WO2021145126A1 - Plant cultivation method - Google Patents

Plant cultivation method Download PDF

Info

Publication number
WO2021145126A1
WO2021145126A1 PCT/JP2020/047010 JP2020047010W WO2021145126A1 WO 2021145126 A1 WO2021145126 A1 WO 2021145126A1 JP 2020047010 W JP2020047010 W JP 2020047010W WO 2021145126 A1 WO2021145126 A1 WO 2021145126A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
nutrient solution
plant
cultivation
period
Prior art date
Application number
PCT/JP2020/047010
Other languages
French (fr)
Japanese (ja)
Inventor
理一郎 岡
宇佐美 由久
正裕 北島
Original Assignee
株式会社ファームシップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファームシップ filed Critical 株式会社ファームシップ
Priority to JP2021570690A priority Critical patent/JPWO2021145126A1/ja
Publication of WO2021145126A1 publication Critical patent/WO2021145126A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics

Definitions

  • the present invention relates to a plant cultivation method.
  • plants may be cultivated with a part of the plant in a container containing nutrient solution.
  • a tray-shaped container is placed on each stage of a multi-stage cultivation shelf to store nutrient solution in the container, and the plant to be cultivated (specifically, specifically). Seedlings) may be lined up.
  • the nutrient solution in the container is generally circulated by a circulation device (see, for example, Patent Document 1).
  • Patent Document 1 a nutrient solution tank is installed at the bottom of the cultivation shelf, and a pipe for supplying nutrient solution is laid from a pump connected to the nutrient solution tank to a container at each stage of the cultivation shelf. In addition, pipes for returning from each container to the nutrient solution tank are also laid.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to solve the problems of the above-mentioned prior art, that is, to more easily cultivate a plant using a nutrient solution stored in a container. To do.
  • the nutrient solution stored in the container is kept in the container, and the plant is cultivated in a state where at least a part of one individual plant is put in the container. It is characterized in that at least a part of the nutrient solution in the container is replaced with a new nutrient solution during the cultivation period of the plant.
  • the amount of the nutrient solution stored in one container is relatively small, and the nutrient solution in the container can be easily replaced. As described above, it becomes possible to more easily cultivate a plant using the nutrient solution stored in the container.
  • the nutrient solution in the container may be discharged from the container and a new nutrient solution may be supplied into the container in order to exchange the nutrient solution during the cultivation period. .. According to such a procedure, the nutrient solution in the container can be replaced more easily.
  • 50% wt or more of the nutrient solution in the container may be replaced with a new nutrient solution.
  • the amount of 90% wt or more is exchanged, more preferably the amount of 95% wt or more is exchanged, and particularly preferably the whole amount (a very small amount of nutrient solution remains in the container). It is better to replace (including the case).
  • the nutrient solution may be exchanged a plurality of times during the cultivation period of one individual plant in one container. At this time, it is preferable to change the nutrient solution exchange interval during the cultivation period according to the growth status of the plant.
  • the nutrient solution can be appropriately exchanged according to the growth of the plant, and as a result, the plant can be cultivated more appropriately.
  • the replacement interval of the nutrient solution during the cultivation period may be changed according to the amount of decrease in the nutrient solution in the container within the preset unit time. In this case as well, the nutrient solution can be exchanged according to the growth of the plant, and the plant can be cultivated more appropriately.
  • the first period in which the nutrient solution exchange interval is set to a predetermined time and the second period in which the nutrient solution exchange interval is set to a shorter time than the exchange interval in the first period May be included.
  • the second period is preferably a period after the first period. Since plants consume more nutrient solution as they grow, it is necessary to supply nutrient solution to plants more appropriately by shortening the nutrient solution exchange interval during the cultivation period and later periods. Can be done.
  • the exchange interval of the nutrient solution may be constant during the cultivation period.
  • the nutrient solution exchange schedule is simplified (simplified).
  • plants are cultivated in a container placed in the cultivation area, the container in the cultivation area is moved to an exchange area different from the cultivation area, and the nutrient solution in the container is moved in the exchange area. At least part of the solution can be replaced with a new nutrient solution.
  • the workability (ease of work) of the nutrient solution exchange work is improved as compared with the case where the exchange work is performed in the cultivation area.
  • the laying route of the nutrient solution supply pipe can be shortened.
  • At least a part of the nutrient solution in the container may be replaced with a new nutrient solution by using the nozzle inserted in the container.
  • the nutrient solution in the container can be appropriately replaced by the nozzle.
  • the nozzle may be inserted into the container through the opening of the container for taking the plant out of the container or the hole of the container provided with a hole at a position different from the opening. It is desirable to provide a sealing structure (a structure for preventing liquid leakage) such as a valve so that the holes are normally sealed.
  • a new nutrient solution may be supplied into the container by a supply nozzle different from the nozzle used when discharging at least a part of the nutrient solution in the container from the container.
  • a supply nozzle different from the nozzle used when discharging at least a part of the nutrient solution in the container from the container.
  • a new nutrient solution is supplied into the container by charging liquids having different components for each supply nozzle from each of the plurality of supply nozzles and mixing the liquids for each supply nozzle in the container. You may. In this case, it is preferable to change the amount of liquid charged from each of the plurality of supply nozzles according to the growth of the plant. As a result, the composition (ratio) of each component in the nutrient solution can be changed according to the growth of the plant, and the plant can be cultivated more appropriately.
  • At least one of the type of the component of the new nutrient solution supplied to the container and the concentration of the component may be changed according to the growth state of the plant.
  • the type and concentration of each component in the nutrient solution can be appropriately changed according to the growth of the plant, so that the plant can be cultivated more appropriately.
  • a plurality of containers may be used, one plant may be cultivated for each container, and the nutrient solution for each of the two or more containers may be exchanged at the same time.
  • the work efficiency (work speed) of the nutrient solution exchange can be improved by exchanging the nutrient solution for two or more containers at the same time.
  • the plant cultivation method of the present invention it is possible to more easily cultivate a plant using the nutrient solution stored in the container.
  • the plant cultivation method according to one embodiment of the present invention (the present embodiment) will be described in detail with reference to the attached FIGS. 1 to 7.
  • the embodiments described below are given for facilitating the understanding of the present invention, and do not limit the present invention. That is, the present invention may be modified or improved from the embodiments described below as long as it does not deviate from the gist thereof. Also, of course, the present invention includes an equivalent thereof.
  • upper and lower mean “upper” and “lower” in a normal use state.
  • the upper end of a container described later is used to cultivate a plant. It is the part located at the upper end of the container in the state of being closed.
  • the plant cultivation method of the present embodiment corresponds to the cultivation method by the hydroponic cultivation method, and the plant is cultivated in a state where a part or all of the plant is put in a nutrient solution. More specifically, in the plant cultivation method of the present embodiment, the nutrient solution stored in the container is retained in the container, and at least a part (specifically, the root portion) of one individual plant is contained in the container. ) Is put in and the plant is cultivated.
  • the container used in the present embodiment has a space for storing the nutrient solution inside.
  • the shape and size of the container are not particularly limited, and examples thereof include a substantially box-shaped shape as shown in FIG. 1 and a bottle-shaped shape.
  • the size of the container should be a size that can be carried.
  • the structure of the container is not limited, and for example, the lid and other parts (container body) may be separable from each other, or the lid and the container body may be integrated. good.
  • the container 10 having the shape shown in FIG. 1 will be described as an example.
  • one container 10 is used for cultivating one individual plant P.
  • the "individual” is a unit representing the number of plants P to be cultivated, and one plant P is cultivated from one seedling (that is, one individual is one strain of plant P). means).
  • one container 10 is used for one individual plant P, a plurality of plants are used in the early stage of growth (for example, the period from sowing to germination, or the period when the size of the plant P is sufficiently smaller than the container 10).
  • a case may be included in which an individual plant is cultivated in one container 10 and one individual plant is cultivated in one container 10 in the subsequent period.
  • one opening for taking out the plant P to be cultivated from the container 10 is provided in the central portion of the upper end surface of the container 10.
  • the root portion of the plant P enters the container 10 and is immersed in the nutrient solution 20 in the container 10. More specifically, the root portion of the plant P is held by a medium 14 made of rock wool or the like, and the medium 14 is housed in a cup portion 16 made of a small bowl-shaped film body. A hole is formed in the bottom of the cup portion 16, and a part of the medium 14 is exposed by the hole.
  • the diameter of the outlet 12 of the container 10 is larger than the outer diameter of the cup portion 16. Therefore, as shown in FIG. 2, the cup portion 16 passes through the take-out port 12 and enters below the liquid level of the nutrient solution 20 in the container 10. As a result, the nutrient solution 20 soaks into the medium 14 exposed from the hole at the bottom of the cup portion 16, whereby the root portion of the plant P is immersed in the nutrient solution 20.
  • the cultivation area A1 is, for example, a room provided in a building or a container for plant cultivation (hereinafter, cultivation room R), and is a predetermined range area (strictly speaking, a partitioned space) in the cultivation room R.
  • cultivation room R a container for plant cultivation
  • the plant P cultivated in the container 10 is omitted.
  • a plurality of containers 10 are placed on the mounting table 22, and one plant P is cultivated in each container 10. From the viewpoint of management, it is preferable that the plurality of containers 10 on the mounting 22 are arranged in a row as shown in FIG.
  • the number of containers 10 placed on the mounting table 22 is not particularly limited, and may be at least one or more.
  • a plurality of mounting tables 22 may be arranged side by side in the horizontal direction.
  • a plurality of mounting tables 22 may be arranged in the vertical direction like a shelf.
  • the position of the mounting table 22 on which the container 10 is placed may be determined according to the growth status of the plant P cultivated in the container 10. For example, as the growth of the plant P in the container 10 progresses, it is preferable to shift the mounting table 22 on which the container 10 is placed to the higher mounting table 22. By doing so, it is possible to manage the growth status of the plant P for each mounting table 22 (each stage).
  • the nutrient solution 20 used for hydroponic cultivation of the present embodiment is prepared by adding various nutrients to a solvent such as water and dissolving them to adjust the concentration of each component.
  • the components in 20 in the solution include nitrogen (specifically, ammoniacal nitrogen or nitrate nitrogen), phosphoric acid (P 2 O 5 ), Kari (K 2 O), lime (CaO), and magnesium oxide (specifically, ammonia nitrogen or nitrate nitrogen). MgO), manganese (MnO), boron (B 2 O 3 ), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) and the like.
  • a predetermined amount of the nutrient solution 20 is stored in the container 10 and is used in a state of staying in the container 10.
  • the inflow to the container 10 and the outflow from the container 10 do not occur, and the nutrient solution is left standing in the container 10 or flows only in the container 10.
  • the amount of the nutrient solution in the container 10 consumed for the growth of the plant P and the amount of evaporation shall be allowed.
  • At least a part of the nutrient solution 20 in the container 10 is periodically replaced with a new nutrient solution during the period in which the plant P is cultivated in the container 10.
  • a method of exchanging with a new nutrient solution the following methods (A) and (B) can be mentioned.
  • the nutrient solution 20 for initial filling and the nutrient solution 20 for replacement are both supplied by the nutrient solution supply system 30 shown in FIG.
  • a predetermined amount of water is sent from the water storage tank 32 to the mixing tank 31 by a water supply device 33 such as a pump.
  • various nutrients contained in the nutrient solution 20 are stored in the nutrient tank 34 for each type, and when the nutrient solution is supplied, a predetermined amount is taken out by a nutrient input device 35 such as a pump and charged into the compounding tank 31.
  • a nutrient input device 35 such as a pump
  • the water sent from the water storage tank 32 and the nutrients input from the nutrient tank 34 are mixed to prepare the nutrient solution 20.
  • the nutrient solution in the compounding tank 31 is pressure-fed by the compressed air sent from the compressor 36, and is conveyed to the receiving tank 38 through the pressure-feeding line 37.
  • the pumping line 37 is composed of, for example, a water-repellent tube or the like, and is laid so that there is no liquid pool in the line.
  • the receiving tank 38 of the nutrient solution supply system 30 is installed in the same room as the cultivation room R in which the cultivation area A1 is set, while the other equipment is the cultivation room R.
  • nutrient solution supply room Ra are installed in different rooms (hereinafter referred to as nutrient solution supply room Ra).
  • the present invention is not limited to this, and all the constituent devices of the nutrient solution supply system 30 may be installed in the cultivation room R.
  • each component device of the nutrient solution supply system 30 is controlled by a controller (not shown), and through the control of the controller, the amount of nutrient solution produced per supply (in other words, the amount of supply for one supply) and the supply amount thereof.
  • the component composition of the nutrient solution is adjusted.
  • the nutrient solution 20 in the container 10 is regularly exchanged a plurality of times during the cultivation period of the plant P.
  • the plant P is cultivated in each container 10 over a period of several days to several tens of days.
  • the nutrient solution 20 in the container 10 in which each plant P is cultivated is exchanged with a new nutrient solution once a day (exchange interval).
  • the frequency of exchanging the nutrient solution is not limited to once a day, and may be once every few days or twice or more a day.
  • the container 10 that has reached the nutrient solution exchange time (that is, the container 10 to be exchanged with the nutrient solution) is specified, and the container is specified. 10 is picked up from the mounting table 22 (S001).
  • the nutrient solution exchange time may be set to the same time (date and time) among all the containers 10, or may be set to a different time (date and time) for each container 10.
  • the identification information that can be read from the RFID (Radio Frequency Identifier) tag attached to the container 10, the position information of the arrangement position of the container 10, and the like are associated with the nutrient solution exchange time in advance. Then, the above information is acquired from each container 10, and the nutrient solution exchange time corresponding to the acquired information is specified.
  • the means for picking up the container 10 is not particularly limited, but for example, as shown in FIG. 3, a container 10 to be exchanged for nutrient solution is gripped by a known container gripping device 41 such as a robot arm, and the container 10 is gripped. May be placed on a transport table 42 such as a belt conveyor and transported to a predetermined location (for example, the replacement work station 44 shown in FIG. 3).
  • the exchange area A2 first, at least a part of the nutrient solution 20 remaining in the container 10 is discharged from the container 10 from the container 10 that has moved to the exchange area A2 (S003). More specifically, the plant P cultivated in the container 10 to be exchanged for nutrient solution is grasped and lifted by a robot arm or the like. As a result, there is a gap between the edge of the take-out port 12 provided at the upper end of the container 10 and the plant P (strictly speaking, the medium 14 on which the plant P is fixed and the cup portion 16 containing the plant P). Free. Through this gap, the nozzle 43 shown in FIG. 6 is inserted into the container 10.
  • the nozzle 43 it is preferable to insert the nozzle 43 to a position where the tip of the nozzle 43 comes into contact with the bottom surface of the container 10.
  • a suction mechanism (not shown) is connected to the nozzle 43, and when the suction mechanism is activated, the nutrient solution 20 in the container 10 is sucked through the nozzle. The sucked nutrient solution is collected at a predetermined final destination and then discarded.
  • the amount of nutrient solution discharged from the container 10 is preferably 50% wt or more, more preferably 90% wt or more, and 95% wt or more of the residual amount in the container 10 at that time. It is more preferably 100% wt, and particularly preferably 100% wt.
  • the discharge amount of 100% wt may include a state in which a drop-shaped nutrient solution adheres to the inner wall of the container 10 and a small amount of the nutrient solution remains in the container 10.
  • the method of discharging the nutrient solution 20 in the container 10 is not limited to the method of sucking the nutrient solution 20 by the nozzle 43, and other methods may be adopted.
  • the nutrient solution 20 in the container 10 may be directly discharged by providing a discharge port that can be opened and closed in the container 10 and opening the discharge port that is normally closed. Further, by turning the container 10 upside down, the nutrient solution 20 in the container 10 may be discharged by dropping its own weight.
  • the growth parameters of the plant P cultivated in the container 10 are measured (S004).
  • the growth parameter is a measurable index indicating the growth status of the plant P, and the growth status includes the presence or absence of a disease or the like.
  • Specific growth parameters include the weight of the plant P, the size, color and shape of each organ (leaves, stems, etc.) in the plant P, and the size (length) of the entire plant.
  • the amount of the nutrient solution 20 consumed by the plant P in one day, the residual amount of the nutrient solution 20 in the container 10, and the type of the component selectively consumed in the nutrient solution 20 are the growth status of the plant P.
  • the amount of the nutrient solution 20 discharged in step S003, the concentration of each component in the nutrient solution 20, and the like may be measured as growth parameters. Further, the state of the root may be observed or photographed as a growth parameter while the plant P is grasped and floated.
  • the growth parameter measurement step S004 is to be performed after the nutrient solution discharge step S003, but the growth parameter measurement step S004 is performed before the nutrient solution discharge step S003. May be good.
  • the weight of the entire container 10 including the plant P and the nutrient solution 20 is measured. After that, the plant P is removed from the container 10, the weight of the removed plant P or the container 10 from which the plant P is removed and the nutrient solution 20 remains is measured, and the measurement result is subtracted from the total weight of the container 10. Just do it. Alternatively, after the nutrient solution 20 is discharged from the container 10, the weight of the container 10 containing the plant P is measured, and the weights of the container 10, the medium 14, and the cup portion 16 are subtracted from the measurement result to obtain the plant P. You may find the weight of.
  • the growth parameter measuring means is not particularly limited, but it may be appropriately selected from known measuring means according to the growth parameter to be measured.
  • each organ of plant P is photographed, the photographed image is image-analyzed, and the presence or absence of disease and symptoms are determined by using a technique such as pattern matching. Can be measured.
  • the nutrient solution supply system 30 creates a new nutrient solution 20 in the manner described above (S005).
  • the amount of the new nutrient solution 20 created at this time is an amount corresponding to one exchange (in other words, the amount supplied to one container 10).
  • the conditions for preparing the nutrient solution 20 may be uniform, but may be changed according to the measurement result in step S004. Suitable.
  • the measurement result of the growth parameter measured in step S004 is transmitted to the controller of the nutrient solution supply system 30.
  • the identification information of the plant P for which the growth parameter has been measured may be read from the RFID tag or the like attached to the container 10 and transmitted to the controller together with the measurement result of the growth parameter.
  • the controller records in advance data that defines the growth conditions at each time point and the conditions for preparing the nutrient solution 20 suitable for the cultivation environment, and from the measurement results of the growth parameters and the identification information of the plant P at the present time.
  • the growth situation and cultivation environment are specified, and the conditions for preparing the nutrient solution 20 according to these are determined.
  • a new nutrient solution 20 in which the type and concentration of the components in the liquid are adjusted according to the growth state of the plant P is created. ..
  • the component composition of the nutrient solution 20 can be adjusted for each individual plant P.
  • the nutrient solution 20 supplied to the plant P suffering from a certain disease is effective for treating the disease.
  • Ingredient composition can be adjusted.
  • the nutrient solution 20 is sent to the exchange area A2 and supplied into the container 10 arranged in the exchange area A2 (S006).
  • the new nutrient solution 20 is supplied by inserting a nozzle into the container 10 and passing through the nozzle, as in the case of discharging the nutrient solution.
  • the new nutrient solution 20 is pumped to the exchange area A2 by compressed air after the amount for one exchange is created in the compounding tank 31 of the nutrient solution supply system 30.
  • the new nutrient solution 20 flows through the pumping line 37 and is temporarily stored in the receiving tank 38 installed in the exchange area A2.
  • a supply line (not shown) is connected to the receiving tank 38, and a nozzle is attached to the tip of the supply line. This nozzle is inserted into the container 10 through the gap between the edge of the take-out port 12 provided at the upper end of the container 10 and the plant P, as in the case of discharging the nutrient solution.
  • the nutrient solution in the receiving tank 38 that is, the new nutrient solution 20
  • the nutrient solution in the receiving tank 38 that is, the new nutrient solution 20
  • the new nutrient solution 20 is supplied into the container 10 by the same nozzle as the nozzle for discharging the nutrient solution 43. Therefore, at the time of transition from the nutrient solution discharge to the nutrient solution supply, the liquid supply line of the nutrient solution 20 connected to the nozzle 43 is switched from the nutrient solution discharge line to the nutrient solution supply line by a switching mechanism (not shown).
  • the nutrient solution is supplied into the container 10 by using the nozzle inserted in the container 10, but the present invention is not limited to this, and the inside of the container 10 is not limited to this, and a device or device other than the nozzle is used. 20 may be supplied to the nutrient solution 20.
  • the plant P (strictly speaking, the plant P held by the robot arm) is reinserted into the outlet 12 of the container 20 whose nutrient solution has been exchanged, and the container 20 is replaced. It is returned from the area A2 to the cultivation area A1 and placed on the mounting table 22 which was placed immediately before the nutrient solution exchange (S007).
  • one nutrient solution exchange step is completed. Then, the nutrient solution exchange step is carried out once a day during the cultivation period of the plant P in each container 10.
  • one container 10 is used for each individual plant P, and the plant P is a part (strictly speaking, a medium) thereof.
  • the root portion fixed to 14) is cultivated in a state of being immersed in the nutrient solution 20 in the container 10.
  • the nutrient solution 20 stored in one container 10 is relatively small and stays in the container 10, so that it does not need to be circulated. Therefore, in the present embodiment, it is not necessary to install a pump, a pipe, or the like for circulating nutrient solution as in Patent Document 1, and management of these is also unnecessary.
  • the nutrient solution in the container 10 is small, the nutrient solution can be easily replaced.
  • the plant P can be cultivated more easily and efficiently using the nutrient solution 20 stored in the container 10.
  • the management and handling of the nutrient solution 20 (specifically, the retention, discharge and supply of the nutrient solution 20 in the container 10) can be performed for each container, in other words, for each individual plant. ..
  • the nutrient solution 20 can be appropriately managed and handled according to the growth status of each plant P.
  • unnecessary components in the nutrient solution 20 for example, organic acids such as citric acid discharged into the nutrient solution 20 by the plant P during the growth process
  • the embodiments described above are merely examples of the plant cultivation method of the present invention, and examples of the plant cultivation method of the present invention other than the above-described embodiments can be considered.
  • the cycle that is, the exchange interval
  • the exchange interval of the nutrient solution 20 during the cultivation period may be changed.
  • Two periods may be included.
  • the second period is a period after the first period in the cultivation period. For example, it may be replaced every 3 to 6 days in the early stage of the cultivation period (corresponding to the first period) and daily in the latter stage of the cultivation period (corresponding to the second period, for example, several days before harvesting).
  • FIGS. 7 to 10 show variations of the nutrient solution exchange pattern applied to the plant P having 14 days, 12 days, 10 days and 21 days of cultivation, respectively.
  • the number of cultivation days is the number of days from transplanting seedlings to harvesting of the plant P to be cultivated.
  • the day marked with a circle corresponds to the date of the nutrient solution exchange.
  • the replacement interval of the nutrient solution 20 does not necessarily have to be gradually shortened. That is, at least in the second period after the first period during the cultivation period, the exchange interval of the nutrient solution 20 should be shorter than the exchange interval in the first period, and in the period after the second period, the nutrient solution is exchanged.
  • the exchange interval of 20 may be longer than the exchange interval in the second period.
  • the nutrient solution 20 is exchanged at the timing when the cultivation days are 3, 7, 9, 10, 12, and 13 days. That is, in the above change pattern, the replacement interval of the nutrient solution 20 is shortened to 1 day, then extended to 2 days, and then shortened to 1 day again.
  • the exchange interval of the nutrient solution 20 may be appropriately changed for each strain (for each individual) as shown in FIGS. 7 to 10. .. This is because the cultivation environment (for example, temperature or humidity) can change depending on the cultivation place, and the growth status of each plant P can also change depending on the place.
  • the cultivation environment for example, temperature or humidity
  • the replacement interval of the nutrient solution 20 during the cultivation period may be changed according to the amount of decrease of the nutrient solution 20 in the container 10 in a preset unit time (for example, one day or several days).
  • the amount of decrease in the nutrient solution 20 in a unit time can be specified from the change in the liquid level of the nutrient solution 20 in the container 10, the weight of the nutrient solution 20 remaining in the container 10, and the like. Then, when the amount of decrease in the nutrient solution 20 in a unit time becomes large, the replacement interval may be shortened.
  • a plurality of containers 10 are arranged on the mounting table 22, one plant P is cultivated in each container 10, and one container 10 is used when exchanging the nutrient solution 20. It was decided to pick up and carry out a series of steps related to nutrient solution exchange for each container 10.
  • the present invention is not limited to this, and the nutrient solution exchange for two or more containers 10 may be performed all at once by using a plurality of nozzles at a time. In this way, the nutrient solution exchange for the plurality of containers 10 can be performed more efficiently (faster).
  • the nozzle in order to discharge and supply the nutrient solution 20, the nozzle is inserted into the container 10 through an opening (that is, a take-out port 12) provided for taking out the plant P from the container 10.
  • the opening into which the nozzle is inserted is not limited to the take-out port 12, and as shown in FIG. 11, a hole (hereinafter, nozzle insertion hole 18) is provided at a position different from the take-out port 12 in the upper part of the container 10. May be good.
  • the nozzle insertion hole 18 should be provided with a sealing structure such as a valve so that the nozzle insertion hole 18 can be normally sealed (liquid leakage can be prevented).
  • the form is not limited to the form in which the nozzle is inserted into the insertion hole provided in the container 10 and put into the inside of the container 10 when the nutrient solution is discharged.
  • the container 10y when the container 10y is divided into upper and lower parts, even if the upper part (hereinafter, lid portion 11B) is removed from the lower part (hereinafter, container body 11A). good. Then, the upper end opening of the container body 11A may be opened, and the nozzle 43 may be introduced into the container body 11A through the opening.
  • the present invention when supplying the new nutrient solution 20 into the container 10, the same nozzle as the nozzle 43 for discharging the nutrient solution is used, but the present invention is not limited to this. That is, the nutrient solution may be supplied using a supply nozzle different from the nozzle 43 for discharging the nutrient solution. As a result, it is possible to prevent the new nutrient solution 20 supplied to the container 10 from becoming dirty due to contact with the nozzle 43 for discharging the nutrient solution, or to prevent foreign matter from being mixed in the nutrient solution 20.
  • a plurality of supply nozzles 48 may be used as shown in FIG.
  • a new nutrient solution 20 is supplied into the container by charging a solution having a different component (stock solution of nutrient solution) for each supply nozzle from each supply nozzle 48 and mixing the solution for each supply nozzle in the container. You may.
  • the amount of liquid input from each of the plurality of supply nozzles 48 is changed according to the growth or cultivation days of the plant, and the component ratio (blending) in the nutrient solution in the container is adjusted. Can be done.
  • a plurality of nozzle insertion holes 18 may be provided at different locations on the upper part of the container 10.
  • the container 10y which is divided into upper and lower parts, it is not always necessary to discharge the nutrient solution 20 by using a nozzle, and the container body 11A is turned upside down after removing the lid portion 11B from the container body 11A.
  • the nutrient solution 20 may be discharged with.
  • the nutrient solution 20 is supplied to the container 10 in a liquid state, but the present invention is not limited to this, and fertilizer is obtained by putting solid fertilizer in the container 10 and injecting water. May be in the form of dissolving and supplying the nutrient solution 20.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

The purpose of the present invention is to facilitate cultivation of a plant using a nutrient liquid stored in a container. In this plant cultivation method, a nutrient liquid 20 stored in a container 10 is retained in the container 20, an individual plant P is cultivated while at least a portion of the plant P is retained within the container 10, and at least a portion of the nutrient liquid 20 in the container 10 is replaced with fresh nutrient liquid during the cultivation period of the plant P.

