給吸気を供給するための吸気通路82と、燃料電池スタック81の排気を外部に排出するための排気通路83とが設けられている。吸気通路82には熱交換器10が設けられている。熱交換器10は、吸気通路82を流れる過給吸気と冷却水とを熱交換させることにより過給吸気を冷却する。 As shown in FIG. 25, the fuel cell vehicle has an intake passage 82 for supplying supercharged intake air to the fuel cell stack 81 and an exhaust passage 83 for discharging the exhaust gas of the fuel cell stack 81 to the outside. Is provided. A heat exchanger 10 is provided in the intake passage 82. The heat exchanger 10 cools the supercharged intake air by exchanging heat between the supercharged intake air flowing through the intake air passage 82 and the cooling water.
 熱交換器10は高温側熱交換部20Aと低温側熱交換部20Bとを備えている。吸気通路82において高温側熱交換部20Aは低温側熱交換部20Bよりも空気流れ方向の上流側に配置されている。高温側熱交換部20Aは、各実施形態の熱交換器10の熱交換部20において高温側流路W11が形成されている部分に相当する。高温側熱交換部20Aには第1流入パイプ24aを通じて冷却水が流入する。また、高温側熱交換部20Aを流れた冷却水は第1流出パイプ24bを通じて排出される。低温側熱交換部20Bは、各実施形態の熱交換器10の熱交換部20において低温側流路W12が形成されている部分に相当する。低温側熱交換部20Bには第2流入パイプ25aを通じて冷却水が流入する。また、低温側熱交換部20Bを流れた冷却水は第2流出パイプ25bを通じて排出される。 The heat exchanger 10 includes a high temperature side heat exchange unit 20A and a low temperature side heat exchange unit 20B. In the intake passage 82, the high temperature side heat exchange section 20A is arranged on the upstream side in the air flow direction with respect to the low temperature side heat exchange section 20B. The high temperature side heat exchange unit 20A corresponds to a portion where the high temperature side flow path W11 is formed in the heat exchange unit 20 of the heat exchanger 10 of each embodiment. Cooling water flows into the high temperature side heat exchange section 20A through the first inflow pipe 24a. Further, the cooling water that has flowed through the high temperature side heat exchange unit 20A is discharged through the first outflow pipe 24b. The low temperature side heat exchange unit 20B corresponds to a portion where the low temperature side flow path W12 is formed in the heat exchange unit 20 of the heat exchanger 10 of each embodiment. Cooling water flows into the low temperature side heat exchange section 20B through the second inflow pipe 25a. Further, the cooling water that has flowed through the low temperature side heat exchange section 20B is discharged through the second outflow pipe 25b.
 燃料電池車両には、熱交換器10に冷却水を循環させるための冷却回路90が搭載されている。冷却回路90は高温側冷却回路100と低温側冷却回路110とにより構成されている。
 高温側冷却回路100は、高温側ラジエータ101と、ポンプ102と、燃料電池スタック81と、高温側熱交換部20Aとを有している。これらの要素には高温側冷却水が循環している。高温側ラジエータ101は、その内部を流れる高温側冷却水と、その外部を流れる空気とを熱交換させることにより高温側冷却水を冷却する。ポンプ102は、高温側ラジエータ101において冷却された高温側冷却水を吸入して吐出する。燃料電池スタック81及び高温側熱交換部20Aはポンプ102に対して並列に接続されている。したがって、ポンプ102から吐出された高温側冷却水は、燃料電池スタック81及び高温側熱交換部20Aにそれぞれ供給される。燃料電池スタック81は、その熱が高温側冷却水により吸収されることで冷却される。高温側熱交換部20Aは、その内部を流れる高温側冷却水と、吸気通路82を流れる過給吸気とを熱交換させることにより過給吸気を冷却する。燃料電池スタック81及び高温側熱交換部20Aからそれぞれ排出される高温側冷却水は合流した後に高温側ラジエータ101に供給されて再び冷却される。
The fuel cell vehicle is equipped with a cooling circuit 90 for circulating cooling water in the heat exchanger 10. The cooling circuit 90 is composed of a high temperature side cooling circuit 100 and a low temperature side cooling circuit 110.
