WO2021143144A1 - 一种适用于多组多回线路的线路间功率转移装置 - Google Patents

一种适用于多组多回线路的线路间功率转移装置 Download PDF

Info

Publication number
WO2021143144A1
WO2021143144A1 PCT/CN2020/111599 CN2020111599W WO2021143144A1 WO 2021143144 A1 WO2021143144 A1 WO 2021143144A1 CN 2020111599 W CN2020111599 W CN 2020111599W WO 2021143144 A1 WO2021143144 A1 WO 2021143144A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
circuit
voltage source
group
transmission channels
Prior art date
Application number
PCT/CN2020/111599
Other languages
English (en)
French (fr)
Inventor
潘磊
董云龙
田杰
卢宇
张宝顺
黄如海
邱德锋
姜崇学
鲁江
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2021143144A1 publication Critical patent/WO2021143144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the technical field of flexible AC power transmission in power systems, and specifically relates to an inter-line power transfer device suitable for multiple sets of multi-circuit lines.
  • Interline Power Flow Controller also known as IPFC (Interline Power Flow Controller)
  • IPFC Interline Power Flow Controller
  • IPFC Interline Power Flow Controller
  • Figure 1 shows a typical structure of a power transfer device between lines of a double-circuit transmission channel. Each line needs to install a set of compensation devices for power flow control, and the DC sides of the four sets of compensation devices are connected to a common DC bus.
  • the structure shown in Figure 2 divides the inter-line power transfer device of the double-circuit line transmission channel into two sets of inter-line power flow controllers, each group contains two series compensation devices, and each group realizes one of the double-circuit line channels
  • the two sets of line flow controllers coordinate and cooperate to ensure that the power of the double-circuit transmission line is evenly distributed according to the impedance, and the power transferred by the flow control between the two sets of lines is the same.
  • inter-line power transfer devices applied to double-circuit transmission channels shown in Figs. 1 and 2 all require four voltage source converters, occupying a large area and cost, and the control function is complicated to implement. In order to save the investment and land occupation of engineering applications, reduce the complexity of the control system, and thereby increase the reliability of the system, a simpler and more practical structure is needed.
  • the purpose of the present invention is to provide an inter-line power transfer device suitable for multiple sets of multi-circuit power transmission channels, which can not only meet the requirements for power transfer adjustment of grid lines, but also improve the operating performance of the device, reduce costs and occupy It is suitable for engineering applications.
  • the solution of the present invention is:
  • An inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels, wherein the number of groups and the number of cycles of the multiple groups of multi-circuit transmission channels are both natural numbers greater than or equal to 2, and the number of groups is set to N groups; the line
  • the intermediate power transfer device includes N sets of series compensation devices, and each set of series compensation devices is connected to one of the line transmission channels.
  • Each series compensation device includes a series transformer, a bypass switch and a voltage source converter.
  • the number of series transformers is the same as the number of lines in the corresponding transmission channel, and the number of bypass switches is not less than the number of lines in the corresponding transmission channel.
  • the inter-line power transfer device when the structure of the multiple sets of multi-circuit power transmission channels is two sets of multi-circuit power transmission channels, the inter-line power transfer device includes two sets of series compensation devices.
  • the number of series transformers of the first group of series compensation devices is equal to the number of the first group of multi-circuit lines, and the number of bypass switches of the first group of series compensation devices is not less than the number of the first group of multi-circuit lines; the second group is connected in series
  • the number of series transformers of the compensation device is equal to the number of the second group of multi-circuit lines, and the number of bypass switches of the second group of series compensation device is not less than the number of the second group of multi-circuit lines.
  • the two ends of the first side windings of all series transformers of each series compensation device are connected in series to the multi-circuit line of the transmission channel of this group, and the first side windings of all series transformers are connected in parallel with at least one bypass switch; all series The three-phase outgoing wires of the second winding of the transformer are connected in phases and parallel, and then connected to the AC side of the voltage source converter of the series compensation device.
  • the DC side of the voltage source converter of the first group of series compensation device and the voltage source converter of the second group of series compensation device are connected in parallel.
  • the power transfer device when the line transmission channel structure is two sets of double-circuit line transmission channels, the power transfer device includes two sets of series compensation devices, and each set of series compensation devices includes two series transformers, At least two bypass switches and a voltage source converter; the first group of series compensation devices are connected to the first group of double-circuit line transmission channels, and the second group of series compensation devices are connected to the second group of double-circuit line transmission channels.
  • Both ends of the first side windings of the two series transformers of each series compensation device are connected in series to the double-circuit line of the transmission channel of the group, and the first side windings of the two series transformers are connected in parallel with at least one bypass switch;
  • the three-phase outgoing wires of the second side windings of the two series transformers are connected in phase-wise parallel, and then connected in phase-phase to the AC side of the voltage source converter of the series compensation device.
  • the DC side of the voltage source converter of the first group of series compensation device and the voltage source converter of the second group of series compensation device are connected in parallel.
  • the voltage source converter of at least one set of series compensation device is a modular multilevel converter, including three Each phase unit includes two branch units. Each branch unit is composed of N1 half-bridge sub-module units and N2 full-bridge sub-module units in series. N1 and N2 are both natural numbers.
  • the number N2 of the full-bridge sub-module units is less than the number N1 of the half-bridge sub-module units.
  • the voltage source converter of the first set of series compensation device in the inter-line power transfer device is a modular multilevel
  • the inverter includes three phase units, each phase unit includes two branch units, and each branch unit is composed of N1 half-bridge sub-module units and N2 full-bridge sub-module units in series, and N1 and N2 are both natural numbers.
  • the voltage source converter of the second series compensation device is a modular multi-level converter, including three phase units, each phase unit includes two branch units, and each branch unit consists of N3 half-bridge sub-module units Composition, N3 is a natural number.
  • the above-mentioned inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels further includes a DC energy storage unit that commutates with the voltage source of each group of series compensation devices The DC side of the converter is connected.
  • the above-mentioned inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels further includes a DC voltage converter, and the first side of the DC voltage converter is connected to the voltage of each group of series compensation devices.
  • the DC side of the source converter is connected, and the second side of the DC voltage converter is connected to the DC energy storage unit.
  • the energy storage unit includes at least one of a capacitor, an energy storage battery, a converter, and a UPS uninterruptible power supply.
  • the above-mentioned inter-line power transfer device suitable for multiple sets of multi-circuit transmission channels further includes a set of parallel compensation devices, and the parallel compensation device includes a voltage source converter and a parallel transformer.
