WO2021144923A1 - Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device - Google Patents

Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device Download PDF

Info

Publication number
WO2021144923A1
WO2021144923A1 PCT/JP2020/001291 JP2020001291W WO2021144923A1 WO 2021144923 A1 WO2021144923 A1 WO 2021144923A1 JP 2020001291 W JP2020001291 W JP 2020001291W WO 2021144923 A1 WO2021144923 A1 WO 2021144923A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy consumption
link
estimated
estimation
power consumption
Prior art date
Application number
PCT/JP2020/001291
Other languages
French (fr)
Japanese (ja)
Inventor
拓 工藤
拓郎 池田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2021570571A priority Critical patent/JP7400837B2/en
Priority to PCT/JP2020/001291 priority patent/WO2021144923A1/en
Publication of WO2021144923A1 publication Critical patent/WO2021144923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G06Q50/40
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to an energy consumption estimation program, an energy consumption estimation method, and an energy consumption estimation device.
  • Patent Document 1 Since an electric vehicle has a shorter cruising distance than a gasoline-powered vehicle, a technique for presenting the cruising distance and the like to a user by estimating power consumption is required (for example, Patent Document 1, Patent Document 2, etc.).
  • the conventional power consumption estimation technology is premised on being applied to a route with a travel record, and it is considered that the effectiveness for a route without a travel record is low.
  • the purpose is to make it possible to estimate the energy consumption of routes that have not been traveled.
  • the movement route related to the trip data is referred to by referring to the map data representing the road by a set of links.
  • the feature information corresponding to each link included in the estimated set of links is extracted by estimating the set of links indicating the above and referring to the storage unit that stores the feature information of the road, and the feature extracted for each link.
  • a regression model is learned in which the energy consumption rate, which is the energy consumption per unit travel distance, is used as the objective variable and the feature information is used as the explanatory variable. Then, the computer is made to execute a process of estimating the energy consumption of the designated movement path based on the feature information of each link constituting the designated movement path and the regression model.
  • FIG. 1 It is a figure which shows the configuration example of the power consumption estimation system 1 in embodiment of this invention. It is a figure which shows the hardware configuration example of the power consumption estimation apparatus 10 in embodiment of this invention. It is a figure which shows the functional structure example of the power consumption estimation apparatus 10 in embodiment of this invention. It is a figure which shows the structural example of the trip data storage part 121. It is a flowchart for demonstrating an example of the processing procedure which the power consumption estimation apparatus 10 executes at the time of learning the power consumption rate estimation model m1. It is a figure for demonstrating the outline of the movement distance estimation process. It is a figure which shows an example of the specific result of the estimation route. It is a figure for demonstrating the learning process of the 1st configuration example of the power consumption rate estimation model m1.
  • FIG. 1 is a diagram showing a configuration example of the power consumption estimation system 1 according to the embodiment of the present invention.
  • the power consumption estimation device 10 is via a network including an information processing device (vehicle-mounted device) mounted on each of a plurality of electric vehicles 20 and a mobile communication network or the like. Be connected.
  • the power consumption estimation device 10 learns a regression model for estimating the power consumption rate based on the actual data for each trip of each electric vehicle 20, and uses the regression model to determine a newly designated movement route.
  • One or more computers that estimate power consumption.
  • the trip is a section from when the power of the electric vehicle 20 is turned on and the movement is started until the power is turned off and the movement is completed. In the case of a gasoline-powered vehicle, the trip is the section from when the ignition is turned on to when it is turned off.
  • FIG. 2 is a diagram showing a hardware configuration example of the power consumption estimation device 10 according to the embodiment of the present invention.
  • the power consumption estimation device 10 of FIG. 2 has a drive device 100, an auxiliary storage device 102, a memory device 103, a CPU 104, an interface device 105, and the like, which are connected to each other by a bus B, respectively.
  • the program that realizes the processing by the power consumption estimation device 10 is provided by the recording medium 101.
  • the recording medium 101 on which the program is recorded is set in the drive device 100, the program is installed in the auxiliary storage device 102 from the recording medium 101 via the drive device 100.
  • the program does not necessarily have to be installed from the recording medium 101, and may be downloaded from another computer via the network.
  • the auxiliary storage device 102 stores the installed program and also stores necessary files, data, and the like.
  • the memory device 103 reads and stores the program from the auxiliary storage device 102 when the program is instructed to start.
  • the CPU 104 executes the function related to the power consumption estimation device 10 according to the program stored in the memory device 103.
  • the interface device 105 is used as an interface for connecting to a network.
  • An example of the recording medium 101 is a portable recording medium such as a CD-ROM, a DVD disc, or a USB memory. Further, as an example of the auxiliary storage device 102, an HDD (Hard Disk Drive), a flash memory, or the like can be mentioned. Both the recording medium 101 and the auxiliary storage device 102 correspond to computer-readable recording media.
  • FIG. 3 is a diagram showing a functional configuration example of the power consumption estimation device 10 according to the embodiment of the present invention.
  • the power consumption estimation device 10 includes a route estimation unit 11, a variable value extraction unit 12, a model learning unit 13, a power consumption estimation unit 14, and the like. Each of these parts is realized by a process of causing the CPU 104 to execute one or more programs installed in the power consumption estimation device 10.
  • the power consumption estimation device 10 also uses storage units such as a trip data storage unit 121, a map data storage unit 122, and a weather log data storage unit 123. Each of these storage units can be realized by using, for example, an auxiliary storage device 102, a storage device that can be connected to the power consumption estimation device 10 via a network, or the like.
  • the trip data storage unit 121 stores data including actual information related to the trip (hereinafter referred to as "trip data") for each past trip of each electric vehicle 20.
  • FIG. 4 is a diagram showing a configuration example of the trip data storage unit 121.
  • one line corresponds to one trip data.
  • Each trip data includes values such as vehicle ID, movement start place, movement end place, movement distance, average speed, movement start date and time, movement end date and time, power consumption and acceleration / deceleration frequency.
  • the vehicle ID is identification information of each electric vehicle 20.
  • the movement start location is the position information of the position where the movement (trip) is started.
  • the movement end location is the position information of the position where the movement (trip) has ended.
  • These location information may be accurate latitude and longitude, and from the viewpoint of personal information protection, they are information indicating the area corresponding to one of the meshes when the map is divided into meshes (for example, 100 m square). You may.
  • the travel distance is the total travel distance [km] in the trip.
  • the average speed is the average speed [km / h] in the trip.
  • the move start date and time is the start date and time of the move (trip).
  • the move end date and time is the end date and time of the move (trip).
  • the power consumption is the power consumption [kW] in the trip.
  • the acceleration / deceleration frequency is the ratio of the sum of the durations of the states in which the absolute value of the acceleration of ⁇ is equal to or greater than the threshold value to the period from the movement start date / time to the movement end date / time.
  • the acceleration / deceleration frequency is an example of a parameter indicating a tendency (habit) of how the driver drives.
  • the electric vehicle 20 can measure the power consumption rate (per unit mileage) of the electric vehicle 20.
  • the trip data may include parameters (having a correlation) that affect (power consumption) [Wh / km].
  • trip data is data that summarizes one trip, and does not include instantaneous position information, power consumption, etc. in the time series.
  • the trip data may be transmitted from each electric vehicle 20 to the power consumption estimation device 10 at a predetermined timing.
  • the trip data may be acquired from each electric vehicle 20 in the dealer, and the trip data may be transmitted from the terminal in the dealer to the power consumption estimation device 10.
  • the route estimation unit 11 estimates one movement route for each trip data stored in the trip data storage unit 121. That is, the trip data does not include information indicating the travel route of the trip. Therefore, the route estimation unit 11 trips related to the trip data based on the movement start location, movement end location, and travel distance included in the trip data and the map data stored in the map data storage unit 122. Estimate the movement route in. Map data is data that represents a road by a set of links and nodes, and data that includes information on various facilities (POI (Point Of Interest), etc.). The estimation result of the movement route (hereinafter referred to as "estimated route") by the route estimation unit 11 is also represented by a set of links (a shape in which a plurality of links are connected to one) as in the case of map data.
  • POI Point Of Interest
  • the variable value extraction unit 12 learns the power consumption rate estimation model m1 from the trip data, the map data storage unit 122, and the weather log data storage unit 123 for each estimation route (that is, for each trip data for which the movement route is estimated). Extract the data.
  • the power consumption rate estimation model m1 is a regression model in which the power consumption rate is used as an objective variable and the characteristic information of the link (road), the driving tendency, the weather conditions, and the like are used as explanatory variables. Therefore, the actual values of the objective variable and the explanatory variable are extracted as learning data.
  • the feature information (gradient, etc.) of the link can be acquired from the map data storage unit 122.
  • the meteorological conditions can be acquired from the meteorological log data storage unit 123. That is, the meteorological log data storage unit 123 stores log data of meteorological conditions in each region (hereinafter referred to as "meteorological data").
  • the model learning unit 13 learns the power consumption rate estimation model m1 based on the actual value group of the explanatory variables and the objective variables of the power consumption rate estimation model m1 extracted by the variable value extraction unit 12.
  • the power consumption estimation unit 14 uses the learned power consumption rate estimation model m1 to estimate the power consumption when traveling on a designated movement route (for example, a route that the user plans to travel).
  • FIG. 5 is a flowchart for explaining an example of a processing procedure executed by the power consumption estimation device 10 at the time of learning the power consumption rate estimation model m1.
  • step S110 the route estimation unit 11 executes a movement route estimation process for each trip data stored in the trip data storage unit 121.
  • FIG. 6 is a diagram for explaining the outline of the movement distance estimation process.
  • the trip data to be processed in FIG. 6 is referred to as “target trip data”.
  • the route estimation unit 11 first searches for a route by referring to the target trip data and the map data (S111). Specifically, the route estimation unit 11 searches for a route between the movement start location and the movement end location of the target trip data with reference to the map data. Here, multiple routes can be searched. Subsequently, the route estimation unit 11 compares the travel distance estimated for each searched route with the travel distance included in the target trip data, and identifies one estimated route based on the error rate of the travel distance. do.
  • the movement route may be estimated by another method.
  • the step numbers in the following description correspond to the step numbers in FIG.
  • step S111 the route estimation unit 11 searches for a predetermined number of routes in ascending order of required time between the movement start point and the movement end point of the target trip data with reference to the map data, and the movement distance of each route. Calculate the estimated value of.
  • the estimated value of the travel distance of the route can be calculated, for example, by obtaining the sum of the distances of the links constituting the route.
  • the route estimation unit 11 refers to the route related to the estimated value having the highest error rate with the travel distance of the target trip data among the estimated values of the travel distance calculated for each searched route with respect to the target trip data.
  • the error rate is a value obtained by the following equation when the travel distance of the target trip data is D 1 and the estimated value of the travel distance of the searched route is D 2.
  • Error rate
  • a high error rate means that the value of the error rate is small.
  • one estimated value may be selected by an arbitrary method, and the route related to the estimated value may be specified as the estimated route.
  • step 111 the route estimation unit 11 searches for the shortest route between the movement start location and the movement end location of the target trip data with reference to the map data, and calculates the estimated value of the travel distance of the shortest route.
  • a known method such as Dijkstra's algorithm may be used to search for the shortest path.
  • step S112 if the error rate between the estimated value of the travel distance of the shortest route and the travel distance of the target trip data is less than the threshold value, the route estimation unit 11 uses the shortest route searched in step S111 as the estimation route of the target trip data. And. If the error rate is equal to or greater than the threshold value, there is no estimation route for the target trip data. Therefore, in this case, the target trip data is not used in the subsequent processing.
  • FIG. 7 is a diagram showing an example of a specific result of the estimated route.
  • FIG. 7 shows that the estimated route is specified for each trip data. However, when the second method is adopted, there may be trip data in which the estimated route is not specified. In FIG. 7, for convenience, each estimated route has the same shape, but in reality, each estimated route has a different shape.
  • variable value extraction unit 12 sets the training data of the power consumption rate estimation model m1 (each explanatory variable and the objective variable of the power consumption rate estimation model m1) for each estimation path specified in step S110.
  • the extraction process of the value (actual value)) is executed (S120).
  • the objective variable of the power consumption rate estimation model m1 is the power consumption rate [Wh / km].
  • the power consumption rate is obtained by dividing the power consumption of the trip data by the travel distance.
  • the explanatory variables of the power consumption rate estimation model m1 are a variable that depends on the road (link of map data) (hereinafter referred to as "characteristic variable of the link") and a variable that does not depend on the road (hereinafter referred to as “link-independent”).
  • characteristic variable of the link a variable that depends on the road
  • link-independent a variable that does not depend on the road
  • the value of the feature variable of the link can be said to be the feature information (or feature amount) of the link.
  • the value of the variable that does not depend on the link is information that does not depend on the characteristics of the road and that affects (correlates with) energy consumption (energy consumption rate).
  • the position information of the link is not regarded as a characteristic variable of the link. This is so that the power consumption rate estimation model m1 does not depend on the position information of the link. Since the power consumption rate estimation model m1 does not depend on the position information of the link, the power consumption rate estimation model m1 enables the estimation of the power consumption rate even on a road (link) that has not been moved in the past. Can be done. For example, it is possible to estimate the power consumption rate in consideration of the movement record by further adding the information including the position information of the link to the process shown in the present embodiment.
  • variable value extraction unit 12 acquires the value of the feature variable of the link for each link constituting the estimated route from the map data based on the position information of the link for each estimated route.
  • the map data may be divided into a grid and the number of traffic lights or stores in the grid including the target link may be counted.
  • variable value extraction unit 12 extracts (acquires) the value of the variable that does not depend on the link from the trip data, the meteorological data, or the like for each estimated route.
  • the variable value extraction unit 12 extracts (acquires) the weather conditions such as the movement start date and time of the trip data corresponding to the estimated route and the temperature, wind direction / speed, and weather at the movement start location for each estimated route. Then, the extracted value is given to each link constituting the estimated route. Further, the variable value extraction unit 12 extracts (acquires) the travel distance, acceleration / deceleration frequency, air conditioning usage rate, load capacity of luggage, etc. from the trip data corresponding to the estimated route for each estimated route.
  • a value is given to each link constituting the estimated route. That is, the value of the variable that does not depend on the link is given the same value to each link belonging to the same estimated route. It is also possible that trip data exists for long-distance travel. In this case, it is possible that the weather conditions and the like may change during the movement. Therefore, for the explanatory variables whose values are extracted from the meteorological data, the values may be extracted for each link.
  • the date and time when the electric vehicle 20 passes through each link in the estimated route is obtained by proportionally dividing the elapsed time from the movement start date and time to the movement end date and time of the trip data corresponding to the estimated route based on the distance of each link. You may be asked. Meteorological conditions and the like based on the meteorological data corresponding to the date and time and the position information of the link obtained in this way may be added to the link.
  • the model learning unit 13 learns the power consumption rate estimation model m1 using the values of the explanatory variables and the objective variables extracted for each link of each estimation path by the variable value extraction unit 12. Is executed (S130).
  • FIG. 8 is a diagram for explaining the learning process of the first configuration example of the power consumption rate estimation model m1.
  • the power consumption rate estimation model m1 includes a link-independent model m21, a link-dependent model m22, and a composite model m23.
  • the link-independent model m21 is a model that does not depend on the characteristics of the link (road). That is, the link-independent model m21 is a regression model in which a variable that does not depend on the link but affects the power consumption rate (has a correlation) is used as an explanatory variable, and the power consumption rate is used as an objective variable.