Description

植物栽培方法Plant cultivation method
 本発明は、植物栽培方法に関する。 The present invention relates to a plant cultivation method.
 植物の水耕栽培では、養液を溜めた容器内に植物の一部を入れた状態で植物を栽培することがある。このような方法において、効率的な栽培を行うために、複数段の栽培棚の各段にトレー状の容器に載せて容器内に養液を溜め、そこに栽培対象の植物(具体的には苗)を複数並べる場合がある。この場合、容器内の養液を循環装置によって循環するのが一般的である(例えば、特許文献1参照)。 In hydroponics of plants, plants may be cultivated with a part of the plant in a container containing nutrient solution. In such a method, in order to carry out efficient cultivation, a tray-shaped container is placed on each stage of a multi-stage cultivation shelf to store nutrient solution in the container, and the plant to be cultivated (specifically, specifically). Seedlings) may be lined up. In this case, the nutrient solution in the container is generally circulated by a circulation device (see, for example, Patent Document 1).
 特許文献1では、栽培棚の最下段に養液槽を設置し、養液槽に接続されたポンプから栽培棚の各段の容器に向かって養液供給用の配管が敷設されている。また、各容器から養液槽に向かって返送用の配管も敷設されている。 In Patent Document 1, a nutrient solution tank is installed at the bottom of the cultivation shelf, and a pipe for supplying nutrient solution is laid from a pump connected to the nutrient solution tank to a container at each stage of the cultivation shelf. In addition, pipes for returning from each container to the nutrient solution tank are also laid.
特開2016-136919号公報Japanese Unexamined Patent Publication No. 2016-136919
 しかしながら、特許文献1に記載の技術のように、容器内の養液を循環させる場合には、循環経路中に養液を流す分、養液の使用量が多くなってしまう。また、ポンプ等の送液設備及び配管等が必要となるので、設備コストが嵩んでしまう。また、養液を循環させる水耕栽培では、栽培過程において植物が養液中に排出する不要成分(例えば、クエン酸等の有機酸)を除去することが困難となる。
 以上に述べた問題は、一つの容器内で栽培する植物の個体数が増えるほど、顕著となる。
However, when the nutrient solution in the container is circulated as in the technique described in Patent Document 1, the amount of the nutrient solution used increases by the amount of the nutrient solution flowing in the circulation path. In addition, since liquid feeding equipment such as a pump and piping are required, the equipment cost increases. Further, in hydroponics in which the nutrient solution is circulated, it becomes difficult to remove unnecessary components (for example, organic acids such as citric acid) that the plant discharges into the nutrient solution during the cultivation process.
The above-mentioned problems become more remarkable as the number of plants cultivated in one container increases.
 本発明は、上記の事情に鑑みてなされたものであり、その目的は、上記従来技術の問題点を解決すること、すなわち、容器内に溜めた養液を用いた植物の栽培をより容易に行うことである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the problems of the above-mentioned prior art, that is, to more easily cultivate a plant using a nutrient solution stored in a container. To do.
 上記の目的を達成するために、本発明の植物栽培方法は、容器内に溜めた養液を容器内に留め、一個体の植物の少なくとも一部を容器内に入れた状態で植物を栽培し、植物の栽培期間中に、容器内の養液の少なくとも一部を新たな養液に交換することを特徴とする。
 上記の方法によれば、容器内の養液を循環させる必要がないので、養液循環用のポンプ及び配管等を設置する必要がなく、これらの機器の管理も不要となる。また、容器内で栽培される植物が一個体であるため、一つの容器内に溜められる養液の量も比較的少なくなり、容器内の養液を容易に交換することができる。以上により、容器内に溜めた養液を用いた植物の栽培をより容易に行うことが可能となる。
In order to achieve the above object, in the plant cultivation method of the present invention, the nutrient solution stored in the container is kept in the container, and the plant is cultivated in a state where at least a part of one individual plant is put in the container. It is characterized in that at least a part of the nutrient solution in the container is replaced with a new nutrient solution during the cultivation period of the plant.
According to the above method, since it is not necessary to circulate the nutrient solution in the container, it is not necessary to install a pump, a pipe, or the like for circulating the nutrient solution, and it is not necessary to manage these devices. Further, since one plant is cultivated in the container, the amount of the nutrient solution stored in one container is relatively small, and the nutrient solution in the container can be easily replaced. As described above, it becomes possible to more easily cultivate a plant using the nutrient solution stored in the container.
 また、本発明の植物栽培方法において、栽培期間中における養液の交換のために、容器内の養液の少なくとも一部を容器から排出し、容器内に新たな養液を供給してもよい。このような手順によれば、容器内の養液をより簡単に交換することができる。 Further, in the plant cultivation method of the present invention, at least a part of the nutrient solution in the container may be discharged from the container and a new nutrient solution may be supplied into the container in order to exchange the nutrient solution during the cultivation period. .. According to such a procedure, the nutrient solution in the container can be replaced more easily.
 また、本発明の植物栽培方法において、容器内の養液のうち、50%wt以上の量を新たな養液に交換してもよい。好ましくは、90%wt以上の量を交換するのがよく、より好ましくは、95%wt以上の量を交換するのがよく、特に好ましくは、全量(容器内にごく僅かの養液が残留する場合も含む)を交換するのがよい。 Further, in the plant cultivation method of the present invention, 50% wt or more of the nutrient solution in the container may be replaced with a new nutrient solution. Preferably, the amount of 90% wt or more is exchanged, more preferably the amount of 95% wt or more is exchanged, and particularly preferably the whole amount (a very small amount of nutrient solution remains in the container). It is better to replace (including the case).
 また、本発明の植物栽培方法において、一つの容器における一個体の植物の栽培期間中に、養液の交換を複数回行ってもよい。このときに、植物の成長状況に応じて、栽培期間中における養液の交換間隔を変えると好適である。この場合には、植物の成長に応じて養液を適宜交換することができ、結果として、植物がより適切に栽培されるようになる。
 または、予め設定された単位時間内における容器内での養液の減少量に応じて、栽培期間中における養液の交換間隔を変えてもよい。この場合にも、植物の成長に合わせて養液を交換し、植物をより適切に栽培することができる。
Further, in the plant cultivation method of the present invention, the nutrient solution may be exchanged a plurality of times during the cultivation period of one individual plant in one container. At this time, it is preferable to change the nutrient solution exchange interval during the cultivation period according to the growth status of the plant. In this case, the nutrient solution can be appropriately exchanged according to the growth of the plant, and as a result, the plant can be cultivated more appropriately.
Alternatively, the replacement interval of the nutrient solution during the cultivation period may be changed according to the amount of decrease in the nutrient solution in the container within the preset unit time. In this case as well, the nutrient solution can be exchanged according to the growth of the plant, and the plant can be cultivated more appropriately.
 さらに、栽培期間中には、養液の交換間隔が所定時間に設定された第1期間と、養液の交換間隔が第1期間における交換間隔よりも短い時間に設定された第2期間とが含まれてもよい。この場合、栽培期間において、第2期間は、第1期間よりも後の期間であると好適である。植物は、成長するに従って、より多くの養液を消費するため、栽培期間中、より後の期間において養液の交換間隔を短くすることで、植物に対して養液をより適切に供給することができる。 Further, during the cultivation period, the first period in which the nutrient solution exchange interval is set to a predetermined time and the second period in which the nutrient solution exchange interval is set to a shorter time than the exchange interval in the first period May be included. In this case, in the cultivation period, the second period is preferably a period after the first period. Since plants consume more nutrient solution as they grow, it is necessary to supply nutrient solution to plants more appropriately by shortening the nutrient solution exchange interval during the cultivation period and later periods. Can be done.
 また、本発明の植物栽培方法において、栽培期間中における養液の交換間隔が一定であってもよい。この場合には、養液交換のスケジュールが簡素化される(シンプルになる)。 Further, in the plant cultivation method of the present invention, the exchange interval of the nutrient solution may be constant during the cultivation period. In this case, the nutrient solution exchange schedule is simplified (simplified).
 また、本発明の植物栽培方法において、栽培エリアに置かれた容器にて植物を栽培し、栽培エリアにある容器を、栽培エリアとは異なる交換エリアを移動させ、交換エリアにおいて容器内の養液の少なくとも一部を新たな養液に交換することができる。このように栽培エリアと交換エリアとが分かれていることにより、養液の交換作業の作業性(作業のしやすさ)が、栽培エリア内で当該交換作業を行うケースよりも良くなる。さらにまた、上記の構成を採用することで、養液供給用の配管について、敷設経路を短くすることができる。 Further, in the plant cultivation method of the present invention, plants are cultivated in a container placed in the cultivation area, the container in the cultivation area is moved to an exchange area different from the cultivation area, and the nutrient solution in the container is moved in the exchange area. At least part of the solution can be replaced with a new nutrient solution. By separating the cultivation area and the exchange area in this way, the workability (ease of work) of the nutrient solution exchange work is improved as compared with the case where the exchange work is performed in the cultivation area. Furthermore, by adopting the above configuration, the laying route of the nutrient solution supply pipe can be shortened.
 また、本発明の植物栽培方法において、容器内に挿入したノズルを用いて、容器内の養液の少なくとも一部を新たな養液に交換してもよい。これにより、容器内の養液をノズルによって適切に交換することができる。 Further, in the plant cultivation method of the present invention, at least a part of the nutrient solution in the container may be replaced with a new nutrient solution by using the nozzle inserted in the container. As a result, the nutrient solution in the container can be appropriately replaced by the nozzle.
 なお、上記の構成において、植物を容器の外に取り出すための容器の開口、又は、開口とは異なる位置に孔が設けられた容器の孔を通じて、ノズルを容器内に挿入してもよい。なお、孔については、通常時には封止されるように弁等の封止構造(液漏洩を防止する構造)を設けておくのが望ましい。 In the above configuration, the nozzle may be inserted into the container through the opening of the container for taking the plant out of the container or the hole of the container provided with a hole at a position different from the opening. It is desirable to provide a sealing structure (a structure for preventing liquid leakage) such as a valve so that the holes are normally sealed.
 また、上記の構成において、容器内の養液の少なくとも一部を容器から排出する際に用いたノズルと同一のノズルにより、容器内に新たな養液を供給すると、好適である。このような構成であれば、養液排出用のノズルと養液供給用のノズルとを別々に用意する必要がなく、その分、養液交換に用いる機器数(ノズルの本数)が少なくなる。 Further, in the above configuration, it is preferable to supply a new nutrient solution into the container by the same nozzle as the nozzle used when discharging at least a part of the nutrient solution in the container from the container. With such a configuration, it is not necessary to separately prepare a nozzle for discharging the nutrient solution and a nozzle for supplying the nutrient solution, and the number of devices (the number of nozzles) used for exchanging the nutrient solution is reduced accordingly.
 他方、容器内の養液の少なくとも一部を容器から排出する際に用いたノズルと異なる供給ノズルにより、容器内に新たな養液を供給してもよい。このように、養液排出用のノズルと養液供給用のノズルとが分かれていれば、容器に供給される新たな養液に、養液排出用のノズルが接触するのを回避することができる。この結果、供給される新たな養液において汚れ又は異物混入等を防ぐことができる。 On the other hand, a new nutrient solution may be supplied into the container by a supply nozzle different from the nozzle used when discharging at least a part of the nutrient solution in the container from the container. In this way, if the nozzle for discharging the nutrient solution and the nozzle for supplying the nutrient solution are separated, it is possible to prevent the nozzle for discharging the nutrient solution from coming into contact with the new nutrient solution supplied to the container. can. As a result, it is possible to prevent dirt or foreign matter from being mixed in the supplied new nutrient solution.
 また、上記の構成において、複数の供給ノズルの各々から、供給ノズル別に成分が異なる液を投入して供給ノズル別の液を容器内で混合させることで、容器内に新たな養液を供給してもよい。この場合、植物の成長に応じて、複数の供給ノズルの各々から投入される液の量を変更すると好適である。これにより、植物の成長に応じて養液中の各成分の配合(比率)を変えることができ、植物がより適切に栽培されるようになる。 Further, in the above configuration, a new nutrient solution is supplied into the container by charging liquids having different components for each supply nozzle from each of the plurality of supply nozzles and mixing the liquids for each supply nozzle in the container. You may. In this case, it is preferable to change the amount of liquid charged from each of the plurality of supply nozzles according to the growth of the plant. As a result, the composition (ratio) of each component in the nutrient solution can be changed according to the growth of the plant, and the plant can be cultivated more appropriately.
 また、本発明の植物栽培方法において、植物の成長状況に応じて、容器に供給される新たな養液の成分の種類、及び、成分の濃度のうちの少なくとも一つを変えてもよい。この場合には、植物の成長に応じて養液中の各成分の種類及び濃度を適宜変えることができ、植物がより適切に栽培されるようになる。 Further, in the plant cultivation method of the present invention, at least one of the type of the component of the new nutrient solution supplied to the container and the concentration of the component may be changed according to the growth state of the plant. In this case, the type and concentration of each component in the nutrient solution can be appropriately changed according to the growth of the plant, so that the plant can be cultivated more appropriately.
