WO2021144941A1 - Digital/analog synthesis integrator and δς modulator using same - Google Patents

Digital/analog synthesis integrator and δς modulator using same Download PDF

Info

Publication number
WO2021144941A1
WO2021144941A1 PCT/JP2020/001390 JP2020001390W WO2021144941A1 WO 2021144941 A1 WO2021144941 A1 WO 2021144941A1 JP 2020001390 W JP2020001390 W JP 2020001390W WO 2021144941 A1 WO2021144941 A1 WO 2021144941A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
integrator
analog
order bit
bit
Prior art date
Application number
PCT/JP2020/001390
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 光
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2020/001390 priority Critical patent/WO2021144941A1/en
Priority to JP2021570586A priority patent/JP7151913B2/en
Publication of WO2021144941A1 publication Critical patent/WO2021144941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/04Differential modulation with several bits, e.g. differential pulse code modulation [DPCM]

Definitions

  • the technology disclosed herein relates to a digital / analog synthetic integrator and a delta-sigma modulator using it.
  • the delta-sigma analog-to-digital converter (delta-sigma analog-to-digital converter, delta-sigma ADC) is widely known as an A / D conversion method capable of achieving high resolution (for example, a resolution of 14 bits or more), and has been put into practical use.
  • the ⁇ type A / D converter is composed of a ⁇ modulator in the front stage and a digital filter in the rear stage.
  • the delta-sigma modulator samples the analog input, converts it into a coarsely quantized digital value (digital signal sequence) with a relatively small number of bits of 1 bit or several bits (for example, 2 to 6 bits), and outputs it.
  • the quantization noise component biased toward the high frequency side noise shape
  • the difference between the analog input value and the digital output value (to be exact, the analog input value and the digital output value are converted into an analog amount by the feedback digital / analog (D / A) converter (feedback DAC). It has an "integrator” that integrates the (difference from the converted value).
  • the integrator of the delta-sigma modulator is generally an "analog integrator” that realizes the integration process by analog circuit calculation.
  • the output of the delta-sigma modulator is a digital value, a DAC that converts it into an analog value is required.
  • an analog integrator is shared by a circuit, and the difference between the analog input sampling value and the feedback DAC output value is integrated.
  • a capacitor element is an integrator that originally stores a voltage as an electric charge, and is therefore generally used in an analog integrator.
  • Non-Patent Document 1 there are two types of integrators using operational amplifiers, a continuous-time integrator using a resistor as an input sampling element, and a discrete-time integrator using a capacitor as an input sampling element (a discrete-time integrator).
  • Discrete-time integrator If the reference voltages Vref + and Vref- are switched according to the digital input value, it operates as a 1-bit DAC. Therefore, Vref + or Vref- is switched and input as Vin in Figure 12.56 of p441 of Non-Patent Document 1 to perform the integration calculation. If done, a 1-bit DAC and an integrator can be realized. If a plurality of capacitors are used as C1, it becomes a multi-bit DAC and an integrator.
  • the integrator used for the delta-sigma modulator may be not only an integrator using an operational amplifier (Active integrator) but also an integrator without an operational amplifier (passive integrator).
  • Active integrator an operational amplifier
  • Passive integrator an integrator without an operational amplifier
  • Patent Document 1 discloses such a ⁇ modulator.
  • the 1-bit digital output delta-sigma modulator has a 1-bit feedback DAC input and can be realized by switching 1 element (1 pair in the case of a differential circuit), the circuit scale is small, and the influence of element matching has an effect. It has often been used because it provides linear D / A conversion characteristics.
  • a multi-bit (2-bit or more) output delta-sigma modulator requires a feedback DAC with a multi-bit digital input, which generally complicates the circuit a little, but has many advantages that a 1-bit delta-sigma modulator does not have. , This is also often selected by design (see Chapter 6 of Non-Patent Document 2).
  • Patent Document 1 when a passive integrator is used as an integrator, the integrator output amplitude becomes smaller due to multi-bitization, so that the input amplitude of the post-stage quantizer becomes smaller and the linearity is improved. , The integrator leak is reduced, and the characteristics of the A / D converter can be improved.
  • a multi-bit output delta-sigma modulator requires a multi-bit DAC.
  • the multi-bit DAC has an error due to a mismatch of the element groups (for example, capacitor trains) constituting the multi-bit DAC. If there is an integrator after the DAC output, there is a drawback that the mismatch error is constantly integrated into the integrator and the linearity deteriorates.
  • DWA Data-Weighted Averaging
  • thermometer code Thermometer code
  • a plurality of unit elements constituting the DAC are made to correspond to each bit of the thermometer code.
  • pointer digital value
  • the mismatch is averaged by periodically selecting the elements so as not to be biased.
  • the element mismatch is canceled when the pointer goes around.
  • some methods have been proposed as a method for canceling the element mismatch of the DAC.
  • Non-Patent Document 4 describes another example.
  • the technique disclosed in the present specification takes a digital value Din as an input and integrates this digital value sequence (Din (1), Din (2), ...) on the time axis or time series. It is embodied in a digital / analog composite integrator that converts a value ( ⁇ Din) into an analog value (generally an analog voltage Vo) and outputs it.
  • the upper bits of the digital input Din are set to DinH
  • the lower bits DinL are integrated by digital calculation ( ⁇ DinL).
  • ⁇ DinL has an integrator.
  • the carry (Carry) is output to the high-order bit DinH and added by digital calculation (DinH + Carry).
  • DinH + Carry digital calculation
  • the same carry is subtracted from the lower-order bit digital integrator ( ⁇ (DinL-Carry)).
  • the digital / analog composite integrator further has a low-order bit D / A converter (DAC-L) that converts the output ( ⁇ (DinL-Carry)) of the low-order bit digital integrator into an analog value.
  • DAC-L low-order bit D / A converter
  • the digital / analog composite integrator is a high-order bit D / A converter (DAC-H) that converts the high-order bit digital value (DinH + Carry), which is the sum of the carry-ups, into an analog value for the high-order bit DinH. It has a high-order bit analog integrator that integrates the analog value after conversion by the high-order bit D / A converter by analog calculation ( ⁇ (DinH + Carry)).
  • the output of the high-order bit analog integrator and the analog output of the low-order bit D / A converter are added and calculated by an analog circuit, and the final integrator output Vo It is characterized by obtaining.
  • the error due to the mismatch of the lower bits DAC-L is not integrated, so the average error appearing in the integrator output is dispersed on the time axis.
  • the error in the signal band appearing at the output is significantly reduced. Therefore, the mismatch canceling DEM usually required for a high-resolution multi-bit DAC can secure sufficient linearity with a small-bit DEM having only the high-order bit DAC-H, and a large-scale multi-bit DEM circuit is unnecessary. Therefore, the circuit scale can be significantly reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
  • the high-order bit D / A converter may include one or a plurality of high-order capacitors according to the number of bits of the high-order bit DinH.
  • the plurality of upper capacitors may have equal capacities with each other.
  • the lower bit D / A converter may include one or more lower capacitors according to the number of bits of the lower bit DinL.
  • the plurality of lower capacitors may have different capacities depending on the position of the corresponding bit.
  • each of the upper capacitors is configured by connecting a plurality of capacitors having the same capacitance in parallel
  • each of the lower capacitors is configured by connecting the plurality of capacitors having the same capacitance in parallel. It may be configured by. According to such a configuration, it is possible to reduce the mismatch error of a plurality of capacitors.
  • the number of bits of the lower bit DinL may be 4 bits or less.
  • the number of bits of DinL for the lower bits is increased, it is necessary to connect capacitors having a larger predetermined capacity in parallel when realizing a capacitor having a capacity corresponding to the bits. That is, since the number of capacitors having a predetermined capacity increases, it becomes difficult to design a circuit and a layout.
  • the high-order bit D / A converter may be controlled based on the linearity compensation algorithm when the high-order bit DinH is 2 bits or more.
  • the linearity compensation algorithm referred to here is intended as an arbitrary algorithm capable of compensating for the linearity of the high-order bit D / A converter, and is not particularly limited, and includes, for example, Dynamic Element Matching (DEM). It may be.
  • the number of bits of DinH for the high-order bits may be 5 bits or less.
  • the DEM circuit becomes relatively simple and the circuit scale can be reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
  • a delta-sigma modulator that outputs a digital value to an input analog value and has a feedback circuit including the above digital / analog composite integrator is also new and useful.
  • the digital / analog composite integrator (hereinafter referred to as “D / A synthetic integrator”) 100 of the embodiment will be described with reference to the drawings.
  • the D / A composite integrator 100 takes a digital input Din as an input, and an analog value ( ⁇ Din) obtained by integrating this digital value sequence (Din (1), Din (2), 7) On the time axis or time series. It is converted to a value (generally an analog voltage Vo) and output.
  • the digital input Din is 6 bits (000000 to 100,000, decimal number is 0 to 32), the upper bit DinH is 3 bits (000 to 100), and the lower bit DinL is 3 bits (000 to 000 to). The case of 111) will be described.
  • the number of bits of the digital input Din, the low-order bit DinL, and the high-order bit DinH is not limited to the above-mentioned number of bits.
  • the D / A composite integrator 100 has a low-order bit digital integrator 12 that integrates the low-order bit DinL by digital calculation ( ⁇ DinL).
  • the carry (Carry) is output to the high-order bit DinH and added by digital calculation (DinH + Carry). Processing is performed, and at the same time, the same carry is subtracted from the lower bit integrator 12 ( ⁇ (DinL-Carry)). That is, after performing the carry processing from the result of the digital integration of the low-order bit DinL to the high-order bit, the low-order bit digital integrator 12 sets the output of the low-order bit digital integrator 12 ignoring the carry.
  • the D / A composite integrator 100 is a low-order bit D / A converter (hereinafter referred to as "DAC-L") that converts the output ( ⁇ (DinL-Carry)) of the low-order bit digital integrator 12 into an analog value. ) Has 14.
  • DAC-L low-order bit D / A converter
  • the D / A composite integrator 100 has a digital adder 22 that outputs a value (DinH + Carry) obtained by adding the carry amount of the upper bit for the upper bit DinH, and a digital value (DinH + Carry) for the upper bit output by the digital adder 22.
  • DAC-H an analog value
  • ⁇ (DinH + Carry) an analog value converted by the DAC-H24
  • the D / A composite integrator 100 adds the output of the upper bit analog integrator 26 and the analog output of the DAC-L14 by an analog circuit (analog adder 30) to obtain the final integrator output Vo.
  • the digital input Din is 6 bits (000000 to 100,000, 0 to 32 in decimal), the upper bit portion DinH is 3 bits (000 to 100), and the lower bit portion DinL is 3 bits (000 to 111).
  • This is an example of circuit design in the case of. Since the C (Carry) output of the most significant bit (MSB) b5 adder does not have to be used, it is indicated by a dotted line. Since the circuit configurations of the digital integrator 12 and the digital adder 22 shown in FIG. 2 are well known to those skilled in the art, detailed description thereof will be omitted.
  • FIG. 2 is an example of a circuit in this case.
  • the lower 3 bits DinL are integrated using the lower bit digital integrator 12 and output in a 3 bit (000 to 111) binary code.
  • the carry-up signal of the low-order bit digital integrator 12 is added to the high-order 3-bit DinH in the digital adder 22, and this is converted into a thermometer code (Thermometer code).
  • the DEM control logic is used for each capacitor constituting the DAC-H24. It is output as a DEM control signal that controls the connection. Since the internal logic of DEM control is well known to those skilled in the art, detailed description thereof will be omitted.
  • FIG. 3 shows a fully differential circuit configuration using an integrator (passive integrator) composed of a capacitor and a switch as the high-order bit analog integrator 26 without using an operational amplifier, and a capacitor voltage divider circuit as an adder. This is an example of the circuit.
  • the high-order bit analog integrator 26 can be operated at a high operating frequency. Therefore, the D / A synthetic integrator 100 can be operated at a high operating frequency.
  • the digital input Din has a total of 6 bits (000000 to 100,000), the upper 3 bits control the DAC-H24 as a DEM control signal, and the lower 3 bits control the DAC-L14 with a binary code. do.
  • the DAC-H24 is composed of capacitor pairs Crefp1 to 4 and Clefn1 to 4 having a differential circuit configuration, and the DAC-L14 is composed of Cadddp0 to 2 and Caddn0 to 2.
  • the capacitor pairs Crefp1 to 4 and Clefn1 to 4 constituting the DAC-H24 are all capacitors having the same capacitance value.
  • unit capacitors C0 with the same capacitance value and the same layout shape as basic elements and connect each capacitor in parallel.
  • the integrator circuit given as an example in FIG. 3 is a passive integrator that does not use an operational amplifier.
  • FIG. 4 shows a timing chart of an example of a clock.
  • This clock is a "non-overlapping clock" commonly known in switched capacitor circuit technology.
  • the integrator output is determined at the final timing of ⁇ 2, with phase ⁇ 1 as the zero sampling phase and ⁇ 2 as the integration phase.
  • the phases ⁇ 1A and ⁇ 2A of the circuit common mode potential Vicm side switch represent ON / OFF operation at a timing slightly earlier than ⁇ 1 and ⁇ 2, respectively.
  • the initial potentials of the outputs Vo + and Vo ⁇ of the integrating capacitor CI are the circuit common mode potential Vicm at the start of the circuit operation.
  • this potential is not fixed before the circuit operation (immediately after the power is turned on, etc.), but as the zero sampling and integration operations described below are repeated, the midpoint potential of Vo + and Vo- gradually increases to the circuit common mode potential Vicm. Approaching.
  • phase ⁇ 1 the right electrodes of Crefp1 to 4 and Clefn1 to 4 are connected to the common mode potential Vicm, and the left (Vref side) electrode is the midpoint Vref0 (not shown in FIG. 3) of the reference potential (Vref +, Vref-). ). In this state, all the capacitors of the DAC-H24 are in the zero sampling state.
  • the reference potential midpoint Vref0 was used in the explanation to bring each capacitor constituting the DAC-H24 into a zero sampling state in the phase ⁇ 1, but in the actual design, zero sampling is performed even if this potential is not generated. It is possible to realize a midpoint sampling operation equivalent to.
  • a plurality of capacitors pairs of Clef1 to 4 are connected to the reference potentials Vref + and Vref- every other time (alternately), or "Data-Weighted" (Data-Weighted). If the elements are circulated and connected to Vref + and Vref- in the manner of Averaging: DWA) and averaged, it is equivalent to sampling the reference potential midpoint Vref0.
  • the right electrodes of Crefp1 to 4 and Clefn1 to 4 are connected to the integrating capacitor CI, and the left (Vref side) electrode is connected to the reference potential Vref + or Vref- according to the DAC-H24 digital input (High-order bits).
  • the switch is connected to any of the above, the DAC-H24 output is charged to the CI via Crefp1 to 4 and Crefn1 to 4, and the integration operation is performed.
  • the left electrodes of Caddp0 to 2 and Caddn0 to 2 are always connected to the integrating capacitor CI as shown in the circuit diagram of FIG.
  • the right side (Vref side) electrode of CAD is in a connected state (zero sampling state, for example, CADdp0 to 2 are connected to Vref- and CADn0 to 2 are connected to Vref +) in the first phase ⁇ 1 corresponding to the DAC-L14 input “000”. ..
  • DAC-L14 since the left electrode of the capacitor Cadd is always connected to the integrating capacitor CI, even if the DAC output is added to the output Vo via the Cad in the phase ⁇ 2, the Vref side electrode of the Cadd is again in the next phase ⁇ 1. If is returned to the zero sampling state, the added voltage is returned to the original state and is not integrated into the CI. That is, the DAC-L14 and the capacitor CI operate as an analog adder.
  • the characteristics of the DAC-L14 and the analog adder 30 work beneficially when there is an error in the DAC-L14.
  • the DAC-L14 output has an error due to a capacitance mismatch between the capacitors Caddp0 to 2 and Caddn0 to 2, and the error due to this mismatch is also added to the integrator output as the DAC-L14 output is added. However, even if this error is temporarily added to the integrator output, it is not integrated into the integrator capacitor CI.
  • the temporarily added error is subtracted and becomes zero.
  • the integrator output Vo may be determined at the final timing of the phase ⁇ 2, in the subsequent phase ⁇ 1, the Vref side electrode of the capacitor Cadd of the DAC-L14 does not have to be returned to the zero sampling state (or the Vref side electrode potential). If the connection on the Vref side of the Cadd is confirmed and the DAC-L14 output is determined at the time of phase ⁇ 2, the addition operation is normally performed and the integrator output Vo is determined.
  • the digital input Din is defined as a total of 6 bits (000000 to 100,000), the upper bit DinH is defined as 3 bits (000 to 100), and the lower bit DinL is defined as 3 bits (000 to 111). It goes without saying that the number of bits is not limited to this example, and the design can be changed.
  • Vref side electrodes of Crefp and Clefn are connected to Vref + / Vref- or vice versa according to the DAC-H24 input digital value, but this is not the case.
  • the Vref side electrodes of Crefp and Clefn may be connected to the intermediate potential between Vref + and Vref-, or the Vref side electrodes may be simply short-circuited (potential not fixed).
  • each capacitor is a parallel connection of unit capacitors C0 having the same capacitance value and the same layout shape.
  • the size ratio between the basic capacitors Clef1 to 4 of the DAC-H24 and the capacitor Cadd0 for the least significant bit of the DAC-L14 increases, and the unit capacitor C0 decreases, or Clef1 to Clef1 to As the number of parallel elements of 4 increases, it becomes difficult to secure matching between the DAC-H24 and the DAC-L14.
  • the element size ratio is 8: 1 ⁇ 4: 1. This makes it easier to match the DAC-H24 and the DAC-L14, reduce the error due to the mismatch, or facilitate the design.
  • this method requires a separate circuit that generates a reference voltage (1/2) Vref for DAC-L14. Therefore, as another method, instead of switching the capacitor connection of the DAC-L14 to -Vref / + Vref corresponding to 0/1 of the input digital bit value, set one to 0 (voltage zero) and set it to -Vref / 0. By switching, the added voltage is halved even if the same capacitance value is designed, and the same effect as halving the reference voltage is obtained.
  • addition 0 zero
  • the calculation of addition 0 can be realized by shorting the voltage between the Vref side terminals of the capacitor pairs (Cadpd0 to 2 and Caddn0 to 2) that make up the differential circuit with a zero voltage, that is, a switch (Vref0 and other reference potentials). It is not necessary to connect to and fix the potential).
  • each capacitor is connected to the digital input as follows. That is, in the DAC-H24, when the value of each bit of the digital input is 0, the corresponding Crefp1 to 4 are connected to Vref-, and the Clefn1 to 4 are connected to Vref +. When the value of each bit of the digital input is 1, the corresponding Crefp1 to 4 are connected to Vref +, and the Clefn1 to 4 are connected to Vref ⁇ .
  • DAC-L14 when the value of each bit of the digital input is 0, the corresponding Cadddp0 to 2 are connected to Vref-, and Cadddn0 to 2 are connected to Vref + (that is, the same as DAC-H24). Further, when the value of each bit of the digital input is 1, the corresponding short circuit between the electrodes on the Vref side of Caddp0 to 2 and Cadddn0 to 2 is performed by a switch.
  • the error of the DAC output is generated by the mismatch of the capacitor elements constituting the DAC.
  • the same DEM technology as the conventional one can be used in the DAC-H24, and the influence of the error due to the element mismatch can be sufficiently suppressed, so that it does not become the main factor of the error of the entire circuit. it is conceivable that.
  • the circuit for the lower bits is composed of the lower bit digital integrator 12, the DAC-L14, and the analog adder 30, of which the lower bit digital integrator 12 is a digital operation and no error occurs.
  • the error appearing in the total integrator output Vo in this configuration is mainly due to the error due to the capacitor mismatch of the DAC-L14 (as a relative error with respect to the DAC-H24). This error occurs as each bit 0/1 of the DAC-L14 digital input is inverted, the Vref side connection of the corresponding capacitor is switched, and the DAC-L14 output changes.
  • the influence of the error of the DAC-L14 output with respect to the DAC-H24 output on the integrator output Vo will be considered.
  • the capacitors Caddp0 to 2 and Caddn0 to 2 constituting the DAC-L14 have a capacitance mismatch, and as the DAC-L14 output is added to the integrator output Vo, an error due to this mismatch is also added to the output.
  • FIG. 3 since the left electrodes of Caddp0 to 2 and Caddn0 to 2 are always connected to the integrator capacitor CI, even if this error is temporarily added to the integrator output Vo, the integrator capacitor It is not integrated into CI.
  • the temporarily added error is subtracted and canceled. That is, it is considered that the error due to the DAC-L14 temporarily appears in the integrator output Vo when the digital integrator output value changes (transitions). Therefore, when the value of the lower bit digital integrator 12 output changes slowly while repeating count up / down, the average error amplitude per sample appearing in the integrator output Vo is the lower bit digital integrator 12 output. Is divided by the time (or the number of samples) required for the transition of that value. That is, the error of DAC-L14 is dispersed on the time axis and becomes small.
  • the digital input value goes around and the element connection state of the DAC-L14 is restored, the error due to the DAC-L14 mismatch temporarily added to the integrator output Vo is subtracted and canceled, so the average value Is zero.
  • the low-order bit digital integrator 12 repeats laps and carry by integration the output error repeatedly increases and decreases within a certain range, and the DAC-L14 error becomes periodic noise that appears periodically in the output.
  • the noise component appearing in the output is limited to the one whose frequency is sufficiently lower than the sampling frequency fs, that is, the period is long.
  • the error amplitude is suppressed to a small value.
  • the mismatch canceling DEM usually required for a high-resolution multi-bit DAC can secure sufficient linearity with a small-bit DEM of only the DAC-H24, and a large-scale multi-bit DEM circuit becomes unnecessary.
  • the circuit scale can be significantly reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
  • the required capacitor pair is the upper bit (DAC-) using DEM. H24) 4 pairs, 3 pairs of low-order bits (DAC-L14), and a total of 7 pairs of capacitor pairs and a corresponding MOS switch are sufficient. It is also possible to design the high-order bit DinH to 1 bit, and in this case, it is not necessary to use a DEM for the high-order bit DinH.
  • the D / A composite integrator 100 according to the present technology can be widely applied to a multi-bit output ⁇ modulator.
  • the effect of testability can be obtained.
  • the mismatch of the DAC-L14 with respect to the DAC-H24 is large in this configuration, an error occurs when each bit of the DAC-L14 is inverted by 0/1, and the periodic noise synchronized with the rotation of the digital integrator 12 occurs. May appear in the output.
  • this periodic noise becomes a problem, it is easy to perform non-defective product / defective product selection or characteristic ranking in the IC shipping test.
  • the pattern and period of the periodic noise appearing in the output can be designed and predicted from the digital input to the integrator, a digital value such that each bit of the DAC-L14 is periodically inverted by 0/1 is input.
  • the mismatch of the elements corresponding to each bit can be measured individually. If a bandpass filter is placed after the output, it is possible to extract only the error component of a specific period that occurs when each bit of DAC-L14 is inverted, and the mismatch of each capacitor is measured individually to determine the capacitance value. Trimming adjustment can also be performed.
  • the ADC digital output may be monitored, the analog input may be adjusted so that a predetermined periodic noise appears, and the periodic noise appearing in the digital output may be measured.
  • FIG. 5 is an example of a circuit in which the above D / A composite integrator 100 is applied to a “Passive-Digital ⁇ modulator”.
  • Passive-Digital ⁇ modulator refer to Patent Document 1.
  • the digital output (Digital Out) of the ⁇ modulator 40 is input to the D / A composite integrator 100 so as to have the opposite polarity to the input Vin, and is used as a feedback DAC and an integrator.
  • Csp and Csn are added as input sampling capacitors.
  • the digital output of the delta-sigma modulator 40 is divided into high-order bits and low-order bits, and the low-order bits are integrated by the digital integrator, and the DAC-L14 is controlled by this output. Carry of the digital integrator 12 and the high-order bits are added, and the DAC-H24 is controlled by this added value.
  • a feedback DAC and an integrator are constructed by combining these, and the difference between the analog input Vin and the D / A conversion value of the ⁇ modulator 40 digital output is integrated.
  • FIG. 5 since the polarity of the input Vin of the ⁇ modulator 40 is displayed as a reference, the display of the integrator outputs Vo + and Vo ⁇ is opposite to that in FIG. This is because the integrator of the ⁇ modulator 40 integrates the difference between the input Vin and the feedback DAC output, so that the polarities are opposite when considering the polarity of the input Vin.
  • the number of bits of the feedback DAC that is, the resolution is increased and the integrator output amplitude can be suppressed to be smaller, so that the input range of the quantizer in the subsequent stage can be increased. It can be kept smaller, the linearity of the quantizer is improved, and the integrator leak can be reduced. As a result, the characteristics of the A / D converter can be improved, or the scale of the entire circuit can be simplified and the cost can be reduced.
  • D / A converter has been described as being composed of a series of capacitors, a resistor or other element may be used for one or both of the DAC-H24 and the DAC-L14.
  • the high-order bit DinH is set to, for example, 5 bits or less.
  • the constituent elements of the DAC-H24 and the DAC-L14 should be circuits that can be layout-matched by using unit elements having the same element shape. If the number of bits of the DAC-L14 is increased, the unit element size becomes smaller, and it becomes rather difficult to match the layout. Considering the matching between the DAC-H24 and the DAC-L14, it seems that, for example, 4 bits or less is appropriate as the lower bit DinL. Actually, the optimum number of bits is determined by performing a system simulation in consideration of the minimum capacitor size and matching data determined by the IC process, and the OSR (Oversampling Ratio) and linearity specifications required by the system.
  • OSR Oversampling Ratio
  • Capacitor Clef, capacitor CAD, and unit capacitor C0 correspond to examples of "upper capacitor”, “lower capacitor”, and “capacitor having the same capacity”, respectively.

