WO2021143422A1 - 一种粮食扦样方法、可读存储介质和系统 - Google Patents

一种粮食扦样方法、可读存储介质和系统 Download PDF

Info

Publication number
WO2021143422A1
WO2021143422A1 PCT/CN2020/136323 CN2020136323W WO2021143422A1 WO 2021143422 A1 WO2021143422 A1 WO 2021143422A1 CN 2020136323 W CN2020136323 W CN 2020136323W WO 2021143422 A1 WO2021143422 A1 WO 2021143422A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
sample
frame
area
samples
Prior art date
Application number
PCT/CN2020/136323
Other languages
English (en)
French (fr)
Inventor
张玉荣
胡殿昌
周显青
张咚咚
Original Assignee
河南工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南工业大学 filed Critical 河南工业大学
Publication of WO2021143422A1 publication Critical patent/WO2021143422A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management

Definitions

  • This application belongs to the technical field of quality investigation of grain harvesting links, and specifically relates to a grain sampling method, readable storage medium and system.
  • Food is the most basic means of survival for centuries, the first need of human life, and it occupies an important position in the national economy.
  • Food quality and safety supervision is an important means for government departments to implement food quality and safety management.
  • grain skewer runs through the whole process from field to table. The representativeness of the grain samples is directly related to the reliability of the quality inspection results, and is of great significance for the government to understand the situation of the grain harvest in the year and grasp the quality indicators of the grain harvest.
  • the quality investigation of grain harvesting is mainly carried out in accordance with the "Technical Specifications for Grain Harvest Quality Investigation and Quality Forecasting".
  • the standard does not require accurate requirements for the total number of samples in the region, and the requirements for sampling points only say “set the sampling points according to the principle of equidistant and uniform distribution as much as possible", and there is no fixed sampling method; at the same time, the sampling results Low reliability.
  • the present application provides a grain sampling method, readable storage medium and system.
  • a grain sampling method including:
  • the method before the construction of the sampling frame, the method further includes:
  • the construction of the sample database includes:
  • the construction of the sample sampling frame includes:
  • the grain planting information of all the sampling areas after sorting irrelevant signs is the skewer sampling frame.
  • said obtaining the preset number of samples in the sampling area in the sampling frame includes:
  • the Naiman allocation method is used to obtain the preset number of samples in the sampling area in the sample sampling frame.
  • the obtaining the preset number of samples in the sampling area of the sample sampling frame by using the Naiman allocation method includes:
  • the standard deviation of the sampling index of the sampling area in the sample sampling frame is used to obtain the preset sample number of the sampling area in the sample sampling frame.
  • said using the standard deviation of the sampling index of the sampling area in the sample sampling frame to obtain the preset number of samples in the sampling area in the sample sampling frame includes:
  • M is the total number of sample areas
  • m is a preset number of the total sample
  • N i is the lower administrative area for sampling the i-th sampling region sampling frame number
  • S i is the standard deviation of the sampling index of the i-th sampling area in the sampling frame.
  • the extracting the same number of lower-level administrative regions as the preset number of samples from the sampling areas in the sample sampling frame, and obtaining the sampling sample frame of the sampling area in the sample sampling frame includes :
  • the sampling sample frame of the sampling area in the sample sampling frame is constructed by using the same number of lower-level administrative areas as the preset number of samples selected from the sampling areas in the sample sampling frame.
  • a readable storage medium on which an executable program is stored, and when the executable program is executed by a processor, the steps of the grain sampling method described above are implemented.
  • a grain sampling system including:
  • Construction unit used to construct the sampling frame
  • the obtaining unit is used to obtain the preset number of samples in the sampling area in the sampling frame;
  • the sampling unit is used to extract the same number of lower-level administrative regions as the preset number of samples from the sampling areas in the sample sampling frame, and obtain the sampling sample frame of the sampling area in the sample sampling frame.
  • the system further includes:
  • the establishment of a unit is used to construct a sample database.
  • the establishment unit is specifically used for:
  • the building unit includes:
  • the sorting module is used for sorting the grain planting information of all sampling areas in the sample database with irrelevant signs;
  • the first determining module is used for the grain planting information of all the sampling areas after sorting the irrelevant signs as the skewer sampling frame.
  • the acquiring unit is specifically used for:
  • the Naiman allocation method is used to obtain the preset number of samples in the sampling area in the sample sampling frame.
  • the acquiring unit includes:
  • the first obtaining module is used to obtain the standard deviation of the sampling index of the sampling area in the sample sampling frame
  • the second acquisition module is configured to use the standard deviation of the sampling index of the sampling area in the sample sampling frame to obtain the preset number of samples in the sampling area in the sample sampling frame.
  • the second acquisition module is specifically configured to determine the preset sampling number a i of the i-th sampling area in the sample sampling frame as follows:
  • M is the total number of sample areas
  • m is a preset number of the total sample
  • N i is the lower administrative area for sampling the i-th sampling region sampling frame number
  • S i is the standard deviation of the sampling index of the i-th sampling area in the sampling frame.
  • the extraction unit includes:
  • the extraction module is used to extract the same number of lower-level administrative regions as the preset number of samples from the sampling areas in the sample sampling frame by using the PPS sampling method;
  • the second determining module is used to construct a sampling sample frame of the sampling area in the sample sampling frame by using the same number of lower-level administrative areas as the preset number of samples drawn from the sampling area in the sample sampling frame .
  • the technical solution provided in this application obtains the preset number of samples in the sampling area of the sample sampling frame by constructing a sample sampling frame, and extracts the same number of subordinates as the preset number of samples from the sampling area in the sample sampling frame