 また、本発明の植物栽培方法において、容器を複数用い、容器毎に植物を一個体ずつ栽培し、2個以上の容器の各々を対象とする養液の交換を同時に行ってもよい。この場合には、2個以上の容器について養液の交換を同時に行うことにより、養液交換の作業効率(作業スピード)を改善することができる。 Further, in the plant cultivation method of the present invention, a plurality of containers may be used, one plant may be cultivated for each container, and the nutrient solution for each of the two or more containers may be exchanged at the same time. In this case, the work efficiency (work speed) of the nutrient solution exchange can be improved by exchanging the nutrient solution for two or more containers at the same time.
 本発明の植物栽培方法によれば、容器内に溜めた養液を用いた植物の栽培をより容易に行うことが可能となる。 According to the plant cultivation method of the present invention, it is possible to more easily cultivate a plant using the nutrient solution stored in the container.
容器及び栽培対象の植物を示す斜視図である。It is a perspective view which shows the container and the plant to be cultivated. 容器にて植物を栽培している様子を示す断面図である。It is sectional drawing which shows the state of cultivating a plant in a container. 栽培エリアと交換エリアとの位置関係を示す平面図である。It is a top view which shows the positional relationship between a cultivation area and an exchange area. 養液供給システムの概念図である。It is a conceptual diagram of a nutrient solution supply system. 本発明の一実施形態に係る植物栽培方法の手順を示す図である。It is a figure which shows the procedure of the plant cultivation method which concerns on one Embodiment of this invention. 容器内にノズルが挿入された状態を示す断面図である。It is sectional drawing which shows the state which the nozzle is inserted in the container. 養液の交換間隔を変更した場合の第1の交換パターンである。This is the first exchange pattern when the exchange interval of the nutrient solution is changed. 養液の交換間隔を変更した場合の第2の交換パターンである。This is the second exchange pattern when the exchange interval of the nutrient solution is changed. 養液の交換間隔を変更した場合の第3の交換パターンである。This is the third exchange pattern when the exchange interval of the nutrient solution is changed. 養液の交換間隔を変更した場合の第4の交換パターンである。This is the fourth exchange pattern when the exchange interval of the nutrient solution is changed. 第一の変形例に係る容器を示す斜視図である。It is a perspective view which shows the container which concerns on the 1st modification. 第二の変形例に係る容器と、その容器内の養液を交換する手順を示す図である。It is a figure which shows the container which concerns on the 2nd modification, and the procedure of exchanging the nutrient solution in the container. 容器内の養液を交換する別の例を示す断面図である。It is sectional drawing which shows another example which exchanges the nutrient solution in a container. 第三の変形例に係る容器を示す図である。It is a figure which shows the container which concerns on the 3rd modification.
 本発明の一実施形態(本実施形態)に係る植物栽培方法について、添付の図1~7を参照しながら、詳しく説明する。
 ただし、以下に説明する実施形態は、本発明の理解を容易にするために挙げたものであり、本発明を限定するものではない。すなわち、本発明は、その趣旨を逸脱しない限りにおいて、以下に説明する実施形態から変更又は改良され得る。また、当然ながら、本発明には、その等価物が含まれる。
The plant cultivation method according to one embodiment of the present invention (the present embodiment) will be described in detail with reference to the attached FIGS. 1 to 7.
However, the embodiments described below are given for facilitating the understanding of the present invention, and do not limit the present invention. That is, the present invention may be modified or improved from the embodiments described below as long as it does not deviate from the gist thereof. Also, of course, the present invention includes an equivalent thereof.
 なお、以下の説明中、「上」及び「下」とは、通常の使用状態における「上」及び「下」を意味し、例えば、後述する容器の上端は、その容器を用いて植物を栽培している状態において容器の上端に位置する部分のことである。 In the following description, "upper" and "lower" mean "upper" and "lower" in a normal use state. For example, the upper end of a container described later is used to cultivate a plant. It is the part located at the upper end of the container in the state of being closed.
 <<本実施形態の植物栽培方法について>>
 本実施形態の植物栽培方法は、水耕栽培方式による栽培方法に該当し、植物の一部又は全部を養液に入れた状態で当該植物を栽培するものである。
 より具体的に説明すると、本実施形態の植物栽培方法では、容器内に溜めた養液を容器内に留め、その容器内に、一個体の植物の少なくとも一部(具体的には、根部分)を入れた状態で当該植物を栽培する。
<< About the plant cultivation method of this embodiment >>
The plant cultivation method of the present embodiment corresponds to the cultivation method by the hydroponic cultivation method, and the plant is cultivated in a state where a part or all of the plant is put in a nutrient solution.
More specifically, in the plant cultivation method of the present embodiment, the nutrient solution stored in the container is retained in the container, and at least a part (specifically, the root portion) of one individual plant is contained in the container. ) Is put in and the plant is cultivated.
 [容器について]
 本実施形態で用いられる容器は、その内部に養液を溜めておくためのスペースを有する。容器の形状及びサイズについては、特に限定されないが、例えば、図1に示すような略箱型の形状、あるいはボトル型の形状が挙げられる。容器のサイズは、運搬可能なサイズであるとよい。また、容器の構造についても限定されず、例えば、蓋とそれ以外の部分(容器本体)とが互いに分離可能な構造であってもよく、蓋と容器本体とが一体化した構造であってもよい。
 以下では、図1に示す形状の容器10を例に挙げて説明することとする。
[About the container]
The container used in the present embodiment has a space for storing the nutrient solution inside. The shape and size of the container are not particularly limited, and examples thereof include a substantially box-shaped shape as shown in FIG. 1 and a bottle-shaped shape. The size of the container should be a size that can be carried. Further, the structure of the container is not limited, and for example, the lid and other parts (container body) may be separable from each other, or the lid and the container body may be integrated. good.
Hereinafter, the container 10 having the shape shown in FIG. 1 will be described as an example.
 本実施形態では、図2に示すように、一個体の植物Pを栽培する上で一つの容器10が使用される。ここで、「個体」とは、栽培対象の植物Pの個数を表す単位であり、一個体の植物Pは、一個の種苗から栽培される(つまり、一個体とは、植物Pの一株を意味する)。
 なお、一個体の植物Pにあたりに一つの容器10を使用する形態には、成長初期(例えば、播種から発芽までの期間、又は植物Pのサイズが容器10に対して十分小さい期間)には複数個体の植物を一つの容器10で栽培し、それ以降の期間には一個体の植物を一つの容器10で栽培するケースも含み得る。
In this embodiment, as shown in FIG. 2, one container 10 is used for cultivating one individual plant P. Here, the "individual" is a unit representing the number of plants P to be cultivated, and one plant P is cultivated from one seedling (that is, one individual is one strain of plant P). means).
In addition, in the form in which one container 10 is used for one individual plant P, a plurality of plants are used in the early stage of growth (for example, the period from sowing to germination, or the period when the size of the plant P is sufficiently smaller than the container 10). A case may be included in which an individual plant is cultivated in one container 10 and one individual plant is cultivated in one container 10 in the subsequent period.
 容器10の上端面の中央部には、図1に示すように、栽培対象である植物Pを容器10から取り出すための開口(以下、取り出し口12)が1つ設けられている。この取り出し口12を通じて、植物Pの根部分が容器10内に入り込んで容器内10内の養液20に浸かる。より詳しく説明すると、植物Pの根部分は、ロックウール等からなる培地14によって保持されており、培地14は、小鉢型のフィルム体からなるカップ部16内に収容されている。カップ部16の底には孔が形成されており、その孔によって、培地14の一部が露出している。 As shown in FIG. 1, one opening (hereinafter referred to as an outlet 12) for taking out the plant P to be cultivated from the container 10 is provided in the central portion of the upper end surface of the container 10. Through this outlet 12, the root portion of the plant P enters the container 10 and is immersed in the nutrient solution 20 in the container 10. More specifically, the root portion of the plant P is held by a medium 14 made of rock wool or the like, and the medium 14 is housed in a cup portion 16 made of a small bowl-shaped film body. A hole is formed in the bottom of the cup portion 16, and a part of the medium 14 is exposed by the hole.
 容器10の取り出し口12の径は、カップ部16の外径よりも大きくなっている。したがって、カップ部16は、図2に示すように、取り出し口12を通過して容器10内の養液20の液面以下まで入り込む。この結果、カップ部16の底部の孔から露出している培地14に養液20が浸み込み、これによって、植物Pの根部分が養液20に浸かるようになる。 The diameter of the outlet 12 of the container 10 is larger than the outer diameter of the cup portion 16. Therefore, as shown in FIG. 2, the cup portion 16 passes through the take-out port 12 and enters below the liquid level of the nutrient solution 20 in the container 10. As a result, the nutrient solution 20 soaks into the medium 14 exposed from the hole at the bottom of the cup portion 16, whereby the root portion of the plant P is immersed in the nutrient solution 20.
 栽培中の植物Pが入れられた容器10は、図3に示すように、栽培エリアA1に設置された載置台22上に載置される。栽培エリアA1とは、例えば植物栽培用の建物又はコンテナに設けられた部屋(以下、栽培室R)にあり、栽培室Rにおける所定範囲の領域(厳密には、区画された空間)である。
 ちなみに、図3では、図示の都合上、容器10にて栽培されている植物Pを省略している。
As shown in FIG. 3, the container 10 containing the plant P under cultivation is placed on a mounting table 22 installed in the cultivation area A1. The cultivation area A1 is, for example, a room provided in a building or a container for plant cultivation (hereinafter, cultivation room R), and is a predetermined range area (strictly speaking, a partitioned space) in the cultivation room R.
Incidentally, in FIG. 3, for convenience of illustration, the plant P cultivated in the container 10 is omitted.
 載置台22には、通常、複数の容器10が載置されており、それぞれの容器10において植物Pが一個体ずつ栽培される。載置22上における複数の容器10は、管理の観点から、図3に示すように列状に並べられていると好適である。なお、載置台22上に載置される容器10の数は、特に限定されるものではなく、少なくとも1つ以上であればよい。 Normally, a plurality of containers 10 are placed on the mounting table 22, and one plant P is cultivated in each container 10. From the viewpoint of management, it is preferable that the plurality of containers 10 on the mounting 22 are arranged in a row as shown in FIG. The number of containers 10 placed on the mounting table 22 is not particularly limited, and may be at least one or more.
 また、図3に示すように複数の載置台22が水平方向に並べられて配置されていてもよい。あるいは、棚段のように上下方向に複数の載置台22が並べられた構成であってもよい。その場合には、容器10を載せる載置台22の位置を、その容器10にて栽培している植物Pの成長状況に応じて決めてもよい。例えば、容器10内の植物Pの成長が進むほど、その容器10を載せる載置台22をより上段の載置台22に移行させるとよい。こうすることで、載置台22毎(段毎)に植物Pの成長状況を管理することができる。 Further, as shown in FIG. 3, a plurality of mounting tables 22 may be arranged side by side in the horizontal direction. Alternatively, a plurality of mounting tables 22 may be arranged in the vertical direction like a shelf. In that case, the position of the mounting table 22 on which the container 10 is placed may be determined according to the growth status of the plant P cultivated in the container 10. For example, as the growth of the plant P in the container 10 progresses, it is preferable to shift the mounting table 22 on which the container 10 is placed to the higher mounting table 22. By doing so, it is possible to manage the growth status of the plant P for each mounting table 22 (each stage).
 [養液について]
 本実施形態の水耕栽培に用いられる養液20は、水等の溶媒に各種の養分を添加して溶解させて各成分の濃度等が調整されたものである。溶液中20中の成分としては、窒素(具体的には、アンモニア性窒素、又は硝酸性窒素)、リン酸(P)、加里(KO)、石灰(CaO)、苦土(MgO)、マンガン(MnO)、ホウ素(B)、鉄(Fe)、銅(Cu)、亜鉛(Zn)及びモリブデン(Mo)等が挙げられる。
[About nutrient solution]
The nutrient solution 20 used for hydroponic cultivation of the present embodiment is prepared by adding various nutrients to a solvent such as water and dissolving them to adjust the concentration of each component. The components in 20 in the solution include nitrogen (specifically, ammoniacal nitrogen or nitrate nitrogen), phosphoric acid (P 2 O 5 ), Kari (K 2 O), lime (CaO), and magnesium oxide (specifically, ammonia nitrogen or nitrate nitrogen). MgO), manganese (MnO), boron (B 2 O 3 ), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) and the like.
 養液20は、所定量だけ容器10内に溜められ、容器10内で留まった状態で使用される。ここで、容器10内で養液が留まるとは、容器10への流入及び容器10からの流出が生じず、養液が容器10内で静置している、又は容器10内のみで流動している状態を意味する。なお、容器10内の養液が植物Pの成長に消費される分、及び、蒸発する分については許容するものとする。 A predetermined amount of the nutrient solution 20 is stored in the container 10 and is used in a state of staying in the container 10. Here, when the nutrient solution stays in the container 10, the inflow to the container 10 and the outflow from the container 10 do not occur, and the nutrient solution is left standing in the container 10 or flows only in the container 10. Means the state of being. The amount of the nutrient solution in the container 10 consumed for the growth of the plant P and the amount of evaporation shall be allowed.
 そして、本実施形態では、容器10内で植物Pを栽培している期間中、定期的に容器10内の養液20の少なくとも一部を新たな養液に交換する。ここで、新たな養液に交換する方法としては、下記(A)及び(B)の方法が挙げられる。
(A)容器10の養液を容器10外に排出して廃棄し、その排出量に応じた量の養液を新たに生成して容器10内に補充(供給)する方法。
(B)容器10の養液を容器10外に取り出し、取り出した養液に対して、不純物除去のための膜処理又は清澄化処理等を実施し、且つ、消費された養分を追加的に添加した後に容器10内に戻す方法。
 以下では、上記の方法(A)を用いて容器10内の養液20を交換するケースを例に挙げて説明することとする。