Abstract

When a high-order bit portion and a low-order bit portion of a digital input Din are respectively defined as DinH and DinL (Din = DinH + DinL), this digital/analog synthesis integrator has a low-order bit digital integrator and a low-order bit D/A converter (DAC-L) for the low-order bit portion DinL. The digital/analog synthesis integrator has a high-order bit D/A converter (DAC-H) and a high-order bit analog integrator for the high-order bit portion DinH. In addition, the digital/analog synthesis integrator is characterized in that an output of the high-order bit analog integrator and an analog output of the low-order bit D/A converter (DAC-L) are added by an analog circuit in order to obtain a final integrator output Vo.

Description

デジタル/アナログ合成積分器とそれを用いたΔΣ変調器Digital / analog composite integrator and delta-sigma modulator using it
 本明細書が開示する技術は、デジタル/アナログ合成積分器とそれを用いたΔΣ変調器に関する。 The technology disclosed herein relates to a digital / analog synthetic integrator and a delta-sigma modulator using it.
 ΔΣ型A/D変換器(Delta-Sigma Analog-to-Digital Converter、ΔΣADC)は、高分解能(例えば分解能14ビット以上)を実現できるA/D変換方式として広く知られており、実用化されている。ΔΣ型A/D変換器は、前段のΔΣ変調器と後段のデジタルフィルタで構成される。ΔΣ変調器は、アナログ入力をサンプリングし、1ビットまたは数ビット(例えば2~6ビット)の比較的少ないビット数で粗く量子化されたデジタル値(デジタル信号列)に変換し出力する。このΔΣ変調器出力のデジタル信号列に対して、後段デジタルフィルタで高周波側に偏った(ノイズシェイプされた)量子化雑音成分を除去すると、最終的に高分解能なA/D変換されたデジタル出力を得る。 The delta-sigma analog-to-digital converter (delta-sigma analog-to-digital converter, delta-sigma ADC) is widely known as an A / D conversion method capable of achieving high resolution (for example, a resolution of 14 bits or more), and has been put into practical use. There is. The ΔΣ type A / D converter is composed of a ΔΣ modulator in the front stage and a digital filter in the rear stage. The delta-sigma modulator samples the analog input, converts it into a coarsely quantized digital value (digital signal sequence) with a relatively small number of bits of 1 bit or several bits (for example, 2 to 6 bits), and outputs it. When the quantization noise component biased toward the high frequency side (noise shape) is removed from the digital signal sequence of this ΔΣ modulator output with a subsequent digital filter, the digital output is finally converted to high resolution A / D. To get.
 ΔΣ変調器内には、アナログ入力値とデジタル出力値との差(正確には、アナログ入力値と、デジタル出力値をフィードバックデジタル/アナログ(D/A)変換器(フィードバックDAC)でアナログ量に変換した値との差)を、積分する「積分器」を有している。A/D変換器の入力がアナログ電圧であることに対応して、ΔΣ変調器の積分器は、一般的にはアナログ回路演算によって積分処理を実現する「アナログ積分器」である。一方で、ΔΣ変調器出力がデジタル値であることから、これをアナログ値に変換するDACが必要である。一般にアナログ積分器を回路共用して、アナログ入力サンプリング値とフィードバックDAC出力値の差を積分演算する。 In the delta-sigma modulator, the difference between the analog input value and the digital output value (to be exact, the analog input value and the digital output value are converted into an analog amount by the feedback digital / analog (D / A) converter (feedback DAC). It has an "integrator" that integrates the (difference from the converted value). Corresponding to the input of the A / D converter being an analog voltage, the integrator of the delta-sigma modulator is generally an "analog integrator" that realizes the integration process by analog circuit calculation. On the other hand, since the output of the delta-sigma modulator is a digital value, a DAC that converts it into an analog value is required. Generally, an analog integrator is shared by a circuit, and the difference between the analog input sampling value and the feedback DAC output value is integrated.
 キャパシタ素子は、本来において電圧を電荷として蓄える積分素子であるため、アナログ積分器に一般に用いられる。例えば、非特許文献1に、オペアンプを用いた積分器が2種類、入力サンプリング素子に抵抗を用いた連続時間積分器(Continuous-time integrator)、入力サンプリング素子にキャパシタを用いた離散時間積分器(Discrete-time integrator)の記述がある。基準電圧Vref+、Vref-を、デジタル入力値に対応して切り替えれば1ビットDACとして動作するため、非特許文献1のp441のFigure12.56のVinとしてVref+またはVref-を切り替えて入力し積分演算を行えば、1ビットDACと積分器が実現できる。C1として複数のキャパシタを用いれば、マルチビットDACと積分器となる。 A capacitor element is an integrator that originally stores a voltage as an electric charge, and is therefore generally used in an analog integrator. For example, in Non-Patent Document 1, there are two types of integrators using operational amplifiers, a continuous-time integrator using a resistor as an input sampling element, and a discrete-time integrator using a capacitor as an input sampling element (a discrete-time integrator). There is a description of Discrete-time integrator). If the reference voltages Vref + and Vref- are switched according to the digital input value, it operates as a 1-bit DAC. Therefore, Vref + or Vref- is switched and input as Vin in Figure 12.56 of p441 of Non-Patent Document 1 to perform the integration calculation. If done, a 1-bit DAC and an integrator can be realized. If a plurality of capacitors are used as C1, it becomes a multi-bit DAC and an integrator.
 一方、ΔΣ変調器に用いられる積分器は、オペアンプを使った積分器(アクティブ積分器、Active Integrator)だけでなく、オペアンプを使用しない積分器(パッシブ積分器、Passive Integrator)を用いることがある。例えば特許文献1には、このようなΔΣ変調器が開示されている。1ビットデジタル出力のΔΣ変調器は、フィードバックDACの入力が1ビットであり、1素子(差動回路の場合は1ペア)のスイッチ切り替えで実現でき、回路規模が小さく、かつ素子マッチングの影響がなく線形なD/A変換特性が得られるため、しばしば用いられてきた。 On the other hand, the integrator used for the delta-sigma modulator may be not only an integrator using an operational amplifier (Active integrator) but also an integrator without an operational amplifier (passive integrator). For example, Patent Document 1 discloses such a ΔΣ modulator. The 1-bit digital output delta-sigma modulator has a 1-bit feedback DAC input and can be realized by switching 1 element (1 pair in the case of a differential circuit), the circuit scale is small, and the influence of element matching has an effect. It has often been used because it provides linear D / A conversion characteristics.
 一方で、マルチビット(2ビット以上)出力のΔΣ変調器では、マルチビットデジタル入力のフィードバックDACが必要で、一般に回路がやや複雑となるが、1ビットΔΣ変調器にない利点を数多く持っており、これもしばしば設計選択される(非特許文献2のChapter 6参照)。特に、特許文献1に開示されるように、積分器としてパッシブ積分器を用いた場合、マルチビット化により積分器出力振幅が小さくなるため、後段量子化器の入力振幅が小さくなりリニアリティが向上する、積分器リークが小さくなる、などの利点があり、A/D変換器の特性を向上できる。 On the other hand, a multi-bit (2-bit or more) output delta-sigma modulator requires a feedback DAC with a multi-bit digital input, which generally complicates the circuit a little, but has many advantages that a 1-bit delta-sigma modulator does not have. , This is also often selected by design (see Chapter 6 of Non-Patent Document 2). In particular, as disclosed in Patent Document 1, when a passive integrator is used as an integrator, the integrator output amplitude becomes smaller due to multi-bitization, so that the input amplitude of the post-stage quantizer becomes smaller and the linearity is improved. , The integrator leak is reduced, and the characteristics of the A / D converter can be improved.
特開2016-100871号公報Japanese Unexamined Patent Publication No. 2016-100871
 上記の通り、マルチビット出力のΔΣ変調器は、マルチビットDACを必要とする。実際の集積回路では、マルチビットDACには、これを構成する素子群(例えばキャパシタ列)のミスマッチによる誤差がある。DAC出力の後段に積分器がある場合、ミスマッチ誤差が積分器に定常的に積分され、線形性が悪化する、という欠点がある。 As mentioned above, a multi-bit output delta-sigma modulator requires a multi-bit DAC. In an actual integrated circuit, the multi-bit DAC has an error due to a mismatch of the element groups (for example, capacitor trains) constituting the multi-bit DAC. If there is an integrator after the DAC output, there is a drawback that the mismatch error is constantly integrated into the integrator and the linearity deteriorates.
 これを改善する方法として、ダイナミックエレメントマッチング(Dynamic Element Matching:DEM)技術が知られている。これは、素子ミスマッチによる誤差が偏って積分されないよう、選択する素子を順次切り替えて平均化するというものである。その一つが、非特許文献3に記載されている「データ重みづけ平均化」(Data-Weighted Averaging:DWA)または「素子循環法」(Element rotation)と呼ばれる技術である。 Dynamic Element Matching (DEM) technology is known as a method for improving this. In this method, the selected elements are sequentially switched and averaged so that the error due to the element mismatch is not unevenly integrated. One of them is a technique called "Data-Weighted Averaging (DWA)" or "Element rotation method" described in Non-Patent Document 3.
 DWAについて簡単に説明する。デジタルバイナリコードをまず温度計コード(Thermometer code)に変換し、DACを構成する複数のユニット素子を温度計コードの各ビットに対応させる。そして、素子を順次切り替えるための内部ポインタ(デジタル値)を持っており、素子が偏らないよう循環的に選択させることでミスマッチを平均化する、ポインタが一周すれば素子ミスマッチはキャンセルされる。このほか、DACの素子ミスマッチをキャンセルする方法としてはいくつかの方法が提案されており、例えば非特許文献4には他の例が記載されている。 A brief explanation of DWA. First, the digital binary code is converted into a thermometer code (Thermometer code), and a plurality of unit elements constituting the DAC are made to correspond to each bit of the thermometer code. Then, it has an internal pointer (digital value) for sequentially switching the elements, and the mismatch is averaged by periodically selecting the elements so as not to be biased. The element mismatch is canceled when the pointer goes around. In addition, some methods have been proposed as a method for canceling the element mismatch of the DAC. For example, Non-Patent Document 4 describes another example.
 ところが、従来のDEM技術において、ビット数が増すと、DACを構成するMOSスイッチとキャパシタの素子数が指数関数的に増加し、それぞれの素子をDEMで個々にスイッチング制御するためには、回路が複雑で設計が困難、かつチップ面積が増大し高コストとなる。例えばデジタル入力が6ビット000000~100000(10進数で0~32)のDACでは、32個のユニットキャパシタ(差動回路構成の場合は32対のユニットキャパシタペア)と、対応するアナログスイッチ(MOSスイッチ)が必要である。DACのビット数が増すにつれて、アナログ回路規模が大きくなって配線レイアウトは複雑となり、配線やスイッチの寄生容量による誤差が発生し、非線形性や意図せぬオフセット電圧発生の原因となりやすい。一般にアナログ集積回路では、デジタル回路と異なりレイアウトの自動生成は困難で、設計者が目と手でレイアウト設計しチェックせざるを得ない。このため、多ビットのDACで高いリニアリティ特性を得るには、設計、評価、そして設計修正を繰り返すことがしばしば発生し、開発は相当の困難を伴う、あるいは開発労力(人件費)、期間、試作費用などから開発不成立となることがある。 However, in the conventional DEM technology, as the number of bits increases, the number of elements of the MOS switch and the capacitor constituting the DAC increases exponentially, and in order to individually switch and control each element by the DEM, a circuit is required. It is complicated and difficult to design, and the chip area is increased, resulting in high cost. For example, in a DAC with a digital input of 6 bits 0000000 to 100,000 (0 to 32 in decimal), 32 unit capacitors (32 pairs of unit capacitor pairs in the case of a differential circuit configuration) and corresponding analog switches (MOS switches). )is necessary. As the number of bits of the DAC increases, the scale of the analog circuit becomes large and the wiring layout becomes complicated, errors due to parasitic capacitance of the wiring and the switch occur, and it is easy to cause non-linearity and unintended offset voltage generation. In general, in analog integrated circuits, unlike digital circuits, it is difficult to automatically generate layouts, and designers have to design and check layouts with their eyes and hands. For this reason, in order to obtain high linearity characteristics in a multi-bit DAC, design, evaluation, and design modification are often repeated, and development involves considerable difficulty, or development labor (labor cost), period, and prototyping. Development may be unsuccessful due to costs.
 上記の実情を鑑み、本明細書が開示する技術は、デジタル値Dinを入力として、このデジタル値列(Din(1),Din(2),...)を時間軸または時系列で積分した値(ΣDin)をアナログ値(一般的にはアナログ電圧Vo)に変換して出力する、デジタル/アナログ合成積分器に具現化される。 In view of the above circumstances, the technique disclosed in the present specification takes a digital value Din as an input and integrates this digital value sequence (Din (1), Din (2), ...) on the time axis or time series. It is embodied in a digital / analog composite integrator that converts a value (ΣDin) into an analog value (generally an analog voltage Vo) and outputs it.
 このデジタル/アナログ合成積分器は、デジタル入力Dinの上位ビット分をDinH、下位ビット分をDinLとして(Din=DinH+DinL)、下位ビット分DinLについて、これをデジタル演算で積分する(ΣDinL)下位ビットデジタル積分器を持つ。この下位ビットデジタル積分器では、下位ビット分DinLのデジタル積分の結果、オーバーフローが発生する場合は、桁上げ分(Carry)を上位ビットDinHへ出力してデジタル演算で加算する(DinH+Carry)桁上げ処理を行い、それと同時に下位ビットデジタル積分器からは同じ桁上げ分を減算する(Σ(DinL-Carry))。つまり下位ビット分DinLのデジタル積分の結果から上位ビットへの桁上げ処理を行った後、下位ビットデジタル積分器は桁上げ分を無視したものを自己の出力とする。そして、デジタル/アナログ合成積分器は、下位ビットデジタル積分器の出力(Σ(DinL-Carry))をアナログ値に変換する下位ビットD/A変換器(DAC-L)をさらに持つ。 In this digital / analog composite integrator, the upper bits of the digital input Din are set to DinH, the lower bits are set to DinL (Din = DinH + DinL), and the lower bits DinL are integrated by digital calculation (ΣDinL). Has an integrator. In this low-order bit digital integrator, if an overflow occurs as a result of digital integration of the low-order bit DinL, the carry (Carry) is output to the high-order bit DinH and added by digital calculation (DinH + Carry). At the same time, the same carry is subtracted from the lower-order bit digital integrator (Σ (DinL-Carry)). That is, after performing the carry processing from the result of the digital integration of the lower bit DinL to the upper bit, the lower bit digital integrator ignores the carry and sets its own output. The digital / analog composite integrator further has a low-order bit D / A converter (DAC-L) that converts the output (Σ (DinL-Carry)) of the low-order bit digital integrator into an analog value.