  • the link-dependent model m22 is a model that depends on the characteristics of the link (road). That is, the link-dependent model m22 is a regression model in which the characteristic variable of the link is used as the explanatory variable and the power consumption rate is used as the objective variable.
  • the composite model m23 calculates, for example, the power consumption rate as the final output of the power consumption rate estimation model m1 by giving weights to each of the estimated value of the link-dependent model m22 and the estimated value of the link-independent model m21. It is a model to do. For the optimization of each weight, a known technique such as grid search can be used.
  • FIG. 8 shows that the value of the link-independent variable extracted for the estimated route corresponding to a certain trip data and assigned to each link of the estimated route is input to the link-independent model m21. There is. Further, it is shown that the value of the feature variable of the link extracted for each link of the estimated route and assigned to each link is input to the link-dependent model m22. Further, it is shown that the outputs (estimated values) from each of the link-independent model m21 and the link-dependent model m22 are input to the composite model m23. Furthermore, it is shown that the power consumption rate estimation model m1 is trained by comparing the output (estimated value) from the composite model m23 with the actual value of the power consumption rate derived from the trip data. There is.
  • the power consumption rate estimation model m1 includes three models as shown in FIG. 8, two learning methods, a first learning method and a second learning method, can be given as an example as learning methods for the three models.
  • the first learning method is a method of learning the synthetic model m23 by using the trained link-independent model m21 and the trained link-dependent model m22 after learning the link-independent model m21 and the link-dependent model m22. ..
  • the second learning method is a method of learning three models at the same time.
  • the first learning method will be explained.
  • the learning of the link-independent model m21 and the link-dependent model m22 can be executed independently (in parallel).
  • the link-independent model m21 is learned by the model learning unit 13 by executing the following steps (1) and (2).
  • the objective variable of each estimated route is as follows (that is, the power consumption rate of the entire trip [Wh / km]).
  • Pi is the power consumption of the link i when the estimated route is expressed as shown in FIG.
  • Di is the distance of the link i.
  • m is the total number of links included in the estimated route.
  • the following data set is obtained as training data by the value of the variable independent of the link extracted for each estimated route in step S120 and the objective variable in (1). Therefore, the model learning unit 13 learns the link-independent model m21 by using the learning data, for example, by a method of multiple regression or nonlinear multivariate regression.
  • Estimated path 1 learning data Objective variable value, explanatory variable 1 value ... Explanatory variable k value
  • Estimated path 2 learning data objective variable value, explanatory variable 1 value ... Explanatory variable k value ⁇ ⁇ ⁇ Learning data of the estimated path
  • n the value of the objective variable, the value of the explanatory variable 1 ... the value of the explanatory variable k
  • the explanatory variable k is the kth variable among the variables that do not depend on the link given to the link m. It is a variable.
  • the link-dependent model m22 is represented by the following function F (for example, a neural network).
  • ⁇ i is the weight of the link i
  • each X i is a characteristic variable of the link given to the link i.
  • j is the total number of feature variables of the link.
  • the weight ⁇ i corresponds to the power consumption rate of the link i (P i ⁇ D i) .
  • learning is performed by the model learning unit 13 executing the following procedure (1).
  • the model learning unit 13 optimizes the learning parameters (neural network learning parameters) of the function F so that the following equations are satisfied.
  • the value of the learning parameter of the function F can be optimized, for example, by an error backpropagation method or the like with the following absolute value as a loss.
  • the function F corresponds to the link-dependent model m22.
  • the output per estimated path of the link-dependent model m22 shown in FIG. 8 is as follows.
  • m is the total number of links included in the estimated route.
  • the model learning unit 13 learns the synthetic model m23. Specifically, the model learning unit 13 executes the following steps (1) to (3) for each estimation route.
  • the model learning unit 13 inputs the value of the variable that does not depend on the link into the link-independent model m21, inputs the value of the feature variable of each link of the estimated route to be processed into the link-dependent model m22, and two of them. Get an estimate of the power consumption rate from the model.
  • the model learning unit 13 inputs two estimated values into the composite model m23, and obtains a value (estimated value of power consumption rate) output from the composite model m23.
  • the model learning unit 13 determines the parameters of the synthetic model m23 based on the difference between the estimated value output from the synthetic model m23 and the actual value of the power consumption rate based on the trip data corresponding to the estimated path to be processed. (For example, the weight for each of the link-independent model m21 and the link-dependent model m22) is updated.
  • the comparison target with the actual value of the power consumption rate is only the estimated value output from the synthetic model m23.
  • the model learning unit 13 optimizes each model by back-calculating the errors of the link-independent model m21 and the link-dependent model m22 from the error of the estimated value of the synthetic model m23 with respect to the actual value of the power consumption rate.
  • the composite model m23 is a model that outputs the weighted average of the link-independent model m21 and the link-dependent model m22, and each parameter will be described as follows.
  • the error Ec is the sum of the output error Ea of the link-independent model m21 and the error Eb of the link-dependent model m22 in the composite model m23.
  • the model learning unit 13 repeatedly optimizes the link-independent model m21 and the link-dependent model m22 while updating the weights w1 and w2, and finds the combination of w1 and w2 having the smallest Ec, whereby the link-independent model m21 , The link-dependent model m22 and the synthetic model m23 can be optimized (learned).
  • FIG. 10 is a diagram for explaining the learning process of the second configuration example of the power consumption rate estimation model m1.
  • the power consumption rate estimation model m1 is one model that is not divided into a plurality of models as shown in FIG.
  • the power consumption rate estimation model m1 in FIG. 10 is a regression model (for example, a neural network, a decision tree, a multiple regression model, etc.) in which a link-independent variable and a link feature variable are used as explanatory variables and the power consumption rate is used as an objective variable. Is.
  • the model learning unit 13 uses the power consumption rate estimation model as the value of the variable that does not depend on the link extracted for the estimated route and the value of the characteristic variable of the link extracted for the estimated route for each estimation route. Enter in m1.
  • the model learning unit 13 compares the estimated value of the power consumption rate output from the power consumption rate estimation model m1 with the actual value of the power consumption rate that can be obtained from the trip model corresponding to the estimated route, and obtains the comparison result. Based on this, the learning parameters of the power consumption rate estimation model m1 are updated.
  • the model learning unit 13 updates the learning parameters until the comparison result converges.
  • the power consumption rate estimation model m1 that outputs the estimated value of the power consumption rate is learned. Will be done.
  • FIG. 11 is a flowchart for explaining an example of a processing procedure executed by the power consumption estimation device 10 when estimating the power consumption when the electric vehicle 20 moves along a certain movement route.
  • step S210 the power consumption estimation unit 14 receives input of each position information (for example, latitude and longitude) of the departure place (planned movement start place) and the destination (planned movement end place).
  • the starting point and the destination may be specified by, for example, a user of a user terminal connected to the power consumption estimation device 10 via a network.
  • the power consumption estimation unit 14 determines the movement route from the departure point to the destination (hereinafter, referred to as "planned route") (S220). For example, the power consumption estimation unit 14 searches for a plurality of routes from the departure point to the destination with reference to the map data storage unit 122, and the route selected by the user from the plurality of routes is determined. It may be determined as a planned route. Alternatively, the shortest route from the starting point to the destination may be determined as the planned route. The planned route is represented by a set of links and nodes.
  • the movement route searched by another computer may be input to the power consumption estimation unit 14 as the planned route.
  • the power consumption estimation unit 14 acquires the value of the explanatory variable of the power consumption rate estimation model m1 with respect to the planned route (S230). Specifically, the power consumption estimation unit 14 acquires the value of the feature variable of the link for each link included in the planned route. The power consumption estimation unit 14 also acquires the value of a variable that does not depend on the link for the planned route.
  • the current date and time may be applied to variables such as meteorological data for which the date and time need to be specified for the acquisition of values. Alternatively, the date and time when the planned route is scheduled to be moved may be input to the power consumption estimation unit 14 together with the planned route.
  • the method of acquiring the value of each explanatory variable may be performed in the same manner as the extraction of each variable by the variable value extraction unit 12.
  • the weather forecast data corresponding to the future date and time may be used as the weather data.
  • the power consumption estimation unit 14 calculates the estimated value of the power consumption [kW] of the planned route by inputting the acquired explanatory variable value into the learned power consumption rate estimation model m1 (S240). ..
  • step S240 two examples will be described, one is the case where the power consumption rate estimation model m1 is the first configuration example (FIG. 8) and the other is the case where the power consumption rate estimation model m1 is the second configuration example (FIG. 10).
  • FIG. 12 is a diagram for explaining the power consumption estimation process of the planned route when the power consumption rate estimation model m1 of the first configuration example is used.
  • the link-independent model m21 When the power consumption estimation unit 14 inputs the value of the link-independent variable into the trained link-independent model m21, the link-independent model m21 outputs an estimated value of one power consumption rate for the planned route ( S241a).
  • the link-dependent model m22 becomes ,
  • the estimated value of the power consumption rate for the link is output for each link of the planned route (S242a).
  • the link-dependent model m22 is shown for each link, but this does not indicate that the link-independent model m21 exists for each link, and the link-independent model m21 for each link does not exist. Indicates that the calculation is performed by. This point is the same for the synthetic model m23.
  • the power consumption estimation unit 14 outputs the estimated value output from the link-independent model m21 for the planned route and the link-dependent model m22 for the link for each link of the planned route.
  • the synthetic model m23 is obtained by synthesizing two estimated values for each link of the planned route, and is an estimated value of the power consumption rate for the link. Is output (S243a). The same value is applied to all links in the output from the link-independent model m21.
  • the power consumption estimation unit 14 calculates the product of the estimated value output from the synthetic model m23 for the link and the distance of the link for each link of the planned route, so that the power consumption [kW] of the link is calculated. ] Is calculated (S244a). The distance of each link can be obtained from the map data.
  • the power consumption estimation unit 14 calculates the estimated value of the power consumption of the planned route by calculating the sum of the estimated values of the power consumption calculated for each link (S245a).
  • FIG. 13 is a diagram for explaining the power consumption estimation process of the planned route when the power consumption rate estimation model m1 of the second configuration example is used.
  • the power consumption rate estimation model m1 When the power consumption estimation unit 14 inputs the value of the variable that does not depend on the link and the value of the characteristic variable of the link into the learned power consumption rate estimation model m1 for each link of the planned route, the power consumption rate estimation model m1 outputs an estimated value of the power consumption rate for each link (S241b).
  • the power consumption estimation unit 14 calculates the product of the estimated value output from the power consumption rate estimation model m1 for the link and the distance of the link for each link of the planned route, thereby consuming the link. Calculate the estimated value of power [kW] (S242b) Subsequently, the power consumption estimation unit 14 calculates the estimated value of the power consumption of the planned route by calculating the sum of the estimated values of the power consumption calculated for each link (S243b).
  • FIG. 14 is a flowchart for explaining an example of a processing procedure when estimating the optimum route from the viewpoint of electricity cost.
  • FIG. 15 is a diagram showing map data for explaining an example of a processing procedure when estimating the optimum route from the viewpoint of electricity cost.
  • step S310 the power consumption estimation unit 14 acquires all the map data within the range designated as the search range of the movement route from the map data storage unit 122. As a result, information as shown in (1) of FIG. 15 is acquired.
  • the search range may be determined to cover the starting point and the destination at a minimum, or may be, for example, the entire area of Japan if computational resources permit.
  • the power consumption estimation unit 14 acquires the value of the explanatory variable of the power consumption rate estimation model m1 (S320).
  • the method of acquiring the value may be the same as in step S230 of FIG. However, in step S320, the values of the explanatory variables are acquired for all the links in the search range.
  • the value of the variable that does not depend on the link such as meteorological data is unknown, the value of the variable that does not depend on the link may be calculated based on the past actual value such as the average temperature in the area of the search range. ..
  • the power consumption estimation unit 14 calculates the power consumption rate for each link by inputting the value of the explanatory variable to the learned power consumption rate estimation model m1 for each link (S330). ..
  • the power consumption estimation unit 14 calculates the power consumption for each link by multiplying the power consumption rate calculated in step S330 by the distance of the link (S340). As a result, information as shown in (2) of FIG. 15 can be obtained. That is, in (2) of FIG. 15, the thickness of the line indicating each link indicates the magnitude of power consumption.
  • the power consumption estimation unit 14 estimates the optimum route by solving the route optimization problem with the power consumption calculated for each link as the cost (weight) of each link (S350).
  • the route optimization problem As a method for solving the route optimization problem, a known algorithm such as Dijkstra's algorithm or A * method may be used.
  • step S320 the value of the feature variable of the link may be acquired.
  • step S330 the power consumption rate of each link may be calculated by inputting the value of the feature variable of the link into the link-dependent model m22.
  • steps S310 to S340 may be executed asynchronously (for example, in advance) with step S350, or may be executed synchronously (in real time) with step S350.
  • the power consumption estimation unit 14 calculates the estimated value of the power consumption of the optimum route by executing steps S230 and S240 of FIG. 11 for the optimum route. You may. By doing so, it can be expected that the accuracy of the estimated value will be improved.
  • the regression model is learned based on the characteristic information of the link included in the movement route of the past trip (movement) and the power consumption rate of the trip. At this time, the position information of the link is not included in the feature amount. Therefore, using the regression model, it is possible to estimate the power consumption even if the route has no past travel record.
  • a variable that does not depend on the link is also used as an explanatory variable of the regression model.
  • the present embodiment does not require various time series data acquired from various sensors or the like in real time (for example, periodically) within one trip, and returns based on the trip data. You can train the model. This eliminates the need to acquire data from the electric vehicle 20 in real time, and can reduce the cost of constructing a network for acquiring data.
  • the power consumption rate may be replaced by the energy consumption rate corresponding to each moving body (energy consumption per unit travel distance (for example, consumption of gasoline)), and the power consumption may be replaced by the energy consumption.
  • the power consumption estimation device 10 is an example of the energy consumption estimation device.
  • the route estimation unit 11 is an example of the first estimation unit.
  • the variable value extraction unit 12 is an example of the extraction unit.
  • the model learning unit 13 is an example of the learning unit.
  • the power consumption estimation unit 14 is an example of the second estimation unit.
  • Power consumption estimation system 10 Power consumption estimation device 11 Route estimation unit 12 Variable value extraction unit 13 Model learning unit 14 Power consumption estimation unit 20 Electric vehicle 100 Drive device 101 Recording medium 102 Auxiliary storage device 103 Memory device 104 CPU 105 Interface device 121 Trip data storage unit 122 Map data storage unit 123 Meteorological log data storage unit B Bus m1 Power consumption rate estimation model m21 Link-independent model m22 Link-dependent model m23 Composite model

Abstract

This invention makes it possible to estimate energy consumption for a route that has not been traveled on by causing a computer to execute processing in which: for each of a plurality of sets of trip data including a travel start point, travel destination, travel distance, and energy consumption, map data expressing roads as link sets is referred to and a link set indicating a travel route for the trip data is estimated; a storage unit storing road feature information is referred to and feature information corresponding to each link included in the estimated link sets is extracted; the feature information extracted for each link and the travel distance and energy consumption included in each of the plurality of sets of trip data are used to learn a regression model having an energy consumption rate that is the amount of energy consumption per unit of distance traveled as the dependent variable and the feature information as an independent variable; and energy consumption for a designated travel route is estimated on the basis of the feature information for each link composing the designated travel route and the regression model.