  • the administrative area, obtaining the sampling sample frame of the sampling area guarantees the representativeness of the sample inspection results, improves the effectiveness and inspection efficiency of food safety monitoring, and is more reliable and stable than the traditional method of sampling results.
  • Fig. 1 is a flow chart showing a grain sampling method according to an exemplary embodiment
  • Fig. 2 is a flowchart showing another grain sampling method according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram showing a grain sampling system according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing another grain sampling system according to an exemplary embodiment.
  • Fig. 1 is a flow chart showing a grain sampling method according to an exemplary embodiment. As shown in Fig. 1, the method can be but not limited to be used in a terminal and includes the following steps:
  • Step 101 construct a sampling frame
  • Step 102 Obtain the preset number of samples in the sampling area in the sampling frame of the skewer
  • Step 103 Extract the same number of lower-level administrative regions from the sampling area in the sample sampling frame as the preset number of samples, and obtain the sampling sample frame of the sampling area in the sample sampling frame.
  • the grain sampling method provided in this embodiment obtains the preset number of samples in the sampling area in the sample sampling frame by constructing a sample sampling frame, and extracts the preset number of samples from the sampling area in the sample sampling frame. Counting the same number of lower-level administrative regions, obtaining the sampling frame of the sampling area ensures the representativeness of the sample inspection results, improves the effectiveness and detection efficiency of food safety monitoring, and is more reliable and stable than traditional methods.
  • the embodiment of the present invention provides another grain sampling method, as shown in FIG. 2.
  • the method can be but not limited to be used in a terminal, and includes the following steps:
  • step 201 can be implemented through but not limited to the following process:
  • the grain planting information may include, but is not limited to: region, region code and planting area.
  • the sampling area is a city-level administrative area, it is necessary to collect the food planting information of all the villages and all the towns in all the lower-level administrative areas (ie county-level administrative areas) of the city-level administrative area; if the sampling area is the county Level administrative area, you need to collect the grain planting information of all villages in all lower administrative areas (ie towns or townships) of the county-level administrative area; if the sampling area is a town or township-level administrative area, you need to collect the town or township-level administrative area. Food planting information of all villages in the administrative area.
  • step 202 can be implemented through but not limited to the following process:
  • step 203 can be implemented through but not limited to the following process:
  • step 2031 can be implemented through but not limited to the following process:
  • sampling indicators can include, but are not limited to: whole rice rate, roughness rate or bulk density.
  • the parameters needed in the process of obtaining the standard deviation of the sampling indicators in the sampling area of the skewer sample frame can be analyzed by, but not limited to, pre-survey data or collected historical survey index values.
  • the pre-survey data is the index value measured by field survey sampling.
  • rice mainly focuses on the measured value of whole rice rate
  • wheat mainly focuses on the measured value of bulk density index.
  • step 2041 can be implemented through but not limited to the following process:
  • K is the number of samples in the sampling area
  • x j is the sampling index value of the lower administrative area of the sampling area
  • is the average value of the sampling index in the sampling area.
  • sampling area is County A
  • sampling index of County A is the heading rice rate
  • K is the sample size of the lower administrative area of County A
  • x j is the heading rice of all the lower administrative areas of County A. Rate value, the average value of sampling indicators in County A
  • the parameter for calculating the standard deviation of the sampling index in the sampling area is the collection of historical survey index values. Assuming that the sampling area is County B, the collected data is the head rice rate of 25 villages in County B last year, then K is 25, x j It is the rice heading rate value of 25 villages in County B, and ⁇ is the average rice heading rate value of 25 villages in County B.
  • 2031b Use the standard deviation of the sampling index of the sampling area in the sampling frame to obtain the preset number of samples in the sampling area.
  • step 2031b can be implemented through but not limited to the following process:
  • M is the total number of the sampling area
  • m is the total number of preset sampling
  • N i is the number of lower administrative areas of the i-th sample region
  • S i is the i th The standard deviation of the sampling index of the sampling area.
  • step 204 can be implemented through but not limited to the following process:
  • Specific options can be, but not limited to, the code method in the PPS sampling method, the Hansen-Herwitz method, or the Lahiri method to extract the same number of lower-level samples from the sampling area in the sample sampling frame as the preset number of samples. Administrative regions.
  • Another method of grain sampling is to construct a sampling frame to obtain the preset number of samples in the sampling area in the sampling frame, and to extract and preset sampling from the sampling area in the sampling frame
  • the same number of lower-level administrative regions, to obtain the sampling sample frame of the sampling area ensure the representativeness of the sample inspection results, improve the effectiveness and inspection efficiency of food safety monitoring, and are more reliable and stable than the traditional method of sampling results; and,
  • the key parameters such as the sampling method, sampling unit and sampling point layout in the grain harvesting process were optimized.
  • the embodiment of the present invention also provides another grain sampling method, which can be, but is not limited to, used in a terminal, including:
  • step 303 includes: listing the village-level units in each county according to the planting area data correspondingly, and accumulating them to form a cumulative planting area series;
  • the pre-survey data is the index value measured by field survey sampling.
  • rice mainly focuses on the measured value of whole rice rate
  • wheat mainly focuses on the measured value of bulk density index.