 デジタル/アナログ合成積分器は、上位ビット分DinHについては、先の桁上げ分を加算した上位ビット分デジタル値(DinH+Carry)をアナログ値に変換する上位ビットD/A変換器(DAC-H)と、上位ビットD/A変換器による変換後のアナログ値をアナログ演算により積分する(Σ(DinH+Carry))上位ビットアナログ積分器を持つ。 The digital / analog composite integrator is a high-order bit D / A converter (DAC-H) that converts the high-order bit digital value (DinH + Carry), which is the sum of the carry-ups, into an analog value for the high-order bit DinH. It has a high-order bit analog integrator that integrates the analog value after conversion by the high-order bit D / A converter by analog calculation (Σ (DinH + Carry)).
 そして、本技術に係るデジタル/アナログ合成積分器は、上位ビットアナログ積分器の出力と下位ビットD/A変換器(DAC-L)のアナログ出力をアナログ回路で加算演算し、最終積分器出力Voを得ることを特徴とする。 Then, in the digital / analog composite integrator according to the present technology, the output of the high-order bit analog integrator and the analog output of the low-order bit D / A converter (DAC-L) are added and calculated by an analog circuit, and the final integrator output Vo It is characterized by obtaining.
 上記の構成では、下位ビットDAC-Lのミスマッチによる誤差は積分されないため、積分器出力に現れる平均誤差は、時間軸上で分散される。例えば、オーバサンプリングシステムでは、出力に現れる信号帯域の誤差が大幅に低減される。このため高分解能マルチビットDACで通常必要とされるミスマッチキャンセルDEMは、上位ビットDAC-Hのみの少ビットのDEMで十分なリニアリティを確保できるようになり、大規模な多ビットDEM回路が不必要となって回路規模を格段に小さくできる。その結果、回路、レイアウト設計が容易となり、かつチップ面積が小さくなって低コスト化できる。 In the above configuration, the error due to the mismatch of the lower bits DAC-L is not integrated, so the average error appearing in the integrator output is dispersed on the time axis. For example, in an oversampling system, the error in the signal band appearing at the output is significantly reduced. Therefore, the mismatch canceling DEM usually required for a high-resolution multi-bit DAC can secure sufficient linearity with a small-bit DEM having only the high-order bit DAC-H, and a large-scale multi-bit DEM circuit is unnecessary. Therefore, the circuit scale can be significantly reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
 本技術の一実施形態では、上位ビットD/A変換器は、上位ビット分DinHのビット数に応じた一又は複数の上位キャパシタを備えてもよい。上位キャパシタが複数の場合には、複数の上位キャパシタは互いに等しい容量を有してもよい。さらに、下位ビットD/A変換器は、下位ビット分DinLのビット数に応じた一又は複数の下位キャパシタを備えてもよい。下位キャパシタが複数の場合には、複数の下位キャパシタは、それぞれ対応するビットの位置に応じて互いに異なる容量を有してもよい。さらに、上位キャパシタのそれぞれは、同一の容量を有する複数のキャパシタが並列に接続されることによって構成されるとともに、下位キャパシタのそれぞれは、上記の同一の容量を有する複数のキャパシタが並列に接続されることによって構成されてもよい。このような構成によると、複数のキャパシタのミスマッチ誤差を低減することができる。 In one embodiment of the present technology, the high-order bit D / A converter may include one or a plurality of high-order capacitors according to the number of bits of the high-order bit DinH. When there are a plurality of upper capacitors, the plurality of upper capacitors may have equal capacities with each other. Further, the lower bit D / A converter may include one or more lower capacitors according to the number of bits of the lower bit DinL. When there are a plurality of lower capacitors, the plurality of lower capacitors may have different capacities depending on the position of the corresponding bit. Further, each of the upper capacitors is configured by connecting a plurality of capacitors having the same capacitance in parallel, and each of the lower capacitors is configured by connecting the plurality of capacitors having the same capacitance in parallel. It may be configured by. According to such a configuration, it is possible to reduce the mismatch error of a plurality of capacitors.
 本技術の一実施形態では、下位ビット分DinLのビット数は、4ビット以下であってもよい。下位ビット分DinLのビット数を大きくすると、ビットに対応した容量を有するキャパシタを実現する際に、より多くの所定の容量を有するキャパシタを並列に接続させる必要がある。即ち、所定の容量を有するキャパシタの数が多くなるため、回路、レイアウト設計が困難になる。この点に関して、上記の構成によると、ビットに対応した容量を有するキャパシタを実現する際に、所定の容量を有するキャパシタの数が過度に増えることを抑制し得る。従って、回路、レイアウト設計が容易となる。 In one embodiment of the present technology, the number of bits of the lower bit DinL may be 4 bits or less. When the number of bits of DinL for the lower bits is increased, it is necessary to connect capacitors having a larger predetermined capacity in parallel when realizing a capacitor having a capacity corresponding to the bits. That is, since the number of capacitors having a predetermined capacity increases, it becomes difficult to design a circuit and a layout. In this regard, according to the above configuration, it is possible to suppress an excessive increase in the number of capacitors having a predetermined capacity when realizing a capacitor having a capacity corresponding to a bit. Therefore, the circuit and layout design becomes easy.
 上記の構成に加えて、又は代えて、上位ビット分DinHが2ビット以上である場合に、上位ビットD/A変換器は、線形性補償アルゴリズムに基づいて制御されてもよい。ここでいう線形性補償アルゴリズムは、上位ビットD/A変換器の線形性を補償し得る任意のアルゴリズムを意図しており、特に限定されないが、例えばダイナミックエレメントマッチング(Dynamic Element Matching:DEM)を含んでもよい。この場合、上位ビット分DinHのビット数は、5ビット以下であってもよい。このような構成によると、DEM回路が比較的簡単となり、回路規模を小さくできる。その結果、回路、レイアウト設計が容易となり、かつチップ面積が小さくなって低コスト化できる。 In addition to or instead of the above configuration, the high-order bit D / A converter may be controlled based on the linearity compensation algorithm when the high-order bit DinH is 2 bits or more. The linearity compensation algorithm referred to here is intended as an arbitrary algorithm capable of compensating for the linearity of the high-order bit D / A converter, and is not particularly limited, and includes, for example, Dynamic Element Matching (DEM). It may be. In this case, the number of bits of DinH for the high-order bits may be 5 bits or less. With such a configuration, the DEM circuit becomes relatively simple and the circuit scale can be reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
 入力されたアナログ値に対してデジタル値を出力するΔΣ変調器であって、上記のデジタル/アナログ合成積分器を備えるフィードバック回路を有するΔΣ変調器も新規で有用である。 A delta-sigma modulator that outputs a digital value to an input analog value and has a feedback circuit including the above digital / analog composite integrator is also new and useful.
 本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。 Details and further improvements of the techniques disclosed herein will be described in the "Modes for Carrying Out the Invention" below.
実施例のデジタル/アナログ合成積分器のブロック図である。It is a block diagram of the digital / analog composite integrator of an embodiment. デジタル積分器及びデジタル加算器の論理回路図である。It is a logic circuit diagram of a digital integrator and a digital adder. アナログ加算器、アナログ積分器、及び、下位ビット及び上位ビットデジタル/アナログ変換器の回路図である。It is a circuit diagram of an analog adder, an analog integrator, and a low-order bit and a high-order bit digital / analog converter. クロックの一例のタイミングチャートである。It is a timing chart of an example of a clock. 実施例のデジタル/アナログ合成積分器備えるΔΣ変調器の回路図である。It is a circuit diagram of the ΔΣ modulator provided with the digital / analog composite integrator of an embodiment.
 図面を参照して実施例のデジタル/アナログ合成積分器(以下では「D/A合成積分器」と記載する)100を説明する。D/A合成積分器100は、デジタル入力Dinを入力として、このデジタル値列(Din(1),Din(2),・・・)を時間軸または時系列で積分した値(ΣDin)をアナログ値(一般的にはアナログ電圧Vo)に変換して出力する。図1に示すように、D/A合成積分器100は、デジタル入力Dinの上位ビット分をDinH、下位ビット分をDinLとする(Din=DinH+DinL)。以下、本実施例ではデジタル入力Dinは6ビット(000000~100000、10進数で0~32)であり、上位ビット分DinHは3ビット(000~100)、下位ビット分DinLは3ビット(000~111)の場合について説明する。しかしながら、デジタル入力Din、下位ビット分DinL、及び上位ビット分DinHのビット数は上記のビット数に限定されない。 The digital / analog composite integrator (hereinafter referred to as “D / A synthetic integrator”) 100 of the embodiment will be described with reference to the drawings. The D / A composite integrator 100 takes a digital input Din as an input, and an analog value (ΣDin) obtained by integrating this digital value sequence (Din (1), Din (2), ...) On the time axis or time series. It is converted to a value (generally an analog voltage Vo) and output. As shown in FIG. 1, in the D / A synthetic integrator 100, the high-order bits of the digital input Din are DinH and the low-order bits are DinL (Din = DinH + DinL). Hereinafter, in this embodiment, the digital input Din is 6 bits (000000 to 100,000, decimal number is 0 to 32), the upper bit DinH is 3 bits (000 to 100), and the lower bit DinL is 3 bits (000 to 000 to). The case of 111) will be described. However, the number of bits of the digital input Din, the low-order bit DinL, and the high-order bit DinH is not limited to the above-mentioned number of bits.
 D/A合成積分器100は、下位ビット分DinLについて、これをデジタル演算で積分する(ΣDinL)下位ビットデジタル積分器12を持つ。この下位ビットデジタル積分器12では、下位ビット分DinLのデジタル積分の結果、オーバーフローが発生する場合は、桁上げ分(Carry)を上位ビットDinHへ出力してデジタル演算で加算する(DinH+Carry)桁上げ処理を行い、それと同時に下位ビット積分器12からは同じ桁上げ分を減算する(Σ(DinL-Carry))。つまり、下位ビット分DinLのデジタル積分の結果から上位ビットへの桁上げ処理を行った後、下位ビットデジタル積分器12は桁上げ分を無視したものを自己の出力とする。そして、D/A合成積分器100は、下位ビットデジタル積分器12の出力(Σ(DinL-Carry))をアナログ値に変換する下位ビットD/A変換器(以下では「DAC-L」と記載する)14を持つ。 The D / A composite integrator 100 has a low-order bit digital integrator 12 that integrates the low-order bit DinL by digital calculation (ΣDinL). In the low-order bit digital integrator 12, if an overflow occurs as a result of digital integration of the low-order bit DinL, the carry (Carry) is output to the high-order bit DinH and added by digital calculation (DinH + Carry). Processing is performed, and at the same time, the same carry is subtracted from the lower bit integrator 12 (Σ (DinL-Carry)). That is, after performing the carry processing from the result of the digital integration of the low-order bit DinL to the high-order bit, the low-order bit digital integrator 12 sets the output of the low-order bit digital integrator 12 ignoring the carry. The D / A composite integrator 100 is a low-order bit D / A converter (hereinafter referred to as "DAC-L") that converts the output (Σ (DinL-Carry)) of the low-order bit digital integrator 12 into an analog value. ) Has 14.
 D/A合成積分器100は、上位ビット分DinHについて、先の桁上げ分を加算した値(DinH+Carry)を出力するデジタル加算器22と、デジタル加算器22が出力する上位ビット分デジタル値(DinH+Carry)をアナログ値に変換する上位ビットD/A変換器(以下では「DAC-H」と記載する)24と、DAC-H24による変換後のアナログ値をアナログ演算により積分する(Σ(DinH+Carry))上位ビットアナログ積分器26を持つ。 The D / A composite integrator 100 has a digital adder 22 that outputs a value (DinH + Carry) obtained by adding the carry amount of the upper bit for the upper bit DinH, and a digital value (DinH + Carry) for the upper bit output by the digital adder 22. ) To an analog value (hereinafter referred to as "DAC-H") 24 and the analog value converted by the DAC-H24 are integrated by analog calculation (Σ (DinH + Carry)). It has a high-order bit analog integrator 26.
 そして、D/A合成積分器100は、上位ビットアナログ積分器26の出力とDAC-L14のアナログ出力をアナログ回路(アナログ加算器30)で加算演算し、最終積分器出力Voを得る。 Then, the D / A composite integrator 100 adds the output of the upper bit analog integrator 26 and the analog output of the DAC-L14 by an analog circuit (analog adder 30) to obtain the final integrator output Vo.
 図2は、デジタル入力Dinを全6ビット(000000~100000、10進数で0~32)として、上位ビット部分DinHを3ビット(000~100)、下位ビット部分DinLを3ビット(000~111)とした場合の回路設計例である。最上位ビット(MSB)b5加算器のC(Carry)出力は使用しなくてもよいため、点線で表示した。図2に示すデジタル積分器12及びデジタル加算器22の回路構成については当業者によく知られているため、その詳細な説明を省略する。 In FIG. 2, the digital input Din is 6 bits (000000 to 100,000, 0 to 32 in decimal), the upper bit portion DinH is 3 bits (000 to 100), and the lower bit portion DinL is 3 bits (000 to 111). This is an example of circuit design in the case of. Since the C (Carry) output of the most significant bit (MSB) b5 adder does not have to be used, it is indicated by a dotted line. Since the circuit configurations of the digital integrator 12 and the digital adder 22 shown in FIG. 2 are well known to those skilled in the art, detailed description thereof will be omitted.
 上位ビット分DinHがマルチビット(2ビット以上)の場合、DAC-H24においてダイナミックエレメントマッチング(Dynamic Element Matching:DEM)技術などの素子ミスマッチキャンセル技術を用いてもよい。図2はこの場合の回路例である。下位3ビットDinLは下位ビットデジタル積分器12を用いて積分され、3ビット(000~111)バイナリコードで出力する。下位ビットデジタル積分器12の桁上げCarryはデジタル加算器22において上位3ビットDinHに加算され、これを温度計コード(Thermometer code)化し、さらにDEMコントロールロジックで、DAC-H24を構成する各キャパシタの接続を制御するDEM制御信号として出力する。DEM制御の内部ロジックについては当業者によく知られているため、その詳細な説明を省略する。 When the high-order bit DinH is multi-bit (2 bits or more), an element mismatch canceling technique such as a dynamic element matching (DEM) technique may be used in the DAC-H24. FIG. 2 is an example of a circuit in this case. The lower 3 bits DinL are integrated using the lower bit digital integrator 12 and output in a 3 bit (000 to 111) binary code. The carry-up signal of the low-order bit digital integrator 12 is added to the high-order 3-bit DinH in the digital adder 22, and this is converted into a thermometer code (Thermometer code). Further, the DEM control logic is used for each capacitor constituting the DAC-H24. It is output as a DEM control signal that controls the connection. Since the internal logic of DEM control is well known to those skilled in the art, detailed description thereof will be omitted.