Description

消費エネルギー推定プログラム、消費エネルギー推定方法及び消費エネルギー推定装置Energy consumption estimation program, energy consumption estimation method and energy consumption estimation device
 本発明は、消費エネルギー推定プログラム、消費エネルギー推定方法及び消費エネルギー推定装置に関する。 The present invention relates to an energy consumption estimation program, an energy consumption estimation method, and an energy consumption estimation device.
 電気自動車はガソリン車と比べて航続可能距離が短いため、消費電力の推定により、航続可能距離等をユーザに提示する技術が求められている(例えば、特許文献1、特許文献2等)。 Since an electric vehicle has a shorter cruising distance than a gasoline-powered vehicle, a technique for presenting the cruising distance and the like to a user by estimating power consumption is required (for example, Patent Document 1, Patent Document 2, etc.).
特開2014-182035号公報Japanese Unexamined Patent Publication No. 2014-182035 特開2013-50367号公報Japanese Unexamined Patent Publication No. 2013-50367
 しかしながら、従来の消費電力の推定技術は、移動実績の有る経路に適用されることが前提とされており、移動実績の無い経路に対する有効性は低いと考えられる。 However, the conventional power consumption estimation technology is premised on being applied to a route with a travel record, and it is considered that the effectiveness for a route without a travel record is low.
 なお、このような事情は、電気自動車のみならず、ガソリン等、電気以外の他のエネルギーを利用する移動体についても同様であると考えられる。 It is considered that such a situation applies not only to electric vehicles but also to mobile objects that use energy other than electricity, such as gasoline.
 そこで、一側面では、移動実績のない経路の消費エネルギーを推定可能とすることを目的とする。 Therefore, on one side, the purpose is to make it possible to estimate the energy consumption of routes that have not been traveled.
 一つの案では、移動開始地と移動終了地と移動距離と消費エネルギーとを含む複数のトリップデータのそれぞれについて、道路をリンクの集合によって表現する地図データを参照して当該トリップデータに係る移動経路を示すリンクの集合を推定し、道路の特徴情報を記憶する記憶部を参照して、推定した前記リンクの集合に含まれる各リンクに対応する特徴情報を抽出し、前記各リンクについて抽出した特徴情報と、前記複数のトリップデータに含まれる移動距離及び消費エネルギーとに基づいて、単位移動距離あたりの消費エネルギーであるエネルギー消費率を目的変数とし、前記特徴情報を説明変数とする回帰モデルを学習し、指定された移動経路を構成する各リンクの特徴情報と前記回帰モデルとに基づいて、前記指定された移動経路の消費エネルギーを推定する、処理をコンピュータに実行させる。 In one plan, for each of a plurality of trip data including the movement start point, the movement end point, the movement distance, and the energy consumption, the movement route related to the trip data is referred to by referring to the map data representing the road by a set of links. The feature information corresponding to each link included in the estimated set of links is extracted by estimating the set of links indicating the above and referring to the storage unit that stores the feature information of the road, and the feature extracted for each link. Based on the information and the travel distance and energy consumption included in the plurality of trip data, a regression model is learned in which the energy consumption rate, which is the energy consumption per unit travel distance, is used as the objective variable and the feature information is used as the explanatory variable. Then, the computer is made to execute a process of estimating the energy consumption of the designated movement path based on the feature information of each link constituting the designated movement path and the regression model.
 一態様によれば、移動実績のない経路の消費エネルギーを推定可能とすることができる。 According to one aspect, it is possible to estimate the energy consumption of a route that has no record of movement.
本発明の実施の形態における消費電力推定システム1の構成例を示す図である。It is a figure which shows the configuration example of the power consumption estimation system 1 in embodiment of this invention. 本発明の実施の形態における消費電力推定装置10のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the power consumption estimation apparatus 10 in embodiment of this invention. 本発明の実施の形態における消費電力推定装置10の機能構成例を示す図である。It is a figure which shows the functional structure example of the power consumption estimation apparatus 10 in embodiment of this invention. トリップデータ記憶部121の構成例を示す図である。It is a figure which shows the structural example of the trip data storage part 121. 消費電力推定装置10が電力消費率推定モデルm1の学習時に実行する処理手順の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the processing procedure which the power consumption estimation apparatus 10 executes at the time of learning the power consumption rate estimation model m1. 移動距離の推定処理の概要を説明するための図である。It is a figure for demonstrating the outline of the movement distance estimation process. 推定経路の特定結果の一例を示す図である。It is a figure which shows an example of the specific result of the estimation route. 電力消費率推定モデルm1の第1構成例の学習処理を説明するための図である。It is a figure for demonstrating the learning process of the 1st configuration example of the power consumption rate estimation model m1. 推定経路の表現例を示す図である。It is a figure which shows the expression example of the estimated path. 電力消費率推定モデルm1の第2構成例の学習処理を説明するための図である。It is a figure for demonstrating the learning process of the 2nd configuration example of the power consumption rate estimation model m1. 或る移動経路を電気自動車20が移動した場合の消費電力の推定時に消費電力推定装置10が実行する処理手順の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the processing procedure executed by the power consumption estimation apparatus 10 at the time of estimating the power consumption when the electric vehicle 20 moves in a certain movement path. 第1構成例の電力消費率推定モデルm1を用いた場合の予定経路の消費電力の推定処理を説明するための図である。It is a figure for demonstrating the estimation process of the power consumption of the planned route when the power consumption rate estimation model m1 of the 1st configuration example is used. 第2構成例の電力消費率推定モデルm1を用いた場合の予定経路の消費電力の推定処理を説明するための図である。It is a figure for demonstrating the estimation process of the power consumption of a planned route when the power consumption rate estimation model m1 of the 2nd configuration example is used. 電費の観点における最適経路を推定する場合の処理手順の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the processing procedure at the time of estimating the optimum route from the viewpoint of electricity cost. 電費の観点における最適経路を推定する場合の処理手順の一例を説明するための地図データを示す図である。It is a figure which shows the map data for demonstrating an example of the processing procedure at the time of estimating the optimum route from the viewpoint of electricity cost.
 以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明の実施の形態における消費電力推定システム1の構成例を示す図である。図1に示される消費電力推定システム1において、消費電力推定装置10は、複数の電気自動車20のそれぞれに搭載された情報処理装置(車載器)と、移動体通信網等を含むネットワークを介して接続される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration example of the power consumption estimation system 1 according to the embodiment of the present invention. In the power consumption estimation system 1 shown in FIG. 1, the power consumption estimation device 10 is via a network including an information processing device (vehicle-mounted device) mounted on each of a plurality of electric vehicles 20 and a mobile communication network or the like. Be connected.
 消費電力推定装置10は、各電気自動車20のトリップごとの実績データに基づいて、電力消費率を推定するための回帰モデルを学習し、当該回帰モデルを用いて、新たに指定される移動経路の消費電力を推定する1以上のコンピュータである。なお、トリップとは、電気自動車20の電源がONにされて移動が開始されてから、電源がOFFにされて移動が終了するまでの区間をいう。ガソリン車であれば、トリップは、イグニッションがONにされてからOFFにされてまでの区間である。 The power consumption estimation device 10 learns a regression model for estimating the power consumption rate based on the actual data for each trip of each electric vehicle 20, and uses the regression model to determine a newly designated movement route. One or more computers that estimate power consumption. The trip is a section from when the power of the electric vehicle 20 is turned on and the movement is started until the power is turned off and the movement is completed. In the case of a gasoline-powered vehicle, the trip is the section from when the ignition is turned on to when it is turned off.
 図2は、本発明の実施の形態における消費電力推定装置10のハードウェア構成例を示す図である。図2の消費電力推定装置10は、それぞれバスBで相互に接続されているドライブ装置100、補助記憶装置102、メモリ装置103、CPU104、及びインタフェース装置105等を有する。 FIG. 2 is a diagram showing a hardware configuration example of the power consumption estimation device 10 according to the embodiment of the present invention. The power consumption estimation device 10 of FIG. 2 has a drive device 100, an auxiliary storage device 102, a memory device 103, a CPU 104, an interface device 105, and the like, which are connected to each other by a bus B, respectively.
 消費電力推定装置10での処理を実現するプログラムは、記録媒体101によって提供される。プログラムを記録した記録媒体101がドライブ装置100にセットされると、プログラムが記録媒体101からドライブ装置100を介して補助記憶装置102にインストールされる。但し、プログラムのインストールは必ずしも記録媒体101より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置102は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 The program that realizes the processing by the power consumption estimation device 10 is provided by the recording medium 101. When the recording medium 101 on which the program is recorded is set in the drive device 100, the program is installed in the auxiliary storage device 102 from the recording medium 101 via the drive device 100. However, the program does not necessarily have to be installed from the recording medium 101, and may be downloaded from another computer via the network. The auxiliary storage device 102 stores the installed program and also stores necessary files, data, and the like.
 メモリ装置103は、プログラムの起動指示があった場合に、補助記憶装置102からプログラムを読み出して格納する。CPU104は、メモリ装置103に格納されたプログラムに従って消費電力推定装置10に係る機能を実行する。インタフェース装置105は、ネットワークに接続するためのインタフェースとして用いられる。 The memory device 103 reads and stores the program from the auxiliary storage device 102 when the program is instructed to start. The CPU 104 executes the function related to the power consumption estimation device 10 according to the program stored in the memory device 103. The interface device 105 is used as an interface for connecting to a network.
 なお、記録媒体101の一例としては、CD-ROM、DVDディスク、又はUSBメモリ等の可搬型の記録媒体が挙げられる。また、補助記憶装置102の一例としては、HDD(Hard Disk Drive)又はフラッシュメモリ等が挙げられる。記録媒体101及び補助記憶装置102のいずれについても、コンピュータ読み取り可能な記録媒体に相当する。 An example of the recording medium 101 is a portable recording medium such as a CD-ROM, a DVD disc, or a USB memory. Further, as an example of the auxiliary storage device 102, an HDD (Hard Disk Drive), a flash memory, or the like can be mentioned. Both the recording medium 101 and the auxiliary storage device 102 correspond to computer-readable recording media.
 図3は、本発明の実施の形態における消費電力推定装置10の機能構成例を示す図である。図3において、消費電力推定装置10は、経路推定部11、変数値抽出部12、モデル学習部13及び消費電力推定部14等を有する。これら各部は、消費電力推定装置10にインストールされた1以上のプログラムが、CPU104に実行させる処理により実現される。消費電力推定装置10は、また、トリップデータ記憶部121、地図データ記憶部122及び気象ログデータ記憶部123等の記憶部を利用する。これら各記憶部は、例えば、補助記憶装置102、又は消費電力推定装置10にネットワークを介して接続可能な記憶装置等を用いて実現可能である。 FIG. 3 is a diagram showing a functional configuration example of the power consumption estimation device 10 according to the embodiment of the present invention. In FIG. 3, the power consumption estimation device 10 includes a route estimation unit 11, a variable value extraction unit 12, a model learning unit 13, a power consumption estimation unit 14, and the like. Each of these parts is realized by a process of causing the CPU 104 to execute one or more programs installed in the power consumption estimation device 10. The power consumption estimation device 10 also uses storage units such as a trip data storage unit 121, a map data storage unit 122, and a weather log data storage unit 123. Each of these storage units can be realized by using, for example, an auxiliary storage device 102, a storage device that can be connected to the power consumption estimation device 10 via a network, or the like.
 トリップデータ記憶部121には、各電気自動車20の過去のトリップごとに、当該トリップに関する実績情報を含むデータ(以下「トリップデータ」という。)が記憶されている。 The trip data storage unit 121 stores data including actual information related to the trip (hereinafter referred to as "trip data") for each past trip of each electric vehicle 20.
 図4は、トリップデータ記憶部121の構成例を示す図である。図4において、1行が1つのトリップデータに対応する。各トリップデータは、車両ID、移動開始地、移動終了地、移動距離、平均速度、移動開始日時、移動終了日時、消費電力及び加減速頻度等の値を含む。 FIG. 4 is a diagram showing a configuration example of the trip data storage unit 121. In FIG. 4, one line corresponds to one trip data. Each trip data includes values such as vehicle ID, movement start place, movement end place, movement distance, average speed, movement start date and time, movement end date and time, power consumption and acceleration / deceleration frequency.
 車両IDは、各電気自動車20の識別情報である。移動開始地は、移動(トリップ)が開始された位置の位置情報である。移動終了地は、移動(トリップ)が終了した位置の位置情報である。これらの位置情報は、正確な緯度及び経度でもよいし、個人情報保護の観点から、地図をメッシュ状(例えば、100m四方)に区切った場合においていずれかのメッシュに対応する地域を示す情報であってもよい。 The vehicle ID is identification information of each electric vehicle 20. The movement start location is the position information of the position where the movement (trip) is started. The movement end location is the position information of the position where the movement (trip) has ended. These location information may be accurate latitude and longitude, and from the viewpoint of personal information protection, they are information indicating the area corresponding to one of the meshes when the map is divided into meshes (for example, 100 m square). You may.