The high temperature side cooling circuit 100 includes a high temperature side radiator 101, a pump 102, a fuel cell stack 81, and a high temperature side heat exchange unit 20A. High temperature side cooling water circulates in these elements. The high temperature side radiator 101 cools the high temperature side cooling water by exchanging heat between the high temperature side cooling water flowing inside the radiator 101 and the air flowing outside the high temperature side cooling water. The pump 102 sucks in and discharges the high-temperature side cooling water cooled by the high-temperature side radiator 101. The fuel cell stack 81 and the high temperature side heat exchange unit 20A are connected in parallel to the pump 102. Therefore, the high-temperature side cooling water discharged from the pump 102 is supplied to the fuel cell stack 81 and the high-temperature side heat exchange unit 20A, respectively. The fuel cell stack 81 is cooled by absorbing its heat by the high-temperature side cooling water. The high temperature side heat exchange unit 20A cools the supercharged intake air by exchanging heat between the high temperature side cooling water flowing inside the high temperature side cooling water and the supercharged intake air flowing through the intake passage 82. The high-temperature side cooling water discharged from the fuel cell stack 81 and the high-temperature side heat exchange unit 20A, respectively, merges and is supplied to the high-temperature side radiator 101 to be cooled again.
 低温側冷却回路110は、低温側ラジエータ111と、ポンプ112と、低温側熱交換部20Bとを有している。これらの要素には低温側冷却水が循環している。低温側ラジエータ111は、その内部を流れる低温側冷却水と、その外部を流れる空気とを熱交換させることにより低温側冷却水を冷却する。ポンプ112は、低温側ラジエータ111において冷却された低温側冷却水を吸入して吐出する。ポンプ112から吐出された低温側冷却水は低温側熱交換部20Bに流入する。低温側熱交換部20Bは、その内部を流れる低温側冷却水と、吸気通路82を流れる過給吸気とを熱交換させることにより過給吸気を冷却する。低温側熱交換部20Bから排出される低温側冷却水は低温側ラジエータ111に供給されて再び冷却される。 The low temperature side cooling circuit 110 includes a low temperature side radiator 111, a pump 112, and a low temperature side heat exchange unit 20B. Cooling water on the low temperature side circulates in these elements. The low temperature side radiator 111 cools the low temperature side cooling water by exchanging heat between the low temperature side cooling water flowing inside the radiator 111 and the air flowing outside the low temperature side cooling water. The pump 112 sucks in and discharges the low temperature side cooling water cooled by the low temperature side radiator 111. The low temperature side cooling water discharged from the pump 112 flows into the low temperature side heat exchange unit 20B. The low temperature side heat exchange unit 20B cools the supercharged intake air by exchanging heat between the low temperature side cooling water flowing inside the low temperature side cooling water and the supercharged intake air flowing through the intake passage 82. The low temperature side cooling water discharged from the low temperature side heat exchange unit 20B is supplied to the low temperature side radiator 111 and is cooled again.
 この冷却回路90では、高温側冷却回路100を通じて高温側熱交換部20Aに供給される高温側冷却水の温度よりも、低温側冷却回路110を通じて低温側熱交換部20Bに供給される低温側冷却水の温度の方が低い。そのため、吸気通路82を流れる過給吸気の粗熱が高温側熱交換部20Aにおいて除去された後、その粗熱が除去された過給吸気の熱が低温側熱交換部20Bにおいて更に除去されるようになる。これにより過給吸気を効率的に冷却することができるため、燃料電池スタック81に供給される空気中の酸素密度を高めることができる。結果として、燃料電池スタック81の発電性能を向上させることができる。 In this cooling circuit 90, the temperature of the high temperature side cooling water supplied to the high temperature side heat exchange unit 20A through the high temperature side cooling circuit 100 is higher than the temperature of the low temperature side cooling water supplied to the low temperature side heat exchange unit 20B through the low temperature side cooling circuit 110. The temperature of the water is lower. Therefore, after the rough heat of the supercharged intake air flowing through the intake passage 82 is removed by the high temperature side heat exchange unit 20A, the heat of the supercharged intake air from which the rough heat is removed is further removed by the low temperature side heat exchange unit 20B. Will be. As a result, the supercharged intake air can be efficiently cooled, so that the oxygen density in the air supplied to the fuel cell stack 81 can be increased. As a result, the power generation performance of the fuel cell stack 81 can be improved.