  • the DC side of the voltage source converter of the parallel compensation device is connected to the DC side of the voltage source converter of each group of series compensation devices; the first side of the parallel transformer of the parallel compensation device is connected to the DC side of the parallel compensation device.
  • the AC side of the voltage source converter is connected, and the second side of the parallel transformer is connected to any AC bus.
  • the bypass switch includes a mechanical switch or a switch composed of a power electronic device.
  • the series transformer includes a third side winding, the third side winding adopts a delta connection mode, and the second side winding Adopt star connection method.
  • the above-mentioned inter-line power transfer device suitable for multiple sets of multi-circuit transmission channels, among the N sets of series compensation devices, M sets also include a fixed compensation unit, where 1 ⁇ M ⁇ N-1.
  • the number of fixed compensation units is the same as the number of lines in the corresponding transmission channel; both ends of the first winding of each series transformer are connected in series to each circuit of the group of transmission channels, The first winding of each series transformer is connected in parallel with at least one bypass switch, the three-phase outgoing wire of the second winding of the series transformer is connected to the first side of a fixed compensation unit, and the second side of all fixed compensation units It is connected in phases in parallel, and then connected to the AC side of the voltage source converter of the series compensation device in phases.
  • the above-mentioned inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels
  • the fixed compensation unit includes at least one reactor and at least one mechanical switch, and each reactor is connected in parallel with one mechanical switch connect.
  • the inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels provided by the present invention simplifies the system structure while ensuring performance, and reduces the total number and total of voltage source converters. Capacity, lower cost and land occupation, reduce the difficulty of control and protection, and increase the reliability of the system.
  • Figure 1 is a schematic diagram of a basic scheme of a power transfer device between lines applied to double-circuit lines in the prior art, including four voltage source converters, four series transformers, and at least four bypass switches, and four voltage sources Back-to-back connection on the DC side of the converter;
  • Figure 2 is a schematic diagram of an engineering practical scheme of a power transfer device between lines applied to double-circuit lines in the prior art, including four voltage source converters, four series transformers, and at least four bypass switches, two groups The voltage source converter corresponding to one of the double-circuit lines is connected back to back on the DC side;
  • Figure 3 is one of the schematic diagrams of the power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application;
  • the transmission channel in this embodiment is a double-circuit line, which reduces two voltages compared to Figure 1 Source converter, two series transformers of each group of two circuits are connected together to a voltage source converter, and the DC sides of the two voltage source converters are connected back to back;
  • Fig. 4 is a schematic structural diagram of a modular multilevel converter provided by an embodiment of the present application.
  • FIG. 5 is the second schematic diagram of a power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application; compared to FIG. 3, a DC energy storage unit is added;
  • FIG. 6 is the third schematic diagram of the power transfer device between lines suitable for multiple groups of multi-circuit transmission channels provided by an embodiment of the present application; compared to FIG. 3, a voltage source converter and a parallel transformer are added;
  • Fig. 7 is a fourth schematic diagram of a power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application; the transmission channel in this embodiment is a three-circuit line, including two voltage source converters, six There are two series transformers and at least four bypass switches. Three series transformers of each group of three circuits are connected to one voltage source converter, and the DC sides of the two voltage source converters are connected back to back.
  • Figure 8 is the fifth schematic diagram of the power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application;
  • the transmission channels in this embodiment are three sets of double-circuit lines, including three voltage source converters , Six series transformers, and at least four bypass switches, the two series transformers of each group of double-circuit lines are connected together to a voltage source converter, and the DC sides of the three voltage source converters are connected back to back;
  • FIG. 9 is a sixth schematic diagram of a power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application; a fixed compensation unit is added on the basis of the embodiment in FIG. 3;
  • Fig. 10 is a seventh schematic diagram of a power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the present application; a fixed compensation unit is added on the basis of the embodiment in Fig. 8.
  • the present invention provides an inter-line power transfer device suitable for multiple groups of multi-circuit transmission channels.
  • the number of groups and the number of cycles of the multiple groups of multi-circuit transmission channels are both natural numbers greater than or equal to 2, and the number of groups is set to N groups
  • the power transfer device between lines includes N sets of series compensation devices, each of which is connected to one set of line transmission channels.
  • Each series compensation device includes a series transformer, a bypass switch and a voltage source converter.
  • the number of series transformers is the same as the number of lines in the corresponding transmission channel, and the number of bypass switches is not less than the number of lines in the corresponding transmission channel.
  • Fig. 3 is a schematic diagram of an inter-line power transfer device suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application.
  • the line transmission channel structure in this embodiment is two sets of double-circuit line transmission channels.
  • the power transfer device includes two sets of series compensation devices, and each set of series compensation devices includes two series transformers and at least two bypass switches. 1 and a voltage source converter 3.
  • the first group of series compensation devices are connected to the first double-circuit line transmission channel, and the second group of series compensation devices are connected to the second double-circuit line transmission channel.
  • the two sets of series compensation devices have the same structure. Taking the first set as an example, both ends of the first side windings of the two series transformers 2 of the series compensation device are connected in series to the double-circuit line of the first transmission channel, and the two sets are connected in series.
  • the first windings of the transformer 2 are connected in parallel with at least one bypass switch 1; the three-phase outgoing wires of the second windings of the two series transformers 2 are connected in parallel in phases, and then connected to the AC side of the voltage source converter 3 connect.
  • the voltage source converters of the first group of series compensation devices are connected to the DC side of the voltage source converters of the second group of series compensation devices.
  • the inter-line power transfer device controls the power of the two lines through each voltage source converter 3. Since the operating conditions of the double-circuit line are basically the same, when the existing technical solution ( Figure 1 and Figure 2) is adopted, the double-circuit The operating conditions of the two voltage source converters 3 corresponding to the line are basically the same. Compared with the prior art solution, the foregoing solution saves two voltage source converters 3, the wiring method is simple, the control is simpler and more reliable, and The capacity of each voltage source converter 3 in this scheme is not less than the sum of the capacities of the two voltage source converters 3 required by the double circuit line of the original scheme.
  • the voltage source converter 3 of at least one set of series compensation device is a modular multilevel converter, as shown in Figure 4, the structure of the modular multilevel converter, the converter includes three phase units, each A phase unit includes two branch units, each branch unit is composed of N1 half-bridge sub-module units and N2 full-bridge sub-module units connected in series, N1 and N2 are both 0 or natural numbers, and the number of full-bridge sub-module units is N2 Less than the number N1 of half-bridge sub-module units.