 移動距離は、トリップにおける総移動距離[km]である。平均速度は、トリップにおける平均速度[km/h]である。移動開始日時は、移動(トリップ)の開始日時である。移動終了日時は、移動(トリップ)の終了日時である。消費電力は、トリップにおける消費電力[kW]である。加減速頻度は、移動開始日時から移動終了日時までの期間に対する、±の加速度の絶対値が閾値以上である状態の継続時間の総和の割合である。なお、加減速頻度は、運転手による運転の仕方の傾向(癖)を示すパラメータの一例である。同趣旨の異なるパラメータが加減速頻度の代わりに用いられてもよい。また、空調の使用率、荷物の積載量等、図4に示されていないパラメータのうち、電気自動車20側において計測可能であって、かつ、電気自動車20の電力消費率(単位走行距離当たりの消費電力)[Wh/km]に影響する(相関を有する)パラメータがトリップデータに含まれてもよい。 The travel distance is the total travel distance [km] in the trip. The average speed is the average speed [km / h] in the trip. The move start date and time is the start date and time of the move (trip). The move end date and time is the end date and time of the move (trip). The power consumption is the power consumption [kW] in the trip. The acceleration / deceleration frequency is the ratio of the sum of the durations of the states in which the absolute value of the acceleration of ± is equal to or greater than the threshold value to the period from the movement start date / time to the movement end date / time. The acceleration / deceleration frequency is an example of a parameter indicating a tendency (habit) of how the driver drives. Different parameters to the same effect may be used instead of the acceleration / deceleration frequency. Further, among the parameters not shown in FIG. 4, such as the usage rate of air conditioning and the load capacity of luggage, the electric vehicle 20 can measure the power consumption rate (per unit mileage) of the electric vehicle 20. The trip data may include parameters (having a correlation) that affect (power consumption) [Wh / km].
 このように、トリップデータは、1回のトリップを要約したデータであり、瞬時的な位置情報や消費電力等を時系列には含まないデータである。例えば、トリップデータは、各電気自動車20から所定のタイミングで消費電力推定装置10に送信されてもよい。又は、ディーラにおいて各電気自動車20からトリップデータが取得され、ディーラにおける端末から消費電力推定装置10に対してトリップデータが送信されてもよい。 In this way, trip data is data that summarizes one trip, and does not include instantaneous position information, power consumption, etc. in the time series. For example, the trip data may be transmitted from each electric vehicle 20 to the power consumption estimation device 10 at a predetermined timing. Alternatively, the trip data may be acquired from each electric vehicle 20 in the dealer, and the trip data may be transmitted from the terminal in the dealer to the power consumption estimation device 10.
 経路推定部11は、トリップデータ記憶部121に記憶されているトリップデータごとに、1つの移動経路を推定する。すなわち、トリップデータには、トリップの移動経路を示す情報は含まれていない。そこで、経路推定部11は、トリップデータに含まれている移動開始地、移動終了地及び移動距離と、地図データ記憶部122に記憶されている地図データとに基づいて、当該トリップデータに係るトリップにおける移動経路を推定する。地図データとは、リンクとノードとの集合によって道路を表現するデータや、各種の施設(POI(Point Of Interest)等)に関する情報を含むデータである。経路推定部11による移動経路の推定結果(以下「推定経路」という。)も、地図データと同様にリンクの集合(複数のリンクが1本に接続された形状)によって表現される。 The route estimation unit 11 estimates one movement route for each trip data stored in the trip data storage unit 121. That is, the trip data does not include information indicating the travel route of the trip. Therefore, the route estimation unit 11 trips related to the trip data based on the movement start location, movement end location, and travel distance included in the trip data and the map data stored in the map data storage unit 122. Estimate the movement route in. Map data is data that represents a road by a set of links and nodes, and data that includes information on various facilities (POI (Point Of Interest), etc.). The estimation result of the movement route (hereinafter referred to as "estimated route") by the route estimation unit 11 is also represented by a set of links (a shape in which a plurality of links are connected to one) as in the case of map data.
 変数値抽出部12は、推定経路ごとに(すなわち、移動経路が推定されたトリップデータごとに)、トリップデータ、地図データ記憶部122及び気象ログデータ記憶部123から電力消費率推定モデルm1の学習データを抽出する。本実施の形態において、電力消費率推定モデルm1は、電力消費率を目的変数とし、リンク(道路)の特徴情報、運転の傾向、及び気象条件等を説明変数とする回帰モデルである。したがって、当該目的変数及び当該説明変数のそれぞれの実績値が学習データとして抽出される。リンクの特徴情報(勾配等)は、地図データ記憶部122から取得可能である。気象条件は、気象ログデータ記憶部123から取得可能である。すなわち、気象ログデータ記憶部123には、各地の気象条件のログデータ(以下「気象データ」という。)が記憶されている。 The variable value extraction unit 12 learns the power consumption rate estimation model m1 from the trip data, the map data storage unit 122, and the weather log data storage unit 123 for each estimation route (that is, for each trip data for which the movement route is estimated). Extract the data. In the present embodiment, the power consumption rate estimation model m1 is a regression model in which the power consumption rate is used as an objective variable and the characteristic information of the link (road), the driving tendency, the weather conditions, and the like are used as explanatory variables. Therefore, the actual values of the objective variable and the explanatory variable are extracted as learning data. The feature information (gradient, etc.) of the link can be acquired from the map data storage unit 122. The meteorological conditions can be acquired from the meteorological log data storage unit 123. That is, the meteorological log data storage unit 123 stores log data of meteorological conditions in each region (hereinafter referred to as "meteorological data").
 モデル学習部13は、変数値抽出部12によって抽出された、電力消費率推定モデルm1の説明変数及び目的変数の実績値群に基づいて、電力消費率推定モデルm1を学習する。 The model learning unit 13 learns the power consumption rate estimation model m1 based on the actual value group of the explanatory variables and the objective variables of the power consumption rate estimation model m1 extracted by the variable value extraction unit 12.
 消費電力推定部14は、学習済みの電力消費率推定モデルm1を用いて、指定された移動経路(例えば、ユーザが走行予定の経路)を走行した場合の消費電力を推定する。 The power consumption estimation unit 14 uses the learned power consumption rate estimation model m1 to estimate the power consumption when traveling on a designated movement route (for example, a route that the user plans to travel).
 以下、消費電力推定装置10が実行する処理手順について説明する。図5は、消費電力推定装置10が電力消費率推定モデルm1の学習時に実行する処理手順の一例を説明するためのフローチャートである。 Hereinafter, the processing procedure executed by the power consumption estimation device 10 will be described. FIG. 5 is a flowchart for explaining an example of a processing procedure executed by the power consumption estimation device 10 at the time of learning the power consumption rate estimation model m1.
 ステップS110において、経路推定部11は、トリップデータ記憶部121に記憶されている各トリップデータについて、移動経路の推定処理を実行する。 In step S110, the route estimation unit 11 executes a movement route estimation process for each trip data stored in the trip data storage unit 121.
 図6は、移動距離の推定処理の概要を説明するための図である。図6において処理対象とされているトリップデータを「対象トリップデータ」という。 FIG. 6 is a diagram for explaining the outline of the movement distance estimation process. The trip data to be processed in FIG. 6 is referred to as “target trip data”.
 図6に示されるように、経路推定部11は、まず、対象トリップデータ及び地図データを参照して、経路探索を行う(S111)。具体的には、経路推定部11は、対象トリップデータの移動開始地と移動終了地との間の経路を、地図データを参照して探索する。ここでは、複数の経路が探索されうる。続いて、経路推定部11は、探索された各経路について推定される移動距離を、対象トリップデータに含まれる移動距離と比較して、移動距離の誤差率に基づいて、1つの推定経路を特定する。 As shown in FIG. 6, the route estimation unit 11 first searches for a route by referring to the target trip data and the map data (S111). Specifically, the route estimation unit 11 searches for a route between the movement start location and the movement end location of the target trip data with reference to the map data. Here, multiple routes can be searched. Subsequently, the route estimation unit 11 compares the travel distance estimated for each searched route with the travel distance included in the target trip data, and identifies one estimated route based on the error rate of the travel distance. do.
 移動距離の推定処理について、更に具体的に、第1手法及び第2手法の2つの例を説明する。但し、他の方法によって移動経路が推定されてもよい。以下の説明におけるステップ番号は、図6のステップ番号に対応する。 Regarding the movement distance estimation process, two examples of the first method and the second method will be described more specifically. However, the movement route may be estimated by another method. The step numbers in the following description correspond to the step numbers in FIG.
 [移動距離の推定処理の第1手法]
 ステップS111において、経路推定部11は、地図データを参照して、対象トリップデータの移動開始地及び移動終了地の間において所要時間が短い順に所定数の経路を探索し、それぞれの経路の移動距離の推定値を計算する。経路の移動距離の推定値は、例えば、当該経路を構成する各リンクの距離の総和を求めることで計算することができる。
[First method of moving distance estimation processing]
In step S111, the route estimation unit 11 searches for a predetermined number of routes in ascending order of required time between the movement start point and the movement end point of the target trip data with reference to the map data, and the movement distance of each route. Calculate the estimated value of. The estimated value of the travel distance of the route can be calculated, for example, by obtaining the sum of the distances of the links constituting the route.
 ステップS112において、経路推定部11は、探索された各経路について計算された移動距離の推定値のうち、対象トリップデータの移動距離との誤差率が最も高い推定値に係る経路を対象トリップデータに対する推定経路として特定する。ここで、誤差率とは、対象トリップデータの移動距離をDとし、探索された経路の移動距離の推定値をDとした場合に、以下の式で得られる値である。
誤差率=|D-D|÷D
 誤差率が高いとは、誤差率の値が小さいことをいう。なお、誤差率が最も高い推定値が複数有る場合、任意の方法によって一つの推定値が選択され、当該推定値に係る経路が推定経路として特定されればよい。
In step S112, the route estimation unit 11 refers to the route related to the estimated value having the highest error rate with the travel distance of the target trip data among the estimated values of the travel distance calculated for each searched route with respect to the target trip data. Specify as an estimated route. Here, the error rate is a value obtained by the following equation when the travel distance of the target trip data is D 1 and the estimated value of the travel distance of the searched route is D 2.
Error rate = | D 2- D 1 | ÷ D 1
A high error rate means that the value of the error rate is small. When there are a plurality of estimated values having the highest error rate, one estimated value may be selected by an arbitrary method, and the route related to the estimated value may be specified as the estimated route.
 [移動距離の推定処理の第2手法]
 ステップ111において、経路推定部11は、対象トリップデータの移動開始地及び移動終了地の間における最短経路を、地図データを参照して探索し、当該最短経路の移動距離の推定値を計算する。例えば、ダイクストラ法等の公知の方法が用いられて最短経路が探索されればよい。
[Second method of moving distance estimation processing]
In step 111, the route estimation unit 11 searches for the shortest route between the movement start location and the movement end location of the target trip data with reference to the map data, and calculates the estimated value of the travel distance of the shortest route. For example, a known method such as Dijkstra's algorithm may be used to search for the shortest path.
 ステップS112において、経路推定部11は、最短経路の移動距離の推定値と対象トリップデータの移動距離との誤差率が閾値未満であれば、ステップS111において探索した最短経路を対象トリップデータの推定経路とする。なお、当該誤差率が閾値以上である場合、対象トリップデータの推定経路は無しとされる。したがって、この場合、以降の処理において対象トリップデータは使用されない。 In step S112, if the error rate between the estimated value of the travel distance of the shortest route and the travel distance of the target trip data is less than the threshold value, the route estimation unit 11 uses the shortest route searched in step S111 as the estimation route of the target trip data. And. If the error rate is equal to or greater than the threshold value, there is no estimation route for the target trip data. Therefore, in this case, the target trip data is not used in the subsequent processing.
 図7は、推定経路の特定結果の一例を示す図である。図7では、トリップデータごとに推定経路が特定されることが示されている。但し、第2手法が採用された場合、推定経路が特定されないトリップデータも有りうる。なお、図7では、便宜上、各推定経路が同様の形状をしているが、実際には各推定経路は異なった形状となる。 FIG. 7 is a diagram showing an example of a specific result of the estimated route. FIG. 7 shows that the estimated route is specified for each trip data. However, when the second method is adopted, there may be trip data in which the estimated route is not specified. In FIG. 7, for convenience, each estimated route has the same shape, but in reality, each estimated route has a different shape.
 図5に戻る。ステップS110に続いて、変数値抽出部12は、ステップS110において特定された推定経路ごとに、電力消費率推定モデルm1の学習データ(電力消費率推定モデルm1の各説明変数及び目的変数のそれぞれの値(実績値))の抽出処理を実行する(S120)。 Return to Fig. 5. Following step S110, the variable value extraction unit 12 sets the training data of the power consumption rate estimation model m1 (each explanatory variable and the objective variable of the power consumption rate estimation model m1) for each estimation path specified in step S110. The extraction process of the value (actual value)) is executed (S120).
 電力消費率推定モデルm1の目的変数は、電力消費率[Wh/km]である。電力消費率は、トリップデータの消費電力を移動距離で除することで得られる。 The objective variable of the power consumption rate estimation model m1 is the power consumption rate [Wh / km]. The power consumption rate is obtained by dividing the power consumption of the trip data by the travel distance.