  • the WS value is the product of the standard deviation of each county and the layer weight.
  • Another method of grain sampling is to construct a sampling frame to obtain the preset number of samples in the sampling area in the sampling frame, and to extract and preset sampling from the sampling area in the sampling frame
  • the same number of lower-level administrative regions, to obtain the sampling sample frame of the sampling area ensure the representativeness of the sample inspection results, improve the effectiveness and inspection efficiency of food safety monitoring, and are more reliable and stable than the traditional method of sampling results; and,
  • the key parameters such as the sampling method, sampling unit and sampling point layout in the grain harvesting process were optimized.
  • a readable storage medium on which an executable program is stored, and the executable program is executed by a processor to realize the steps of the grain sampling method.
  • Fig. 3 is a schematic structural diagram showing a grain sampling system according to an exemplary embodiment. As shown in Fig. 3, the system includes:
  • Construction unit used to construct the sampling frame
  • the obtaining unit is used to obtain the preset number of samples in the sampling area in the sampling frame;
  • the sampling unit is used to extract the same number of lower-level administrative regions as the preset number of samples from the sampling area in the sample sampling frame, and obtain the sampling sample frame of the sampling area in the sample sampling frame.
  • the grain sampling system constructs a sample sampling frame by constructing a unit, and the acquisition unit obtains the preset number of samples in the sampling area of the sampling frame, and the sampling unit selects the sampling area from the sampling area in the sampling frame. Select the same number of lower-level administrative regions as the preset sample number, and obtain the sample frame of the sampling area, optimize the key parameters such as the sampling method, the sampling unit and the sampling point layout in the grain harvesting stage, and ensure the sample inspection results
  • the representativeness of food safety has improved the effectiveness and detection efficiency of food safety monitoring, and the sampling results are more reliable and stable than traditional methods.
  • the embodiment of the present invention provides another grain sampling system.
  • the system includes:
  • the establishment of a unit is used to construct a sample database.
  • Construction unit used to construct the sampling frame
  • the obtaining unit is used to obtain the preset number of samples in the sampling area in the sampling frame;
  • the sampling unit is used to extract the same number of lower-level administrative regions as the preset number of samples from the sampling area in the sample sampling frame, and obtain the sampling sample frame of the sampling area in the sample sampling frame.
  • the establishment unit is specifically used for:
  • the grain planting information may include, but is not limited to: region, region code and planting area.
  • the sampling area is a city-level administrative area, it is necessary to collect the food planting information of all the villages and all the towns in all the lower-level administrative areas (ie county-level administrative areas) of the city-level administrative area; if the sampling area is the county Level administrative area, you need to collect the grain planting information of all villages in all lower administrative areas (ie towns or townships) of the county-level administrative area; if the sampling area is a town or township-level administrative area, you need to collect the town or township-level administrative area. Food planting information of all villages in the administrative area.
  • the building unit includes:
  • the sorting module is used to sort the food planting information of all sampling areas in the sampling database with irrelevant signs;
  • the first determination module is used for the grain planting information of all the sampling areas after sorting the irrelevant signs as the skewer sampling frame.
  • the obtaining unit is specifically used for:
  • the Naiman distribution method is used to obtain the preset sampling number of the sampling area in the sampling frame.
  • the obtaining unit includes:
  • the first acquisition module is used to acquire the standard deviation of the sampling index of the sampling area in the sampling frame
  • the second acquisition module is used to obtain the preset number of samples in the sampling area in the sampling frame by using the standard deviation of the sampling index of the sampling area in the sampling frame.
  • sampling indicators can include, but are not limited to: whole rice rate, roughness rate or bulk density.
  • the second acquisition module is specifically configured to determine the preset sampling number a i of the i-th sampling area in the sample sampling frame as follows:
  • M is the total number of sample areas
  • m is a preset number of the total sample
  • N i is the lower administrative area for sampling the i-th sampling region sampling frame number
  • S i is the standard deviation of the sampling index of the i-th sampling area in the sampling frame.
  • the extraction unit includes:
  • the extraction module is used to use the PPS sampling method to extract the same number of lower-level administrative regions from the sampling area in the sample sampling frame as the preset number of samples;
  • the second determining module is used for constructing the sampling sample frame of the sampling area in the sampling frame by using the same number of lower-level administrative areas as the preset sampling number drawn from the sampling area in the sampling frame.
  • the PPS sampling method can include, but is not limited to: the code method in the PPS sampling method, the Hansen-Herwitz method or the Lahiri method.
  • a sample database is constructed by establishing a unit, the constructing unit constructs a sample sampling frame, and the obtaining unit obtains the preset number of samples in the sampling area in the sampling frame.
  • the sampling area in the sampling frame is selected from the same number of lower-level administrative areas as the preset sampling number, and the sampling frame of the sampling area is obtained, which ensures the representativeness of the sample inspection results and improves the effectiveness and detection of food safety monitoring. The efficiency is more reliable and stable than the sampling results of traditional methods.
  • the key parameters such as the sampling method, sampling unit and sampling point layout in the grain harvesting process are optimized.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种粮食扦样方法、可读存储介质和系统,该方法包括:构建扦样抽样框(101, 202);获取扦样抽样框中的抽样区域的预设抽样个数(102, 203);从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,获取抽样区域的抽样样本框(103, 204)。上述技术方案保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定。