 一方、燃料電池スタック81では、その内部に供給される空気中の酸素濃度にばらつきが存在すると、燃料電池内の発電反応において濃度過電圧が発生する結果、発電性能が低下するという懸念がある。この点、本実施形態の熱交換器10では、その過給吸気の出口側に配置される低温側熱交換部20Bにおいて低温側冷却水がUターン状に、あるいは対向流を形成して流れるため、熱交換器10を通過した過給吸気の温度を均一化し易くなるとともに、その酸素濃度も併せて均一化し易くなる。結果として、燃料電池スタック81において濃度過電圧が発生し難くなるため、燃料電池スタック81の発電性能を向上させることができる。 On the other hand, in the fuel cell stack 81, if there is a variation in the oxygen concentration in the air supplied inside the fuel cell stack 81, there is a concern that the power generation performance may deteriorate as a result of the concentration overvoltage occurring in the power generation reaction in the fuel cell. In this respect, in the heat exchanger 10 of the present embodiment, the low temperature side cooling water flows in the low temperature side heat exchange unit 20B arranged on the outlet side of the supercharged intake air in a U-turn shape or in a countercurrent form. , The temperature of the supercharged intake air that has passed through the heat exchanger 10 can be easily made uniform, and the oxygen concentration thereof can also be made uniform. As a result, the concentration overvoltage is less likely to occur in the fuel cell stack 81, so that the power generation performance of the fuel cell stack 81 can be improved.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・第3実施形態の熱交換器10では、スペーサ40,41が、別体からなる複数のスペーサ片により構成されていてもよい。例えばスペーサ40は、貫通孔401が形成されるスペーサ片、貫通孔402が形成されるスペーサ片、及び貫通孔403が形成されるスペーサ片の3つの部品により構成されていてもよい。このような構成によれば、熱交換部20の必要な箇所にのみスペーサ片を配置することができるため、スペーサ40,41に必要な材料を少なくすることができる。
<Other Embodiments>
In addition, each embodiment can also be implemented in the following embodiments.
-In the heat exchanger 10 of the third embodiment, the spacers 40 and 41 may be composed of a plurality of spacer pieces made of separate bodies. For example, the spacer 40 may be composed of three parts: a spacer piece on which the through hole 401 is formed, a spacer piece on which the through hole 402 is formed, and a spacer piece on which the through hole 403 is formed. According to such a configuration, the spacer pieces can be arranged only at the necessary positions of the heat exchange section 20, so that the materials required for the spacers 40 and 41 can be reduced.
 ・第5実施形態の熱交換器10は、第2流入パイプ25aに対して連通路613が形成されている構造に限らず、他のパイプ24a,24b,25bに対して連通部が形成されている構造であってもよい。
 ・各パイプ24a,24b,25a,25bの位置は適宜変更可能である。要は、熱交換部20の一端部E11に、第1流入パイプ24a及び第1流出パイプ24bのうちの一方の第1パイプと、第2流入パイプ25aと、第2流出パイプ25bとが設けられていればよい。また、熱交換部20の他端部E12には、第1流入パイプ24a及び第1流出パイプ24bのうちの他方の第1パイプが設けられていればよい。さらに、熱交換部20の一端部E11におけるプレート積層方向Zの一方の外面には、一方の第1パイプ、第2流入パイプ25a、及び第2流出パイプ25bのうちの2つのパイプが設けられていればよい。さらに、熱交換部20の一端部E11におけるプレート積層方向Zの他方の外面には、一方の第1パイプ、第2流入パイプ25a、及び第2流出パイプ25bのうちの残りの一つのパイプが設けられていればよい。
The heat exchanger 10 of the fifth embodiment is not limited to a structure in which a communication passage 613 is formed with respect to the second inflow pipe 25a, and a communication portion is formed with other pipes 24a, 24b, 25b. It may have a structure that is present.