 電力消費率推定モデルm1の説明変数は、道路(地図データのリンク)に依存する変数(以下「リンクの特徴変数」という。)と、道路に依存しない(以下「リンクに依存しない」という。)変数とが有る。リンクの特徴変数の値は、リンクの特徴情報(又は特徴量)ともいえる。一方、リンクに依存しない変数の値は、道路の特徴に依存しない情報であって、かつ、消費エネルギー(消費エネルギー率)に影響する(相関を有する)情報であるといえる。それぞれについて、以下に例示する。 The explanatory variables of the power consumption rate estimation model m1 are a variable that depends on the road (link of map data) (hereinafter referred to as "characteristic variable of the link") and a variable that does not depend on the road (hereinafter referred to as "link-independent"). There are variables. The value of the feature variable of the link can be said to be the feature information (or feature amount) of the link. On the other hand, it can be said that the value of the variable that does not depend on the link is information that does not depend on the characteristics of the road and that affects (correlates with) energy consumption (energy consumption rate). Each is illustrated below.
 [リンクの特徴変数の一例]
・リンクに対応する道路の勾配
・リンクに対応する道路の種類(高速道路、国道、その他等)
・リンクに対応する道路の幅
・リンクに対応する道路周辺の信号機の数
・リンクに対応する道路周辺の店舗の数
 なお、本実施の形態ではリンクの位置情報はリンクの特徴変数とはされない。電力消費率推定モデルm1をリンクの位置情報に依存させないようにするためである。電力消費率推定モデルm1がリンクの位置情報に依存しないことで、電力消費率推定モデルm1は、過去に移動した実績がない道路(リンク)であっても電力消費率の推定を可能にすることができる。例えば、本実施の形態で示す処理に、リンクの位置情報を含む情報を更に加えることで移動実績を加味した電力消費率を推定することは可能である。
[Example of link feature variables]
・ Gradient of road corresponding to link ・ Type of road corresponding to link (expressway, national road, etc.)
-The width of the road corresponding to the link-The number of traffic lights around the road corresponding to the link-The number of stores around the road corresponding to the link In this embodiment, the position information of the link is not regarded as a characteristic variable of the link. This is so that the power consumption rate estimation model m1 does not depend on the position information of the link. Since the power consumption rate estimation model m1 does not depend on the position information of the link, the power consumption rate estimation model m1 enables the estimation of the power consumption rate even on a road (link) that has not been moved in the past. Can be done. For example, it is possible to estimate the power consumption rate in consideration of the movement record by further adding the information including the position information of the link to the process shown in the present embodiment.
 [リンクに依存しない変数の一例]
・推定経路の移動距離
・加減速頻度
・空調の使用率
・荷物の積載量
・気温
・風向・風速
・天候
 リンクの特徴変数の値については、リンクの位置情報に基づいて地図データ記憶部122から抽出(取得)することができる。すなわち、変数値抽出部12は、推定経路ごとに、当該推定経路を構成する各リンクについて、当該リンクの特徴変数の値を、当該リンクの位置情報に基づいて地図データから取得する。なお、周辺の信号機の数や周辺の店舗の数については、例えば、地図データをグリッド状に区切り、対象のリンクが含まれるグリッド内の信号機又は店舗の数がカウントされてもよい。
[Example of variable that does not depend on the link]
-Estimated route travel distance-Acceleration / deceleration frequency-Air-conditioning usage rate-Luggage load-Temperature-Wind direction-Wind speed-Weather Link characteristic variable values are obtained from the map data storage unit 122 based on the link position information. It can be extracted (acquired). That is, the variable value extraction unit 12 acquires the value of the feature variable of the link for each link constituting the estimated route from the map data based on the position information of the link for each estimated route. Regarding the number of traffic lights in the vicinity and the number of stores in the vicinity, for example, the map data may be divided into a grid and the number of traffic lights or stores in the grid including the target link may be counted.
 一方、リンクに依存しない変数の値について、変数値抽出部12は、推定経路ごとにトリップデータ又は気象データ等から抽出(取得)する。例えば、変数値抽出部12は、各推定経路について、当該推定経路に対応するトリップデータの移動開始日時及び移動開始地における気温、風向・風速及び天候等の気象条件を気象データから抽出(取得)し、抽出された値を当該推定経路を構成する各リンクに付与する。また、変数値抽出部12は、各推定経路について、当該推定経路に対応するトリップデータから移動距離、加減速頻度、空調の使用率及び荷物の積載量等を抽出(取得)し、抽出された値を当該推定経路を構成する各リンクに付与する。すなわち、リンクに依存しない変数の値は、同じ推定経路に属する各リンクに対しては同じ値が付与される。なお、長距離移動に対するトリップデータの存在も考えられる。この場合、移動の間において気象条件等が変化する場合も考えられる。そこで、気象データから値が抽出される説明変数については、リンクごとに値が抽出されてもよい。この場合、推定経路における各リンクを電気自動車20が通過した日時は、当該推定経路に対応するトリップデータの移動開始日時から移動終了日時までの経過時間を各リンクの距離に基づいて按分することで求められてもよい。このようにして求められた日時とリンクの位置情報に対応した気象データに基づく気象条件等が、当該リンクに付与されてもよい。 On the other hand, the variable value extraction unit 12 extracts (acquires) the value of the variable that does not depend on the link from the trip data, the meteorological data, or the like for each estimated route. For example, the variable value extraction unit 12 extracts (acquires) the weather conditions such as the movement start date and time of the trip data corresponding to the estimated route and the temperature, wind direction / speed, and weather at the movement start location for each estimated route. Then, the extracted value is given to each link constituting the estimated route. Further, the variable value extraction unit 12 extracts (acquires) the travel distance, acceleration / deceleration frequency, air conditioning usage rate, load capacity of luggage, etc. from the trip data corresponding to the estimated route for each estimated route. A value is given to each link constituting the estimated route. That is, the value of the variable that does not depend on the link is given the same value to each link belonging to the same estimated route. It is also possible that trip data exists for long-distance travel. In this case, it is possible that the weather conditions and the like may change during the movement. Therefore, for the explanatory variables whose values are extracted from the meteorological data, the values may be extracted for each link. In this case, the date and time when the electric vehicle 20 passes through each link in the estimated route is obtained by proportionally dividing the elapsed time from the movement start date and time to the movement end date and time of the trip data corresponding to the estimated route based on the distance of each link. You may be asked. Meteorological conditions and the like based on the meteorological data corresponding to the date and time and the position information of the link obtained in this way may be added to the link.
 ステップS120に続いて、モデル学習部13は、変数値抽出部12によって各推定経路の各リンクについて抽出された説明変数の値及び目的変数の値を用いて、電力消費率推定モデルm1の学習処理を実行する(S130)。 Following step S120, the model learning unit 13 learns the power consumption rate estimation model m1 using the values of the explanatory variables and the objective variables extracted for each link of each estimation path by the variable value extraction unit 12. Is executed (S130).
 本実施の形態では、電力消費率推定モデルm1について第1構成例及び第2構成例の2つの構成例を示す。電力消費率推定モデルm1の学習処理は、構成例ごとに異なるため、構成例ごとに以下に説明する。 In this embodiment, two configuration examples, a first configuration example and a second configuration example, are shown for the power consumption rate estimation model m1. Since the learning process of the power consumption rate estimation model m1 is different for each configuration example, it will be described below for each configuration example.
 [電力消費率推定モデルm1の第1構成例の学習処理]
 図8は、電力消費率推定モデルm1の第1構成例の学習処理を説明するための図である。図8において、電力消費率推定モデルm1は、リンク非依存モデルm21、リンク依存モデルm22及び合成モデルm23を含む。
[Learning process of the first configuration example of the power consumption rate estimation model m1]
FIG. 8 is a diagram for explaining the learning process of the first configuration example of the power consumption rate estimation model m1. In FIG. 8, the power consumption rate estimation model m1 includes a link-independent model m21, a link-dependent model m22, and a composite model m23.
 リンク非依存モデルm21は、リンク(道路)の特徴に依存しないモデルである。すなわち、リンク非依存モデルm21は、リンクに依存しないが消費電力率に影響する(相関を有する)変数を説明変数とし、電力消費率を目的変数とする回帰モデルである。リンク依存モデルm22は、リンク(道路)の特徴に依存するモデルである。すなわち、リンク依存モデルm22は、リンクの特徴変数を説明変数とし、電力消費率を目的変数とする回帰モデルである。合成モデルm23は、例えば、リンク依存モデルm22の推定値とリンク非依存モデルm21の推定値とのそれぞれに重みを与えて、電力消費率推定モデルm1の最終的な出力としての電力消費率を算出するモデルである。当該各重みの最適化には、例えば、グリッドサーチ等、公知技術を用いることができる。 The link-independent model m21 is a model that does not depend on the characteristics of the link (road). That is, the link-independent model m21 is a regression model in which a variable that does not depend on the link but affects the power consumption rate (has a correlation) is used as an explanatory variable, and the power consumption rate is used as an objective variable. The link-dependent model m22 is a model that depends on the characteristics of the link (road). That is, the link-dependent model m22 is a regression model in which the characteristic variable of the link is used as the explanatory variable and the power consumption rate is used as the objective variable. The composite model m23 calculates, for example, the power consumption rate as the final output of the power consumption rate estimation model m1 by giving weights to each of the estimated value of the link-dependent model m22 and the estimated value of the link-independent model m21. It is a model to do. For the optimization of each weight, a known technique such as grid search can be used.
 図8では、或るトリップデータに対応する推定経路に関して抽出されて当該推定経路の各リンクに付与された、リンクに依存しない変数の値がリンク非依存モデルm21に入力されることが示されている。また、当該推定経路の各リンクに関して抽出されて当該各リンクに付与された、リンクの特徴変数の値がリンク依存モデルm22に入力されることが示されている。また、リンク非依存モデルm21及びリンク依存モデルm22のそれぞれからの出力(推定値)が、合成モデルm23に入力されることが示されている。更に、合成モデルm23からの出力(推定値)が、当該トリップデータから導出される電力消費率の実績値と比較されることで、電力消費率推定モデルm1の学習が行われることが示されている。 FIG. 8 shows that the value of the link-independent variable extracted for the estimated route corresponding to a certain trip data and assigned to each link of the estimated route is input to the link-independent model m21. There is. Further, it is shown that the value of the feature variable of the link extracted for each link of the estimated route and assigned to each link is input to the link-dependent model m22. Further, it is shown that the outputs (estimated values) from each of the link-independent model m21 and the link-dependent model m22 are input to the composite model m23. Furthermore, it is shown that the power consumption rate estimation model m1 is trained by comparing the output (estimated value) from the composite model m23 with the actual value of the power consumption rate derived from the trip data. There is.
 電力消費率推定モデルm1が図8に示されるように3つのモデルを含む場合、3つのモデルの学習方法として、第1学習方法及び第2学習方法の2つの学習方法が一例として挙げられる。第1学習方法は、リンク非依存モデルm21及びリンク依存モデルm22を学習した後に、学習済みのリンク非依存モデルm21及び学習済みのリンク依存モデルm22を利用して合成モデルm23を学習する方法である。第2学習方法は、3つのモデルを同時に学習する方法である。 When the power consumption rate estimation model m1 includes three models as shown in FIG. 8, two learning methods, a first learning method and a second learning method, can be given as an example as learning methods for the three models. The first learning method is a method of learning the synthetic model m23 by using the trained link-independent model m21 and the trained link-dependent model m22 after learning the link-independent model m21 and the link-dependent model m22. .. The second learning method is a method of learning three models at the same time.
 まず、第1学習方法について説明する。第1学習方法において、リンク非依存モデルm21及びリンク依存モデルm22の学習は独立に(並列に)実行可能である。 First, the first learning method will be explained. In the first learning method, the learning of the link-independent model m21 and the link-dependent model m22 can be executed independently (in parallel).
 リンク非依存モデルm21については、モデル学習部13が、以下の(1)~(2)の手順を実行することで、学習が行われる。 The link-independent model m21 is learned by the model learning unit 13 by executing the following steps (1) and (2).
 (1)各推定経路の目的変数を以下の通り(すなわち、1トリップ全体の電力消費率[Wh/km])とする。 (1) The objective variable of each estimated route is as follows (that is, the power consumption rate of the entire trip [Wh / km]).
Figure JPOXMLDOC01-appb-M000001
但し、Pは、推定経路を図9に示されるように表現した場合における、リンクiの消費電力である。また、Dは、リンクiの距離である。mは、推定経路に含まれるリンクの総数である。なお、
Figure JPOXMLDOC01-appb-M000001
However, Pi is the power consumption of the link i when the estimated route is expressed as shown in FIG. Further, Di is the distance of the link i. m is the total number of links included in the estimated route. note that,
Figure JPOXMLDOC01-appb-M000002
は、推定経路に対応するトリップデータ(図4)の消費電力である。
Figure JPOXMLDOC01-appb-M000002
Is the power consumption of the trip data (FIG. 4) corresponding to the estimated route.
 (2)ステップS120において推定経路ごとに抽出されている、リンクに依存しない変数の値と、(1)における目的変数とによって、以下のようなデータセットが学習データとして得られる。そこで、モデル学習部13は、当該学習データを用いて、例えば、重回帰や非線形多変量回帰の手法によってリンク非依存モデルm21を学習する。
推定経路1の学習データ:目的変数の値,説明変数1の値・・・説明変数kの値
推定経路2の学習データ:目的変数の値,説明変数1の値・・・説明変数kの値