Description

一种粮食扦样方法、可读存储介质和系统 技术领域
本申请属于粮食收获环节质量调查技术领域,具体涉及一种粮食扦样方法、可读存储介质和系统。
背景技术
粮食是人类最基本的生存资料,人类生活的第一需要,在国民经济中占有重要地位。粮食质量安全监管是政府部门实施粮食质量安全管理的重要手段。粮食扦样作为粮食质量安全监管的最基础、最关键的环节,贯穿田间到餐桌全过程。粮食扦样的代表性直接关系到质检结果的可靠性,对政府了解当年粮食收获状况、掌握粮食收获环节质量指标具有重要意义。
目前,粮食收获环节质量调查主要依据《粮食收获质量调查和品质测报技术规范》执行。该标准没有对地区总的扦样样本个数进行准确要求,并且采样点要求也只是说“尽可能按等距离均匀分布原则设置采样点”,没有一个固定的扦样方法;同时扦样结果的可靠性低。
发明内容
为至少在一定程度上克服相关技术中存在的扦样方式不固定,且可靠性低问题,本申请提供一种粮食扦样方法、可读存储介质和系统。
根据本申请实施例的第一方面,提供一种粮食扦样方法,包括:
构建扦样抽样框;
获取扦样抽样框中的抽样区域的预设抽样个数;
从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框。
优选的,所述构建扦样抽样框之前,还包括:
构建扦样数据库。
进一步的,所述构建扦样数据库,包括:
采集抽样区域的粮食种植信息,构建扦样数据库。
优选的,所述构建扦样抽样框,包括:
将所述扦样数据库中的所有抽样区域的粮食种植信息进行无关标志排序;
进行无关标志排序后的所述所有抽样区域的粮食种植信息为扦样抽样框。
优选的,所述获取扦样抽样框中的抽样区域的预设抽样个数,包括:
利用奈曼分配方法获取所述扦样抽样框中的抽样区域的预设抽样个数。
进一步的,所述利用奈曼分配方法获取所述扦样抽样框中抽样区域的预设抽样个数,包括:
获取所述扦样抽样框中的抽样区域的抽样指标的标准差;
利用所述扦样抽样框中的抽样区域的抽样指标的标准差获取所述扦样抽样框中的抽样区域的预设抽样个数。
进一步的,所述利用所述扦样抽样框中的抽样区域的抽样指标的标准差获取所述扦样抽样框中的抽样区域的预设抽样个数,包括:
按下式确定扦样抽样框中第i个抽样区域的预设抽样个数a i
Figure PCTCN2020136323-appb-000001
上式中,i∈[1,M],M为抽样区域总数量,m为预设抽样总个数,N i为扦样抽样框中第i个抽样区域的下层行政区域的个数;S i为扦样抽样框中第 i个抽样区域的抽样指标的标准差。
优选的,所述从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框,包括:
利用PPS抽样法从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域;
利用所述从扦样抽样框中的抽样区域中抽取的与所述预设抽样个数相同数量的下级行政区域构建所述扦样抽样框中的抽样区域的抽样样本框。
根据本申请实施例的第二方面,提供一种可读存储介质,其上存储有可执行程序,所述可执行程序被处理器执行时实现上述粮食扦样方法的步骤。
根据本申请实施例的第三方面,提供一种粮食扦样系统,包括:
构建单元,用于构建扦样抽样框;
获取单元,用于获取扦样抽样框中的抽样区域的预设抽样个数;
抽取单元,用于从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框。
优选的,所述系统,还包括:
建立单元,用于构建扦样数据库。
进一步的,所述建立单元,具体用于:
采集抽样区域的粮食种植信息,构建扦样数据库。
优选的,所述构建单元,包括:
排序模块,用于将所述扦样数据库中的所有抽样区域的粮食种植信息进行无关标志排序;
第一确定模块,用于进行无关标志排序后的所述所有抽样区域的粮食种植信息为扦样抽样框。
优选的,所述获取单元,具体用于:
利用奈曼分配方法获取所述扦样抽样框中的抽样区域的预设抽样个数。
进一步的,所述获取单元,包括:
第一获取模块,用于获取所述扦样抽样框中的抽样区域的抽样指标的标准差;
第二获取模块,用于利用所述扦样抽样框中的抽样区域的抽样指标的标准差获取所述扦样抽样框中的抽样区域的预设抽样个数。
进一步的,所述第二获取模块具体用于按下式确定扦样抽样框中第i个抽样区域的预设抽样个数a i
Figure PCTCN2020136323-appb-000002
上式中,i∈[1,M],M为抽样区域总数量,m为预设抽样总个数,N i为扦样抽样框中第i个抽样区域的下层行政区域的个数;S i为扦样抽样框中第i个抽样区域的抽样指标的标准差。
优选的,所述抽取单元,包括:
抽取模块,用于利用PPS抽样法从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域;
第二确定模块,用于利用所述从扦样抽样框中的抽样区域抽取的与所述预设抽样个数相同数量的下级行政区域构建所述扦样抽样框中的抽样区域的抽样样本框。
本申请的实施例提供的技术方案可以包括以下有益效果:
本申请提供的技术方案,通过构建扦样抽样框,获取扦样抽样框中的抽样区域的预设抽样个数,从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,获取抽样区域的抽样样本框,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种粮食扦样方法的流程图;
图2是根据一示例性实施例示出的另一种粮食扦样方法的流程图;
图3是根据一示例性实施例示出的一种粮食扦样系统的结构示意图;