  • Two sets of medium voltage source converters with series compensation devices can be a modular multi-level converter that uses a mixture of half-bridge sub-module units and full-bridge sub-module units, and the other uses all half-bridge sub-module units.
  • the specific structure of the modular multilevel converter composed of half-bridge sub-module units is as follows: includes three phase units, each phase unit includes two branch units, and each branch unit is composed of N3 half-bridge sub-module units , N3 is a natural number.
  • each branch unit of the voltage source converter 3 with a larger capacity in the two sets of series compensation devices can be modularized multi-level commutation with a mixture of full-bridge sub-module units and half-bridge sub-module units.
  • the ratio between the number of full-bridge sub-module units and the number of half-bridge sub-module units can be determined according to the ratio of the capacity of the voltage source converter 3 in the two sets of series compensation devices.
  • the bypass switch 1 in the two sets of series compensation devices in the inter-line power transfer device includes, but is not limited to, a switch composed of mechanical switches and power electronic devices; the series transformer 2 in the two sets of series compensation devices also includes the first Three-side winding, the third side winding adopts delta connection mode, and the second side winding adopts star connection mode.
  • FIG. 5 shows the second schematic diagram of a power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application; compared with the embodiment of FIG. 3, a DC energy storage unit 4 is added.
  • the DC energy storage unit 4 is connected to the DC side of the voltage source converter 3 of the aforementioned two sets of series compensation devices; or, the aforementioned inter-line power transfer device suitable for double-circuit line transmission channels also includes a DC energy storage unit 4 and a DC voltage converter, the first side of the DC voltage converter is connected to the DC side of the voltage source converter 3 of the above two sets of series compensation devices, and the second side of the DC voltage converter is connected to a DC energy storage unit 4 Connection;
  • the aforementioned energy storage unit 4 includes at least one of a capacitor, an energy storage battery, a converter, and UPS uninterruptible power supply.
  • Fig. 6 shows the third schematic diagram of the power transfer device between lines suitable for multiple groups of multi-circuit transmission channels provided by an embodiment of the application; compared with the embodiment of Fig. 3, a voltage source converter 3 and a unit are added Parallel transformer 5.
  • the DC side of the voltage source converter 3 of the parallel compensation device is connected to the DC side of the voltage source converter 3 of the aforementioned two series of series compensation devices; the AC side of the voltage source converter 3 of the parallel compensation device is connected to the parallel transformer 5
  • the first side is connected; the second side of the parallel transformer 3 is connected to any AC bus.
  • FIG. 7 shows the fourth schematic diagram of the power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application.
  • the power transmission channel in this embodiment is two sets of three-circuit lines, the number of series transformers 2 of the first set of series compensation devices is equal to the number of the first set of multi-circuit lines, and the number of bypass switches 1 of the first set of series compensation devices Not less than the number of the first group of multi-circuit lines; the number of series transformers 2 of the second group of series compensation devices is equal to the number of the second group of multi-circuit lines, and the number of bypass switches 1 of the second group of series compensation devices is quite large
  • the number of multi-circuit lines in the second group; the second side windings of all series transformers 2 of the first group of series compensation devices are connected to the AC side of the first voltage source converter 3 in phases; all of the second group of series compensation devices The second winding of the series transformer 2 is connected to the AC side of the second voltage source converter 3 in phases.
  • FIG. 8 shows the fifth schematic diagram of the power transfer device between lines suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application.
  • the transmission channel in this embodiment is three sets of double-circuit lines, including three sets of series compensation devices, each set of series compensation devices is connected to a set of line transmission channels; the number of series transformers 2 of each set of series compensation device and the corresponding The number of lines in the power transmission channel is the same, and the number of bypass switches 1 of each set of series compensation device is not less than the number of lines in the corresponding power transmission channel.
  • the two series transformers of each group of double-circuit lines are connected together to a voltage source converter, and the DC sides of the three voltage source converters are connected back to back.
  • M of the N groups of series compensation devices also include a fixed compensation unit, where 1 ⁇ M ⁇ N-1.
  • the number of fixed compensation units is the same as the number of lines in the corresponding transmission channel; both ends of the first winding of each series transformer are connected in series to each circuit of the group of transmission channels, The first winding of each series transformer is connected in parallel with at least one bypass switch, the three-phase outgoing wire of the second winding of the series transformer is connected to the first side of a fixed compensation unit, and the second side of all fixed compensation units It is connected in phases in parallel, and then connected to the AC side of the voltage source converter of the series compensation device in phases.
  • the fixed compensation unit includes at least one reactor and at least one mechanical switch, and each reactor is connected in parallel with one mechanical switch.
  • Figure 9 shows the sixth schematic diagram of an inter-line power transfer device suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application; on the basis of the embodiment in Figure 3, a fixed compensation is added to the second set of series compensation devices Unit 6.
  • the number of fixed compensation units 6 is the same as the number of lines in the corresponding transmission channel, which is two; the two ends of the first winding of each series transformer 2 are connected in series to each circuit of the group of transmission channels, and each series transformer
  • the first side windings of 2 are connected in parallel with at least one bypass switch 1, the three-phase outgoing line of the second side winding of the series transformer 2 is connected to the first side of a fixed compensation unit 6 in phases, and the second side of all fixed compensation units 6
  • the side split-phase is connected in parallel, and then is split-phase connected with the AC side of the voltage source converter 3 of the series compensation device.
  • the fixed compensation unit 6 includes at least one reactor and at least one mechanical switch, and each reactor is connected in parallel with one mechanical switch.
  • Figure 10 shows the seventh schematic diagram of the inter-line power transfer device suitable for multiple sets of multi-circuit transmission channels provided by an embodiment of the application; on the basis of the embodiment in Figure 8 a fixed compensation is added to the second set of series compensation devices Unit 6.
  • the number of fixed compensation units 6 is the same as the number of lines in the corresponding transmission channel, which is two; the two ends of the first winding of each series transformer 2 are connected in series to each circuit of the group of transmission channels, and each series transformer
  • the first side windings of 2 are connected in parallel with at least one bypass switch 1, the three-phase outgoing line of the second side winding of the series transformer 2 is connected to the first side of a fixed compensation unit 6 in phases, and the second side of all fixed compensation units 6
  • the side split-phase is connected in parallel, and then is split-phase connected with the AC side of the voltage source converter 3 of the series compensation device.
  • the fixed compensation unit 6 includes at least one reactor and at least one mechanical switch, and each reactor is connected in parallel with one mechanical switch.