-The positions of the pipes 24a, 24b, 25a, and 25b can be changed as appropriate. In short, one end E11 of the heat exchange section 20 is provided with the first pipe of one of the first inflow pipe 24a and the first outflow pipe 24b, the second inflow pipe 25a, and the second outflow pipe 25b. I just need to be there. Further, the other end E12 of the heat exchange unit 20 may be provided with the other first pipe of the first inflow pipe 24a and the first outflow pipe 24b. Further, two of the first pipe, the second inflow pipe 25a, and the second outflow pipe 25b are provided on one outer surface of the plate stacking direction Z at one end E11 of the heat exchange portion 20. Just do it. Further, on the other outer surface of the plate stacking direction Z at one end E11 of the heat exchange section 20, the remaining one of the one first pipe, the second inflow pipe 25a, and the second outflow pipe 25b is provided. It suffices if it is done.
 ・図26に示されるように、熱交換部20の一端部E11におけるプレート積層方向Zの上面20aに第1流出パイプ24b、第2流入パイプ25a、及び第2流出パイプ25bが設けられていてもよい。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
As shown in FIG. 26, even if the first outflow pipe 24b, the second inflow pipe 25a, and the second outflow pipe 25b are provided on the upper surface 20a of the plate stacking direction Z at one end E11 of the heat exchange portion 20. good.
-The present disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (10)

  1.  内燃機関又は燃料電池に導入される吸気と第1冷却水及び第2冷却水の2系統の冷却水とを熱交換させる熱交換器(10)であって、
     前記第1冷却水が流通する第1流路(W11)、及び前記第2冷却水が流通する第2流路(W12)を内部に有する複数の流路形成プレート部材(210)が積層配置されたコア部(21)を有し、前記流路形成プレート部材の内部を流れる前記第1冷却水及び前記第2冷却水と前記流路形成プレート部材の外部を流れる吸気との間で熱交換を行う熱交換部(20)と、
     前記熱交換部に前記第1冷却水を流入させる第1流入パイプ(24a)と、
     前記熱交換部から前記第1冷却水を流出させる第1流出パイプ(24b)と、
     前記熱交換部に前記第2冷却水を流入させる第2流入パイプ(25a)と、
     前記熱交換部から前記第2冷却水を流出させる第2流出パイプ(25b)と、を備え、
     複数の前記流路形成プレート部材が積層して配置される方向をプレート積層方向とし、前記熱交換部を吸気が流れる方向を吸気流れ方向とし、前記プレート積層方向及び前記吸気流れ方向の両方に直交する方向を所定方向とするとき、
     前記所定方向における前記熱交換部の一端部には、前記第1流入パイプ及び前記第1流出パイプのうちの一方の第1パイプと、前記第2流入パイプと、前記第2流出パイプとが設けられ、
     前記所定方向における前記熱交換部の他端部には、前記第1流入パイプ及び前記第1流出パイプのうちの他方の第1パイプが設けられ、
     前記熱交換部の一端部における前記プレート積層方向の一方の外面には、前記一方の第1パイプ、前記第2流入パイプ、及び前記第2流出パイプのうちの2つのパイプが設けられ、
     前記熱交換部の一端部における前記プレート積層方向の他方の外面には、前記一方の第1パイプ、前記第2流入パイプ、及び前記第2流出パイプのうちの残りの1つのパイプが設けられる
     熱交換器。
    A heat exchanger (10) that exchanges heat between the intake air introduced into an internal combustion engine or a fuel cell and the cooling water of two systems of the first cooling water and the second cooling water.
    A plurality of flow path forming plate members (210) having a first flow path (W11) through which the first cooling water flows and a second flow path (W12) through which the second cooling water flows are stacked and arranged. Heat exchange is performed between the first cooling water and the second cooling water flowing inside the flow path forming plate member and the intake air flowing outside the flow path forming plate member. The heat exchange unit (20) to be performed and
    A first inflow pipe (24a) for allowing the first cooling water to flow into the heat exchange unit,
    A first outflow pipe (24b) that allows the first cooling water to flow out from the heat exchange unit, and
    A second inflow pipe (25a) for allowing the second cooling water to flow into the heat exchange section,
    A second outflow pipe (25b) for draining the second cooling water from the heat exchange unit is provided.