Then, in the present embodiment, at least a part of the nutrient solution 20 in the container 10 is periodically replaced with a new nutrient solution during the period in which the plant P is cultivated in the container 10. Here, as a method of exchanging with a new nutrient solution, the following methods (A) and (B) can be mentioned.
(A) A method in which the nutrient solution in the container 10 is discharged to the outside of the container 10 and discarded, and a new amount of nutrient solution corresponding to the discharged amount is generated and replenished (supplied) in the container 10.
(B) The nutrient solution in the container 10 is taken out of the container 10, and the nutrient solution taken out is subjected to a film treatment or a clarification treatment for removing impurities, and the consumed nutrients are additionally added. A method of returning to the container 10 after the above.
In the following, a case where the nutrient solution 20 in the container 10 is exchanged by using the above method (A) will be described as an example.
 初期充填用の養液20、及び交換用の養液20は、いずれも、図4に示す養液供給システム30によって供給される。養液供給システム30では、貯水タンク32から所定量の水が、ポンプ等の送水装置33によって調合槽31へ送水される。また、養液20中に含まれる各種の養分が種類毎に養分タンク34に溜められており、養液供給に際し、ポンプ等の養分投入装置35によって所定量ずつ取り出されて調合槽31に投入される。 The nutrient solution 20 for initial filling and the nutrient solution 20 for replacement are both supplied by the nutrient solution supply system 30 shown in FIG. In the nutrient solution supply system 30, a predetermined amount of water is sent from the water storage tank 32 to the mixing tank 31 by a water supply device 33 such as a pump. Further, various nutrients contained in the nutrient solution 20 are stored in the nutrient tank 34 for each type, and when the nutrient solution is supplied, a predetermined amount is taken out by a nutrient input device 35 such as a pump and charged into the compounding tank 31. NS.
 調合槽31内では、貯水タンク32から送水された水と、養分タンク34から投入された養分とが調合されて養液20が作成される。調合槽31内の養液は、コンプレッサ36から送られてくる圧縮空気によって圧送され、圧送ライン37を通じて受入槽38まで搬送される。圧送ライン37は、例えば撥水性を有するチューブ等によって構成され、ライン中に液溜まり部がないように敷設されるのが好ましい。 In the compounding tank 31, the water sent from the water storage tank 32 and the nutrients input from the nutrient tank 34 are mixed to prepare the nutrient solution 20. The nutrient solution in the compounding tank 31 is pressure-fed by the compressed air sent from the compressor 36, and is conveyed to the receiving tank 38 through the pressure-feeding line 37. It is preferable that the pumping line 37 is composed of, for example, a water-repellent tube or the like, and is laid so that there is no liquid pool in the line.
 なお、本実施形態において、養液供給システム30のうち、受入槽38は、栽培エリアA1が設定された栽培室Rと同じ部屋に設置されている一方、それ以外の機器は、栽培室Rとは異なる部屋(以下、養液供給室Ra)に設置されている。ただし、これに限定されず、養液供給システム30の構成機器すべてが栽培室R内に設置されてもよい。 In the present embodiment, the receiving tank 38 of the nutrient solution supply system 30 is installed in the same room as the cultivation room R in which the cultivation area A1 is set, while the other equipment is the cultivation room R. Are installed in different rooms (hereinafter referred to as nutrient solution supply room Ra). However, the present invention is not limited to this, and all the constituent devices of the nutrient solution supply system 30 may be installed in the cultivation room R.
 また、養液供給システム30の各構成機器は、不図示のコントローラによって制御され、コントローラの制御を通じて、供給一回当たりの養液の作成量(換言すると、一回分の供給量)、及び、その養液の成分組成が調整される。 Further, each component device of the nutrient solution supply system 30 is controlled by a controller (not shown), and through the control of the controller, the amount of nutrient solution produced per supply (in other words, the amount of supply for one supply) and the supply amount thereof. The component composition of the nutrient solution is adjusted.
 [植物栽培処理の手順]
 本実施形態に係る植物栽培方法を採用した植物栽培処理では、前述したように、内部に養液20が溜められた容器10を載置台22に載置し、容器10内の養液に植物Pの根部分を浸した状態で、その植物Pを栽培する。
[Procedure of plant cultivation process]
In the plant cultivation process adopting the plant cultivation method according to the present embodiment, as described above, the container 10 in which the nutrient solution 20 is stored is placed on the mounting table 22, and the plant P is placed in the nutrient solution in the container 10. The plant P is cultivated in a state where the root portion of the plant is soaked.
 そして、本実施形態では、植物Pの栽培期間中、容器10内の養液20を定期的に複数回交換する。具体的に説明すると、それぞれの容器10において数日~数十日の期間を掛けて植物Pを栽培する。各植物Pの栽培期間中には、1日1回の頻度(交換間隔)にて、当該各植物Pが栽培されている容器10内の養液20を新たな養液と交換する。なお、養液の交換頻度は、1日1回に限定されず、数日に1回でもよく、あるいは1日に2回以上でもよい。 Then, in the present embodiment, the nutrient solution 20 in the container 10 is regularly exchanged a plurality of times during the cultivation period of the plant P. Specifically, the plant P is cultivated in each container 10 over a period of several days to several tens of days. During the cultivation period of each plant P, the nutrient solution 20 in the container 10 in which each plant P is cultivated is exchanged with a new nutrient solution once a day (exchange interval). The frequency of exchanging the nutrient solution is not limited to once a day, and may be once every few days or twice or more a day.
 以下、本実施形態に係る植物栽培処理中に行われる養液交換の工程について、図5を参照しながら、その手順を説明する。 Hereinafter, the procedure of the nutrient solution exchange step performed during the plant cultivation process according to the present embodiment will be described with reference to FIG.
 養液交換の工程では、先ず、栽培エリアA1内に置かれた複数の容器10のうち、養液交換時期を迎えた容器10(すなわち、養液交換対象の容器10)を特定し、その容器10を載置台22からピックアップする(S001)。
 ここで、養液交換時期は、すべての容器10の間で同じ時間(日時)に設定されてもよく、あるいは、容器10毎に異なった時間(日時)に設定されてもよい。後者の場合には、容器10に貼付されたRFID(Radio Frequency Identifier)タグから読み出し可能な識別情報、又は容器10の配置位置の位置情報等を、予め養液交換時期と対応付けておく。そして、各容器10から上記の情報を取得し、取得した情報と対応する養液交換時期を特定する。
In the nutrient solution exchange step, first, among the plurality of containers 10 placed in the cultivation area A1, the container 10 that has reached the nutrient solution exchange time (that is, the container 10 to be exchanged with the nutrient solution) is specified, and the container is specified. 10 is picked up from the mounting table 22 (S001).
Here, the nutrient solution exchange time may be set to the same time (date and time) among all the containers 10, or may be set to a different time (date and time) for each container 10. In the latter case, the identification information that can be read from the RFID (Radio Frequency Identifier) tag attached to the container 10, the position information of the arrangement position of the container 10, and the like are associated with the nutrient solution exchange time in advance. Then, the above information is acquired from each container 10, and the nutrient solution exchange time corresponding to the acquired information is specified.
 なお、容器10をピックアップする手段としては、特に限定されないが、例えば、図3に示すように、ロボットアーム等の公知の容器把持装置41によって養液交換対象の容器10を把持し、その容器10をベルトコンベア等の搬送台42の上に載せて所定の場所(例えば、図3に示す交換作業ステーション44)まで搬送してもよい。 The means for picking up the container 10 is not particularly limited, but for example, as shown in FIG. 3, a container 10 to be exchanged for nutrient solution is gripped by a known container gripping device 41 such as a robot arm, and the container 10 is gripped. May be placed on a transport table 42 such as a belt conveyor and transported to a predetermined location (for example, the replacement work station 44 shown in FIG. 3).
 次に、ピックアップされた容器10を交換エリアA2へ移動させる。交換エリアA2とは、容器10内の養液20を交換するための領域であり、前述の栽培エリアA1とは異なる範囲に設定されている。なお、本実施形態では、図3に示すように栽培エリアA1と交換エリアA2とが同じ栽培室R内で区画されているが、これに限定されるものではなく、上記2つのエリアが互いに異なる部屋に設けられてもよい。 Next, move the picked up container 10 to the exchange area A2. The exchange area A2 is an area for exchanging the nutrient solution 20 in the container 10, and is set in a range different from that of the cultivation area A1 described above. In the present embodiment, as shown in FIG. 3, the cultivation area A1 and the exchange area A2 are partitioned in the same cultivation room R, but the present invention is not limited to this, and the above two areas are different from each other. It may be provided in the room.
 交換エリアA2では、先ず、交換エリアA2に移動してきた容器10から、容器10内に残存する養液20の少なくとも一部を容器10から排出する(S003)。
 より詳しく説明すると、養液交換対象の容器10にて栽培されている植物Pをロボットアーム等によって把持して持ち上げる。これにより、容器10の上端に設けられた取り出し口12の縁と、植物P(厳密には、その植物Pが固定された培地14、及びそれを収容したカップ部16)との間に隙間が空く。この隙間を通じて、図6に示すノズル43を容器10内に挿入する。このとき、好ましくは、容器10の底面にノズル43の先端が接する位置までノズル43を挿入するとよい。ノズル43には、不図示の吸引機構が接続されており、吸引機構が起動すると、容器10内の養液20がノズルを通じて吸引される。吸引された養液は、所定の最終先にて回収され、その後に廃棄される。
In the exchange area A2, first, at least a part of the nutrient solution 20 remaining in the container 10 is discharged from the container 10 from the container 10 that has moved to the exchange area A2 (S003).
More specifically, the plant P cultivated in the container 10 to be exchanged for nutrient solution is grasped and lifted by a robot arm or the like. As a result, there is a gap between the edge of the take-out port 12 provided at the upper end of the container 10 and the plant P (strictly speaking, the medium 14 on which the plant P is fixed and the cup portion 16 containing the plant P). Free. Through this gap, the nozzle 43 shown in FIG. 6 is inserted into the container 10. At this time, it is preferable to insert the nozzle 43 to a position where the tip of the nozzle 43 comes into contact with the bottom surface of the container 10. A suction mechanism (not shown) is connected to the nozzle 43, and when the suction mechanism is activated, the nutrient solution 20 in the container 10 is sucked through the nozzle. The sucked nutrient solution is collected at a predetermined final destination and then discarded.
 なお、容器10から排出される養液の量は、その時点で容器10内に残存量の50%wt以上であることが好ましく、90%wt以上であることがより好ましく、95%wt以上であることがさらに好ましく、100%wtであることが特に好ましい。ここで、排出量が100%wtであるとは、容器10の内壁等に滴状の養液が付着して僅かに養液が容器10内に残存する状態も含まれ得る。 The amount of nutrient solution discharged from the container 10 is preferably 50% wt or more, more preferably 90% wt or more, and 95% wt or more of the residual amount in the container 10 at that time. It is more preferably 100% wt, and particularly preferably 100% wt. Here, the discharge amount of 100% wt may include a state in which a drop-shaped nutrient solution adheres to the inner wall of the container 10 and a small amount of the nutrient solution remains in the container 10.
 また、容器10内の養液20を排出する方法としては、ノズル43によって養液20を吸引する方法には限定されず、他の方法を採用してもよい。例えば、容器10に開閉自在な排出口を設けて、通常時には閉じている排出口を開くことで容器10内の養液20を直接排出してもよい。また、容器10を上下反転させることにより、容器10内の養液20を自重落下によって排出させてもよい。 Further, the method of discharging the nutrient solution 20 in the container 10 is not limited to the method of sucking the nutrient solution 20 by the nozzle 43, and other methods may be adopted. For example, the nutrient solution 20 in the container 10 may be directly discharged by providing a discharge port that can be opened and closed in the container 10 and opening the discharge port that is normally closed. Further, by turning the container 10 upside down, the nutrient solution 20 in the container 10 may be discharged by dropping its own weight.
 容器10内の養液20を排出している間、または排出後には、その容器10で栽培している植物Pの成長パラメータを計測する(S004)。ここで、成長パラメータとは、植物Pの成長状況を示す計測可能な指標であり、成長状況には病気の有無等が含まれる。具体的な成長パラメータとしては、植物Pの重量、植物Pにおける各器官(葉及び茎等)の大きさ、色及び形状、及び、植物全体のサイズ(丈)等が挙げられる。
 また、植物Pが1日に消費する養液20の量、容器10内の養液20の残存量、及び、養液20において選択的に消費される成分の種類は、その植物Pの成長状況に応じて変化するため、ステップS003で排出した養液20の量、及び養液20中の各成分の濃度等を成長パラメータとして計測してもよい。
 また、植物Pを把持して浮かせた状態で根の状態を成長パラメータとして観察又は撮影してもよい。
During or after discharging the nutrient solution 20 in the container 10, the growth parameters of the plant P cultivated in the container 10 are measured (S004). Here, the growth parameter is a measurable index indicating the growth status of the plant P, and the growth status includes the presence or absence of a disease or the like. Specific growth parameters include the weight of the plant P, the size, color and shape of each organ (leaves, stems, etc.) in the plant P, and the size (length) of the entire plant.
Further, the amount of the nutrient solution 20 consumed by the plant P in one day, the residual amount of the nutrient solution 20 in the container 10, and the type of the component selectively consumed in the nutrient solution 20 are the growth status of the plant P. Therefore, the amount of the nutrient solution 20 discharged in step S003, the concentration of each component in the nutrient solution 20, and the like may be measured as growth parameters.