Abstract

本发明提出了一种适用于多组多回线路输电通道的线路功率转移装置,包括N组串联补偿装置,每组串联补偿装置接入其中一组线路输电通道;每组串联补偿装置包括串联变压器、旁路开关和一个电压源换流器。每个串联变压器的第一侧绕组与至少一个旁路开关并联连接后分别串联接入该组输电通道的各回线路,所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;所述N组串联补偿装置的电压源换流器直流侧并联连接。本发明提供的功率转移装置,在保证性能的同时简化了系统结构,减小了电压源换流器的总数量和总容量、降低成本和占地,降低了控制保护的难度,以及增加了系统的可靠性。

Description

一种适用于多组多回线路的线路间功率转移装置 技术领域
本发明属于电力系统中柔性交流输电技术领域,具体涉及一种适用于多组多回线路的线路间功率转移装置。
背景技术
电力系统迅速发展,随着负荷不断增长、网架结构日益复杂、新能源大规模接入,潮流分布不均、电压支撑能力不足、机电振荡等问题往往相互交织,给电网运行控制带来新的挑战。由于输电走廊的饱和以及电网公司的商业化操作,依靠建设新的输电线路来增加输电容量将会越来越困难。用户负荷的不断增长需要潮流控制手段提高现有的功率输送能力;正在蓬勃发展的智能电网和电力市场间复杂的功率交换需要频繁的潮流控制。
线间潮流控制器,又称IPFC(Interline Power Flow Controller)是一种柔性交流输电装置,它可以控制多条传输线的功率,平衡多条线路之间的有功和无功潮流,通过有功功率的平衡疏通减少过负荷线路的负担,提高多条线路的整体输电能力,增加系统在动态扰动下的整体补偿效果,IPFC为变电站多线路的潮流管理提供了高效的控制模式。
目前针对线间潮流控制器研究的较多的是针对两条单回输电线路间控制转移控制器的拓扑结构及控制策略,或者将双回线路等效成单回线路开展研究。对应用于双回输电线路的线路功率转移装置,由于潮流优化问题以及N-1过流问题等会在双回线路上均有体现,需要在双回线路上均安装补偿器进行潮流控制。附图1为双回线路输电通道的线路间功率转移装置的典型结构,每条线路均需要安装一组补偿装置进行潮流控制,四组补偿装置的直流侧连接于公共直流母线。该结构由于四个电压源换流器连接在一起,而有且只能有一个换流器控制整个装置的直流电压稳定,这样会造成其中一个通道的双回线路之间的潮流不均衡,针对这个问题,可采用附图2所示的方案解决。附图2所示的结构将双回线路输电通道的线路间功率转移装置分为两组线间潮流控制器,每一组包含两个串联补偿装 置,每一组实现双回线路通道中其中一条线路之间的转移,两组线间潮流控制器之间进行协调配合,保证双回输电线路的功率按阻抗平均分配、以及两组线间潮流控制转移的功率一样。
附图1和附图2所示的应用于双回线路输电通道的线路间功率转移装置均需要四个电压源换流器,占地和成本较高,且控制功能实现复杂。为了节省工程应用的投资及占地,降低控制系统的复杂度、从而增加系统可靠性,需要一种更加简单和实用的结构。
发明内容
本发明的目的,在于提供一种适用于多组多回线路输电通道的线路间功率转移装置,在满足对电网线路功率转移调节的需求的同时,还能提高装置的运行性能、降低成本和占地,适合于工程应用。
为了达到上述目的,本发明的解决方案是:
一种适用于多组多回线路输电通道的线路间功率转移装置,所述多组多回线路输电通道的组数和回数均为大于等于2的自然数,设组数为N组;所述线路间功率转移装置包括N组串联补偿装置,每组串联补偿装置接入其中一组线路输电通道。每组串联补偿装置包括串联变压器、旁路开关和一个电压源换流器,串联变压器的数量和对应的输电通道中线路的回数相同,旁路开关的数量不少于对应的输电通道中线路的回数;其中:每个串联变压器的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。所述N组串联补偿装置的电压源换流器直流侧并联连接。
作为本发明的进一步优选方案,当所述多组多回线路输电通道的结构为两组多回线路输电通道时,所述线路间功率转移装置,包括两组串联补偿装置。第一组串联补偿装置的串联变压器的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关的数量不少于第一组多回线路的数量;第二组串联补偿装置的串联变压器的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关的数量不少于第二组多回线路的数量。每组串联补偿装置的所有串联变压器的第一侧绕组的两端分别串联接入本组输电通道的多回线路,所有串联变压器的 第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。第一组串联补偿装置的电压源换流器和第二组串联补偿装置的电压源换流器的直流侧并联连接。
作为本发明的进一步优选方案,当所述线路输电通道结构为两组双回线路输电通道时,所述功率转移装置包括两组串联补偿装置,每一组串联补偿装置均包括两台串联变压器、至少两台旁路开关和一个电压源换流器;第一组串联补偿装置接入第一组双回线路输电通道,第二组串联补偿装置接入第二组双回线路输电通道。每组串联补偿装置的两台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的双回线路,两台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所述两台串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。第一组串联补偿装置的电压源换流器和第二组串联补偿装置的电压源换流器的直流侧并联连接。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置中,至少一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为自然数。
作为本发明的进一步优选方案,所述全桥子模块单元的数量N2小于半桥子模块单元的数量N1。
作为本发明的进一步优选方案,当所述线路输电通道结构为两组多回线路输电通道时,线路间功率转移装置中的第一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为自然数。第二组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N3个半桥子模块单元构成,N3为自然数。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,还包括一个直流储能单元,所述直流储能单元与各组串联补偿装置的电压源换流器的直流侧连接。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间 功率转移装置,还包含直流电压变换器,所述直流电压变换器的第一侧与各组串联补偿装置的电压源换流器的直流侧连接,所述直流电压变换器的第二侧与所述直流储能单元连接。