 DAC-H24と上位ビットアナログ積分器(Analog Integrator)26、DAC-L14とアナログ加算器(Analog Adder)30は、積分キャパシタCIを共用し、合体した回路構成とすることができる。図3は、上位ビットアナログ積分器26として、オペアンプを使わずにキャパシタとスイッチで構成した積分器(パッシブ積分器)、加算器としてはキャパシタ分圧回路を用いて、全差動回路構成で実現した回路例である。このような回路では、オペアンプのスルーレートや発振安定性の制約がないため、上位ビットアナログ積分器26を高い動作周波数で動作させることができる。従って、D/A合成積分器100を高い動作周波数で動作させることができる。 The DAC-H24 and the upper bit analog integrator (AnalogIntegrator) 26, and the DAC-L14 and the analog adder (AnalogAdder) 30 share the integrator CI and can be combined into a circuit configuration. FIG. 3 shows a fully differential circuit configuration using an integrator (passive integrator) composed of a capacitor and a switch as the high-order bit analog integrator 26 without using an operational amplifier, and a capacitor voltage divider circuit as an adder. This is an example of the circuit. In such a circuit, since there are no restrictions on the slew rate and oscillation stability of the operational amplifier, the high-order bit analog integrator 26 can be operated at a high operating frequency. Therefore, the D / A synthetic integrator 100 can be operated at a high operating frequency.
 図2のデジタル回路に対応して、デジタル入力Dinは全6ビット(000000~100000)で、上位3ビットをDEM制御信号としてDAC-H24を制御、下位3ビットはバイナリコードでDAC-L14を制御する。DAC-H24は差動回路構成のキャパシタペアCrefp1~4とCrefn1~4で構成され、DAC-L14はCaddp0~2とCaddn0~2で構成される。Vref+、Vref-は基準電位で、この間の電位差Vref=(Vref+)-(Vref-)がD/A変換の基準電圧となる。 Corresponding to the digital circuit of FIG. 2, the digital input Din has a total of 6 bits (000000 to 100,000), the upper 3 bits control the DAC-H24 as a DEM control signal, and the lower 3 bits control the DAC-L14 with a binary code. do. The DAC-H24 is composed of capacitor pairs Crefp1 to 4 and Clefn1 to 4 having a differential circuit configuration, and the DAC-L14 is composed of Cadddp0 to 2 and Caddn0 to 2. Vref + and Vref− are reference potentials, and the potential difference Vref = (Vref +) − (Vref−) between them is the reference voltage for D / A conversion.
 DAC-H24を構成するキャパシタペアCrefp1~4、Crefn1~4は、全て同一容量値のキャパシタとする。DAC-L14のキャパシタペアについては、Caddp2=Caddn2をDAC-H24キャパシタCref1~4の1/2、Caddp1=Caddn1を1/4、Caddp0=Caddn0を1/8の容量値にそれぞれ設計する。 The capacitor pairs Crefp1 to 4 and Clefn1 to 4 constituting the DAC-H24 are all capacitors having the same capacitance value. For the DAC-L14 capacitor pair, Caddp2 = Caddn2 is designed to be 1/2 of the DAC-H24 capacitors Clef1 to 4, Caddp1 = Caddn1 is designed to be 1/4, and Cadddp0 = Caddn0 is designed to be 1/8.
 DAC-H24とDAC-L14をマッチング良く設計するためには、同一容量値、同一レイアウト形状のユニットキャパシタC0を基本素子として用いて、各キャパシタをこの並列接続とすることが望ましい。例えば、Crefp1~4=Crefn1~4=8×C0、Caddp2=Caddn2=4×C0、Caddp1=Caddn1=2×C0、Caddp0=Caddn0=C0のように設計するとよい。 In order to design DAC-H24 and DAC-L14 with good matching, it is desirable to use unit capacitors C0 with the same capacitance value and the same layout shape as basic elements and connect each capacitor in parallel. For example, it may be designed as Crefp1 to 4 = Crefn1 to 4 = 8 × C0, Cadddp2 = Caddn2 = 4 × C0, Caddp1 = Caddn1 = 2 × C0, Caddp0 = Caddn0 = C0.
 また、図3で例に挙げた積分器回路は、オペアンプを使わないパッシブ積分器である。この場合は、積分器リークを十分小さく抑えるために、積分キャパシタCIの静電容量値を、DAC用キャパシタの容量値よりも十分大きく設計することが望ましい。すなわち、CI>>Crefp1~4、Crefn1~4と設計することが望ましい。 The integrator circuit given as an example in FIG. 3 is a passive integrator that does not use an operational amplifier. In this case, in order to suppress the integrator leakage sufficiently small, it is desirable to design the capacitance value of the integrator capacitor CI to be sufficiently larger than the capacitance value of the DAC capacitor. That is, it is desirable to design CI >> Crefp1 to 4 and Clefn1 to 4.
 図4に、クロックの一例について、そのタイミングチャートを示す。このクロックは、スイッチトキャパシタ回路技術で一般的に知られている「ノンオーバーラップクロック」である。ここでは、フェーズφ1をゼロサンプリングフェーズ、φ2を積分フェーズとして、φ2最終タイミングで積分器出力が確定される。 FIG. 4 shows a timing chart of an example of a clock. This clock is a "non-overlapping clock" commonly known in switched capacitor circuit technology. Here, the integrator output is determined at the final timing of φ2, with phase φ1 as the zero sampling phase and φ2 as the integration phase.
 図3において、回路コモンモード電位Vicm側スイッチのフェーズφ1A、φ2Aは、それぞれφ1、φ2よりもわずかに早いタイミングでON/OFF動作させることを表す。ここで、回路動作開始時に、積分キャパシタCIの出力Vo+とVo-の初期電位は回路コモンモード電位Vicmであるとする。一般的には回路動作前(電源投入直後など)この電位は定まっていないが、以下に述べるゼロサンプリングと積分動作を繰り返すうちに、Vo+とVo-の中点電位は徐々に回路コモンモード電位Vicmに近づいていく。 In FIG. 3, the phases φ1A and φ2A of the circuit common mode potential Vicm side switch represent ON / OFF operation at a timing slightly earlier than φ1 and φ2, respectively. Here, it is assumed that the initial potentials of the outputs Vo + and Vo− of the integrating capacitor CI are the circuit common mode potential Vicm at the start of the circuit operation. Generally, this potential is not fixed before the circuit operation (immediately after the power is turned on, etc.), but as the zero sampling and integration operations described below are repeated, the midpoint potential of Vo + and Vo- gradually increases to the circuit common mode potential Vicm. Approaching.
 まず、DAC-H24を構成するキャパシタペアCrefp1~4、Crefn1~4の接続と積分器の動作について説明する。フェーズφ1で、Crefp1~4、Crefn1~4の右側電極はコモンモード電位Vicmに接続、左側(Vref側)電極は基準電位(Vref+、Vref-)の中点Vref0(図3には表示されていない)に接続する。この状態で、DAC-H24の全てのキャパシタはゼロサンプリング状態となる。 First, the connection of the capacitor pairs Crefp1 to 4 and Clefn1 to 4 constituting the DAC-H24 and the operation of the integrator will be described. In phase φ1, the right electrodes of Crefp1 to 4 and Clefn1 to 4 are connected to the common mode potential Vicm, and the left (Vref side) electrode is the midpoint Vref0 (not shown in FIG. 3) of the reference potential (Vref +, Vref-). ). In this state, all the capacitors of the DAC-H24 are in the zero sampling state.
 なお、基準電位中点Vref0は、フェーズφ1でDAC-H24を構成する各キャパシタをゼロサンプリング状態にするために説明上で用いたが、実際の設計ではこの電位を発生させなくても、ゼロサンプリングと等価の中点サンプリング動作を実現できる。例えば、フェーズφ1でCref1~4の複数のキャパシタペアを一回おき(交互)に基準電位Vref+とVref-に接続、または「データ重みづけ平均化」(Data-Weighted
Averaging:DWA)の要領でVref+とVref-に素子循環させて接続し平均化させれば、基準電位中点Vref0をサンプリングするのと等価となる。
The reference potential midpoint Vref0 was used in the explanation to bring each capacitor constituting the DAC-H24 into a zero sampling state in the phase φ1, but in the actual design, zero sampling is performed even if this potential is not generated. It is possible to realize a midpoint sampling operation equivalent to. For example, in phase φ1, a plurality of capacitors pairs of Clef1 to 4 are connected to the reference potentials Vref + and Vref- every other time (alternately), or "Data-Weighted" (Data-Weighted).
If the elements are circulated and connected to Vref + and Vref- in the manner of Averaging: DWA) and averaged, it is equivalent to sampling the reference potential midpoint Vref0.
 次のフェーズφ2で、Crefp1~4、Crefn1~4の右側電極を積分キャパシタCIに接続し、左側(Vref側)電極を、DAC-H24デジタル入力(High-order bits)に従って基準電位Vref+またはVref-のいずれかにスイッチ接続すると、DAC-H24出力がCrefp1~4、Crefn1~4を介してCIに電荷転送され、積分動作が行われる。 In the next phase φ2, the right electrodes of Crefp1 to 4 and Clefn1 to 4 are connected to the integrating capacitor CI, and the left (Vref side) electrode is connected to the reference potential Vref + or Vref- according to the DAC-H24 digital input (High-order bits). When the switch is connected to any of the above, the DAC-H24 output is charged to the CI via Crefp1 to 4 and Crefn1 to 4, and the integration operation is performed.
 なお、図3の回路例のようなパッシブ積分器では、電荷が全て積分キャパシタCIに転送されずに、一部がキャパシタCref側に残って、これが積分器リークとなる。オペアンプを使ったアクティブ積分器を使えば、DAC-H24出力はほぼ理想的に積分器に電荷転送される。オペアンプを使ったアクティブ積分器の動作は広く知られており当業者には明らかであるため、回路図と動作説明を省略する。 In a passive integrator as shown in the circuit example of FIG. 3, all the charges are not transferred to the integrator CI, and a part of the charges remains on the capacitor Clef side, which causes an integrator leak. With an active integrator with operational amplifiers, the DAC-H24 output is almost ideally charged to the integrator. Since the operation of an active integrator using an operational amplifier is widely known and apparent to those skilled in the art, the circuit diagram and operation description are omitted.
 次に、DAC-L14を構成するキャパシタペアCaddp0~2、Caddn0~2の接続と加算器の動作について説明する。Caddp0~2、Caddn0~2の左側電極は、図3の回路図のように常時積分キャパシタCIに接続されている。Caddの右側(Vref側)電極は、最初のフェーズφ1ではDAC-L14入力「000」に相当する接続状態(ゼロサンプリング状態、例えばCaddp0~2をVref-、Caddn0~2をVref+に接続)とする。次にフェーズφ2で、Caddp0~2、Caddn0~2の右側(Vref側)電極を、DAC-L14デジタル入力(Low-order bits)に従ってVref+またはVref-に接続すれば、DAC-L14出力がCaddp0~2、Caddn0~2を介してキャパシタ分圧によりCI端子間電圧へ加算され、出力電圧Vo(=(Vo+)-(Vo-))に加算される。 Next, the connection of the capacitor pairs Caddp0 to 2 and Caddn0 to 2 constituting the DAC-L14 and the operation of the adder will be described. The left electrodes of Caddp0 to 2 and Caddn0 to 2 are always connected to the integrating capacitor CI as shown in the circuit diagram of FIG. The right side (Vref side) electrode of CAD is in a connected state (zero sampling state, for example, CADdp0 to 2 are connected to Vref- and CADn0 to 2 are connected to Vref +) in the first phase φ1 corresponding to the DAC-L14 input “000”. .. Next, in phase φ2, if the right (Vref side) electrodes of Caddp0 to 2 and Cadddn0 to 2 are connected to Vref + or Vref- according to the DAC-L14 digital input (Low-order bits), the DAC-L14 output will be Caddp0 to 2. It is added to the voltage between CI terminals by the voltage division of the capacitor via Caddn0 to 2, and is added to the output voltage Vo (= (Vo +)-(Vo-)).
 DAC-L14では、キャパシタCadd左側電極は積分キャパシタCIに常時接続されているため、フェーズφ2でCaddを介して出力VoにDAC出力を加算しても、次のフェーズφ1で再びCaddのVref側電極をゼロサンプリング状態に戻せば、加算された電圧は元に戻り、CIに積分されない。つまり、DAC-L14とキャパシタCIとは、アナログ加算器として動作する。 In DAC-L14, since the left electrode of the capacitor Cadd is always connected to the integrating capacitor CI, even if the DAC output is added to the output Vo via the Cad in the phase φ2, the Vref side electrode of the Cadd is again in the next phase φ1. If is returned to the zero sampling state, the added voltage is returned to the original state and is not integrated into the CI. That is, the DAC-L14 and the capacitor CI operate as an analog adder.
 このDAC-L14とアナログ加算器30の特性は、DAC-L14に誤差がある場合に有益に作用する。DAC-L14出力にはキャパシタCaddp0~2、Caddn0~2の容量ミスマッチによる誤差があり、DAC-L14出力の加算に伴いこのミスマッチによる誤差も積分器出力に加算される。しかし、この誤差は一時的に積分器出力に加算されても、積分キャパシタCIに積分はされない。DAC-L14入力が元の値に戻りCaddのVref側接続状態が元に戻れば、一時加算された誤差は減算されゼロとなる。下位ビットデジタル積分器12とDAC-L14とアナログ加算器30による下位ビット積分器が持つこの効果により、DAC-L14が発生する誤差の積分器出力への影響は、上位ビットDAC-H24が発生する誤差の積分器出力への影響と比較して格段に低減される。これについては、後の「本技術に係る構成でDAC出力誤差が全体積分器出力Voへ与える影響」で詳述する。 The characteristics of the DAC-L14 and the analog adder 30 work beneficially when there is an error in the DAC-L14. The DAC-L14 output has an error due to a capacitance mismatch between the capacitors Caddp0 to 2 and Caddn0 to 2, and the error due to this mismatch is also added to the integrator output as the DAC-L14 output is added. However, even if this error is temporarily added to the integrator output, it is not integrated into the integrator capacitor CI. When the DAC-L14 input returns to the original value and the CAD's Vref side connection state returns to the original value, the temporarily added error is subtracted and becomes zero. Due to this effect of the low-order bit integrator by the low-order bit digital integrator 12, DAC-L14, and analog adder 30, the influence of the error generated by DAC-L14 on the integrator output is generated by the high-order bit DAC-H24. The effect of error on the integrator output is significantly reduced. This will be described in detail later in "Effect of DAC output error on total integrator output Vo in the configuration according to the present technology".
 ここで、積分器出力Voはフェーズφ2最終タイミングで確定すればよいため、この後のフェーズφ1ではDAC-L14のキャパシタCaddのVref側電極をゼロサンプリング状態に戻さなくても(あるいはVref側電極電位が不定であっても)、フェーズφ2の時点でCaddのVref側接続を確定してDAC-L14出力が確定されていれば、加算動作は正常に行われ積分器出力Voは確定される。 Here, since the integrator output Vo may be determined at the final timing of the phase φ2, in the subsequent phase φ1, the Vref side electrode of the capacitor Cadd of the DAC-L14 does not have to be returned to the zero sampling state (or the Vref side electrode potential). If the connection on the Vref side of the Cadd is confirmed and the DAC-L14 output is determined at the time of phase φ2, the addition operation is normally performed and the integrator output Vo is determined.
 以上、今回の設計例では、デジタル入力Dinを全6ビット(000000~100000)として、上位ビットDinHを3ビット(000~100)、下位ビットDinLを3ビット(000~111)として説明した。各ビット数については、この例に限定されるものではなく、設計変更可能であることは言うまでもない。 As described above, in this design example, the digital input Din is defined as a total of 6 bits (000000 to 100,000), the upper bit DinH is defined as 3 bits (000 to 100), and the lower bit DinL is defined as 3 bits (000 to 111). It goes without saying that the number of bits is not limited to this example, and the design can be changed.