推定経路nの学習データ:目的変数の値,説明変数1の値・・・説明変数kの値
 なお、説明変数kは、リンクmに対して付与されたリンクに依存しない変数のうちk番目の変数である。
(2) The following data set is obtained as training data by the value of the variable independent of the link extracted for each estimated route in step S120 and the objective variable in (1). Therefore, the model learning unit 13 learns the link-independent model m21 by using the learning data, for example, by a method of multiple regression or nonlinear multivariate regression.
Estimated path 1 learning data: Objective variable value, explanatory variable 1 value ... Explanatory variable k value Estimated path 2 learning data: objective variable value, explanatory variable 1 value ... Explanatory variable k value・


Learning data of the estimated path n: the value of the objective variable, the value of the explanatory variable 1 ... the value of the explanatory variable k The explanatory variable k is the kth variable among the variables that do not depend on the link given to the link m. It is a variable.
 一方、リンク依存モデルm22については、以下の関数F(例えば、ニューラルネットワーク)によって表現される。 On the other hand, the link-dependent model m22 is represented by the following function F (for example, a neural network).
Figure JPOXMLDOC01-appb-M000003
但し、αは、リンクiの重み、各Xは、リンクiに付与された、リンクの特徴変数である。jは、リンクの特徴変数の総数である。また、重みαiは、リンクiの電力消費率(P÷D)に相当する。
Figure JPOXMLDOC01-appb-M000003
However, α i is the weight of the link i, and each X i is a characteristic variable of the link given to the link i. j is the total number of feature variables of the link. The weight αi corresponds to the power consumption rate of the link i (P i ÷ D i) .
 この場合、モデル学習部13が以下の(1)の手順を実行することで、学習が行われる。 In this case, learning is performed by the model learning unit 13 executing the following procedure (1).
 (1)モデル学習部13は、以下の式が満たされるように、関数Fの学習パラメータ(ニューラルネットワークの学習パラメータ)を最適化する。 (1) The model learning unit 13 optimizes the learning parameters (neural network learning parameters) of the function F so that the following equations are satisfied.
Figure JPOXMLDOC01-appb-M000004
関数Fの学習パラメータの値は、例えば、以下の絶対値を損失とした誤差逆伝播法等により最適化することができる。
Figure JPOXMLDOC01-appb-M000004
The value of the learning parameter of the function F can be optimized, for example, by an error backpropagation method or the like with the following absolute value as a loss.
Figure JPOXMLDOC01-appb-M000005
 関数Fの学習パラメータが最適化されることにより、任意のリンクiのD及び各変数Xを関数Fに入力することで、リンクiの電力消費率を回帰することができる。すなわち、関数Fが、リンク依存モデルm22に相当する。但し、図8に示したリンク依存モデルm22の1つの推定経路あたりの出力は、以下の通りである。
Figure JPOXMLDOC01-appb-M000005
By learning parameters of the function F is optimized, by entering the D i and each variable X i of any link i to a function F, it is possible to return the power consumption rate of the link i. That is, the function F corresponds to the link-dependent model m22. However, the output per estimated path of the link-dependent model m22 shown in FIG. 8 is as follows.
Figure JPOXMLDOC01-appb-M000006
但し、mは、推定経路に含まれるリンクの総数である。
Figure JPOXMLDOC01-appb-M000006
However, m is the total number of links included in the estimated route.
 リンク非依存モデルm21及びリンク依存モデルm22の学習が終了すると、モデル学習部13は、合成モデルm23の学習を行う。具体的には、モデル学習部13は、推定経路ごとに、以下の(1)~(3)の手順を実行する。 When the learning of the link-independent model m21 and the link-dependent model m22 is completed, the model learning unit 13 learns the synthetic model m23. Specifically, the model learning unit 13 executes the following steps (1) to (3) for each estimation route.
 (1)モデル学習部13は、リンクに依存しない変数の値をリンク非依存モデルm21に入力し、処理対象の推定経路の各リンクの特徴変数の値をリンク依存モデルm22に入力し、2つのモデルからの電力消費率の推定値を得る。 (1) The model learning unit 13 inputs the value of the variable that does not depend on the link into the link-independent model m21, inputs the value of the feature variable of each link of the estimated route to be processed into the link-dependent model m22, and two of them. Get an estimate of the power consumption rate from the model.
 (2)モデル学習部13は、2つの推定値を合成モデルm23に入力し、合成モデルm23から出力される値(電力消費率の推定値)を得る。 (2) The model learning unit 13 inputs two estimated values into the composite model m23, and obtains a value (estimated value of power consumption rate) output from the composite model m23.
 (3)モデル学習部13は、合成モデルm23から出力される推定値と、処理対象の推定経路に対応するトリップデータに基づく電力消費率の実績値との差分に基づいて、合成モデルm23のパラメータ(例えば、リンク非依存モデルm21及びリンク依存モデルm22のそれぞれに対する重み)を更新する。 (3) The model learning unit 13 determines the parameters of the synthetic model m23 based on the difference between the estimated value output from the synthetic model m23 and the actual value of the power consumption rate based on the trip data corresponding to the estimated path to be processed. (For example, the weight for each of the link-independent model m21 and the link-dependent model m22) is updated.
 当該差分が収束すると、合成モデルm23の学習処理が終了する。 When the difference converges, the learning process of the synthetic model m23 ends.
 次に、第2学習方法について説明する。第2学習方法では、電力消費率の実績値との比較対象は合成モデルm23から出力される推定値のみとされる。モデル学習部13は、合成モデルm23の推定値の電力消費率の実績値に対する誤差から、リンク非依存モデルm21及びリンク依存モデルm22それぞれの誤差を逆算して、各モデルを最適化する。 Next, the second learning method will be described. In the second learning method, the comparison target with the actual value of the power consumption rate is only the estimated value output from the synthetic model m23. The model learning unit 13 optimizes each model by back-calculating the errors of the link-independent model m21 and the link-dependent model m22 from the error of the estimated value of the synthetic model m23 with respect to the actual value of the power consumption rate.
 例えば、合成モデルm23がリンク非依存モデルm21とリンク依存モデルm22の重み付き平均を出力するモデルであり、各パラメータが以下の通りであるとして説明する。
リンク非依存モデルm21の出力:a
リンク依存モデルm22の出力:b
合成モデルm23の出力:c
リンク非依存モデルm21に対する重み:w1
リンク依存モデルm22に対する重み:w2
 この場合、合成モデルm23の出力cは、以下の通りである。
c=a×w1+b×w2
 ここで、電力消費率の実績値がxであるとすると、合成モデルm23の誤差Ecは、以下の通りである。
Ec=c-x
 第2学習方法では、誤差Ecがリンク非依存モデルm21の出力の誤差Eaとリンク依存モデルm22の誤差Ebとが合成モデルm23で足し合わされたものであると考える。
For example, the composite model m23 is a model that outputs the weighted average of the link-independent model m21 and the link-dependent model m22, and each parameter will be described as follows.
Output of link-independent model m21: a
Output of link-dependent model m22: b
Output of synthetic model m23: c
Weight for link-independent model m21: w1
Weight for link-dependent model m22: w2
In this case, the output c of the synthetic model m23 is as follows.
c = a × w1 + b × w2
Here, assuming that the actual value of the power consumption rate is x, the error Ec of the composite model m23 is as follows.
Ec = cx
In the second learning method, it is considered that the error Ec is the sum of the output error Ea of the link-independent model m21 and the error Eb of the link-dependent model m22 in the composite model m23.
 そこで、モデル学習部13は、以下の演算を実行する。
Ea=w1/(w1+w2)*Ec
Eb=w2/(w1+w2)*Ec
 すると、リンク非依存モデルm21での誤差とモデルリンク依存モデルm22での誤差が合成モデルm23での誤差と重みから計算できることになる。
Therefore, the model learning unit 13 executes the following calculation.
Ea = w1 / (w1 + w2) * Ec
Eb = w2 / (w1 + w2) * Ec
Then, the error in the link-independent model m21 and the error in the model link-dependent model m22 can be calculated from the error and the weight in the composite model m23.
 モデル学習部13は、重みw1及びw2を更新しつつ、リンク非依存モデルm21及びリンク依存モデルm22をくりかえし最適化し、最もEcが小さくなるw1及びw2の組み合わせを見つけることで、リンク非依存モデルm21、リンク依存モデルm22及び合成モデルm23を最適化(学習)することができる。 The model learning unit 13 repeatedly optimizes the link-independent model m21 and the link-dependent model m22 while updating the weights w1 and w2, and finds the combination of w1 and w2 having the smallest Ec, whereby the link-independent model m21 , The link-dependent model m22 and the synthetic model m23 can be optimized (learned).
 [電力消費率推定モデルm1の第2構成例の学習処理]
 図10は、電力消費率推定モデルm1の第2構成例の学習処理を説明するための図である。図10において、電力消費率推定モデルm1は、図8のように複数のモデルに分割されていない1つのモデルである。図10における電力消費率推定モデルm1は、リンクに依存しない変数及びリンクの特徴変数を説明変数とし、電力消費率を目的変数とする回帰モデル(例えば、ニューラルネットワーク、決定木、重回帰モデル等)である。
[Learning process of the second configuration example of the power consumption rate estimation model m1]
FIG. 10 is a diagram for explaining the learning process of the second configuration example of the power consumption rate estimation model m1. In FIG. 10, the power consumption rate estimation model m1 is one model that is not divided into a plurality of models as shown in FIG. The power consumption rate estimation model m1 in FIG. 10 is a regression model (for example, a neural network, a decision tree, a multiple regression model, etc.) in which a link-independent variable and a link feature variable are used as explanatory variables and the power consumption rate is used as an objective variable. Is.
 この場合、モデル学習部13は、推定経路ごとに、当該推定経路について抽出されたリンクに依存しない変数の値と、当該推定経路について抽出されたリンクの特徴変数の値とを電力消費率推定モデルm1に入力する。モデル学習部13は、電力消費率推定モデルm1から出力される電力消費率の推定値と、当該推定経路に対応するトリップモデルから取得可能な電力消費率の実績値とを比較し、比較結果に基づいて電力消費率推定モデルm1の学習パラメータを更新する。モデル学習部13は、当該比較結果が収束するまで学習パラメータを更新する。その結果、任意の経路のリンクに依存しない変数の値と、当該経路を構成する各リンクの特徴変数の値とを入力すると、電力消費率の推定値を出力する電力消費率推定モデルm1が学習される。 In this case, the model learning unit 13 uses the power consumption rate estimation model as the value of the variable that does not depend on the link extracted for the estimated route and the value of the characteristic variable of the link extracted for the estimated route for each estimation route. Enter in m1. The model learning unit 13 compares the estimated value of the power consumption rate output from the power consumption rate estimation model m1 with the actual value of the power consumption rate that can be obtained from the trip model corresponding to the estimated route, and obtains the comparison result. Based on this, the learning parameters of the power consumption rate estimation model m1 are updated. The model learning unit 13 updates the learning parameters until the comparison result converges. As a result, when the value of the variable that does not depend on the link of the arbitrary route and the value of the feature variable of each link constituting the route are input, the power consumption rate estimation model m1 that outputs the estimated value of the power consumption rate is learned. Will be done.
 次に、学習済みの電力消費率推定モデルm1を用いて実行される処理手順の一例について説明する。図11は、或る移動経路を電気自動車20が移動した場合の消費電力の推定時に消費電力推定装置10が実行する処理手順の一例を説明するためのフローチャートである。 Next, an example of the processing procedure executed using the learned power consumption rate estimation model m1 will be described. FIG. 11 is a flowchart for explaining an example of a processing procedure executed by the power consumption estimation device 10 when estimating the power consumption when the electric vehicle 20 moves along a certain movement route.
 ステップS210において、消費電力推定部14は、出発地(移動開始予定地)及び目的地(移動終了予定地)のそれぞれの位置情報(例えば、緯度及び経度等)の入力を受け付ける。出発地及び目的地は、例えば、消費電力推定装置10とネットワークを介して接続されるユーザ端末のユーザによって指定されてもよい。 In step S210, the power consumption estimation unit 14 receives input of each position information (for example, latitude and longitude) of the departure place (planned movement start place) and the destination (planned movement end place). The starting point and the destination may be specified by, for example, a user of a user terminal connected to the power consumption estimation device 10 via a network.
 続いて、消費電力推定部14は、出発地から目的地までの移動経路(以下、「予定経路」という。)を決定する(S220)。例えば、消費電力推定部14が、地図データ記憶部122を参照して、出発地から目的地までの複数通りの経路を探索し、当該複数通りの経路の中からユーザによって選択された経路が、予定経路として決定されてもよい。又は、出発地から目的地までの最短経路が予定経路として決定されてもよい。なお、予定経路は、リンクとノードの集合によって表現される。 Subsequently, the power consumption estimation unit 14 determines the movement route from the departure point to the destination (hereinafter, referred to as "planned route") (S220). For example, the power consumption estimation unit 14 searches for a plurality of routes from the departure point to the destination with reference to the map data storage unit 122, and the route selected by the user from the plurality of routes is determined. It may be determined as a planned route. Alternatively, the shortest route from the starting point to the destination may be determined as the planned route. The planned route is represented by a set of links and nodes.
 なお、ここでは、消費電力推定部14が予定経路を探索する例を示したが、他のコンピュータにおいて探索された移動経路が、予定経路として消費電力推定部14に対して入力されてもよい。 Although the example in which the power consumption estimation unit 14 searches for the planned route is shown here, the movement route searched by another computer may be input to the power consumption estimation unit 14 as the planned route.
 続いて、消費電力推定部14は、予定経路に関して、電力消費率推定モデルm1の説明変数の値を取得する(S230)。具体的には、消費電力推定部14は、予定経路に含まれる各リンクについて、リンクの特徴変数の値を取得する。消費電力推定部14は、また、予定経路について、リンクに依存しない変数の値を取得する。気象データ等、値の取得について日時が特定される必要が有る変数については、現在日時が適用されてもよい。又は、予定経路と共に、予定経路を移動予定の日時が消費電力推定部14に入力されてもよい。基本的に、各説明変数の値の取得方法は、変数値抽出部12による各変数の抽出と同様の方法で行われればよい。但し、移動予定の日時が未来である場合、気象データについては、未来の日時に対応する天気予報のデータが用いられてもよい。 Subsequently, the power consumption estimation unit 14 acquires the value of the explanatory variable of the power consumption rate estimation model m1 with respect to the planned route (S230). Specifically, the power consumption estimation unit 14 acquires the value of the feature variable of the link for each link included in the planned route. The power consumption estimation unit 14 also acquires the value of a variable that does not depend on the link for the planned route. The current date and time may be applied to variables such as meteorological data for which the date and time need to be specified for the acquisition of values. Alternatively, the date and time when the planned route is scheduled to be moved may be input to the power consumption estimation unit 14 together with the planned route. Basically, the method of acquiring the value of each explanatory variable may be performed in the same manner as the extraction of each variable by the variable value extraction unit 12. However, when the scheduled movement date and time is in the future, the weather forecast data corresponding to the future date and time may be used as the weather data.
 続いて、消費電力推定部14は、取得した説明変数の値を、学習済みの電力消費率推定モデルm1に入力することで、予定経路の消費電力[kW]の推定値を計算する(S240)。 Subsequently, the power consumption estimation unit 14 calculates the estimated value of the power consumption [kW] of the planned route by inputting the acquired explanatory variable value into the learned power consumption rate estimation model m1 (S240). ..
 ステップS240については、電力消費率推定モデルm1が第1構成例(図8)の場合と第2構成例(図10)の場合との2つの例について説明する。 Regarding step S240, two examples will be described, one is the case where the power consumption rate estimation model m1 is the first configuration example (FIG. 8) and the other is the case where the power consumption rate estimation model m1 is the second configuration example (FIG. 10).
 図12は、第1構成例の電力消費率推定モデルm1を用いた場合の予定経路の消費電力の推定処理を説明するための図である。 FIG. 12 is a diagram for explaining the power consumption estimation process of the planned route when the power consumption rate estimation model m1 of the first configuration example is used.