作为本发明的进一步优选方案,所述储能单元包括电容、储能电池、变流器、UPS不间断电源中至少一种。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,还包括一组并联补偿装置,所述并联补偿装置包括一台电压源换流器和一台并联变压器。所述并联补偿装置的电压源换流器的直流侧与各组串联补偿装置的电压源换流器的直流侧连接;所述并联补偿装置的并联变压器的第一侧与所述并联补偿装置的电压源换流器的交流侧连接,所述并联变压器的第二侧与任意交流母线连接。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,所述旁路开关包括机械开关或电力电子器件构成的开关。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,所述串联变压器包括第三侧绕组,所述第三侧绕组采用三角形接线方式,第二侧绕组采用星形接线方式。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,N组串联补偿装置中有M组还包括固定补偿单元,其中1≤M≤N-1。包含固定补偿单元的串联补偿装置中,固定补偿单元的数量和对应的输电通道中线路的回数相同;每个串联变压器的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接,串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。
作为本发明的进一步优选方案,上述适用于多组多回线路输电通道的线路间功率转移装置,所述固定补偿单元包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
本发明的有益效果是:本发明提供的适用于多组多回线路输电通道的线路间功率转移装置,在保证性能的同时简化了系统结构,减小了电压源换流器的总数量和总容量、降低成本和占地,降低了控制保护的难度,以及增加了系统的可靠 性。
附图说明
图1是现有技术中应用于双回线路的线路间功率转移装置的基本方案的示意图,包括四个电压源换流器、四个串联变压器,以及至少四个旁路开关,四个电压源换流器的直流侧背靠背连接;
图2是现有技术中应用于双回线路的线路间功率转移装置的工程实用性方案的示意图,包括四个电压源换流器、四个串联变压器,以及至少四个旁路开关,两组双回线路的其中一条线路对应的电压源换流器在直流侧背靠背连接;
图3是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之一;本实施例中的输电通道为双回线路,相比图1,减少了两个电压源换流器,每组两回线路的两台串联变压器共同连接至一个电压源换流器,两个电压源换流器的直流侧背靠背连接;
图4是本申请实施例提供的模块化多电平换流器结构示意图;
图5是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之二;相比图3,增加了直流储能单元;
图6是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之三;相比图3,增加了一个电压源换流器和一台并联变压器;
图7是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之四;本实施例中的输电通道为三回线路,包括两个电压源换流器、六个串联变压器,以及至少四个旁路开关,每组三回线路的三台串联变压器共同连接至一个电压源换流器,两个电压源换流器的直流侧背靠背连接。
图8是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之五;本实施例中的输电通道为三组双回线路,包括三个电压源换流器、六个串联变压器,以及至少四个旁路开关,每组双回线路的两台串联变压器共同连接至一个电压源换流器,三个电压源换流器的直流侧背靠背连接;
图9是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之六;在图3实施例的基础上增加了固定补偿单元;
图10是本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之七;在图8实施例的基础上增加了固定补偿单元。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明。
本发明提供了一种适用于多组多回线路输电通道的线路间功率转移装置,所述多组多回线路输电通道的组数和回数均为大于等于2的自然数,设组数为N组;所述线路间功率转移装置包括N组串联补偿装置,每组串联补偿装置接入其中一组线路输电通道。每组串联补偿装置包括串联变压器、旁路开关和一个电压源换流器,串联变压器的数量和对应的输电通道中线路的回数相同,旁路开关的数量不少于对应的输电通道中线路的回数;其中:每个串联变压器的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。所述N组串联补偿装置的电压源换流器直流侧并联连接。
如图3所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之一。本实施例中的线路输电通道结构为两组双回线路输电通道,所述功率转移装置包括两组串联补偿装置,每一组串联补偿装置均包括两台串联变压器2、至少两台旁路开关1和一个电压源换流器3。
第一组串联补偿装置接入第一个双回线路输电通道,第二组串联补偿装置接入第二个双回线路输电通道。两组串联补偿装置的结构相同,以第一组为例,串联补偿装置的两台串联变压器2的第一侧绕组的两端分别串联接入第一个输电通道的双回线路,两台串联变压器2的第一侧绕组均与至少一个旁路开关1并联连接;两台串联变压器2的第二侧绕组的三相出线分相并联连接,再与电压源换流器3的交流侧分相连接。第一组串联补偿装置的电压源换流器和第二组串联补偿装置的电压源换流器的直流侧连接。
线路间功率转移装置通过每一个电压源换流器3控制两条线路的功率,由于双回线路的运行工况基本一样,采用现有技术方案(附图1和附图2)时,双回线路对应的两个电压源换流器3的运行工况也基本一样,前述方案与现有技术方案相比,节省了两个电压源换流器3,接线方式简单、控制更简单可靠,且本方案的每个电压源换流器3的容量不小于原有方案双回线路所需的两个电压源换流器3的容量之和。