    The direction in which the plurality of flow path forming plate members are stacked and arranged is the plate stacking direction, the direction in which the intake air flows through the heat exchange portion is the intake flow direction, and the direction is orthogonal to both the plate stacking direction and the intake flow direction. When the direction to do is the predetermined direction
    One of the first inflow pipe and the first outflow pipe, the second inflow pipe, and the second outflow pipe are provided at one end of the heat exchange portion in the predetermined direction. Be,
    At the other end of the heat exchange portion in the predetermined direction, the first pipe of the other of the first inflow pipe and the first outflow pipe is provided.
    Two of the one first pipe, the second inflow pipe, and the second outflow pipe are provided on one outer surface in the plate stacking direction at one end of the heat exchange portion.
    The other outer surface in the plate stacking direction at one end of the heat exchange portion is provided with the one first pipe, the second inflow pipe, and the remaining one of the second outflow pipes. Exchanger.
  2.  前記熱交換部への吸気の導入を案内、又は前記熱交換部を通過した空気を案内するガイド部(30,31)と、
     前記熱交換部に接合され、前記ガイド部が組み付けられる組み付け部材(22,23)と、を更に備え、
     前記組み付け部材は、前記熱交換部に対してろう付けにより接合されている
     請求項1に記載の熱交換器。
    A guide unit (30, 31) that guides the introduction of intake air into the heat exchange unit or guides the air that has passed through the heat exchange unit.
    An assembling member (22, 23) that is joined to the heat exchange portion and to which the guide portion is assembled is further provided.
    The heat exchanger according to claim 1, wherein the assembling member is joined to the heat exchange portion by brazing.
  3.  前記熱交換部は、前記コア部の外周を囲うように設けられるダクトケース(60)を更に有する
     請求項1又は2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, further comprising a duct case (60) provided so as to surround the outer periphery of the core portion.
  4.  前記ダクトケースは、複数のダクトプレート部材(61,62)により構成され、
     複数の前記ダクトプレート部材のうちの少なくとも一つには、前記組み付け部材に面接触する曲げ部が形成されている
     請求項3に記載の熱交換器。
    The duct case is composed of a plurality of duct plate members (61, 62).
    The heat exchanger according to claim 3, wherein at least one of the plurality of duct plate members is formed with a bent portion that comes into surface contact with the assembled member.
  5.  前記第1流入パイプ、前記第1流出パイプ、前記第2流入パイプ、及び前記第2流出パイプは、前記ダクトケースに設けられ、
     前記熱交換部は、前記第1流入パイプに流入する前記第1冷却水を複数の前記流路形成プレート部材に分配する第1分配タンク空間(T11)と、複数の前記流路形成プレート部材を通過した前記第1冷却水を集合させて前記第1流出パイプに導く第1集合タンク空間(T12)と、前記第2流入パイプに流入する前記第2冷却水を複数の前記流路形成プレート部材に分配する第2分配タンク空間(T21)と、複数の前記流路形成プレート部材を通過した前記第2冷却水を集合させて前記第2流出パイプに導く第2集合タンク空間(T22)と、を有し、
     前記第1流入パイプ、前記第1流出パイプ、前記第2流入パイプ、及び前記第2流出パイプのうちの一つのパイプを特定のパイプとし、
     前記第1分配タンク空間、前記第1集合タンク空間、前記第2分配タンク空間、及び前記第2集合タンク空間のうち、前記特定のパイプに対応するタンク空間を特定のタンク空間とするとき、
     前記特定のパイプは、前記プレート積層方向において前記特定のタンク空間とずれた位置に設けられ、
     前記ダクトケースには、前記特定のパイプと前記特定のタンク空間とを連通させる連通路(613)が形成されている
     請求項3又は4に記載の熱交換器。
    The first inflow pipe, the first outflow pipe, the second inflow pipe, and the second outflow pipe are provided in the duct case.
    The heat exchange unit includes a first distribution tank space (T11) that distributes the first cooling water flowing into the first inflow pipe to the plurality of flow path forming plate members, and the plurality of flow path forming plate members. A plurality of said flow path forming plate members, the first collecting tank space (T12) that collects the passed first cooling water and guides it to the first outflow pipe, and the second cooling water that flows into the second inflow pipe. A second distribution tank space (T21) that distributes to the second distribution tank space (T22), and a second assembly tank space (T22) that collects the second cooling water that has passed through the plurality of flow path forming plate members and guides the second cooling water to the second outflow pipe. Have,
    One of the first inflow pipe, the first outflow pipe, the second inflow pipe, and the second outflow pipe is designated as a specific pipe.