图4是根据一示例性实施例示出的另一种粮食扦样系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
由于粮食产区地域跨度广、品种多、生产规模小和产地环境污染类型复杂等情况,以至于地区粮食质量差异大,导致质量检验结果必须具有可靠性。所以有必要发明一种可以制定扦样方案,并且具有高效率。图1是根据一示例性实施例示出的一种粮食扦样方法的流程图,如图1所示,该方法可以但不限于用于终端中,包括以下步骤:
步骤101:构建扦样抽样框;
步骤102:获取扦样抽样框中的抽样区域的预设抽样个数;
步骤103:从扦样抽样框中的抽样区域中抽取与预设抽样个数相同数量的下级行政区域,获取扦样抽样框中的抽样区域的抽样样本框。
本实施例提供的一种粮食扦样方法,通过构建扦样抽样框,获取扦样抽样框中的抽样区域的预设抽样个数,从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,获取抽样区域的抽样样本框,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定。
作为上述实施例的一种改进,本发明实施例提供另一种粮食扦样方法,如图2所示,该方法可以但不限于用于终端中,包括以下步骤:
201:构建扦样数据库;
一些可选实施例中,步骤201可以通过但不限于以下过程实现:
采集抽样区域的粮食种植信息,构建扦样数据库。
进一步可选的,粮食种植信息可以但不限于包括:地区、地区代码和种植面积。
需要说明的是,若抽样区域为市级行政区域,则需要采集该市级行政区域的所有下级行政区域(即县级行政区域)的所有镇的所有村的粮食种植信息;若抽样区域为县级行政区域,则需要采集该县级行政区域的所有下级行政区域(即镇或乡)的所有村的粮食种植信息;若抽样区域为镇或乡级行政区域,则需要采集该镇或乡级行政区域的所有村的粮食种植信息。
例如,如表1所示某扦样数据库中的株洲市部分地区及其粮食种植信息。
表1某扦样数据库中的部分数据
Figure PCTCN2020136323-appb-000003
202:构建扦样抽样框;
一些可选实施例中,步骤202可以通过但不限于以下过程实现:
2021:将扦样数据库中的所有抽样区域的粮食种植信息进行无关标志排序;
需要说明的是,本发明实施例中涉及的“无关标志排序”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
2022:进行无关标志排序后的所有抽样区域的粮食种植信息为扦样抽样框;
203:获取扦样抽样框中的抽样区域的预设抽样个数;
一些可选实施例中,步骤203可以通过但不限于以下过程实现:
2031:利用奈曼分配方法获取扦样抽样框中抽样区域的预设抽样个数;
一些可选实施例中,步骤2031可以通过但不限于以下过程实现:
2031a:获取扦样抽样框中抽样区域的抽样指标的标准差;
需要说明的是,抽样指标可以但不限于包括:整精米率、出糙率或容重。
需要说明的是,本发明实施例中涉及的“获取抽样区域的抽样指标的标准差”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
例如,假设抽样区域为株洲市,则需要获取株洲市株洲县的稻谷的整精米率的标准差。
容易理解的是,获取扦样抽样框中抽样区域的抽样指标的标准差的过程中需要用到的参数,可以但不限于通过预调查数据或者收集的历史的调查指标值进行分析。
需要说明的是,预调查数据是进行田间调查取样测得的指标值,例如,稻谷主要关注整精米率测得的值,小麦主要关注容重指标测得的值。
一些可选实施例中,步骤2041可以通过但不限于以下过程实现:
按下式确定抽样框中抽样区域的抽样指标的标准差σ:
Figure PCTCN2020136323-appb-000004
上式中,j∈[1,K],K为抽样区域的样本数量,x j为抽样区域的下级行政区域的抽样指标值,μ为抽样区域的抽样指标平均值。
容易理解的是,例如,假设抽样区域为A县,A县的抽样指标为整精米率,则K为A县的下级行政区域的样本数量,x j为A县所有的下级行政区域的整精米率值,A县的抽样指标平均值
Figure PCTCN2020136323-appb-000005
例如,假设计算抽样区域的抽样指标的标准差的参数为收集历史调查指标值,假设抽样区域为B县,收集的数据为B县去年25个村庄的整精米率,则K为25,x j为B县25个村的整精米率值,μ为B县25个村的整精米率值的平均值。
2031b:利用扦样抽样框中抽样区域的抽样指标的标准差获取抽样区域的预设抽样个数。
一些可选实施例中,步骤2031b可以通过但不限于以下过程实现:
按下式确定第i个抽样区域的预设抽样个数a i
Figure PCTCN2020136323-appb-000006
上式中,i∈[1,M],M为抽样区域总数量,m为预设抽样总个数,N i为第i个抽样区域的下层行政区域的个数;S i为第i个抽样区域的抽样指标的标准差。
204:从扦样抽样框中的抽样区域中抽取与预设抽样个数相同数量的下级行政区域,获取扦样抽样框中的抽样区域的抽样样本框;
一些可选实施例中,步骤204可以通过但不限于以下过程实现:
2041:利用PPS抽样法从扦样抽样框中的抽样区域抽取与预设抽样个数 相同数量的下级行政区域;
具体可选的,可以但不限于采用PPS抽样法中的代码法、汉森-赫维茨方法或拉希里方法从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域。
需要说明的是,本发明实施例中涉及的“PPS抽样法”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