其中,至少一组串联补偿装置的电压源换流器3为模块化多电平换流器,如图4所示模块化多电平换流器结构,换流器包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联连接构成,N1和N2均为0或者自然数,全桥子模块单元的数量N2小于半桥子模块单元的数量N1。
两组串联补偿装置的中电压源换流器,可以一台采用半桥子模块单元和全桥子模块单元混合的模块化多电平换流器,另一台采用全部由半桥子模块单元构成的模块化多电平换流器,或者是两台全部采用半桥子模块单元和全桥子模块单元混合的模块化多电平换流器。全部由半桥子模块单元构成的模块化多电平换流器具体结构为:包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N3个半桥子模块单元构成,N3为自然数。
在实际工程应用时,可将两组串联补偿装置中容量较大的电压源换流器3的每个分支单元采用全桥子模块单元和半桥子模块单元混合的模块化多电平换流器,全桥子模块单元和半桥子模块单元数量的比例,可以根据两组串联补偿装置中电压源换流器3的容量的比值来确定。
优选的方案中,线路间功率转移装置中的两组串联补偿装置中的旁路开关1包括但不限于机械开关、电力电子器件构成的开关;两组串联补偿装置中的串联变压器2还包括第三侧绕组,第三侧绕组采用三角形接线方式,第二侧绕组采用星形接线方式。
图5所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之二;相比图3的实施例,增加了直流储能单元4。直流储能单元4与上述两组串联补偿装置的电压源换流器3的直流侧连接;或者,前述的一种适用于双回线路输电通道的线路间功率转移装置还包括一个直流储能单元4和一个直流电压变换器,直流电压变换器的第一侧与上述两组串联补偿装置的电压源换流器3的直流侧连接,直流电压变换器的第二侧与一个直流储能单元4连接;前述储能单元4包括电容、储能电池、变流器、UPS不间断电源中至少一种。
图6所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之三;相比图3的实施例,增加了一个电压源换流器3和一台 并联变压器5。并联补偿装置的电压源换流器3的直流侧与前述两组串联补偿装置的电压源换流器3的直流侧连接;并联补偿装置的电压源换流器3的交流侧连接与并联变压器5的第一侧连接;并联变压器3的第二侧与任意交流母线连接。
图7所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之四。本实施例中的输电通道为两组三回线路,第一组串联补偿装置的串联变压器2的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关1的数量不少于第一组多回线路的数量;第二组串联补偿装置的串联变压器2的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关1的数量不少于第二组多回线路的数量;第一组串联补偿装置的所有串联变压器2的第二侧绕组与第一电压源换流器3的交流侧分相连接;第二组串联补偿装置的所有串联变压器2的第二侧绕组与第二电压源换流器3的交流侧分相连接。每组三回线路的三台串联变压器共同连接至一个电压源换流器,两个电压源换流器的直流侧背靠背连接。
图8所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之五。本实施例中的输电通道为三组双回线路,包括3组串联补偿装置,每一组串联补偿装置接入一组线路输电通道;每一组串联补偿装置的串联变压器2的数量和对应的输电通道中线路的数量相同,每一组串联补偿装置的旁路开关1的数量不少于对应的输电通道中线路的数量。每组双回线路的两台串联变压器共同连接至一个电压源换流器,三个电压源换流器的直流侧背靠背连接。
本发明适用于多组多回线路输电通道的线路间功率转移装置的优选方案中,N组串联补偿装置中有M组还包括固定补偿单元,其中1≤M≤N-1。包含固定补偿单元的串联补偿装置中,固定补偿单元的数量和对应的输电通道中线路的回数相同;每个串联变压器的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接,串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。其中,固定补偿单元包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
图9所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功 率转移装置示意图之六;在图3实施例的基础上在第二组串联补偿装置中增加了固定补偿单元6。固定补偿单元6的数量和对应的输电通道中线路的回数相同,为2个;每个串联变压器2的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器2的第一侧绕组均与至少一个旁路开关1并联连接,串联变压器2第二侧绕组的三相出线与一个固定补偿单元6的第一侧分相连接,所有固定补偿单元6的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器3的交流侧分相连接。其中,固定补偿单元6包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
图10所示为本申请实施例提供的适用于多组多回线路输电通道的线路间功率转移装置示意图之七;在图8实施例的基础上在第二组串联补偿装置中增加了固定补偿单元6。固定补偿单元6的数量和对应的输电通道中线路的回数相同,为2个;每个串联变压器2的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器2的第一侧绕组均与至少一个旁路开关1并联连接,串联变压器2第二侧绕组的三相出线与一个固定补偿单元6的第一侧分相连接,所有固定补偿单元6的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器3的交流侧分相连接。其中,固定补偿单元6包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
最后应该说明的是:结合上述实施例仅说明本发明的技术方案而非对其限制。所属领域的普通技术人员应当理解到:本领域技术人员可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均在申请待批的专利要求保护范围之内。