 また、CrefpおよびCrefnのVref側電極を、DAC-H24入力デジタル値によって、それぞれVref+/Vref-あるいはその逆に接続する様に記述しているが、この限りでない。例えば入力デジタル値によってCrefp及びCrefnのVref側電極をVref+とVref-の中間電位に接続する、あるいはVref側電極間を単に短絡する(電位固定しない)ものであってもよい。 Further, it is described that the Vref side electrodes of Crefp and Clefn are connected to Vref + / Vref- or vice versa according to the DAC-H24 input digital value, but this is not the case. For example, depending on the input digital value, the Vref side electrodes of Crefp and Clefn may be connected to the intermediate potential between Vref + and Vref-, or the Vref side electrodes may be simply short-circuited (potential not fixed).
 DAC-H24とDAC-L14のマッチング向上のため、各キャパシタのレイアウトは、同一容量値、同一レイアウト形状のユニットキャパシタC0の並列接続とするのが望ましいことを既に述べた。一方でDAC-L14のビット数が大きくなると、DAC-H24の基本キャパシタCref1~4と、DAC-L14最下位ビット用のキャパシタCadd0のサイズ比が大きくなり、ユニットキャパシタC0が小さくなる、あるいはCref1~4の並列素子数が増して、DAC-H24とDAC-L14の間のマッチングを確保するのが難しくなる。もし、DAC-L14の基準電圧Vref(=(Vref+)-(Vref-))をDAC-H24の半分(1/2)Vrefにできれば、この素子サイズ比が半分に小さくなる。例えばDAC-L14入力(即ち下位ビット分)が3ビットの場合、素子サイズ比は8:1→4:1となる。これにより、DAC-H24とDAC-L14のマッチングを取りやすくなり、ミスマッチによる誤差を小さくできる、または設計が容易となる。 It has already been described that in order to improve the matching between the DAC-H24 and the DAC-L14, it is desirable that the layout of each capacitor is a parallel connection of unit capacitors C0 having the same capacitance value and the same layout shape. On the other hand, when the number of bits of the DAC-L14 increases, the size ratio between the basic capacitors Clef1 to 4 of the DAC-H24 and the capacitor Cadd0 for the least significant bit of the DAC-L14 increases, and the unit capacitor C0 decreases, or Clef1 to Clef1 to As the number of parallel elements of 4 increases, it becomes difficult to secure matching between the DAC-H24 and the DAC-L14. If the reference voltage Vref (= (Vref +)-(Vref-)) of the DAC-L14 can be reduced to half (1/2) Vref of the DAC-H24, this element size ratio will be reduced to half. For example, when the DAC-L14 input (that is, the lower bits) is 3 bits, the element size ratio is 8: 1 → 4: 1. This makes it easier to match the DAC-H24 and the DAC-L14, reduce the error due to the mismatch, or facilitate the design.
 しかし、この方法では、DAC-L14用基準電圧(1/2)Vrefを発生する回路が別に必要となる。そこで他の方法として、DAC-L14のキャパシタ接続を、入力デジタルビット値の0/1に対応して-Vref/+Vrefと切り替えるのではなく、一方を0(電圧ゼロ)にして-Vref/0と切り替えることで、同じ容量値で設計しても加算電圧が半分になり、基準電圧を半分にするのと同様の効果となる。加算0(ゼロ)の演算は、差動回路を構成するキャパシタペア(Caddp0~2とCaddn0~2)のVref側端子間を電圧ゼロ、つまりスイッチでショートすれば実現できる(Vref0や他の基準電位に接続して電位固定する必要はない)。 However, this method requires a separate circuit that generates a reference voltage (1/2) Vref for DAC-L14. Therefore, as another method, instead of switching the capacitor connection of the DAC-L14 to -Vref / + Vref corresponding to 0/1 of the input digital bit value, set one to 0 (voltage zero) and set it to -Vref / 0. By switching, the added voltage is halved even if the same capacitance value is designed, and the same effect as halving the reference voltage is obtained. The calculation of addition 0 (zero) can be realized by shorting the voltage between the Vref side terminals of the capacitor pairs (Cadpd0 to 2 and Caddn0 to 2) that make up the differential circuit with a zero voltage, that is, a switch (Vref0 and other reference potentials). It is not necessary to connect to and fix the potential).
 具体的には、DAC-H24とDAC-L14とで、デジタル入力に対して各キャパシタを以下の様に接続する。即ち、DAC-H24では、デジタル入力の各ビットの値が0の時、対応するCrefp1~4をVref-に接続、Crefn1~4をVref+に接続する。また、デジタル入力の各ビットの値が1の時、対応するCrefp1~4をVref+に接続、Crefn1~4をVref-に接続する。一方、DAC-L14では、デジタル入力の各ビットの値が0の時、対応するCaddp0~2をVref-に接続、Caddn0~2をVref+に接続する(即ちDAC-H24と同様)。また、デジタル入力の各ビットの値が1の時、対応するCaddp0~2とCaddn0~2のVref側電極間をスイッチでショートする。 Specifically, with DAC-H24 and DAC-L14, each capacitor is connected to the digital input as follows. That is, in the DAC-H24, when the value of each bit of the digital input is 0, the corresponding Crefp1 to 4 are connected to Vref-, and the Clefn1 to 4 are connected to Vref +. When the value of each bit of the digital input is 1, the corresponding Crefp1 to 4 are connected to Vref +, and the Clefn1 to 4 are connected to Vref−. On the other hand, in DAC-L14, when the value of each bit of the digital input is 0, the corresponding Cadddp0 to 2 are connected to Vref-, and Cadddn0 to 2 are connected to Vref + (that is, the same as DAC-H24). Further, when the value of each bit of the digital input is 1, the corresponding short circuit between the electrodes on the Vref side of Caddp0 to 2 and Cadddn0 to 2 is performed by a switch.
 上記のようなスイッチ接続に設計すれば、DAC-L14入力が3ビットでも、DAC-H24とDAC-L14間の基本キャパシタの比は4:1となり、8:1の場合に比べて設計が容易となり、マッチングの向上が期待できる。例えば、各キャパシタの容量値は、ユニットキャパシタC0を基本素子として、Crefp1~4=Crefn1~4=4×C0、Caddp2=Caddn2=4×C0、Caddp1=Caddn1=2×C0、Caddp0=Caddn0=C0のように設計できる。 If the switch connection is designed as described above, even if the DAC-L14 input is 3 bits, the ratio of the basic capacitors between the DAC-H24 and the DAC-L14 is 4: 1, which is easier to design than the case of 8: 1. Therefore, improvement of matching can be expected. For example, the capacitance value of each capacitor is based on the unit capacitor C0 as a basic element, Crefp1 to 4 = Crefn1 to 4 = 4 × C0, Caddp2 = Cadddn2 = 4 × C0, Cadddp1 = Cadddn1 = 2 × C0, Cadddp0 = Cadddn0 = C0. Can be designed as
 次に、本技術に係る構成でDAC出力誤差が全体積分器出力Voへ与える影響について説明する。DAC出力の誤差は、DACを構成するキャパシタ素子のミスマッチにより発生する。ここで上位ビット分については、DAC-H24において従来と同様のDEM技術を用いることができ、これにより素子ミスマッチによる誤差の影響は十分に小さく抑えられるため、回路全体の誤差の主要因とはならないと考えられる。次に、下位ビット分の回路は、下位ビットデジタル積分器12、DAC-L14、アナログ加算器30により構成されるが、このうち下位ビットデジタル積分器12は、デジタル演算であり誤差は発生しない。従って、本構成で全体積分器出力Voに現れる誤差は、(DAC-H24に対する相対誤差としての)DAC-L14のキャパシタミスマッチによる誤差が主要因と考えられる。この誤差は、DAC-L14デジタル入力の各ビット0/1が反転し、対応するキャパシタのVref側接続が切り替わり、DAC-L14出力が変化するのに伴って発生する。 Next, the effect of the DAC output error on the total integrator output Vo in the configuration related to this technology will be described. The error of the DAC output is generated by the mismatch of the capacitor elements constituting the DAC. Here, for the high-order bits, the same DEM technology as the conventional one can be used in the DAC-H24, and the influence of the error due to the element mismatch can be sufficiently suppressed, so that it does not become the main factor of the error of the entire circuit. it is conceivable that. Next, the circuit for the lower bits is composed of the lower bit digital integrator 12, the DAC-L14, and the analog adder 30, of which the lower bit digital integrator 12 is a digital operation and no error occurs. Therefore, it is considered that the error appearing in the total integrator output Vo in this configuration is mainly due to the error due to the capacitor mismatch of the DAC-L14 (as a relative error with respect to the DAC-H24). This error occurs as each bit 0/1 of the DAC-L14 digital input is inverted, the Vref side connection of the corresponding capacitor is switched, and the DAC-L14 output changes.
 以下、DAC-H24出力に対するDAC-L14出力の誤差が積分器出力Voへ及ぼす影響について考察する。DAC-L14を構成するキャパシタCaddp0~2、Caddn0~2には容量ミスマッチがあり、DAC-L14出力の積分器出力Voへの加算に伴い、このミスマッチによる誤差も出力に加算される。しかし、図3に示すように、Caddp0~2、Caddn0~2の左側電極は積分キャパシタCIに常時接続されたままであるため、この誤差は一時的に積分器出力Voに加算されても、積分キャパシタCIに積分はされない。DAC-L14入力デジタル値が元の値に戻りCaddのVref側接続状態が元に戻れば、一時加算された誤差は減算されキャンセルされる。つまりDAC-L14による誤差は、デジタル積分器出力値が変化(遷移)した時に、一時的に積分器出力Voに現れると考えられる。従って、下位ビットデジタル積分器12出力がカウントアップ/ダウンを繰り返しながら緩やかに値が遷移している場合は、積分器出力Voに現れる1サンプル当たりの平均誤差振幅は、下位ビットデジタル積分器12出力がその値の遷移に要した時間(またはサンプル数)で割ったものとなる。つまりDAC-L14の誤差は時間軸上で分散されて小さくなる。 Hereinafter, the influence of the error of the DAC-L14 output with respect to the DAC-H24 output on the integrator output Vo will be considered. The capacitors Caddp0 to 2 and Caddn0 to 2 constituting the DAC-L14 have a capacitance mismatch, and as the DAC-L14 output is added to the integrator output Vo, an error due to this mismatch is also added to the output. However, as shown in FIG. 3, since the left electrodes of Caddp0 to 2 and Caddn0 to 2 are always connected to the integrator capacitor CI, even if this error is temporarily added to the integrator output Vo, the integrator capacitor It is not integrated into CI. When the DAC-L14 input digital value returns to the original value and the CAD's Vref side connection state returns to the original value, the temporarily added error is subtracted and canceled. That is, it is considered that the error due to the DAC-L14 temporarily appears in the integrator output Vo when the digital integrator output value changes (transitions). Therefore, when the value of the lower bit digital integrator 12 output changes slowly while repeating count up / down, the average error amplitude per sample appearing in the integrator output Vo is the lower bit digital integrator 12 output. Is divided by the time (or the number of samples) required for the transition of that value. That is, the error of DAC-L14 is dispersed on the time axis and becomes small.
 デジタル入力Dinの下位ビット分DinLが比較的大きい値の場合は、下位ビットデジタル積分器12が積分によるカウントアップ/ダウンと桁上げを繰り返すが、下位ビットデジタル積分器12出力値(=DAC-L14デジタル入力値)が周回してDAC-L14の素子接続状態が元に戻れば、一時的に積分器出力Voに加算されたDAC-L14ミスマッチ分による誤差は減算されキャンセルされるため、その平均値はゼロである。下位ビットデジタル積分器12が積分による周回と桁上げを繰り返すと、出力誤差は一定の範囲内で増加と減少を繰り返し、DAC-L14誤差が出力に周期的に現れる周期雑音となる。 When the lower bit DinL of the digital input Din is a relatively large value, the lower bit digital integrator 12 repeats counting up / down and carry by integration, but the lower bit digital integrator 12 output value (= DAC-L14). When the digital input value) goes around and the element connection state of the DAC-L14 is restored, the error due to the DAC-L14 mismatch temporarily added to the integrator output Vo is subtracted and canceled, so the average value Is zero. When the low-order bit digital integrator 12 repeats laps and carry by integration, the output error repeatedly increases and decreases within a certain range, and the DAC-L14 error becomes periodic noise that appears periodically in the output.
 ここで、オーバサンプリングシステムに応用した場合(信号帯域fsignal、サンプリング周波数fsとして、fsignal<<fs/2の場合)、周期雑音の成分がシステムで取り扱う信号帯域外であれば、後段フィルタ処理により除去することが可能である。例えば本回路をΔΣ型A/D変換器の積分器に応用した場合は、一般にΔΣ変調器の後段にデジタルLPF(ローパスフィルタ)があり、信号帯域を超える高周波雑音成分はこのデジタルLPFにより除去されるため、これより後のデジタル出力には現れない。一方、この周期雑音の成分が信号帯域内にあると、アイドルトーン(Idle Tone)として出力に現れることがある。 Here, when applied to an oversampling system (when the signal band fsignal and the sampling frequency fs are fsignal << fs / 2), if the periodic noise component is outside the signal band handled by the system, it is removed by the subsequent filter processing. It is possible to do. For example, when this circuit is applied to the integrator of a delta-sigma A / D converter, there is generally a digital LPF (low-pass filter) after the delta-sigma modulator, and high-frequency noise components exceeding the signal band are removed by this digital LPF. Therefore, it does not appear in the digital output after this. On the other hand, if this periodic noise component is within the signal band, it may appear in the output as an idle tone (Idle Tone).
 しかしオーバサンプリングシステムでは、出力に現れる雑音成分はサンプリング周波数fsよりも十分周波数の低い、つまり周期の長いものに限られるため、これは先に述べたDAC-L14誤差の時間軸上分散効果により、1サンプル当たりに換算すると誤差振幅は小さく抑えられたものとなる。 However, in the oversampling system, the noise component appearing in the output is limited to the one whose frequency is sufficiently lower than the sampling frequency fs, that is, the period is long. When converted per sample, the error amplitude is suppressed to a small value.
 本構成の、下位ビットデジタル積分器12とDAC-L14とアナログ加算器30が持つこの効果により、下位ビットDAC-L14が発生する誤差の全体積分器出力Voへの影響は、上位ビットDAC-H24の誤差によるものと比較して格段に低減される。 Due to this effect of the lower bit digital integrator 12, DAC-L14, and analog adder 30 of this configuration, the influence of the error generated by the lower bit DAC-L14 on the overall integrator output Vo is the upper bit DAC-H24. It is significantly reduced compared to the one due to the error of.
 以上の構成によると、DAC-L14のミスマッチによる誤差は積分されないため、積分器出力に現れる平均誤差は時間軸上で分散され、オーバサンプリングシステムでは、出力に現れる信号帯域の誤差が大幅に低減される。このため高分解能マルチビットDACで通常必要とされるミスマッチキャンセルDEMは、DAC-H24のみの少ビットDEMで十分なリニアリティを確保できるようになり、大規模な多ビットDEM回路が不必要となって回路規模を格段に小さくできる。その結果、回路、レイアウト設計が容易となり、かつチップ面積が小さくなって低コスト化できる。 According to the above configuration, since the error due to the mismatch of DAC-L14 is not integrated, the average error appearing at the integrator output is dispersed on the time axis, and the error of the signal band appearing at the output is significantly reduced in the oversampling system. NS. Therefore, the mismatch canceling DEM usually required for a high-resolution multi-bit DAC can secure sufficient linearity with a small-bit DEM of only the DAC-H24, and a large-scale multi-bit DEM circuit becomes unnecessary. The circuit scale can be significantly reduced. As a result, the circuit and layout design can be facilitated, and the chip area can be reduced to reduce the cost.