 消費電力推定部14が、リンクに依存しない変数の値を、学習済みのリンク非依存モデルm21に入力すると、リンク非依存モデルm21は、予定経路に対する1つの電力消費率の推定値を出力する(S241a)。 When the power consumption estimation unit 14 inputs the value of the link-independent variable into the trained link-independent model m21, the link-independent model m21 outputs an estimated value of one power consumption rate for the planned route ( S241a).
 また、消費電力推定部14が、予定経路のリンクごとに、当該リンクに関して取得された特徴変数の値(リンクの特徴量)を、学習済みのリンク依存モデルm22に入力すると、リンク依存モデルm22は、予定経路のリンクごとに、当該リンクに対する電力消費率の推定値を出力する(S242a)。なお、図12では、リンク依存モデルm22が、リンクごとに図示されているが、これは、リンクごとにリンク非依存モデルm21が存在することを示すものではなく、リンクごとにリンク非依存モデルm21による計算が行われることを示す。この点は、合成モデルm23についても同様である。 Further, when the power consumption estimation unit 14 inputs the value of the feature variable (feature amount of the link) acquired for each link of the planned route into the trained link-dependent model m22, the link-dependent model m22 becomes , The estimated value of the power consumption rate for the link is output for each link of the planned route (S242a). In FIG. 12, the link-dependent model m22 is shown for each link, but this does not indicate that the link-independent model m21 exists for each link, and the link-independent model m21 for each link does not exist. Indicates that the calculation is performed by. This point is the same for the synthetic model m23.
 ステップS241a及びS242にaに続いて、消費電力推定部14が、予定経路のリンクごとに、当該予定経路についてリンク非依存モデルm21から出力された推定値と、当該リンクについてリンク依存モデルm22から出力された推定値とを、学習済みの合成モデルm23に入力すると、合成モデルm23は、予定経路のリンクごとに、2つの推定値を合成することで得られる、当該リンクに対する電力消費率の推定値を出力する(S243a)。なお、リンク非依存モデルm21からの出力は、全てのリンクに対して同じ値が適用される。 Following steps S241a and S242 a, the power consumption estimation unit 14 outputs the estimated value output from the link-independent model m21 for the planned route and the link-dependent model m22 for the link for each link of the planned route. When the calculated estimated value is input to the trained synthetic model m23, the synthetic model m23 is obtained by synthesizing two estimated values for each link of the planned route, and is an estimated value of the power consumption rate for the link. Is output (S243a). The same value is applied to all links in the output from the link-independent model m21.
 続いて、消費電力推定部14は、予定経路のリンクごとに、当該リンクについて合成モデルm23から出力された推定値と当該リンクの距離との積を計算することで、当該リンクの消費電力[kW]の推定値を算出する(S244a)。なお、各リンクの距離は、地図データから取得可能である。 Subsequently, the power consumption estimation unit 14 calculates the product of the estimated value output from the synthetic model m23 for the link and the distance of the link for each link of the planned route, so that the power consumption [kW] of the link is calculated. ] Is calculated (S244a). The distance of each link can be obtained from the map data.
 続いて、消費電力推定部14は、リンクごとに算出された消費電力の推定値の総和を計算することで、予定経路の消費電力の推定値を算出する(S245a)。 Subsequently, the power consumption estimation unit 14 calculates the estimated value of the power consumption of the planned route by calculating the sum of the estimated values of the power consumption calculated for each link (S245a).
 一方、図13は、第2構成例の電力消費率推定モデルm1を用いた場合の予定経路の消費電力の推定処理を説明するための図である。 On the other hand, FIG. 13 is a diagram for explaining the power consumption estimation process of the planned route when the power consumption rate estimation model m1 of the second configuration example is used.
 消費電力推定部14が、予定経路のリンクごとに、リンクに依存しない変数の値と、当該リンクの特徴変数の値とを学習済みの電力消費率推定モデルm1に入力すると、電力消費率推定モデルm1は、当該リンクごとに電力消費率の推定値を出力する(S241b)。 When the power consumption estimation unit 14 inputs the value of the variable that does not depend on the link and the value of the characteristic variable of the link into the learned power consumption rate estimation model m1 for each link of the planned route, the power consumption rate estimation model m1 outputs an estimated value of the power consumption rate for each link (S241b).
 続いて、消費電力推定部14は、予定経路のリンクごとに、当該リンクについて電力消費率推定モデルm1から出力された推定値と当該リンクの距離との積を計算することで、当該リンクの消費電力[kW]の推定値を算出する(S242b)
 続いて、消費電力推定部14は、リンクごとに算出された消費電力の推定値の総和を計算することで、予定経路の消費電力の推定値を算出する(S243b)。
Subsequently, the power consumption estimation unit 14 calculates the product of the estimated value output from the power consumption rate estimation model m1 for the link and the distance of the link for each link of the planned route, thereby consuming the link. Calculate the estimated value of power [kW] (S242b)
Subsequently, the power consumption estimation unit 14 calculates the estimated value of the power consumption of the planned route by calculating the sum of the estimated values of the power consumption calculated for each link (S243b).
 次に、学習済みの電力消費率推定モデルm1を用いて、電気自動車20の電費の観点において最適経路を推定する場合の処理手順について説明する。図14は、電費の観点における最適経路を推定する場合の処理手順の一例を説明するためのフローチャートである。また、図15は、電費の観点における最適経路を推定する場合の処理手順の一例を説明するための地図データを示す図である。 Next, the processing procedure for estimating the optimum route from the viewpoint of the electric cost of the electric vehicle 20 will be described using the learned power consumption rate estimation model m1. FIG. 14 is a flowchart for explaining an example of a processing procedure when estimating the optimum route from the viewpoint of electricity cost. Further, FIG. 15 is a diagram showing map data for explaining an example of a processing procedure when estimating the optimum route from the viewpoint of electricity cost.
 ステップS310において、消費電力推定部14は、移動経路の探索範囲として指定された範囲内の全ての地図データを地図データ記憶部122から取得する。その結果、図15の(1)に示されるような情報が取得される。なお、探索範囲は、出発地と目的地を最小限カバーするように決めてもよいし、計算資源が許すならば、例えば、日本国内全域とされてもよい。 In step S310, the power consumption estimation unit 14 acquires all the map data within the range designated as the search range of the movement route from the map data storage unit 122. As a result, information as shown in (1) of FIG. 15 is acquired. The search range may be determined to cover the starting point and the destination at a minimum, or may be, for example, the entire area of Japan if computational resources permit.
 続いて、消費電力推定部14は、電力消費率推定モデルm1の説明変数の値を取得する(S320)。当該値の取得方法は、図11のステップS230と同様でよい。但し、ステップS320では、探索範囲の全てのリンクについて説明変数の値が取得される。なお、気象データ等、リンクに依存しない変数の値が未知である場合、例えば、探索範囲の地域における平均気温等、過去の実績値に基づいてリンクに依存しない変数の値が計算されてもよい。 Subsequently, the power consumption estimation unit 14 acquires the value of the explanatory variable of the power consumption rate estimation model m1 (S320). The method of acquiring the value may be the same as in step S230 of FIG. However, in step S320, the values of the explanatory variables are acquired for all the links in the search range. When the value of the variable that does not depend on the link such as meteorological data is unknown, the value of the variable that does not depend on the link may be calculated based on the past actual value such as the average temperature in the area of the search range. ..
 続いて、消費電力推定部14は、当該リンクごとに、学習済みの電力消費率推定モデルm1に対して説明変数の値を入力することで、当該リンクごとの電力消費率を算出する(S330)。 Subsequently, the power consumption estimation unit 14 calculates the power consumption rate for each link by inputting the value of the explanatory variable to the learned power consumption rate estimation model m1 for each link (S330). ..
 続いて、消費電力推定部14は、当該リンクごとに、ステップS330において算出された電力消費率に対して当該リンクの距離を乗じることで、消費電力を算出する(S340)。その結果、図15の(2)に示されるような情報が得られる。すなわち、図15の(2)において、各リンクを示す線の太さは、消費電力の大きさを示す。 Subsequently, the power consumption estimation unit 14 calculates the power consumption for each link by multiplying the power consumption rate calculated in step S330 by the distance of the link (S340). As a result, information as shown in (2) of FIG. 15 can be obtained. That is, in (2) of FIG. 15, the thickness of the line indicating each link indicates the magnitude of power consumption.
 続いて、消費電力推定部14は、各リンクについて算出された消費電力を各リンクのコスト(重み)として経路最適化問題を解くことで、最適経路を推定する(S350)。図15の(3)には、最適経路の一例が破線によって示されている。なお、経路最適化問題の解法としては、ダイクストラ法やA*法など、公知のアルゴリズムが用いられればよい。 Subsequently, the power consumption estimation unit 14 estimates the optimum route by solving the route optimization problem with the power consumption calculated for each link as the cost (weight) of each link (S350). In FIG. 15 (3), an example of the optimum route is shown by a broken line. As a method for solving the route optimization problem, a known algorithm such as Dijkstra's algorithm or A * method may be used.
 なお、上記では、電力消費率推定モデルm1が利用される例について説明したが、電力消費率推定モデルm1の全部ではなく、第1構成例(図8)におけるリンク依存モデルm22のみが用いられてもよい。この場合、ステップS320では、リンクの特徴変数の値が取得されればよい。ステップS330では、リンクの特徴変数の値がリンク依存モデルm22に入力されることで、各リンクの電力消費率が算出されればよい。 Although the example in which the power consumption rate estimation model m1 is used has been described above, only the link-dependent model m22 in the first configuration example (FIG. 8) is used instead of the entire power consumption rate estimation model m1. May be good. In this case, in step S320, the value of the feature variable of the link may be acquired. In step S330, the power consumption rate of each link may be calculated by inputting the value of the feature variable of the link into the link-dependent model m22.
 また、ステップS310~S340は、ステップS350とは非同期に(例えば、事前に)実行されてもよいし、ステップS350と同期的に(リアルタイムに)実行されてもよい。 Further, steps S310 to S340 may be executed asynchronously (for example, in advance) with step S350, or may be executed synchronously (in real time) with step S350.
 但し、事前に各リンクの重み(消費電力)が計算される場合(すなわち、ステップS310~S340が事前に実行される場合)、重みが計算が実行される時点では、最適経路を移動する日時における気象条件等の道路リンクに依存しない変数の値を取得できない可能性が有る。そのため、最適経路に含まれる各リンクの当該重みの合計を最適経路の消費電力として計算すると、消費電力の推定値が劣化する可能性がある。 However, when the weight (power consumption) of each link is calculated in advance (that is, when steps S310 to S340 are executed in advance), when the weight is calculated, it is at the date and time when the optimum route is moved. It may not be possible to obtain the values of variables that do not depend on road links such as weather conditions. Therefore, if the sum of the weights of each link included in the optimum route is calculated as the power consumption of the optimum route, the estimated value of the power consumption may deteriorate.
 そこで、最適経路の消費電力を計算する必要が有る場合、消費電力推定部14は、最適経路について、図11のステップS230及びS240を実行することで、最適経路の消費電力の推定値を計算してもよい。そうすることで、当該推定値の精度の向上を期待することができる。 Therefore, when it is necessary to calculate the power consumption of the optimum route, the power consumption estimation unit 14 calculates the estimated value of the power consumption of the optimum route by executing steps S230 and S240 of FIG. 11 for the optimum route. You may. By doing so, it can be expected that the accuracy of the estimated value will be improved.
 上述したように、本実施の形態によれば、過去のトリップ(移動)の移動経路に含まれるリンクの特徴情報と当該トリップの電力消費率とに基づいて、回帰モデルが学習される。この際、リンクの位置情報は特徴量には含まれない。したがって、当該回帰モデルを用いて、過去に移動実績のない経路であっても消費電力を推定することができる。 As described above, according to the present embodiment, the regression model is learned based on the characteristic information of the link included in the movement route of the past trip (movement) and the power consumption rate of the trip. At this time, the position information of the link is not included in the feature amount. Therefore, using the regression model, it is possible to estimate the power consumption even if the route has no past travel record.
 これにより、例えば、電気自動車20について現在のバッテリー残量で目的地まで到達可能か否かを示す情報や、消費電力を節約したいユーザへの適切な経路の提示等を可能とすることができる。 This makes it possible, for example, to provide information indicating whether or not the electric vehicle 20 can reach the destination with the current remaining battery level, and to present an appropriate route to a user who wants to save power consumption.
 また、本実施の形態によれば、リンクに依存しない変数(リンクに依存しない特徴量)も回帰モデルの説明変数とされる。これにより、消費電力の推定において、リンクに依存しない状況(気象条件等)をも考慮することができ、推定精度の向上を期待することができる。 Further, according to the present embodiment, a variable that does not depend on the link (feature amount that does not depend on the link) is also used as an explanatory variable of the regression model. As a result, in the estimation of power consumption, it is possible to consider the situation (weather conditions, etc.) that does not depend on the link, and it is expected that the estimation accuracy will be improved.
 また、本実施に形態によれば、例えば、1回のトリップ内においてリアルタイム(例えば、周期的)に各種のセンサ等から取得される各種の時系列データを必要とせず、トリップデータに基づいて回帰モデルを学習することができる。これにより、電気自動車20からリアルタイムにデータを取得する必要がなくなり、データ取得のためのネットワーク構築にかかるコストを削減可能とすることができる。 Further, according to the present embodiment, for example, it does not require various time series data acquired from various sensors or the like in real time (for example, periodically) within one trip, and returns based on the trip data. You can train the model. This eliminates the need to acquire data from the electric vehicle 20 in real time, and can reduce the cost of constructing a network for acquiring data.
 なお、本実施の形態では、電気自動車20が消費するエネルギー(電力)を推定する例について説明したが、他のエネルギーを消費して移動する移動体(例えば、ガソリン車、ディーゼル車等)について、本実施の形態が適用されてもよい。この場合、電力消費率は、各移動体に対応するエネルギー消費率(単位移動距離当たりの消費エネルギー(例えば、ガソリンの消費量))によって置き換えら、消費電力は、消費エネルギーによって置き換えられればよい。 In the present embodiment, an example of estimating the energy (electric power) consumed by the electric vehicle 20 has been described, but a moving body (for example, a gasoline vehicle, a diesel vehicle, etc.) that moves by consuming other energy has been described. The present embodiment may be applied. In this case, the power consumption rate may be replaced by the energy consumption rate corresponding to each moving body (energy consumption per unit travel distance (for example, consumption of gasoline)), and the power consumption may be replaced by the energy consumption.
 なお、本実施の形態において、消費電力推定装置10は、消費エネルギー推定装置の一例である。経路推定部11は、第1の推定部の一例である。変数値抽出部12は、抽出部の一例である。モデル学習部13は、学習部の一例である。消費電力推定部14は、第2の推定部の一例である。 In the present embodiment, the power consumption estimation device 10 is an example of the energy consumption estimation device. The route estimation unit 11 is an example of the first estimation unit. The variable value extraction unit 12 is an example of the extraction unit. The model learning unit 13 is an example of the learning unit. The power consumption estimation unit 14 is an example of the second estimation unit.
 以上、本発明の実施の形態について詳述したが、本発明は斯かる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications are made within the scope of the gist of the present invention described in the claims.・ Can be changed.
1      消費電力推定システム
10     消費電力推定装置
11     経路推定部
12     変数値抽出部
13     モデル学習部
14     消費電力推定部
20     電気自動車
100    ドライブ装置
101    記録媒体
102    補助記憶装置
103    メモリ装置
104    CPU
105    インタフェース装置
121    トリップデータ記憶部
122    地図データ記憶部
123    気象ログデータ記憶部
B      バス
m1     電力消費率推定モデル
m21    リンク非依存モデル
m22    リンク依存モデル
m23    合成モデル
1 Power consumption estimation system 10 Power consumption estimation device 11 Route estimation unit 12 Variable value extraction unit 13 Model learning unit 14 Power consumption estimation unit 20 Electric vehicle 100 Drive device 101 Recording medium 102 Auxiliary storage device 103 Memory device 104 CPU
105 Interface device 121 Trip data storage unit 122 Map data storage unit 123 Meteorological log data storage unit B Bus m1 Power consumption rate estimation model m21 Link-independent model m22 Link-dependent model m23 Composite model