    When the tank space corresponding to the specific pipe is defined as the specific tank space among the first distribution tank space, the first assembly tank space, the second distribution tank space, and the second assembly tank space.
    The specific pipe is provided at a position deviated from the specific tank space in the plate stacking direction.
    The heat exchanger according to claim 3 or 4, wherein the duct case is formed with a communication passage (613) that connects the specific pipe and the specific tank space.
  6.  前記流路形成プレート部材は、第1プレート片(210a)及び第2プレート片(210b)により構成され、
     前記第1プレート片と前記第2プレート片との間に前記第1流路及び前記第2流路が形成され、
     前記第1プレート片の端部と前記第2プレート片の端部との間に配置されるスペーサ(40,41)を更に備える
     請求項1~5のいずれか一項に記載の熱交換器。
    The flow path forming plate member is composed of a first plate piece (210a) and a second plate piece (210b).
    The first flow path and the second flow path are formed between the first plate piece and the second plate piece.
    The heat exchanger according to any one of claims 1 to 5, further comprising a spacer (40, 41) arranged between the end of the first plate piece and the end of the second plate piece.
  7.  前記スペーサは、別体からなる複数のスペーサ片からなる
     請求項6に記載の熱交換器。
    The heat exchanger according to claim 6, wherein the spacer is composed of a plurality of spacer pieces made of separate bodies.
  8.  前記流路形成プレート部材は、前記第1冷却水を前記第1流路に流入させる第1流入部(C11a,C11b)と、前記第1流路から前記第1冷却水を流出させる第1流出部(C12a,C12b)と、前記第2冷却水を前記第2流路に流入させる第2流入部(C13a,C13b)と、前記第2流路から前記第2冷却水を流出させる第2流出部(C14a,C14b)と、を有し、
     前記所定方向における前記流路形成プレート部材の一端部には、前記第1流入部及び前記第1流出部のうちの一方と、前記第2流入部と、前記第2流出部とが形成され、
     前記所定方向における前記流路形成プレート部材の他端部には、前記第1流入部及び前記第1流出部のうちの他方と、前記第2流路において前記第2流入部から流入した前記第2冷却水の流れ方向を前記第2流出部に向かう方向に転向させる転向部(W122)とが形成され、
     前記流路形成プレート部材において前記転向部が形成されている部分には、隣接する流路形成プレートに向かって前記プレート積層方向に突出するカップ部(C15a,C16a,C15b,C16b)が設けられている
     請求項1~7のいずれか一項に記載の熱交換器。
    The flow path forming plate member includes a first inflow portion (C11a, C11b) that allows the first cooling water to flow into the first flow path, and a first outflow that causes the first cooling water to flow out from the first flow path. Parts (C12a, C12b), a second inflow portion (C13a, C13b) that allows the second cooling water to flow into the second flow path, and a second outflow that causes the second cooling water to flow out from the second flow path. It has a part (C14a, C14b) and
    One of the first inflow portion and the first outflow portion, the second inflow portion, and the second outflow portion are formed at one end of the flow path forming plate member in the predetermined direction.
    At the other end of the flow path forming plate member in the predetermined direction, the other of the first inflow portion and the first outflow portion and the first inflow from the second inflow portion in the second flow path. 2 A turning portion (W122) for turning the flow direction of the cooling water toward the second outflow portion is formed.
    A cup portion (C15a, C16a, C15b, C16b) projecting in the plate stacking direction toward the adjacent flow path forming plate is provided in the portion of the flow path forming plate member where the turning portion is formed. The heat exchanger according to any one of claims 1 to 7.
  9.  複数の前記流路形成プレート部材にそれぞれ形成される前記第2流路は、前記カップ部に形成される連通部(T23,T24)を通じて互いに連通されている
     請求項8に記載の熱交換器。
    The heat exchanger according to claim 8, wherein the second flow path formed in each of the plurality of flow path forming plate members communicates with each other through communication portions (T23, T24) formed in the cup portion.