Claims (14)

  1. 一种适用于多组多回线路输电通道的线路间功率转移装置,所述多组多回线路输电通道的组数和回数均为大于等于2的自然数,设组数为N组;其特征在于:所述线路间功率转移装置包括N组串联补偿装置,每组串联补偿装置接入其中一组线路输电通道;
    每组串联补偿装置包括串联变压器、旁路开关和一个电压源换流器,串联变压器的数量和对应的输电通道中线路的回数相同,旁路开关的数量不少于对应的输电通道中线路的回数;其中:每个串联变压器的第一侧绕组的两端分别串联接入该组输电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;
    所述N组串联补偿装置的电压源换流器直流侧并联连接。
  2. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:当所述多组多回线路输电通道的结构为两组多回线路输电通道时,所述线路间功率转移装置,包括两组串联补偿装置;
    第一组串联补偿装置的串联联接变压器的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关的数量不少于第一组多回线路的数量;第二组串联补偿装置的串联联接变压器的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关的数量不少于第二组多回线路的数量;
    每组串联补偿装置的所有串联变压器的第一侧绕组的两端分别串联接入本组输电通道的多回线路,所有串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;
    第一组串联补偿装置的电压源换流器和第二组串联补偿装置的电压源换流器的直流侧并联连接。
  3. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装,其特征在于:当所述线路输电通道结构为两组双回线路输电通道时,所述功率转移装置包括两组串联补偿装置,每一组串联补偿装置均包括两台串联变压 器、至少两台旁路开关和一个电压源换流器;第一组串联补偿装置接入第一组双回线路输电通道,第二组串联补偿装置接入第二组双回线路输电通道;
    每组串联补偿装置的两台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的双回线路,两台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所述两台串联变压器的第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;
    第一组串联补偿装置的电压源换流器和第二组串联补偿装置的电压源换流器的直流侧并联连接。
  4. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:至少一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为自然数。
  5. 如权利要求4所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:所述全桥子模块单元的数量N2小于半桥子模块单元的数量N1。
  6. 如权利要求2或3任一项所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:第一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为自然数;
    第二组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N3个半桥子模块单元构成,N3为自然数。
  7. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:还包括一个直流储能单元,所述直流储能单元与各组串联补偿装置的电压源换流器的直流侧连接。
  8. 如权利要求7所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于,还包含直流电压变换器,所述直流电压变换器的第一侧与各组串联补偿装置的电压源换流器的直流侧连接,所述直流电压变换器的第二侧与所述直流储能单元连接。
  9. 如权利要求7所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:所述储能单元包括电容、储能电池、变流器、UPS不间断电源中至少一种。
  10. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:还包括一组并联补偿装置,所述并联补偿装置包括一台电压源换流器和一台并联变压器;
    所述并联补偿装置的电压源换流器的直流侧与各组串联补偿装置的电压源换流器的直流侧连接;所述并联补偿装置的并联变压器的第一侧与所述并联补偿装置的电压源换流器的交流侧连接,所述并联变压器的第二侧与任意交流母线连接。
  11. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:所述旁路开关包括机械开关或电力电子器件构成的开关。
  12. 如权利要求1所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:所述串联变压器包括第三侧绕组,所述第三侧绕组采用三角形接线方式,第二侧绕组采用星形接线方式。
  13. 如权利要求1至12任一项所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:N组串联补偿装置中有M组还包括固定补偿单元,其中1≤M≤N-1;
    包含固定补偿单元的串联补偿装置中,固定补偿单元的数量和对应的输电通道中线路的回数相同;每个串联变压器的第一侧绕组的两端分别串联接入该组输 电通道的各回线路,每个串联变压器的第一侧绕组均与至少一个旁路开关并联连接,串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。
  14. 如权利要求13所述的一种适用于多组多回线路输电通道的线路间功率转移装置,其特征在于:所述固定补偿单元包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
PCT/CN2020/111599 2020-01-15 2020-08-27 一种适用于多组多回线路的线路间功率转移装置 WO2021143144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010039625.4 2020-01-15
CN202010039625.4A CN111276991A (zh) 2020-01-15 2020-01-15 一种适用于多组多回线路的线路间功率转移装置