Further, the state of the root may be observed or photographed as a growth parameter while the plant P is grasped and floated.
 なお、図5に示すフローでは、養液排出ステップS003の後に成長パラメータの計測ステップS004が行われることになっているが、養液排出ステップS003の前に成長パラメータの計測ステップS004が行われてもよい。 In the flow shown in FIG. 5, the growth parameter measurement step S004 is to be performed after the nutrient solution discharge step S003, but the growth parameter measurement step S004 is performed before the nutrient solution discharge step S003. May be good.
 また、成長パラメータとして植物Pの重量又は養液20の残存量を測定する場合には、植物P及び養液20を含む容器10全体の重量を測定する。その後に植物Pを容器10から取り外し、取り外された植物P、又は、植物Pが取り外されて養液20が残った容器10の重量を測定し、その測定結果を容器10全体の重量から差し引けばよい。
 あるいは、容器10から養液20を排出した後に、植物Pが入った状態の容器10の重量を測定し、その測定結果から容器10、培地14及びカップ部16の重量を差し引くことで、植物Pの重量を求めてもよい。
When measuring the weight of the plant P or the residual amount of the nutrient solution 20 as a growth parameter, the weight of the entire container 10 including the plant P and the nutrient solution 20 is measured. After that, the plant P is removed from the container 10, the weight of the removed plant P or the container 10 from which the plant P is removed and the nutrient solution 20 remains is measured, and the measurement result is subtracted from the total weight of the container 10. Just do it.
Alternatively, after the nutrient solution 20 is discharged from the container 10, the weight of the container 10 containing the plant P is measured, and the weights of the container 10, the medium 14, and the cup portion 16 are subtracted from the measurement result to obtain the plant P. You may find the weight of.
 なお、成長パラメータの計測手段は、特に限定されないが、計測対象の成長パラメータに応じて公知の計測手段の中から適宜選択するとよい。なお、病気の有無を成長パラメータとして計測する場合には、例えば、植物Pの各器官を撮影し、その撮影画像を画像解析してパターンマッチング等の技術を利用して病気の有無及び症状等を計測することができる。 The growth parameter measuring means is not particularly limited, but it may be appropriately selected from known measuring means according to the growth parameter to be measured. When measuring the presence or absence of disease as a growth parameter, for example, each organ of plant P is photographed, the photographed image is image-analyzed, and the presence or absence of disease and symptoms are determined by using a technique such as pattern matching. Can be measured.
 その後、養液供給システム30により、前述した要領で新たな養液20を作成する(S005)。このときに作成される新たな養液20の量は、一回の交換分(換言すると、一個の容器10に供給される分)に相当する量である。 After that, the nutrient solution supply system 30 creates a new nutrient solution 20 in the manner described above (S005). The amount of the new nutrient solution 20 created at this time is an amount corresponding to one exchange (in other words, the amount supplied to one container 10).
 また、養液20の作成条件(具体的には、量、養液中の各成分の種類及び濃度)は、一律の条件であってもよいが、ステップS004での計測結果に応じて変えると好適である。 Further, the conditions for preparing the nutrient solution 20 (specifically, the amount, the type and concentration of each component in the nutrient solution) may be uniform, but may be changed according to the measurement result in step S004. Suitable.
 詳しく説明すると、ステップS004で計測された成長パラメータの計測結果を、養液供給システム30のコントローラに送信する。このときに、成長パラメータが計測された植物Pの識別情報を、容器10に貼付されたRFIDタグ等から読み出って、成長パラメータの計測結果と併せてコントローラに送信するとよい。 Explaining in detail, the measurement result of the growth parameter measured in step S004 is transmitted to the controller of the nutrient solution supply system 30. At this time, the identification information of the plant P for which the growth parameter has been measured may be read from the RFID tag or the like attached to the container 10 and transmitted to the controller together with the measurement result of the growth parameter.
 コントローラは、各時点の成長状況及び栽培環境に適した養液20の作成条件を規定したデータを予め記録しており、送られてくる成長パラメータの計測結果及び植物Pの識別情報から、現時点の成長状況及び栽培環境を特定し、これらに応じた養液20の作成条件を決定する。
 そして、コントローラが決定した作成条件に従って養液供給システム30の各部を制御することで、植物Pの成長状況に応じて液中成分の種類及び濃度が調整された新たな養液20が作成される。これにより、植物Pの個体毎に養液20の成分組成を調整することができ、例えば、ある病気に罹患した植物Pに対して供給する養液20については、その病気を治療するのに有効な成分組成とすることができる。
The controller records in advance data that defines the growth conditions at each time point and the conditions for preparing the nutrient solution 20 suitable for the cultivation environment, and from the measurement results of the growth parameters and the identification information of the plant P at the present time. The growth situation and cultivation environment are specified, and the conditions for preparing the nutrient solution 20 according to these are determined.
Then, by controlling each part of the nutrient solution supply system 30 according to the preparation conditions determined by the controller, a new nutrient solution 20 in which the type and concentration of the components in the liquid are adjusted according to the growth state of the plant P is created. .. Thereby, the component composition of the nutrient solution 20 can be adjusted for each individual plant P. For example, the nutrient solution 20 supplied to the plant P suffering from a certain disease is effective for treating the disease. Ingredient composition can be adjusted.
 なお、植物Pの成長状況に応じて養液20を調整する際には、養液20中の成分の種類及び濃度の両方を植物Pの成長状況に応じて変えるのが好ましいが、いずれか一方のみを変えてもよい。 When adjusting the nutrient solution 20 according to the growth status of the plant P, it is preferable to change both the type and concentration of the components in the nutrient solution 20 according to the growth status of the plant P, but either one of them. You may change only.
 新たな養液20の作成が終了した後には、その養液20が、交換エリアA2に向けて送られ、交換エリアA2に配置されている容器10の中に供給される(S006)。本実施形態において、新たな養液20の供給は、養液排出と同様、容器10内にノズルを挿入し、そのノズルを通じて行われる。 After the preparation of the new nutrient solution 20 is completed, the nutrient solution 20 is sent to the exchange area A2 and supplied into the container 10 arranged in the exchange area A2 (S006). In the present embodiment, the new nutrient solution 20 is supplied by inserting a nozzle into the container 10 and passing through the nozzle, as in the case of discharging the nutrient solution.
 具体的に説明すると、新たな養液20は、養液供給システム30の調合槽31において交換一回分の量が作成された後、圧縮空気によって交換エリアA2へ圧送される。新たな養液20は、圧送ライン37内を流れ、交換エリアA2に設置された受入槽38に一時的に溜められる。また、受入槽38には不図示の供給ラインが接続されており、供給ラインの先端にはノズルが取り付けられている。このノズルを、養液排出時と同様に、容器10の上端に設けられた取り出し口12の縁と植物Pとの間の隙間を通じて、容器10内に挿入する。かかる状態で、受入槽38の養液(すなわち、新たな養液20)を、上記ノズルを通じて容器10内に供給する。 Specifically, the new nutrient solution 20 is pumped to the exchange area A2 by compressed air after the amount for one exchange is created in the compounding tank 31 of the nutrient solution supply system 30. The new nutrient solution 20 flows through the pumping line 37 and is temporarily stored in the receiving tank 38 installed in the exchange area A2. Further, a supply line (not shown) is connected to the receiving tank 38, and a nozzle is attached to the tip of the supply line. This nozzle is inserted into the container 10 through the gap between the edge of the take-out port 12 provided at the upper end of the container 10 and the plant P, as in the case of discharging the nutrient solution. In this state, the nutrient solution in the receiving tank 38 (that is, the new nutrient solution 20) is supplied into the container 10 through the nozzle.
 なお、本実施形態では、取り扱う機器数を少なくする観点から、養液排出用のノズル43と同一のノズルによって容器10内に新たな養液20を供給する。そのため、養液排出から養液供給への移行に際して、ノズル43に接続された養液20の送液ラインを不図示の切り替え機構によって養液排出用のラインから養液供給用のラインに切り替える。 In the present embodiment, from the viewpoint of reducing the number of devices to be handled, the new nutrient solution 20 is supplied into the container 10 by the same nozzle as the nozzle for discharging the nutrient solution 43. Therefore, at the time of transition from the nutrient solution discharge to the nutrient solution supply, the liquid supply line of the nutrient solution 20 connected to the nozzle 43 is switched from the nutrient solution discharge line to the nutrient solution supply line by a switching mechanism (not shown).
 また、本実施形態では、容器10内に挿入したノズルを用いて容器10内への養液供給を行うが、これに限定されるものではなく、ノズル以外の機器又は装置を用いて容器10内に養液20を供給してもよい。 Further, in the present embodiment, the nutrient solution is supplied into the container 10 by using the nozzle inserted in the container 10, but the present invention is not limited to this, and the inside of the container 10 is not limited to this, and a device or device other than the nozzle is used. 20 may be supplied to the nutrient solution 20.
 新たな養液20の供給が完了すると、養液交換済みの容器20の取り出し口12に植物P(厳密には、ロボットアームに把持されていた植物P)が挿し直され、その容器20が交換エリアA2から栽培エリアA1に戻され、養液交換直前に置かれていた載置台22に置かれる(S007)。 When the supply of the new nutrient solution 20 is completed, the plant P (strictly speaking, the plant P held by the robot arm) is reinserted into the outlet 12 of the container 20 whose nutrient solution has been exchanged, and the container 20 is replaced. It is returned from the area A2 to the cultivation area A1 and placed on the mounting table 22 which was placed immediately before the nutrient solution exchange (S007).
 上記一連のステップS001~S007が終了した時点で、一回の養液交換工程が完了する。そして、養液交換工程は、各容器10における植物Pの栽培期間中、一日一回の頻度で実施される。 When the above series of steps S001 to S007 are completed, one nutrient solution exchange step is completed. Then, the nutrient solution exchange step is carried out once a day during the cultivation period of the plant P in each container 10.
 以上までに説明してきたように、本実施形態の植物栽培方法を採用した植物栽培処理では、植物P一個体あたりに一個の容器10が用いられ、植物Pは、その一部分(厳密には、培地14に固定された根部分)が容器10内の養液20に浸かった状態で栽培される。ここで、一個の容器10に溜められる養液20は、比較的少なく、且つ容器10内で留まっているので循環させる必要がない。このため、本実施形態では、特許文献1のように養液循環用のポンプ及び配管等を設置する必要がなく、これらの管理も不要となる。
 また、容器10内の養液が少量であるので、養液の交換を容易に行うことができる。以上により、本実施形態では、より簡単に且つ効率よく、容器10内に溜めた養液20を用いて植物Pを栽培することができる。
As described above, in the plant cultivation process adopting the plant cultivation method of the present embodiment, one container 10 is used for each individual plant P, and the plant P is a part (strictly speaking, a medium) thereof. The root portion fixed to 14) is cultivated in a state of being immersed in the nutrient solution 20 in the container 10. Here, the nutrient solution 20 stored in one container 10 is relatively small and stays in the container 10, so that it does not need to be circulated. Therefore, in the present embodiment, it is not necessary to install a pump, a pipe, or the like for circulating nutrient solution as in Patent Document 1, and management of these is also unnecessary.
Moreover, since the amount of nutrient solution in the container 10 is small, the nutrient solution can be easily replaced. As described above, in the present embodiment, the plant P can be cultivated more easily and efficiently using the nutrient solution 20 stored in the container 10.
 また、本実施形態では、養液20の管理及び取り扱い(具体的には、容器10内における養液20の保持、排出及び供給)を容器単位、換言すると、植物一個体毎に行うことができる。これにより、個々の植物Pの成長状況に応じて養液20を適切に管理して取り扱うことが可能となる。
 さらに、養液20の交換により、養液20中の不要成分(例えば、植物Pが成長過程で養液20中に排出したクエン酸等の有機酸)を比較的容易に除去することが可能である。
Further, in the present embodiment, the management and handling of the nutrient solution 20 (specifically, the retention, discharge and supply of the nutrient solution 20 in the container 10) can be performed for each container, in other words, for each individual plant. .. As a result, the nutrient solution 20 can be appropriately managed and handled according to the growth status of each plant P.
Further, by exchanging the nutrient solution 20, unnecessary components in the nutrient solution 20 (for example, organic acids such as citric acid discharged into the nutrient solution 20 by the plant P during the growth process) can be removed relatively easily. be.
 <<その他の実施形態>>
 以上までに説明してきた実施形態は、本発明の植物栽培方法の一例に過ぎず、本発明の植物栽培方法について上記の実施形態以外の例も考えられ得る。
 例えば、上記の実施形態では、一つの容器10にて栽培される植物Pの栽培期間中、その容器10内の養液を交換する周期(すなわち、交換間隔)が一定であることとしたが、これに限定されるものではない。植物Pの成長状況に応じて、その栽培期間中における養液20の交換間隔を変えてもよい。
<< Other Embodiments >>
The embodiments described above are merely examples of the plant cultivation method of the present invention, and examples of the plant cultivation method of the present invention other than the above-described embodiments can be considered.
For example, in the above embodiment, during the cultivation period of the plant P cultivated in one container 10, the cycle (that is, the exchange interval) for exchanging the nutrient solution in the container 10 is constant. It is not limited to this. Depending on the growth status of the plant P, the exchange interval of the nutrient solution 20 during the cultivation period may be changed.