  10.  前記流路形成プレート部材において前記転向部が形成されている部分には、前記カップ部として、前記所定方向において前記第2流入部に対向するように配置されるカップ部(C15a,C15b)と、前記所定方向において前記第2流出部に対向するように配置されるカップ部(C16a,C16b)とが設けられている
     請求項8又は9に記載の熱交換器。
    In the portion of the flow path forming plate member where the turning portion is formed, the cup portion (C15a, C15b) arranged as the cup portion so as to face the second inflow portion in the predetermined direction is used. The heat exchanger according to claim 8 or 9, which is provided with cup portions (C16a, C16b) arranged so as to face the second outflow portion in the predetermined direction.
PCT/JP2020/049067 2020-01-17 2020-12-28 Heat exchanger WO2021145210A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020005719 2020-01-17
JP2020-005719 2020-01-17
JP2020-166970 2020-10-01
JP2020166970A JP2021113666A (en) 2020-01-17 2020-10-01 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2021145210A1 true WO2021145210A1 (en) 2021-07-22

Family

ID=76863752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049067 WO2021145210A1 (en) 2020-01-17 2020-12-28 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2021145210A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545934A (en) * 2010-12-17 2013-12-26 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooling device for internal combustion engine, supply air adjustment system, and intake module
US20150129183A1 (en) * 2012-04-28 2015-05-14 Modine Manufacturing Company Heat exchanger having a cooler block and production method
JP2018105193A (en) * 2016-12-26 2018-07-05 株式会社デンソー Inter cooler
JP2018105535A (en) * 2016-12-26 2018-07-05 株式会社デンソー Intercooler
JP2018204578A (en) * 2017-06-08 2018-12-27 株式会社デンソー Heat exchanger
JP2019015200A (en) * 2017-07-05 2019-01-31 株式会社デンソー Intercooler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545934A (en) * 2010-12-17 2013-12-26 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooling device for internal combustion engine, supply air adjustment system, and intake module
US20150129183A1 (en) * 2012-04-28 2015-05-14 Modine Manufacturing Company Heat exchanger having a cooler block and production method
JP2018105193A (en) * 2016-12-26 2018-07-05 株式会社デンソー Inter cooler
JP2018105535A (en) * 2016-12-26 2018-07-05 株式会社デンソー Intercooler
JP2018204578A (en) * 2017-06-08 2018-12-27 株式会社デンソー Heat exchanger
JP2019015200A (en) * 2017-07-05 2019-01-31 株式会社デンソー Intercooler

Similar Documents

Publication Publication Date Title
US7984753B2 (en) Heat exchanger
US8985198B2 (en) Stacked/bar plate charge air cooler including inlet and outlet tanks
US6595271B2 (en) Heat exchanger of aluminum
US8020610B2 (en) Exhaust gas heat exchanger and method of operating the same
US7237605B2 (en) Heat exchanger
CN104011494B (en) Exhaust heat exchanger
US20070193732A1 (en) Heat exchanger
US20080041556A1 (en) Stacked/bar plate charge air cooler including inlet and outlet tanks
US10955197B2 (en) Structurally integral heat exchanger within a plastic housing
US20110168364A1 (en) Heat exchanger
US10697706B2 (en) Heat exchanger
WO2017098902A1 (en) Heat exchanger
US20130133866A1 (en) Heat Exchanger Plates with Integral Bypass Blocking Tabs
US20190346211A1 (en) Heat exchanger
JP5585558B2 (en) Exhaust heat exchanger
WO2013078530A1 (en) Heat exchanger plates with integral bypass blocking tabs
WO2021145210A1 (en) Heat exchanger
CN113490828B (en) Heat exchanger
US20060048930A1 (en) Heat exchanger
JP2021113666A (en) Heat exchanger
JP2012092674A (en) Intercooler
JP6365781B2 (en) Heat exchanger
US20200173726A1 (en) Heat exchanger
WO2022172638A1 (en) Heat exchanger
JP2022137670A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913450

Country of ref document: EP

Kind code of ref document: A1