 本構成によれば、マルチビットデジタル入力のうちDEMを用いるのはDAC-H24だけであり、下位ビット分を差し引いた少ビット数(例えば、全6ビットで、下位ビットを3ビットとした場合、上位は6-3=3ビット)のDEMで済むため、格段に小規模な回路構成で実現できる。例えば先に挙げた例では、デジタル入力が6ビット000000~100000の差動回路構成DACでDEMを用いると、32対のユニットキャパシタペアと、これをVref接続制御するMOSスイッチが必要である。本技術に係る構成を用いて、上位ビット分DinHを3ビット000~100、下位ビット分DinLを3ビット000~111と設計すれば、必要なキャパシタペアは、DEMを用いる上位ビット分(DAC-H24)4対、下位ビット分(DAC-L14)3対で、合計7対のキャパシタペアと対応するMOSスイッチで済む。また、上位ビット分DinHを1ビットに設計することも可能で、この場合は上位ビット分DinHについてDEMを用いる必要がない。本技術に係るD/A合成積分器100は、マルチビット出力のΔΣ変調器へ広く応用できる。 According to this configuration, only DAC-H24 uses DEM among the multi-bit digital inputs, and the number of bits is small after deducting the lower bits (for example, when all 6 bits are used and the lower bits are 3 bits). Since the upper level requires only 6-3 = 3 bits of DEM, it can be realized with a significantly smaller circuit configuration. For example, in the example given above, when a DEM is used in a differential circuit configuration DAC having a digital input of 6 bits of 6,000,000 to 100,000, 32 pairs of unit capacitor pairs and a MOS switch for controlling the Vref connection are required. If the upper bit DinH is designed to be 3 bits 000 to 100 and the lower bit DinL is designed to be 3 bits 000 to 111 using the configuration according to the present technology, the required capacitor pair is the upper bit (DAC-) using DEM. H24) 4 pairs, 3 pairs of low-order bits (DAC-L14), and a total of 7 pairs of capacitor pairs and a corresponding MOS switch are sufficient. It is also possible to design the high-order bit DinH to 1 bit, and in this case, it is not necessary to use a DEM for the high-order bit DinH. The D / A composite integrator 100 according to the present technology can be widely applied to a multi-bit output ΔΣ modulator.
 また、以上の構成によると、テスト容易性の効果を得ることができる。既に説明したように、本構成でDAC-H24に対するDAC-L14のミスマッチが大きいと、DAC-L14各ビットが0/1反転する時に誤差が発生し、デジタル積分器12の周回に同期した周期雑音が出力に現れることがある。この周期雑音が問題になる場合は、IC出荷テストで良品/不良品選別、あるいは特性ランク分けを実施することは容易である。 Further, according to the above configuration, the effect of testability can be obtained. As described above, if the mismatch of the DAC-L14 with respect to the DAC-H24 is large in this configuration, an error occurs when each bit of the DAC-L14 is inverted by 0/1, and the periodic noise synchronized with the rotation of the digital integrator 12 occurs. May appear in the output. When this periodic noise becomes a problem, it is easy to perform non-defective product / defective product selection or characteristic ranking in the IC shipping test.
 具体的には、積分器へのデジタル入力から、出力に現れる周期雑音のパターンと周期は設計予測できるため、DAC-L14の各ビットが周期的に0/1反転するようなデジタル値を入力し、出力に現れる周期変動分を測定することで、各ビットに対応する素子のミスマッチを個別に測定できる。出力の後段にバンドパスフィルタを置けば、DAC-L14各ビットが反転する時に発生する特定の周期の誤差成分だけを取り出すことも可能であり、各キャパシタのミスマッチを個別に計測して容量値のトリミング調整を行うこともできる。 Specifically, since the pattern and period of the periodic noise appearing in the output can be designed and predicted from the digital input to the integrator, a digital value such that each bit of the DAC-L14 is periodically inverted by 0/1 is input. By measuring the periodic fluctuations appearing in the output, the mismatch of the elements corresponding to each bit can be measured individually. If a bandpass filter is placed after the output, it is possible to extract only the error component of a specific period that occurs when each bit of DAC-L14 is inverted, and the mismatch of each capacitor is measured individually to determine the capacitance value. Trimming adjustment can also be performed.
 ΔΣ型A/D変換器に当技術を適用した場合も、同様の出荷テストは容易である。ADCデジタル出力をモニタし、所定の周期雑音が現れるようにアナログ入力を調整し、デジタル出力に現れる周期雑音を測定すればよい。 When this technology is applied to a delta-sigma A / D converter, the same shipping test is easy. The ADC digital output may be monitored, the analog input may be adjusted so that a predetermined periodic noise appears, and the periodic noise appearing in the digital output may be measured.
 図5は、上記のD/A合成積分器100を「Passive-DigitalΔΣ変調器」に適用した回路例である。「Passive-DigitalΔΣ変調器」については、特許文献1を参照されたい。ΔΣ変調器40のデジタル出力(Digital Out)をD/A合成積分器100に入力Vinと逆極性となるよう入力して、フィードバックDACと積分器として使用している。Vin+及びVin-は、ΔΣ変調器のアナログ入力で、差動電圧Vin(=(Vin+)-(Vin-))として入力する。入力サンプリングキャパシタとして、CspとCsnとを追加している。 FIG. 5 is an example of a circuit in which the above D / A composite integrator 100 is applied to a “Passive-Digital ΔΣ modulator”. For "Passive-Digital ΔΣ modulator", refer to Patent Document 1. The digital output (Digital Out) of the ΔΣ modulator 40 is input to the D / A composite integrator 100 so as to have the opposite polarity to the input Vin, and is used as a feedback DAC and an integrator. Vin + and Vin− are analog inputs of the ΔΣ modulator, and are input as a differential voltage Vin (= (Vin +) − (Vin−)). Csp and Csn are added as input sampling capacitors.
 ΔΣ変調器40のデジタル出力を上位ビット分と下位ビット分に分け、下位ビット分はデジタル積分器で積分してこの出力でDAC-L14を制御する。デジタル積分器12の桁上げ(Carry)と上位ビット分を加算し、この加算値でDAC-H24を制御する。これらの合成でフィードバックDACと積分器を構成し、アナログ入力VinとΔΣ変調器40デジタル出力のD/A変換値との差を積分する。図5では、ΔΣ変調器40の入力Vinの極性を基準に表示しているため、図3とは積分器出力Vo+とVo-の表示が逆となっている。ΔΣ変調器40の積分器は、入力VinとフィードバックDAC出力の差を積分するため、入力Vinの極性で考えると極性が逆になるからである。 The digital output of the delta-sigma modulator 40 is divided into high-order bits and low-order bits, and the low-order bits are integrated by the digital integrator, and the DAC-L14 is controlled by this output. Carry of the digital integrator 12 and the high-order bits are added, and the DAC-H24 is controlled by this added value. A feedback DAC and an integrator are constructed by combining these, and the difference between the analog input Vin and the D / A conversion value of the ΔΣ modulator 40 digital output is integrated. In FIG. 5, since the polarity of the input Vin of the ΔΣ modulator 40 is displayed as a reference, the display of the integrator outputs Vo + and Vo− is opposite to that in FIG. This is because the integrator of the ΔΣ modulator 40 integrates the difference between the input Vin and the feedback DAC output, so that the polarities are opposite when considering the polarity of the input Vin.
 パッシブ積分器を使ったPassive-DigitalΔΣ変調器に本技術を適用すれば、フィードバックDACのビット数、つまり分解能が増して積分器出力振幅をより小さく抑えられるため、後段の量子化器の入力範囲がより小さく抑えられ、量子化器の線形性が向上する、また積分器リークを小さくできる。その結果、A/D変換器の特性を向上できる、または全回路規模を簡単化し低コスト化できる。 If this technology is applied to a Passive-Digital ΔΣ modulator using a passive integrator, the number of bits of the feedback DAC, that is, the resolution is increased and the integrator output amplitude can be suppressed to be smaller, so that the input range of the quantizer in the subsequent stage can be increased. It can be kept smaller, the linearity of the quantizer is improved, and the integrator leak can be reduced. As a result, the characteristics of the A / D converter can be improved, or the scale of the entire circuit can be simplified and the cost can be reduced.
 実施例で説明した技術に関する留意点を述べる。今回、積分器回路として、代表的応用である全差動回路構成によるパッシブ積分器を例として説明したが、オペアンプを使った積分器(アクティブ積分器)やシングルエンド回路の積分器であっても、同様の思想の回路を設計することは容易である。アクティブ積分器のほうが、積分器リークのない高精度なものが容易に設計実現できる。 The points to keep in mind regarding the technology explained in the examples will be described. This time, as an integrator circuit, a passive integrator with a fully differential circuit configuration, which is a typical application, was explained as an example, but even an integrator using an operational amplifier (active integrator) or an integrator of a single-ended circuit can be used. , It is easy to design a circuit with a similar idea. An active integrator can be easily designed and realized with high accuracy without integrator leakage.
 D/A変換器について、キャパシタ列により構成したもので説明したが、DAC-H24、DAC-L14の一方もしくは両方に抵抗その他の素子を用いたものでもよい。 Although the D / A converter has been described as being composed of a series of capacitors, a resistor or other element may be used for one or both of the DAC-H24 and the DAC-L14.
 デジタル積分器とそれに対応するアナログ加算器で加減算できる範囲には、素子数で決まる有限値限界がある。一定の入力の積分を続けると、デジタル積分器とアナログ加算器がいつかこの限界に達して(演算オーバーフローして)、これ以上積分できなくなる。一方、アナログ積分器の場合はこのようなオーバーフローを生じない。このため、デジタル積分器を下位ビット分に用いて、これがオーバーフローした場合は桁上げ(Carry)を出して上位ビット分に加算してオーバーフローを吸収し、Carry分は上位ビット側アナログ積分器で積分することで、積分器全体としては演算オーバーフローを発生することなく、積分動作を続けることができる。以上の理由により、Carry分の1ビット以上を、アナログ積分器で積分する上位ビット分として確保しておく必要がある(換言すると、デジタル積分器がオーバーフローした時のCarry分を演算処理する別の方法が必要である)。従って、全ビットをデジタル積分器で積分する構成は好ましくない。同様に、上位ビット分をデジタル積分器、下位ビット分をアナログ積分器でそれぞれ積分する構成も好ましくない。 There is a finite value limit determined by the number of elements in the range that can be added or subtracted by the digital integrator and the corresponding analog adder. If you continue to integrate a certain input, the digital integrator and analog adder will eventually reach this limit (calculation overflow) and you will not be able to integrate any more. On the other hand, in the case of an analog integrator, such an overflow does not occur. Therefore, a digital integrator is used for the lower bits, and if it overflows, a carry is issued and added to the upper bits to absorb the overflow, and the carry is integrated by the upper bit side analog integrator. By doing so, the integrator as a whole can continue the integrating operation without causing a calculation overflow. For the above reasons, it is necessary to secure one bit or more of Carry as the high-order bits to be integrated by the analog integrator (in other words, another Carry part for arithmetic processing when the digital integrator overflows). I need a way). Therefore, a configuration in which all bits are integrated by a digital integrator is not preferable. Similarly, it is not preferable to integrate the upper bits with a digital integrator and the lower bits with an analog integrator.
 DAC-H24については、(マルチビットの場合は)各キャパシタのミスマッチキャンセルのためにDEMが必要である。上位ビット分DinHのビット数が増すと、ユニットキャパシタの数が2の累乗で増加し、さらにDEMロジックも複雑となるため、回路が複雑で設計が困難となる。従って、上位ビット分DinHは、例えば5ビット以下としておくのが適切である。 For DAC-H24, DEM is required to cancel the mismatch of each capacitor (in the case of multi-bit). When the number of bits of DinH is increased by the upper bits, the number of unit capacitors is increased by a power of 2, and the DEM logic is also complicated, so that the circuit is complicated and the design becomes difficult. Therefore, it is appropriate that the high-order bit DinH is set to, for example, 5 bits or less.
 一方、下位ビット分DinLについては、DAC-L14のキャパシタミスマッチによる誤差は周期雑音の原因となり、特にDAC-H24とのミスマッチがあると、桁上げを生じるときにこの誤差の影響が大きく現れてしまう。既に述べたように、DAC-H24とDAC-L14の構成素子は、どちらも同一素子形状のユニット素子を使ってレイアウトマッチングのとれる回路とすべきである。DAC-L14のビット数を大きくすると、このユニット素子サイズが小さいものとなって、かえってレイアウト上のマッチングが取りづらくなる。DAC-H24とDAC-L14間のマッチングを考慮すると、下位ビット分DinLとしては、例えば4ビット以下が適切ではないかと思われる。実際には、ICプロセスで決まるキャパシタの最小サイズとマッチングデータ、またシステムで求められるOSR(Oversampling Ratio)とリニアリティ仕様を考慮して、システムシミュレーションをして、最適なビット数は決定される。 On the other hand, for the lower bit DinL, the error due to the capacitor mismatch of the DAC-L14 causes periodic noise, and especially if there is a mismatch with the DAC-H24, the effect of this error will be significant when carrying. .. As described above, the constituent elements of the DAC-H24 and the DAC-L14 should be circuits that can be layout-matched by using unit elements having the same element shape. If the number of bits of the DAC-L14 is increased, the unit element size becomes smaller, and it becomes rather difficult to match the layout. Considering the matching between the DAC-H24 and the DAC-L14, it seems that, for example, 4 bits or less is appropriate as the lower bit DinL. Actually, the optimum number of bits is determined by performing a system simulation in consideration of the minimum capacitor size and matching data determined by the IC process, and the OSR (Oversampling Ratio) and linearity specifications required by the system.
 キャパシタCref、キャパシタCadd、ユニットキャパシタC0が、それぞれ、「上位キャパシタ」、「下位キャパシタ」、「同一の容量を有するキャパシタ」の一例に相当する。 Capacitor Clef, capacitor CAD, and unit capacitor C0 correspond to examples of "upper capacitor", "lower capacitor", and "capacitor having the same capacity", respectively.
 以上、本明細書が開示する技術の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独で、あるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The specific examples of the technology disclosed in the present specification have been described in detail above, but these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described herein or in the drawings exhibit their technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in this specification or drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.
12:下位ビットデジタル積分器
14:DAC-L
22:デジタル加算器
24:DAC-H
26:上位ビットアナログ積分器
30:アナログ加算器
40:ΔΣ変調器
100:D/A合成積分器
12: Lower bit digital integrator 14: DAC-L
22: Digital adder 24: DAC-H
26: High-order bit analog integrator 30: Analog adder 40: ΔΣ modulator 100: D / A composite integrator