 一例を挙げると、栽培期間中に、養液20の交換間隔が所定時間に設定された第1期間と、養液20の交換間隔が第1期間における交換間隔よりも短い時間に設定された第2期間とを含めてもよい。ここで、第2期間は、栽培期間において、第1期間よりも後の期間である。例えば、栽培期間の初期(第1期間に相当)では3~6日毎に交換し、栽培期間の後期(第2期間に相当し、例えば、収穫前の数日間)では毎日交換してもよい。 For example, during the cultivation period, the first period in which the exchange interval of the nutrient solution 20 is set to a predetermined time and the first period in which the exchange interval of the nutrient solution 20 is set to be shorter than the exchange interval in the first period. Two periods may be included. Here, the second period is a period after the first period in the cultivation period. For example, it may be replaced every 3 to 6 days in the early stage of the cultivation period (corresponding to the first period) and daily in the latter stage of the cultivation period (corresponding to the second period, for example, several days before harvesting).
 また、栽培期間中、図7~10に示すように、栽培期間の終了時点(すなわち、収穫時点)に近付くにつれて、養液20の交換間隔が短くなってもよい。図7~10は、それぞれ、栽培日数が14日、12日、10日及び21日である植物Pに対して適用される養液交換パターンについてのバリエーションを示している。栽培日数は、栽培対象の植物Pについて、苗を移植してから収穫するまでの日数である。また、図7~10の各図に示す養液交換パターンにおいて、丸印が付けられた日が養液交換の実施日に該当する。 Further, during the cultivation period, as shown in FIGS. 7 to 10, the replacement interval of the nutrient solution 20 may be shortened as the end point of the cultivation period (that is, the harvest time) is approached. FIGS. 7 to 10 show variations of the nutrient solution exchange pattern applied to the plant P having 14 days, 12 days, 10 days and 21 days of cultivation, respectively. The number of cultivation days is the number of days from transplanting seedlings to harvesting of the plant P to be cultivated. Further, in the nutrient solution exchange patterns shown in FIGS. 7 to 10, the day marked with a circle corresponds to the date of the nutrient solution exchange.
 栽培期間中、養液20の交換間隔は、必ずしも漸次的に短くなる必要はない。つまり、少なくとも、栽培期間中の第1期間よりも後にある第2期間において、養液20の交換間隔が第1期間における交換間隔よりも短ければよく、第2期間の後の期間において、養液20の交換間隔が第2期間での交換間隔より長くなってもよい。例えば、図7において、上から3つめの養液交換パターンでは、栽培日数が3日、7日、9日、10日、12日及び13日であるタイミングで養液20を交換している。すなわち、上記の変更パターンでは、養液20の交換間隔が1日間まで短くなった後に2日間まで延び、その後、再度1日間に短縮している。 During the cultivation period, the replacement interval of the nutrient solution 20 does not necessarily have to be gradually shortened. That is, at least in the second period after the first period during the cultivation period, the exchange interval of the nutrient solution 20 should be shorter than the exchange interval in the first period, and in the period after the second period, the nutrient solution is exchanged. The exchange interval of 20 may be longer than the exchange interval in the second period. For example, in FIG. 7, in the third nutrient solution exchange pattern from the top, the nutrient solution 20 is exchanged at the timing when the cultivation days are 3, 7, 9, 10, 12, and 13 days. That is, in the above change pattern, the replacement interval of the nutrient solution 20 is shortened to 1 day, then extended to 2 days, and then shortened to 1 day again.
 また、同じ品種の植物体Pを同じ日数にて栽培する場合であっても、図7~10に示すように、養液20の交換間隔を株毎(個体毎)に適宜変更してもよい。これは、栽培場所に応じて栽培環境(例えば、気温又は湿度等)が変わり得るため、各植物Pの成長状況も場所に応じて変動し得るためである。 Further, even when the plant P of the same variety is cultivated for the same number of days, the exchange interval of the nutrient solution 20 may be appropriately changed for each strain (for each individual) as shown in FIGS. 7 to 10. .. This is because the cultivation environment (for example, temperature or humidity) can change depending on the cultivation place, and the growth status of each plant P can also change depending on the place.
 また、予め設定された単位時間(例えば、1日又は数日間等)における容器10内での養液20の減少量に応じて、栽培期間中における養液20の交換間隔を変えてもよい。単位時間における養液20の減少量は、容器10内における養液20の液面の変化、又は、容器10内に残存する養液20の重量等から特定することができる。そして、単位時間における養液20の減少量が大きくなった場合に、交換間隔をより短くするとよい。 Further, the replacement interval of the nutrient solution 20 during the cultivation period may be changed according to the amount of decrease of the nutrient solution 20 in the container 10 in a preset unit time (for example, one day or several days). The amount of decrease in the nutrient solution 20 in a unit time can be specified from the change in the liquid level of the nutrient solution 20 in the container 10, the weight of the nutrient solution 20 remaining in the container 10, and the like. Then, when the amount of decrease in the nutrient solution 20 in a unit time becomes large, the replacement interval may be shortened.
 また、上記の実施形態では、載置台22上に複数の容器10を配置し、それぞれの容器10にて植物Pを一個体ずつ栽培し、養液20を交換する際には容器10を一個ずつピックアップし、一個の容器10毎に、養液交換に係る一連のステップを実施することとした。ただし、これに限定されるものではなく、一度に複数のノズルを用いる等して、二個以上の容器10を対象とする養液交換を一斉に行ってもよい。こうすれば、複数の容器10についての養液交換をより効率よく(より速く)行うことができる。 Further, in the above embodiment, a plurality of containers 10 are arranged on the mounting table 22, one plant P is cultivated in each container 10, and one container 10 is used when exchanging the nutrient solution 20. It was decided to pick up and carry out a series of steps related to nutrient solution exchange for each container 10. However, the present invention is not limited to this, and the nutrient solution exchange for two or more containers 10 may be performed all at once by using a plurality of nozzles at a time. In this way, the nutrient solution exchange for the plurality of containers 10 can be performed more efficiently (faster).
 また、上記の実施形態では、養液20の排出及び供給を行うために、植物Pを容器10から取り出すために設けられた開口(すなわち、取り出し口12)を通じて、ノズルを容器10内に挿入することとした。ただし、ノズルが挿入される開口は、取り出し口12に限定されず、図11に示すように、容器10の上部において取り出し口12とは異なる位置に孔(以下、ノズル挿入孔18)を設けてもよい。この場合には、ノズル挿入孔18を通じてノズルを容器内10に挿入することで、容器内10の養液を容易に排出することができる。なお、ノズル挿入孔18については、通常時には封止できる(液漏洩を防止することができる)ように弁等の封止構造を設けておくのがよい。 Further, in the above embodiment, in order to discharge and supply the nutrient solution 20, the nozzle is inserted into the container 10 through an opening (that is, a take-out port 12) provided for taking out the plant P from the container 10. I decided. However, the opening into which the nozzle is inserted is not limited to the take-out port 12, and as shown in FIG. 11, a hole (hereinafter, nozzle insertion hole 18) is provided at a position different from the take-out port 12 in the upper part of the container 10. May be good. In this case, by inserting the nozzle into the container 10 through the nozzle insertion hole 18, the nutrient solution in the container 10 can be easily discharged. The nozzle insertion hole 18 should be provided with a sealing structure such as a valve so that the nozzle insertion hole 18 can be normally sealed (liquid leakage can be prevented).
 また、養液排出時、容器10に設けられた挿入孔にノズルを挿入して容器10の内部に入れる形態には限定されない。例えば、図12に示すように、容器10yが上下に二分割される構造である場合に、下側の部分(以下、容器本体11A)から上側の部分(以下、蓋部11B)を取り外してもよい。そして、容器本体11Aの上端開口を開放させた状態にし、開口から容器本体11Aの内部にノズル43を導入してもよい。この場合、容器10yを移動させる際には、容器本体内の養液20がこぼれないように容器本体11Aに蓋部11Bをセットして上端開口を塞いでおくのがよい。 Further, the form is not limited to the form in which the nozzle is inserted into the insertion hole provided in the container 10 and put into the inside of the container 10 when the nutrient solution is discharged. For example, as shown in FIG. 12, when the container 10y is divided into upper and lower parts, even if the upper part (hereinafter, lid portion 11B) is removed from the lower part (hereinafter, container body 11A). good. Then, the upper end opening of the container body 11A may be opened, and the nozzle 43 may be introduced into the container body 11A through the opening. In this case, when moving the container 10y, it is preferable to set the lid portion 11B on the container body 11A to close the upper end opening so that the nutrient solution 20 in the container body does not spill.
 また、上記の実施形態では、容器10内に新たな養液20を供給する際に、養液排出用のノズル43と同一のノズルを用いることとしたが、これに限定されるものではない。すなわち、養液排出用のノズル43とは異なる供給ノズルを用いて養液供給を行ってもよい。これにより、容器10に供給される新たな養液20が養液排出用のノズル43との接触によって汚れたり、養液20中に異物が混入したりするのを防ぐことができる。 Further, in the above embodiment, when supplying the new nutrient solution 20 into the container 10, the same nozzle as the nozzle 43 for discharging the nutrient solution is used, but the present invention is not limited to this. That is, the nutrient solution may be supplied using a supply nozzle different from the nozzle 43 for discharging the nutrient solution. As a result, it is possible to prevent the new nutrient solution 20 supplied to the container 10 from becoming dirty due to contact with the nozzle 43 for discharging the nutrient solution, or to prevent foreign matter from being mixed in the nutrient solution 20.
 また、供給ノズルを用いて養液供給を行う場合、図13に示すように、複数の供給ノズル48を用いてもよい。この場合、各供給ノズル48から、供給ノズル別に成分が異なる液(養液の原液)を投入し、供給ノズル別の液を容器内で混合させることで、容器内に新たな養液20を供給してもよい。この構成であれば、植物の成長又は栽培日数に応じて、複数の供給ノズル48の各々から投入される液の量を変更して、容器内の養液における成分比率(配合)を調整することができる。これにより、植物の成長に応じて、各種成分が適した比率(濃度)にて配合された養液20を作成し、その養液20を植物に供給することができる。 Further, when the nutrient solution is supplied using the supply nozzle, a plurality of supply nozzles 48 may be used as shown in FIG. In this case, a new nutrient solution 20 is supplied into the container by charging a solution having a different component (stock solution of nutrient solution) for each supply nozzle from each supply nozzle 48 and mixing the solution for each supply nozzle in the container. You may. With this configuration, the amount of liquid input from each of the plurality of supply nozzles 48 is changed according to the growth or cultivation days of the plant, and the component ratio (blending) in the nutrient solution in the container is adjusted. Can be done. As a result, it is possible to prepare a nutrient solution 20 in which various components are blended in an appropriate ratio (concentration) according to the growth of the plant, and supply the nutrient solution 20 to the plant.
 また、一つの供給ノズル48のみで養液供給を行う場合には、当該供給ノズル48に接続された配管内で、養液に含まれる沈殿性が高い成分が析出する可能性がある。これに対して、複数の供給ノズル48の各々から異なる成分の液を供給する場合には、仮に養液中の成分が析出したとしても、それに起因する不具合を最小限に抑えることができる。 Further, when the nutrient solution is supplied by only one supply nozzle 48, there is a possibility that highly precipitateable components contained in the nutrient solution are precipitated in the piping connected to the supply nozzle 48. On the other hand, when liquids having different components are supplied from each of the plurality of supply nozzles 48, even if the components in the nutrient solution are precipitated, problems caused by the precipitation can be minimized.
 複数の供給ノズル48を用いる場合、図14に示すように、容器10の上部において互いに異なる箇所に複数のノズル挿入孔18を設けてもよい。 When a plurality of supply nozzles 48 are used, as shown in FIG. 14, a plurality of nozzle insertion holes 18 may be provided at different locations on the upper part of the container 10.
 また、上下に二分割される容器10yを用いる場合には、必ずしもノズルを用いて養液20を排出する必要はなく、容器本体11Aから蓋部11Bを外した後に容器本体11Aを上下反転させることで養液20を排出してもよい。 Further, when using the container 10y which is divided into upper and lower parts, it is not always necessary to discharge the nutrient solution 20 by using a nozzle, and the container body 11A is turned upside down after removing the lid portion 11B from the container body 11A. The nutrient solution 20 may be discharged with.
 また、上記の実施形態では、養液20を液体状態で容器10に供給することとしたが、これに限定されるものではなく、容器10内に固形肥料を入れて水を注入することで肥料が溶解して養液20が供給される形態であってもよい。 Further, in the above embodiment, the nutrient solution 20 is supplied to the container 10 in a liquid state, but the present invention is not limited to this, and fertilizer is obtained by putting solid fertilizer in the container 10 and injecting water. May be in the form of dissolving and supplying the nutrient solution 20.
 10,10x,10y 容器
 11A 容器本体
 11B 蓋部
 12 取り出し口(開口)
 14 培地
 16 カップ部
 18 ノズル挿入孔(孔)
 20 養液
 22 載置台
 30 養液供給システム
 31 調合槽
 32 貯水タンク
 33 送水装置
 34 養分タンク
 35 養分投入装置
 36 コンプレッサ
 37 圧送ライン
 38 受入槽
 41 容器把持装置
 42 搬送台
 43 ノズル
 44 交換作業ステーション
 48 供給ノズル
 A1 栽培エリア
 A2 交換エリア
 P 植物
 R 栽培室
 Ra 養液供給室
10,10x, 10y container 11A container body 11B lid 12 outlet (opening)
14 Medium 16 Cup 18 Nozzle insertion hole (hole)
20 Nutrient solution 22 Mounting stand 30 Nutrient solution supply system 31 Mixing tank 32 Water storage tank 33 Water supply device 34 Nutrient tank 35 Nutrient input device 36 Compressor 37 Pressure feed line 38 Receiving tank 41 Container gripping device 42 Transport stand 43 Nozzle 44 Replacement work station 48 Supply Nozzle A1 Cultivation area A2 Exchange area P Plant R Cultivation room Ra Nutrient solution supply room