Publications (1)

Publication Number Publication Date
WO2021143144A1 true WO2021143144A1 (zh) 2021-07-22

Family

ID=71003033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111599 WO2021143144A1 (zh) 2020-01-15 2020-08-27 一种适用于多组多回线路的线路间功率转移装置

Country Status (2)

Country Link
CN (1) CN111276991A (zh)
WO (1) WO2021143144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276991A (zh) * 2020-01-15 2020-06-12 南京南瑞继保电气有限公司 一种适用于多组多回线路的线路间功率转移装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060229767A1 (en) * 2005-04-08 2006-10-12 Chang Gung University Method for calculating power flow solution of a power transmission network that includes unified power flow controllers
CN106159975A (zh) * 2016-08-16 2016-11-23 南京南瑞继保电气有限公司 一种适用于多回线路的串联补偿装置
CN207625293U (zh) * 2017-12-20 2018-07-17 南京南瑞继保电气有限公司 一种串并联混合型补偿器
CN109256777A (zh) * 2018-09-20 2019-01-22 东南大学 适用于并联双回线路潮流控制的ipfc拓扑及其稳态建模方法
CN111049147A (zh) * 2020-01-15 2020-04-21 南京南瑞继保电气有限公司 一种混合补偿型线路间功率转移装置及其控制方法
CN111276991A (zh) * 2020-01-15 2020-06-12 南京南瑞继保电气有限公司 一种适用于多组多回线路的线路间功率转移装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113060A (zh) * 2014-07-23 2014-10-22 南京南瑞继保电气有限公司 一种可转换静止同步串联补偿器
CN105552916B (zh) * 2015-12-17 2018-04-10 江苏省电力公司电力经济技术研究院 一种具有线路功率越限控制功能的upfc系统级控制方法
CN211428926U (zh) * 2020-01-15 2020-09-04 南京南瑞继保电气有限公司 适用于多组多回线路的线路间功率转移装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060229767A1 (en) * 2005-04-08 2006-10-12 Chang Gung University Method for calculating power flow solution of a power transmission network that includes unified power flow controllers
CN106159975A (zh) * 2016-08-16 2016-11-23 南京南瑞继保电气有限公司 一种适用于多回线路的串联补偿装置
CN207625293U (zh) * 2017-12-20 2018-07-17 南京南瑞继保电气有限公司 一种串并联混合型补偿器
CN109256777A (zh) * 2018-09-20 2019-01-22 东南大学 适用于并联双回线路潮流控制的ipfc拓扑及其稳态建模方法
CN111049147A (zh) * 2020-01-15 2020-04-21 南京南瑞继保电气有限公司 一种混合补偿型线路间功率转移装置及其控制方法
CN111276991A (zh) * 2020-01-15 2020-06-12 南京南瑞继保电气有限公司 一种适用于多组多回线路的线路间功率转移装置

Also Published As

Publication number Publication date
CN111276991A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN110445400B (zh) 多端口直流潮流控制的模块化多电平变流器及控制方法
CN103972887B (zh) 一种适用于双回线路的统一潮流控制器
WO2019007135A1 (zh) 一种链式多端口并网接口装置及控制方法
CN110112942B (zh) 抑制模块化固态变压器中电容电压波动的控制方法
CN104124682A (zh) 一种可变换统一潮流控制器
Shojaei et al. A topology for three-stage Solid State Transformer
WO2012010053A1 (zh) 基于模块化多电平逆变器(mmc)的无变压器静止同步补偿器(statc0m)拓扑结构
CN109980948A (zh) 一种三相间耦合五端口电力电子变压器
CN110556833A (zh) 多端口微网能量路由器
CN102545675B (zh) 一种混合串联h桥多电平并网逆变器直流母线电压控制方法
CN103107725A (zh) 一种具有直流电压反向功能的多电平换流器
CN104065063A (zh) 一种适用于多条线路的统一潮流控制器
CN111049147A (zh) 一种混合补偿型线路间功率转移装置及其控制方法
WO2021143144A1 (zh) 一种适用于多组多回线路的线路间功率转移装置
CN113890122A (zh) 面向办公居住园区用的交直流多端口配电系统
CN112436508B (zh) 一种故障工况下不间断运行的固态变压器及其调控方法
CN203039365U (zh) 一种基于模块化多电平换流器结构的线间潮流控制器
Zhao et al. A New Shared Module Soft Open Point for Power Distribution Network
CN112186771A (zh) 一种基于矩阵变换器的电能路由器及电能路由方法
CN211428926U (zh) 适用于多组多回线路的线路间功率转移装置
CN108023497B (zh) 串联同时供电正激周波变换型单级多输入高频环节逆变器
CN204031006U (zh) 一种三相电力电子变压器的功率模块组
CN211456702U (zh) 一种混合补偿型线路间功率转移装置
CN113595128B (zh) 一种无联结变压器的柔性环网控制器拓扑
CN115483683A (zh) 柔性交流合环装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914515

Country of ref document: EP

Kind code of ref document: A1