Claims (9)

  1.  移動開始地と移動終了地と移動距離と消費エネルギーとを含む複数のトリップデータのそれぞれについて、道路をリンクの集合によって表現する地図データを参照して当該トリップデータに係る移動経路を示すリンクの集合を推定し、
     道路の特徴情報を記憶する記憶部を参照して、推定した前記リンクの集合に含まれる各リンクに対応する特徴情報を抽出し、
     前記各リンクについて抽出した特徴情報と、前記複数のトリップデータに含まれる移動距離及び消費エネルギーとに基づいて、単位移動距離あたりの消費エネルギーであるエネルギー消費率を目的変数とし、前記特徴情報を説明変数とする回帰モデルを学習し、
     指定された移動経路を構成する各リンクの特徴情報と前記回帰モデルとに基づいて、前記指定された移動経路の消費エネルギーを推定する、
    処理をコンピュータに実行させることを特徴とする消費エネルギー推定プログラム。
    For each of a plurality of trip data including a movement start point, a movement end point, a movement distance, and energy consumption, a set of links indicating a movement route related to the trip data with reference to map data representing a road by a set of links. Estimate and
    By referring to the storage unit that stores the characteristic information of the road, the characteristic information corresponding to each link included in the estimated set of the links is extracted.
    Based on the feature information extracted for each of the links and the travel distance and energy consumption included in the plurality of trip data, the energy consumption rate, which is the energy consumption per unit travel distance, is set as the objective variable, and the feature information is described. Learn the regression model as a variable and
    The energy consumption of the specified travel path is estimated based on the feature information of each link constituting the designated travel path and the regression model.
    An energy consumption estimation program characterized by having a computer perform processing.
  2.  前記複数のトリップデータのそれぞれについて、道路の特徴に依存しない情報であって、消費エネルギーに影響する情報を抽出する処理をコンピュータに実行させ、
     前記学習する処理は、前記情報に基づいて前記回帰モデルを学習し、
     前記推定する処理は、前記情報に基づいて、消費エネルギーを推定する、
    ことを特徴とする請求項1記載の消費エネルギー推定プログラム。
    For each of the plurality of trip data, a computer is made to execute a process of extracting information that does not depend on the characteristics of the road and that affects energy consumption.
    The learning process learns the regression model based on the information and
    The estimation process estimates energy consumption based on the information.
    The energy consumption estimation program according to claim 1.
  3.  指定された出発地と指定された目的地との間の移動経路の探索範囲に含まれる各リンクについて、前記回帰モデルを用いて消費エネルギーを推定し、
     前記探索範囲に含まれる各リンクについて推定した消費エネルギーを当該各リンクの重みとして、前記出発地と前記目的地との間の最適経路を推定し、
     前記移動経路の消費エネルギーを推定する処理は、前記最適経路の消費エネルギーを推定する、
    処理をコンピュータが実行することを特徴とする請求項1又は2記載の消費エネルギー推定プログラム。
    The energy consumption is estimated using the regression model for each link included in the search range of the movement route between the specified starting point and the specified destination.
    Using the energy consumption estimated for each link included in the search range as the weight of each link, the optimum route between the starting point and the destination is estimated.
    The process of estimating the energy consumption of the movement path estimates the energy consumption of the optimum path.
    The energy consumption estimation program according to claim 1 or 2, wherein the processing is executed by a computer.
  4.  移動開始地と移動終了地と移動距離と消費エネルギーとを含む複数のトリップデータのそれぞれについて、道路をリンクの集合によって表現する地図データを参照して当該トリップデータに係る移動経路を示すリンクの集合を推定し、
     道路の特徴情報を記憶する記憶部を参照して、推定した前記リンクの集合に含まれる各リンクに対応する特徴情報を抽出し、
     前記各リンクについて抽出した特徴情報と、前記複数のトリップデータに含まれる移動距離及び消費エネルギーとに基づいて、単位移動距離あたりの消費エネルギーであるエネルギー消費率を目的変数とし、前記特徴情報を説明変数とする回帰モデルを学習し、
     指定された移動経路を構成する各リンクの特徴情報と前記回帰モデルとに基づいて、前記指定された移動経路の消費エネルギーを推定する、
    処理をコンピュータが実行することを特徴とする消費エネルギー推定方法。
    For each of a plurality of trip data including a movement start point, a movement end point, a movement distance, and energy consumption, a set of links indicating a movement route related to the trip data with reference to map data representing a road by a set of links. Estimate and
    By referring to the storage unit that stores the characteristic information of the road, the characteristic information corresponding to each link included in the estimated set of the links is extracted.
    Based on the feature information extracted for each of the links and the travel distance and energy consumption included in the plurality of trip data, the energy consumption rate, which is the energy consumption per unit travel distance, is set as the objective variable, and the feature information is described. Learn the regression model as a variable and
    The energy consumption of the specified travel path is estimated based on the feature information of each link constituting the designated travel path and the regression model.
    An energy consumption estimation method characterized by a computer performing processing.
  5.  前記複数のトリップデータのそれぞれについて、道路の特徴に依存しない情報であって、消費エネルギーに影響する情報を抽出する処理をコンピュータが実行し、
     前記学習する処理は、前記情報に基づいて前記回帰モデルを学習し、
     前記推定する処理は、前記情報に基づいて、消費エネルギーを推定する、
    ことを特徴とする請求項4記載の消費エネルギー推定方法。
    For each of the plurality of trip data, the computer executes a process of extracting information that does not depend on the characteristics of the road and that affects energy consumption.
    The learning process learns the regression model based on the information and
    The estimation process estimates energy consumption based on the information.
    The energy consumption estimation method according to claim 4, wherein the energy consumption is estimated.
  6.  指定された出発地と指定された目的地との間の移動経路の探索範囲に含まれる各リンクについて、前記回帰モデルを用いて消費エネルギーを推定し、
     前記探索範囲に含まれる各リンクについて推定した消費エネルギーを当該各リンクの重みとして、前記出発地と前記目的地との間の最適経路を推定し、
     前記移動経路の消費エネルギーを推定する処理は、前記最適経路の消費エネルギーを推定する、
    処理をコンピュータが実行することを特徴とする請求項4又は5記載の消費エネルギー推定方法。
    The energy consumption is estimated using the regression model for each link included in the search range of the movement route between the specified starting point and the specified destination.
    Using the energy consumption estimated for each link included in the search range as the weight of each link, the optimum route between the starting point and the destination is estimated.
    The process of estimating the energy consumption of the movement path estimates the energy consumption of the optimum path.
    The energy consumption estimation method according to claim 4 or 5, wherein the processing is executed by a computer.
  7.  移動開始地と移動終了地と移動距離と消費エネルギーとを含む複数のトリップデータのそれぞれについて、道路をリンクの集合によって表現する地図データを参照して当該トリップデータに係る移動経路を示すリンクの集合を推定する第1の推定部と、
     道路の特徴情報を記憶する記憶部を参照して、推定した前記リンクの集合に含まれる各リンクに対応する特徴情報を抽出する抽出部と、
     前記各リンクについて抽出した特徴情報と、前記複数のトリップデータに含まれる移動距離及び消費エネルギーとに基づいて、単位移動距離あたりの消費エネルギーであるエネルギー消費率を目的変数とし、前記特徴情報を説明変数とする回帰モデルを学習する学習部と、
     指定された移動経路を構成する各リンクの特徴情報と前記回帰モデルとに基づいて、前記指定された移動経路の消費エネルギーを推定する第2の推定部と、
    を有することを特徴とする消費エネルギー推定装置。
    For each of a plurality of trip data including a movement start point, a movement end point, a movement distance, and energy consumption, a set of links indicating a movement route related to the trip data with reference to map data representing a road by a set of links. The first estimation part that estimates
    An extraction unit that extracts feature information corresponding to each link included in the estimated set of links by referring to a storage unit that stores road feature information, and an extraction unit.
    Based on the feature information extracted for each of the links and the travel distance and energy consumption included in the plurality of trip data, the energy consumption rate, which is the energy consumption per unit travel distance, is set as the objective variable, and the feature information is described. A learning unit that learns a regression model as a variable,
    A second estimation unit that estimates the energy consumption of the designated movement path based on the feature information of each link constituting the designated movement path and the regression model, and
    An energy consumption estimation device characterized by having.
  8.  前記抽出部は、前記複数のトリップデータのそれぞれについて、道路の特徴に依存しない情報であって、消費エネルギーに影響する情報を抽出し、
     前記学習部は、前記情報に基づいて前記回帰モデルを学習し、
     前記第2の推定部は、前記情報に基づいて、消費エネルギーを推定する、
    ことを特徴とする請求項7記載の消費エネルギー推定装置。
    The extraction unit extracts information that does not depend on the characteristics of the road and affects energy consumption for each of the plurality of trip data.
    The learning unit learns the regression model based on the information and
    The second estimation unit estimates energy consumption based on the information.
    The energy consumption estimation device according to claim 7.
  9.  指定された出発地と指定された目的地との間の移動経路の探索範囲に含まれる各リンクについて、前記回帰モデルを用いて消費エネルギーを推定する第3の推定部と、
     前記探索範囲に含まれる各リンクについて推定した消費エネルギーを当該各リンクの重みとして、前記出発地と前記目的地との間の最適経路を推定する第4の推定部とを有し、
     前記第2の推定部は、前記最適経路の消費エネルギーを推定する、
    ことを特徴とする請求項7又は8記載の消費エネルギー推定装置。
    A third estimation unit that estimates energy consumption using the regression model for each link included in the search range of the movement route between the specified starting point and the specified destination.
    It has a fourth estimation unit that estimates the optimum route between the starting point and the destination, using the energy consumption estimated for each link included in the search range as the weight of each link.
    The second estimation unit estimates the energy consumption of the optimum path.
    The energy consumption estimation device according to claim 7 or 8.
PCT/JP2020/001291 2020-01-16 2020-01-16 Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device WO2021144923A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021570571A JP7400837B2 (en) 2020-01-16 2020-01-16 Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device
PCT/JP2020/001291 WO2021144923A1 (en) 2020-01-16 2020-01-16 Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001291 WO2021144923A1 (en) 2020-01-16 2020-01-16 Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device

Publications (1)

Publication Number Publication Date
WO2021144923A1 true WO2021144923A1 (en) 2021-07-22

Family

ID=76864374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001291 WO2021144923A1 (en) 2020-01-16 2020-01-16 Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device

Country Status (2)

Country Link
JP (1) JP7400837B2 (en)
WO (1) WO2021144923A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127094A1 (en) * 2021-12-28 2023-07-06 株式会社日立製作所 Electric vehicle traveling simulation device and electric vehicle traveling simulation method
JP7422719B2 (en) 2021-09-30 2024-01-26 Kddi株式会社 Estimation device, program, and method for estimating power consumption of a mobile object when traveling on a road

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100076675A1 (en) * 2008-09-24 2010-03-25 The Regents Of The University Of California Environmentally friendly driving navigation
JP2019046106A (en) * 2017-08-31 2019-03-22 株式会社東芝 Route estimation device, route estimation method, and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100076675A1 (en) * 2008-09-24 2010-03-25 The Regents Of The University Of California Environmentally friendly driving navigation
JP2019046106A (en) * 2017-08-31 2019-03-22 株式会社東芝 Route estimation device, route estimation method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422719B2 (en) 2021-09-30 2024-01-26 Kddi株式会社 Estimation device, program, and method for estimating power consumption of a mobile object when traveling on a road
WO2023127094A1 (en) * 2021-12-28 2023-07-06 株式会社日立製作所 Electric vehicle traveling simulation device and electric vehicle traveling simulation method

Also Published As

Publication number Publication date
JPWO2021144923A1 (en) 2021-07-22
JP7400837B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
CN109733248B (en) Pure electric vehicle remaining mileage model prediction method based on path information
CN110126841B (en) Pure electric vehicle energy consumption model prediction method based on road information and driving style
Thibault et al. A unified approach for electric vehicles range maximization via eco-routing, eco-driving, and energy consumption prediction
CN107169567B (en) Method and device for generating decision network model for automatic vehicle driving
CN103364006B (en) For determining the system and method for vehicle route
TWI638328B (en) Electricity demand prediction device, electricity supply system, method of predicting electricity demand, program , electricity supply menage device
Lemieux et al. Vehicle speed prediction using deep learning
Zeng et al. Exploring trip fuel consumption by machine learning from GPS and CAN bus data
CN109784560A (en) A kind of electric car course continuation mileage evaluation method and estimating system
CN111038334A (en) Method and device for predicting driving range of electric automobile
Zhao et al. Energy control of plug-in hybrid electric vehicles using model predictive control with route preview
WO2021144923A1 (en) Energy consumption estimation program, energy consumption estimation method, and energy consumption estimation device
CN110167808B (en) Method for calculating a management setpoint for managing the fuel and electric power consumption of a hybrid motor vehicle
US20200331473A1 (en) Method for ascertaining driving profiles
Guo et al. A novel energy consumption prediction model with combination of road information and driving style of BEVs
CN112406875B (en) Vehicle energy consumption analysis method and device
CN110909907A (en) Method and device for predicting fuel consumption of truck and storage medium
Grubwinkler et al. A modular and dynamic approach to predict the energy consumption of electric vehicles
CN113642768A (en) Vehicle running energy consumption prediction method based on working condition reconstruction
Kim et al. A machine learning method for ev range prediction with updates on route information and traffic conditions
Amrani et al. Train speed profiles optimization using a genetic algorithm based on a random-forest model to estimate energy consumption
CN111710160A (en) Travel time prediction method based on floating car data
US20210241104A1 (en) Device, method and machine learning system for determining a velocity for a vehicle
CN109341711B (en) Speed prediction algorithm for automobile navigation
CN113525385A (en) Method and device for predicting vehicle travel energy consumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914113

Country of ref document: EP

Kind code of ref document: A1