Claims (16)

  1.  容器内に溜めた養液を前記容器内に留め、
     一個体の植物の少なくとも一部を前記容器内に入れた状態で前記植物を栽培し、
     前記植物の栽培期間中に、前記容器内の養液の少なくとも一部を新たな養液に交換することを特徴とする植物栽培方法。
    Hold the nutrient solution stored in the container in the container and hold it in the container.
    The plant is cultivated with at least a part of one plant in the container.
    A plant cultivation method, characterized in that at least a part of the nutrient solution in the container is replaced with a new nutrient solution during the cultivation period of the plant.
  2.  前記栽培期間中における養液の交換のために、前記容器内の養液の少なくとも一部を前記容器から排出し、前記容器内に新たな養液を供給する、請求項1に記載の植物栽培方法。 The plant cultivation according to claim 1, wherein at least a part of the nutrient solution in the container is discharged from the container and a new nutrient solution is supplied into the container in order to exchange the nutrient solution during the cultivation period. Method.
  3.  前記容器内の養液のうち、50%wt以上の量を新たな養液に交換する、請求項1または2に記載の植物栽培方法。 The plant cultivation method according to claim 1 or 2, wherein 50% wt or more of the nutrient solution in the container is replaced with a new nutrient solution.
  4.  一つの前記容器における一個体の前記植物の前記栽培期間中に、養液の交換を複数回行う、請求項1乃至3のいずれか一項に記載の植物栽培方法。 The plant cultivation method according to any one of claims 1 to 3, wherein the nutrient solution is exchanged a plurality of times during the cultivation period of one individual plant in the container.
  5.  前記植物の成長状況に応じて、前記栽培期間中における養液の交換間隔を変える、請求項4に記載の植物栽培方法。 The plant cultivation method according to claim 4, wherein the replacement interval of the nutrient solution during the cultivation period is changed according to the growth state of the plant.
  6.  予め設定された単位時間内における前記容器内での養液の減少量に応じて、前記栽培期間中における養液の交換間隔を変える、請求項4に記載の植物栽培方法。 The plant cultivation method according to claim 4, wherein the replacement interval of the nutrient solution is changed during the cultivation period according to the amount of decrease in the nutrient solution in the container within a preset unit time.
  7.  前記栽培期間中には、養液の交換間隔が所定時間に設定された第1期間と、養液の交換間隔が第1期間における交換間隔よりも短い時間に設定された第2期間とが含まれ、
     前記栽培期間において、前記第2期間は、前記第1期間よりも後の期間である、請求項5又は6に記載の植物栽培方法。
    The cultivation period includes a first period in which the nutrient solution exchange interval is set to a predetermined time, and a second period in which the nutrient solution exchange interval is set to a time shorter than the exchange interval in the first period. NS,
    The plant cultivation method according to claim 5 or 6, wherein in the cultivation period, the second period is a period after the first period.
  8.  前記栽培期間中における養液の交換間隔が一定である、請求項4に記載の植物栽培方法。 The plant cultivation method according to claim 4, wherein the exchange interval of the nutrient solution is constant during the cultivation period.
  9.  栽培エリアに置かれた前記容器にて前記植物を栽培し、
     前記栽培エリアにある前記容器を、前記栽培エリアとは異なる交換エリアを移動させ、前記交換エリアにおいて前記容器内の養液の少なくとも一部を新たな養液に交換する、請求項1乃至8のいずれか一項に記載の植物栽培方法。
    The plant is cultivated in the container placed in the cultivation area, and the plant is cultivated.
    Claims 1 to 8, wherein the container in the cultivation area is moved to an exchange area different from the cultivation area, and at least a part of the nutrient solution in the container is exchanged for a new nutrient solution in the exchange area. The plant cultivation method according to any one item.
  10.  前記容器内に挿入したノズルを用いて、前記容器内の養液の少なくとも一部を新たな養液に交換する、請求項1乃至9のいずれか一項に記載の植物栽培方法。 The plant cultivation method according to any one of claims 1 to 9, wherein at least a part of the nutrient solution in the container is replaced with a new nutrient solution by using the nozzle inserted in the container.
  11.  前記植物を前記容器の外に取り出すための前記容器の開口、又は、前記開口とは異なる位置に孔が設けられた前記容器の前記孔を通じて、前記ノズルを前記容器内に挿入する、請求項10に記載の植物栽培方法。 10. The nozzle is inserted into the container through the opening of the container for taking the plant out of the container or the hole of the container provided with a hole at a position different from the opening. The plant cultivation method described in.
  12.  前記容器内の養液の少なくとも一部を前記容器から排出する際に用いた前記ノズルと同一のノズルにより、前記容器内に新たな養液を供給する、請求項10又は11に記載の植物栽培方法。 The plant cultivation according to claim 10 or 11, wherein a new nutrient solution is supplied into the container by the same nozzle as the nozzle used when discharging at least a part of the nutrient solution in the container from the container. Method.
  13.  前記容器内の養液の少なくとも一部を前記容器から排出する際に用いた前記ノズルと異なる供給ノズルにより、前記容器内に新たな養液を供給する、請求項10又は11に記載の植物栽培方法。 The plant cultivation according to claim 10 or 11, wherein a new nutrient solution is supplied into the container by a supply nozzle different from the nozzle used when discharging at least a part of the nutrient solution in the container from the container. Method.
  14.  複数の前記供給ノズルの各々から、前記供給ノズル別に成分が異なる液を投入して前記供給ノズル別の液を前記容器内で混合させることで、前記容器内に新たな養液を供給し、
     前記植物の成長に応じて、複数の前記供給ノズルの各々から投入される液の量を変更する、請求項13に記載の植物栽培方法。
    A new nutrient solution is supplied into the container by charging liquids having different components for each supply nozzle from each of the plurality of supply nozzles and mixing the liquids for each supply nozzle in the container.
    The plant cultivation method according to claim 13, wherein the amount of liquid charged from each of the plurality of supply nozzles is changed according to the growth of the plant.
  15.  前記植物の成長状況に応じて、前記容器に供給される新たな養液の成分の種類、及び、前記成分の濃度のうちの少なくとも一つを変える、請求項1乃至14のいずれか一項に記載の植物栽培方法。 According to any one of claims 1 to 14, the type of the component of the new nutrient solution supplied to the container and at least one of the concentrations of the component are changed according to the growth state of the plant. The described plant cultivation method.
  16.  前記容器を複数用い、前記容器毎に前記植物を一個体ずつ栽培し、
     2個以上の前記容器の各々を対象とする養液の交換を同時に行う、請求項1乃至15のいずれか一項に記載の植物栽培方法。
    Using a plurality of the containers, one individual of the plant was cultivated in each container.
    The plant cultivation method according to any one of claims 1 to 15, wherein the nutrient solution for each of the two or more containers is exchanged at the same time.
PCT/JP2020/047010 2020-01-15 2020-12-16 Plant cultivation method WO2021145126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570690A JPWO2021145126A1 (en) 2020-01-15 2020-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020004586 2020-01-15
JP2020-004586 2020-01-15