2042:利用从扦样抽样框中的抽样区域抽取的与预设抽样个数相同数量的下级行政区域构建抽样区域的抽样样本框。
例如,如表2所示的株洲市株洲县的抽样样本框:
表2所示的株洲市株洲县的抽样样本框
序号 扦样市 扦样县 扦样乡(镇) 扦样村
1 株洲市 株洲县 朱亭镇 九都湖村
2 株洲市 株洲县 龙门镇 花冲村
3 株洲市 株洲县 南洲镇 横江村
本实施例提供的另一种粮食扦样方法,通过构建扦样抽样框,获取扦样抽样框中的抽样区域的预设抽样个数,从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,获取抽样区域的抽样样本框,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定;并且,通过采用PPS抽样法,优化了粮食收获环节扦样方式、扦样单位和扦样点布置等关键参数。
本发明实施例还提供另一种粮食扦样方法,该方法可以但不限于用于终端,包括:
301:结合我国地理信息,采集抽样地区所有地区、县和村的名称及粮食种植面积信息,构建扦样原始数据库;
302:将扦样原始数据库中全部农业县级单位按随机的顺序(或无关标志排序)排序;
需要说明的是,本发明实施例中涉及的“无关标志排序”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
例如,如上述表1所示的某扦样数据库中的部分数据。
303:编制地区、县级单位抽样框;
具体可选的,步骤303,包括:将各县的村级单位按种植面积数据对应地列出,并累计起来,形成种植面积累计数列;
304:根据预调查数据计算得出各县的标准差并统计该县的村级样本个数,得到各个县的WS值,并得到该地区扦样模型表;
需要说明的是,预调查数据是进行田间调查取样测得的指标值,例如,稻谷主要关注整精米率测得的值,小麦主要关注容重指标测得的值。
需要说明的是,WS值为各县的标准差和层权的乘积。
需要说明的是,本发明实施例中涉及的“标准差”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
例如,以湖南省三市为例(稻谷),如表3所示的扦样模型表:
表3所示的扦样模型表
Figure PCTCN2020136323-appb-000007
Figure PCTCN2020136323-appb-000008
305:通过奈曼分配,得出全部调查县的抽样个数;
需要说明的是,本发明实施例中涉及的“奈曼分配”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
306:通过PPS抽样中的代码法抽出各县村级单位;
307:编制该地区抽样样本框。
例如,如表2所示的株洲市株洲县的抽样样本框。
本实施例提供的另一种粮食扦样方法,通过构建扦样抽样框,获取扦样抽样框中的抽样区域的预设抽样个数,从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,获取抽样区域的抽样样本框,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定;并且,通过采用PPS抽样法,优化了粮食收获环节扦样方式、扦样单位和扦样点布置等关键参数。
提供一种可读存储介质,其上存储有可执行程序,可执行程序被处理器执行时实现上述粮食扦样方法的步骤。
图3是根据一示例性实施例示出的一种粮食扦样系统的结构示意图,如图3所示,该系统包括:
构建单元,用于构建扦样抽样框;
获取单元,用于获取扦样抽样框中的抽样区域的预设抽样个数;
抽取单元,用于从扦样抽样框中的抽样区域中抽取与预设抽样个数相同数量的下级行政区域,获取扦样抽样框中的抽样区域的抽样样本框。
本实施例提供的一种粮食扦样系统,通过构建单元构建扦样抽样框,获取单元获取扦样抽样框中的抽样区域的预设抽样个数,抽取单元从扦样抽样 框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,并获取抽样区域的抽样样本框,优化了粮食收获环节扦样方式、扦样单位和扦样点布置等关键参数,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定。
作为上述实施例的一种改进,本发明实施例提供另一种粮食扦样系统,如图4所示,该系统包括:
建立单元,用于构建扦样数据库。
构建单元,用于构建扦样抽样框;
获取单元,用于获取扦样抽样框中的抽样区域的预设抽样个数;
抽取单元,用于从扦样抽样框中的抽样区域中抽取与预设抽样个数相同数量的下级行政区域,获取扦样抽样框中的抽样区域的抽样样本框。
进一步可选的,建立单元,具体用于:
采集抽样区域的粮食种植信息,构建扦样数据库。
进一步可选的,粮食种植信息可以但不限于包括:地区、地区代码和种植面积。
需要说明的是,若抽样区域为市级行政区域,则需要采集该市级行政区域的所有下级行政区域(即县级行政区域)的所有镇的所有村的粮食种植信息;若抽样区域为县级行政区域,则需要采集该县级行政区域的所有下级行政区域(即镇或乡)的所有村的粮食种植信息;若抽样区域为镇或乡级行政区域,则需要采集该镇或乡级行政区域的所有村的粮食种植信息。
进一步可选的,构建单元,包括:
排序模块,用于将扦样数据库中的所有抽样区域的粮食种植信息进行无关标志排序;
第一确定模块,用于进行无关标志排序后的所有抽样区域的粮食种植信息为扦样抽样框。
需要说明的是,本发明实施例中涉及的“无关标志排序”方式,是本领 域技术人员所熟知的,因此,其具体实现方式不做过多描述。
进一步可选的,获取单元,具体用于:
利用奈曼分配方法获取扦样抽样框中的抽样区域的预设抽样个数。