Claims (13)

  1.  デジタル値Dinを入力として、このデジタル値列(Din(1),Din(2),・・・)を時間軸または時系列で積分した値(ΣDin)をアナログ値に変換して出力する、デジタル入力/アナログ出力のデジタル/アナログ合成積分器であって、
     前記デジタル入力Dinの上位ビット分をDinH、下位ビット分をDinLとして(Din=DinH+DinL)、前記下位ビット分DinLについて、これをデジタル演算で積分する(ΣDinL)下位ビットデジタル積分器を持つ、
     前記下位ビット分DinLのデジタル積分の結果、オーバーフローが発生する場合は、桁上げ分(Carry)を前記上位ビットDinHへ出力してデジタル演算で加算する(DinH+Carry)桁上げ処理を行い、それと同時に前記下位ビットデジタル積分器からは同じ桁上げ分を減算する(Σ(DinL-Carry))、つまり前記下位ビットDinLの前記デジタル積分の結果から前記上位ビットへの前記桁上げ処理を行った後、前記下位ビットデジタル積分器は前記桁上げ分を無視したものを自己の出力とする、
     そして前記下位ビットデジタル積分器の前記出力(Σ(DinL-Carry))をアナログ値に変換する下位ビットD/A変換器(DAC-L)を持つ、
     前記上位ビット分DinHについては、前記桁上げ分を加算した上位ビット分デジタル値(DinH+Carry)をアナログ値に変換する上位ビットD/A変換器(DAC-H)と、前記上位ビットD/A変換器による変換後の前記アナログ値をアナログ演算により積分する(Σ(DinH+Carry))上位ビットアナログ積分器を持つ、
     そして、前記上位ビットアナログ積分器の出力と前記下位ビットD/A変換器(DAC-L)のアナログ出力をアナログ回路で加算演算し、最終積分器出力Voを得ることを特徴とする、
     デジタル/アナログ合成積分器。
    Digital value Din is input, and the value (ΣDin) obtained by integrating this digital value sequence (Din (1), Din (2), ...) On the time axis or time series is converted into an analog value and output. An input / analog output digital / analog composite integrator
    The upper bit of the digital input Din is DinH, the lower bit is DinL (Din = DinH + DinL), and the lower bit DinL is digitally integrated (ΣDinL) with a lower bit digital integrator.
    If an overflow occurs as a result of the digital integration of the low-order bit DinL, the carry (Carry) is output to the high-order bit DinH and added by digital calculation (DinH + Carry), and at the same time, the carry process is performed. The same carry is subtracted from the low-order bit digital integrator (Σ (DinL-Carry)), that is, after the carry-up process to the high-order bit is performed from the result of the digital integration of the low-order bit DinL, the carry is performed. The low-order bit digital integrator ignores the carry and uses its own output.
    It also has a low-order bit D / A converter (DAC-L) that converts the output (Σ (DinL-Carry)) of the low-order bit digital integrator into an analog value.
    Regarding the high-order bit DinH, a high-order bit D / A converter (DAC-H) that converts the high-order bit digital value (DinH + Carry) obtained by adding the carry amount into an analog value, and the high-order bit D / A conversion. It has a high-order bit analog integrator that integrates the analog value after conversion by the instrument by analog calculation (Σ (DinH + Carry)).
    Then, the output of the high-order bit analog integrator and the analog output of the low-order bit D / A converter (DAC-L) are added and calculated by an analog circuit to obtain the final integrator output Vo.
    Digital / analog composite integrator.
  2.  前記上位ビットD/A変換器は、前記上位ビット分DinHのビット数に応じた一又は複数の上位キャパシタを備える、請求項1に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to claim 1, wherein the high-order bit D / A converter includes one or a plurality of high-order capacitors according to the number of bits of the high-order bit DinH.
  3.  前記上位ビットD/A変換器は、前記上位ビット分DinHのビット数に応じた複数の上位キャパシタを備え、
     前記複数の上位キャパシタは、互いに等しい容量を有する、請求項1に記載のデジタル/アナログ合成積分器。
    The high-order bit D / A converter includes a plurality of high-order capacitors according to the number of bits of the high-order bit DinH.
    The digital / analog composite integrator according to claim 1, wherein the plurality of upper capacitors have equal capacities with each other.
  4.  前記上位キャパシタのそれぞれは、同一の容量を有する複数のキャパシタが並列に接続されることによって構成される、請求項2又は3に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to claim 2 or 3, wherein each of the upper capacitors is configured by connecting a plurality of capacitors having the same capacitance in parallel.
  5.  前記下位ビットD/A変換器は、前記下位ビット分DinLのビット数に応じた一又は複数の下位キャパシタを備える、請求項1~4のいずれか一項に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to any one of claims 1 to 4, wherein the low-order bit D / A converter includes one or a plurality of low-order capacitors according to the number of bits of the low-order bit DinL.
  6.  前記下位ビットD/A変換器は、前記下位ビット分DinLのビット数に応じた複数の下位キャパシタを備え、
     前記複数の下位キャパシタは、それぞれ対応するビットの位置に応じて互いに異なる容量を有する、請求項1~4のいずれか一項に記載のデジタル/アナログ合成積分器。
    The low-order bit D / A converter includes a plurality of low-order capacitors according to the number of bits of the low-order bit DinL.
    The digital / analog composite integrator according to any one of claims 1 to 4, wherein the plurality of lower capacitors have different capacitances depending on the position of the corresponding bit.
  7.  前記下位キャパシタのそれぞれは、同一の容量を有する複数のキャパシタが並列に接続されることによって構成される、請求項5又は6に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to claim 5 or 6, wherein each of the lower capacitors is configured by connecting a plurality of capacitors having the same capacitance in parallel.
  8.  前記上位ビットD/A変換器は、前記上位ビット分DinHのビット数に応じた複数の上位キャパシタを備え、
     前記複数の上位キャパシタは、互いに等しい容量を有し、
     前記下位ビットD/A変換器は、前記下位ビット分DinLのビット数に応じた複数の下位キャパシタを備え、
     前記複数の下位キャパシタは、それぞれ対応するビットの位置に応じて互いに異なる容量を有し、
     前記上位キャパシタのそれぞれは、同一の容量を有する複数のキャパシタが並列に接続されることによって構成されるとともに、前記下位キャパシタのそれぞれは、前記同一の容量を有する複数のキャパシタが並列に接続されることによって構成される、請求項1に記載のデジタル/アナログ合成積分器。
    The high-order bit D / A converter includes a plurality of high-order capacitors according to the number of bits of the high-order bit DinH.
    The plurality of upper capacitors have equal capacities with each other and have equal capacitances.
    The low-order bit D / A converter includes a plurality of low-order capacitors according to the number of bits of the low-order bit DinL.
    The plurality of lower capacitors have different capacitances depending on the position of the corresponding bit.
    Each of the upper capacitors is configured by connecting a plurality of capacitors having the same capacitance in parallel, and each of the lower capacitors is connected to a plurality of capacitors having the same capacitance in parallel. The digital / analog composite integrator according to claim 1, wherein the digital / analog composite integrator is configured by the above.
  9.  前記下位ビット分DinLの前記ビット数は4ビット以下である、請求項8に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to claim 8, wherein the number of bits of the lower bit DinL is 4 bits or less.
  10.  前記上位ビット分DinHが2ビット以上である場合に、前記上位ビットD/A変換器は、線形性補償アルゴリズムに基づいて制御される、請求項1~9のいずれか一項に記載のデジタル/アナログ合成積分器。 The digital / according to any one of claims 1 to 9, wherein the high-order bit D / A converter is controlled based on the linearity compensation algorithm when the high-order bit DinH is 2 bits or more. Analog composite integrator.
  11.  前記線形性補償アルゴリズムは、ダイナミックエレメントマッチング(Dynamic Element Matching:DEM)を含む、請求項10に記載のデジタル/アナログ合成積分器。 The digital / analog synthetic integrator according to claim 10, wherein the linearity compensation algorithm includes Dynamic Element Matching (DEM).
  12.  前記上位ビット分DinHのビット数は5ビット以下である、請求項11に記載のデジタル/アナログ合成積分器。 The digital / analog composite integrator according to claim 11, wherein the number of bits of the high-order bit DinH is 5 bits or less.
  13.  入力されたアナログ値に対してデジタル値を出力するΔΣ変調器であって、
     前記アナログ値と前記デジタル値との差を演算するフィードバック回路を備え、
     前記フィードバック回路は、請求項1~12のいずれか一項に記載のデジタル/アナログ合成積分器を備える、ΔΣ変調器。
    A delta-sigma modulator that outputs a digital value with respect to the input analog value.
    A feedback circuit for calculating the difference between the analog value and the digital value is provided.
    The feedback circuit is a delta-sigma modulator comprising the digital / analog composite integrator according to any one of claims 1 to 12.
PCT/JP2020/001390 2020-01-16 2020-01-16 Digital/analog synthesis integrator and δς modulator using same WO2021144941A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/001390 WO2021144941A1 (en) 2020-01-16 2020-01-16 Digital/analog synthesis integrator and δς modulator using same
JP2021570586A JP7151913B2 (en) 2020-01-16 2020-01-16 Digital/analog synthesis integrator and delta-sigma modulator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001390 WO2021144941A1 (en) 2020-01-16 2020-01-16 Digital/analog synthesis integrator and δς modulator using same