Publications (1)

Publication Number Publication Date
WO2021145126A1 true WO2021145126A1 (en) 2021-07-22

Family

ID=76864370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047010 WO2021145126A1 (en) 2020-01-15 2020-12-16 Plant cultivation method

Country Status (2)

Country Link
JP (1) JPWO2021145126A1 (en)
WO (1) WO2021145126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449617B1 (en) 2023-04-28 2024-03-19 株式会社日本Cgサービス Plant cultivation equipment and plant factories

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010737A1 (en) * 1978-10-31 1980-05-14 Ein-Gedi, Kvutzat Poalim Lehityashvut Haklait Shitufit B.M. Units and system for hydroponics
JPH0724023U (en) * 1993-10-15 1995-05-09 明 西川 Support for plant cultivation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010737A1 (en) * 1978-10-31 1980-05-14 Ein-Gedi, Kvutzat Poalim Lehityashvut Haklait Shitufit B.M. Units and system for hydroponics
JPH0724023U (en) * 1993-10-15 1995-05-09 明 西川 Support for plant cultivation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Timing and Methods of Liquid Fertilizer Exchange in Hydroponics. I Act When the Device Turns Brown, haruirosoleil", 30 August 2018 (2018-08-30), Retrieved from the Internet <URL:https://www.haruirosoleil.com/entry/2018/08/30/060911> [retrieved on 20210107] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449617B1 (en) 2023-04-28 2024-03-19 株式会社日本Cgサービス Plant cultivation equipment and plant factories

Also Published As

Publication number Publication date
JPWO2021145126A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US11206774B2 (en) Vertical hydroponic growing system and method
EP0402464A1 (en) Solution culture apparatus
WO2021145126A1 (en) Plant cultivation method
WO2011125965A1 (en) Hydroponic system
JP4440192B2 (en) Hydroponic cultivation method and hydroponic cultivation apparatus
KR102320847B1 (en) An apparatus for aeroponics
WO2016200258A1 (en) Floating carrier for crop cultivation on water and method for crop cultivation
JP4979976B2 (en) Plant cultivation system
KR102559161B1 (en) Submerged Hydroponic Nutrient Solution System
CN104717880B (en) Cultivating container and cultivation system
JP2011142902A (en) Hydroponic method
KR102069121B1 (en) Vertical multi-stage cultivation system that is able to pull in and out of cultivation module
US20230040174A1 (en) Growth system
Kiplinger Growing ornamental greenhouse crops in gravel culture
KR20160094523A (en) Circulation type deep flow technique apparatus for producing seed potatoes and cultivation method using the same
CN112273025B (en) Distributed three-dimensional plug seedling water and fertilizer accurate management and control system and method
WO2018016609A1 (en) Cultivation facility
WO1983001888A1 (en) Hydroponic system
KR20210117998A (en) Nutrient solution supply device of solid raw material dispensing method
JP2021108629A (en) Plant cultivation instrument, plant cultivation system and plant cultivation method
JP2021164431A (en) Plant culture planter and plant growth line using the same
KR102348913B1 (en) Capsule for seed
CN111669968A (en) Product retainer assembly
CN214758408U (en) Simple aeroponics device
JPS6344816A (en) Tissue culture apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913413

Country of ref document: EP

Kind code of ref document: A1