进一步可选的,获取单元,包括:
第一获取模块,用于获取扦样抽样框中的抽样区域的抽样指标的标准差;
第二获取模块,用于利用扦样抽样框中的抽样区域的抽样指标的标准差获取扦样抽样框中的抽样区域的预设抽样个数。
需要说明的是,抽样指标可以但不限于包括:整精米率、出糙率或容重。
需要说明的是,本发明实施例中涉及的“获取抽样区域的抽样指标的标准差”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
进一步的,第二获取模块具体用于按下式确定扦样抽样框中第i个抽样区域的预设抽样个数a i
Figure PCTCN2020136323-appb-000009
上式中,i∈[1,M],M为抽样区域总数量,m为预设抽样总个数,N i为扦样抽样框中第i个抽样区域的下层行政区域的个数;S i为扦样抽样框中第i个抽样区域的抽样指标的标准差。
进一步可选的,抽取单元,包括:
抽取模块,用于利用PPS抽样法从扦样抽样框中的抽样区域中抽取与预设抽样个数相同数量的下级行政区域;
第二确定模块,用于利用从扦样抽样框中的抽样区域抽取的与预设抽样个数相同数量的下级行政区域构建扦样抽样框中的抽样区域的抽样样本框。
需要说明的是,本发明实施例中涉及的“PPS抽样法”方式,是本领域技术人员所熟知的,因此,其具体实现方式不做过多描述。
需要说明的是,PPS抽样法可以但不限于包括:PPS抽样法中的代码法、汉森-赫维茨方法或拉希里方法。
本实施例提供的一种粮食扦样系统,通过建立单元构建扦样数据库,构建单元构建扦样抽样框,获取单元获取扦样抽样框中的抽样区域的预设抽样个数,抽取单元从扦样抽样框中的抽样区域抽取与预设抽样个数相同数量的下级行政区域,并获取抽样区域的抽样样本框,保障了扦样检验结果的代表性,提高了粮食安全监测的有效性和检测效率,比传统方法抽样结果可靠和稳定;并且,通过采用PPS抽样法,优化了粮食收获环节扦样方式、扦样单位和扦样点布置等关键参数。
关于上述实施例中的系统,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来 实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种粮食扦样方法,其特征在于,所述方法包括:
    构建扦样抽样框;
    获取扦样抽样框中的抽样区域的预设抽样个数;
    从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框。
  2. 根据权利要求1所述的方法,其特征在于,所述构建扦样抽样框之前,还包括:
    构建扦样数据库。
  3. 根据权利要求2所述的方法,其特征在于,所述构建扦样数据库,包括:
    采集抽样区域的粮食种植信息,构建扦样数据库。
  4. 根据权利要求3所述的方法,其特征在于,所述构建扦样抽样框,包括:
    将所述扦样数据库中的所有抽样区域的粮食种植信息进行无关标志排序;
    进行无关标志排序后的所述所有抽样区域的粮食种植信息为扦样抽样框。
  5. 根据权利要求1所述的方法,其特征在于,所述获取扦样抽样框中的抽样区域的预设抽样个数,包括:
    利用奈曼分配方法获取所述扦样抽样框中的抽样区域的预设抽样个数。
  6. 根据权利要求5所述的方法,其特征在于,所述利用奈曼分配方法获取所述扦样抽样框中抽样区域的预设抽样个数,包括:
    获取所述扦样抽样框中的抽样区域的抽样指标的标准差;
    利用所述扦样抽样框中的抽样区域的抽样指标的标准差获取所扦样抽样框中抽样区域的预设抽样个数。
  7. 根据权利要求6所述的方法,其特征在于,所述利用所述扦样抽样框中的抽样区域的抽样指标的标准差获取所述扦样抽样框中的抽样区域的预设抽样个数,包括:
    按下式确定扦样抽样框中第i个抽样区域的预设抽样个数a i
    Figure PCTCN2020136323-appb-100001
    上式中,i∈[1,M],M为抽样区域总数量,m为预设抽样总个数,N i为扦样抽样框中第i个抽样区域的下层行政区域的个数;S i为扦样抽样框中第i个抽样区域的抽样指标的标准差。
  8. 根据权利要求1所述的方法,其特征在于,所述从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框,包括:
    利用PPS抽样法从所述扦样抽样框中的抽样区域抽取与所述预设抽样个数相同数量的下级行政区域;
    利用所述从扦样抽样框中的抽样区域抽取的与所述预设抽样个数相同数量的下级行政区域构建所述扦样抽样框中的抽样区域的抽样样本框。
  9. 一种可读存储介质,其上存储有可执行程序,其特征在于,所述可执行程序被处理器执行时实现权利要求1-8中任一项所述方法的步骤。
  10. 一种粮食扦样系统,其特征在于,所述系统包括:
    构建单元,用于构建扦样抽样框;
    获取单元,用于获取扦样抽样框中的抽样区域的预设抽样个数;
    抽取单元,用于从所述扦样抽样框中的抽样区域中抽取与所述预设抽样个数相同数量的下级行政区域,获取所述扦样抽样框中的抽样区域的抽样样本框。
PCT/CN2020/136323 2020-01-15 2020-12-15 一种粮食扦样方法、可读存储介质和系统 WO2021143422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010042209.X 2020-01-15
CN202010042209.XA CN111260495A (zh) 2020-01-15 2020-01-15 一种粮食扦样方法、可读存储介质和系统