Publications (1)

Publication Number Publication Date
WO2021144941A1 true WO2021144941A1 (en) 2021-07-22

Family

ID=76864075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001390 WO2021144941A1 (en) 2020-01-16 2020-01-16 Digital/analog synthesis integrator and δς modulator using same

Country Status (2)

Country Link
JP (1) JP7151913B2 (en)
WO (1) WO2021144941A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295494A (en) * 2003-12-25 2005-10-20 Matsushita Electric Ind Co Ltd Dc offset canceling circuit
JP2016100871A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Δς modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295494A (en) * 2003-12-25 2005-10-20 Matsushita Electric Ind Co Ltd Dc offset canceling circuit
JP2016100871A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Δς modulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZIERHOFER, CLEMENS M.: "Analysis of a Switched- Capacitor Second-Order Delta-Sigma Modulator Using Integrator Multiplexing", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, vol. 53, no. 8, 28 August 2006 (2006-08-28), pages 787 - 791, XP055844366, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1684001> *

Also Published As

Publication number Publication date
JP7151913B2 (en) 2022-10-12
JPWO2021144941A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
JP3852721B2 (en) D / A converter and delta-sigma type D / A converter
US7423567B2 (en) Analog-to-digital converter (ADC) having a reduced number of quantizer output levels
JP3143567B2 (en) Delta-sigma modulator
JP5836020B2 (en) A / D converter
JP3048452B2 (en) AD converter
US8970416B2 (en) 4N+1 level capacitive DAC using N capacitors
JP2009540656A (en) AD converter and method thereof
KR20040011555A (en) Multi-level quantizer delta sigma modulator with current mode DEM and DEM decision logic
US8378869B2 (en) Fast data weighted average circuit and method
JP2005507599A (en) Incremental delta analog / digital converter
US7095350B2 (en) DA converter circuit provided with DA converter of segment switched capacitor type
Burmas et al. A second-order double-sampled delta-sigma modulator using additive-error switching
JP2009260605A (en) DeltaSigma MODULATOR AND DeltaSigma TYPE A/D CONVERTER
Zhang et al. A second-order noise-shaping SAR ADC with error-feedback structure and data weighted averaging
IT202100010280A1 (en) SELF-CALIBRATION CIRCUIT FOR DELTA-SIGMA MODULATORS, CORRESPONDING DEVICE AND PROCEDURE
WO2021144941A1 (en) Digital/analog synthesis integrator and δς modulator using same
Chen et al. A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder
Radjen et al. A continuous time delta-sigma modulator with reduced clock jitter sensitivity through DSCR feedback
KR100766073B1 (en) Multi-bit Sigma Delta Modulator with One DAC Capacitor and Digital-Analog Convertor for Multi-bit Sigma Delta Modulator
Polineni et al. A fully differential switched‐capacitor integrator based programmable resolution hybrid ADC architecture for biomedical applications
Krishnapura Efficient determination of feedback DAC errors for digital correction in ΔΣ A/D converters
WO2017208635A1 (en) A/d converter
Shylu et al. A power efficient delta-sigma ADC with series-bilinear switch capacitor voltage-controlled oscillator
Sadollahi Power Efficient Architectures for Medium-high Resolution Analog-to-Digital Converters
US20230387928A1 (en) Linear Multi-Level DAC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914519

Country of ref document: EP

Kind code of ref document: A1