Publications (1)

Publication Number Publication Date
WO2021143422A1 true WO2021143422A1 (zh) 2021-07-22

Family

ID=70947032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136323 WO2021143422A1 (zh) 2020-01-15 2020-12-15 一种粮食扦样方法、可读存储介质和系统

Country Status (2)

Country Link
CN (1) CN111260495A (zh)
WO (1) WO2021143422A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686619A (zh) * 2021-08-30 2021-11-23 发达面粉集团股份有限公司 自动扦粮检测装置
CN115493656A (zh) * 2022-11-09 2022-12-20 中粮信息科技有限公司 一种粮食存储监管方法和系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260495A (zh) * 2020-01-15 2020-06-09 河南工业大学 一种粮食扦样方法、可读存储介质和系统
CN112284816A (zh) * 2020-09-10 2021-01-29 浙江伯利恒仪器设备有限公司 粮食扦样机自动扦样系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394688A1 (en) * 2002-08-27 2004-03-03 Christian Bartels Sampling method
CN104281765A (zh) * 2014-01-23 2015-01-14 农业部规划设计研究院 一种基于cdl数据的美国农作物面积遥感抽样估算方法
CN107203496A (zh) * 2017-06-01 2017-09-26 武汉轻工大学 粮食分配抽样方法及装置
CN111260495A (zh) * 2020-01-15 2020-06-09 河南工业大学 一种粮食扦样方法、可读存储介质和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10216715B2 (en) * 2015-08-03 2019-02-26 Blackboiler Llc Method and system for suggesting revisions to an electronic document

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394688A1 (en) * 2002-08-27 2004-03-03 Christian Bartels Sampling method
CN104281765A (zh) * 2014-01-23 2015-01-14 农业部规划设计研究院 一种基于cdl数据的美国农作物面积遥感抽样估算方法
CN107203496A (zh) * 2017-06-01 2017-09-26 武汉轻工大学 粮食分配抽样方法及装置
CN111260495A (zh) * 2020-01-15 2020-06-09 河南工业大学 一种粮食扦样方法、可读存储介质和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686619A (zh) * 2021-08-30 2021-11-23 发达面粉集团股份有限公司 自动扦粮检测装置
CN115493656A (zh) * 2022-11-09 2022-12-20 中粮信息科技有限公司 一种粮食存储监管方法和系统

Also Published As

Publication number Publication date
CN111260495A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021143422A1 (zh) 一种粮食扦样方法、可读存储介质和系统
Demuzere et al. LCZ Generator: a web application to create Local Climate Zone maps
Nieuwenhuijsen et al. Influence of the urban exposome on birth weight
Cahya Analysis of urban agriculture sustainability in Metropolitan Jakarta (case study: urban agriculture in Duri Kosambi)
Hoffman et al. Detecting clusters/communities in social networks
CN103310083B (zh) 一种传染病聚集性探测与早期预警系统
CN108717676B (zh) 基于多数据融合的不同尺度下的职住空间评价方法及系统
Meyer et al. A comparison of hull methods for estimating species ranges and richness maps
Dai et al. Transport network backbone extraction: A comparison of techniques
Leung et al. Big data science on COVID-19 data
CN101853290A (zh) 基于地理信息系统的气象服务效益评估方法
Nocera et al. Let's agree to disagree: Comparing auto-acoustic identification programs for northeastern bats
CN106777909A (zh) 妊娠期健康风险评估系统
CN104143006B (zh) 一种城市数据处理方法及装置
Zang et al. Detection method of wheat spike improved YOLOv5s based on the attention mechanism
Arab et al. Zero-inflated modeling of fish catch per unit area resulting from multiple gears: application to channel catfish and shovelnose sturgeon in the Missouri River
Tormos et al. Object-based image analysis for operational fine-scale regional mapping of land cover within river corridors from multispectral imagery and thematic data
CN114819589A (zh) 城市空间高质量利用测定方法、系统、计算机设备及终端
CN107016260B (zh) 一种基于跨平台基因表达数据的基因调控网络重建方法
Pearson et al. The relationship between satellite-derived vegetation indices and live weight changes of beef cattle in extensive grazing conditions
Liu et al. Correlation analysis between urban green space and land surface temperature from the perspective of spatial heterogeneity: A case study within the sixth ring road of Beijing
CN113592260B (zh) 一种村庄空心化程度评估方法
Qudsi et al. Predictive data mining of chronic diseases using decision tree: a case study of health insurance company in Indonesia
Wu et al. Object-oriented and deep-learning-based high-resolution mapping from large remote sensing imagery
Matyasovszky et al. Estimating the daily Poaceae pollen concentration in Hungary by linear regression conditioning on weather types

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914678

Country of ref document: EP

Kind code of ref document: A1