WO2021142866A1 - 一种毫米波脊波导传输线 - Google Patents
一种毫米波脊波导传输线 Download PDFInfo
- Publication number
- WO2021142866A1 WO2021142866A1 PCT/CN2020/074658 CN2020074658W WO2021142866A1 WO 2021142866 A1 WO2021142866 A1 WO 2021142866A1 CN 2020074658 W CN2020074658 W CN 2020074658W WO 2021142866 A1 WO2021142866 A1 WO 2021142866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slots
- row
- transmission line
- ridge waveguide
- millimeter wave
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/123—Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
Definitions
- the invention relates to a ridge waveguide transmission line structure based on a metasurface, in particular to a ridge waveguide transmission line structure with an application frequency of 30 GHz to 110 GHz.
- solid rectangular waveguides and coaxial transmission lines are currently the most widely used guided wave and transmission line systems, and the explanatory effects of these two transmission methods are relatively good.
- this type of transmission method will encounter some practical problems in high-frequency systems.
- solid rectangular waveguides need to be good Conductive sidewalls and alignment can ensure good electromagnetic wave transmission performance. Even if strong walls are not required in some transmission structures, good electrical contact between separately manufactured parts is still required.
- microstrip lines and coplanar waveguide lines are the most representative planar transmission lines. They are rugged, low-cost solutions, and are very suitable for integrating active microwave components on circuit boards. However, due to the existence of lossy dielectric materials, these two types of planar transmission lines will suffer high dielectric loss in the millimeter wave spectrum, which will cause transmission loss of electromagnetic waves.
- the purpose of the present invention is to solve the deficiencies of the prior art, and provide a millimeter wave ridge waveguide transmission line that can suppress leaking waves and has a low loss and low cost perforated super surface.
- a millimeter wave ridge waveguide transmission line includes a ridge waveguide, and also includes an upper first row of slots and an upper second row of slots on the upper surface, and a lower first row of slots and a lower second row of slots on the lower surface. Slots, the upper first row of slots and the upper second row of slots are arranged symmetrically to each other, and the lower layer first row of slots and the lower layer second row of slots are arranged symmetrically to each other.
- the shapes of the upper first row of slots and the upper second row of slots on the upper surface are rectangular.
- the shapes of the grooves in the first row of the lower layer and the grooves in the second row of the lower layer on the lower surface are rectangular.
- the shapes of the upper first row of slots and the upper second row of slots on the upper surface are any of mushroom-shaped, Jerusalem cross-shaped, or Z-shaped structure.
- the shape of the grooves in the first row of the lower layer and the grooves in the second row of the lower surface of the lower surface is any of a mushroom type, a Jerusalem cross or a zigzag structure.
- the slots in the first row of the upper layer are arranged at a certain angle between each other, and the angle of the included angle is 0° to 90°.
- the slots in the second row of the upper layer are arranged at a certain included angle with each other, and the included angle is 0° to 90°.
- the slots in the first row of the lower layer are arranged at a certain included angle with each other, and the angle of the included angle is 0° ⁇ 90°
- the grooves in the second row of the lower layer are arranged at a certain angle between each other, and the angle of the included angle is 0° to 90°.
- the millimeter wave ridge waveguide transmission line with the perforated super-surface of the present invention can not only solve the requirements of small size and low cost at a specific frequency, but also suppress electromagnetic wave leakage, and is suitable for large-scale industrial applications.
- Figure 1 is a schematic diagram of the waveguide transmission line of the present invention
- Figure 2 is a top view of the upper surface of the waveguide transmission line of the present invention.
- Figure 3 is a bottom view of the lower surface of the waveguide transmission line of the present invention.
- Figure 4 is a cutaway view of the waveguide transmission line of the present invention.
- Fig. 5 is a simulation reflection coefficient waveform diagram of the waveguide transmission line of the present invention.
- Fig. 6 is a waveform diagram of the measured reflection coefficient of the waveguide transmission line of the present invention.
- the present invention relates to a millimeter wave ridge waveguide transmission line with a perforated metasurface.
- the metasurface is artificially modified.
- the metasurface is usually structured to change the boundary conditions of the electromagnetic field. To obtain its characteristics, there is no need to add good conductive sidewalls or precise alignment between two parallel metal plates.
- the waveguide transmission line includes a ridge waveguide 101 arranged in sequence from bottom to top, the upper first row of slots 102, the upper second row of slots 103, the lower first row of slots 104, and the lower second row of slots 105.
- the surface of each layer forms a super-surface with a grooved structure.
- the upper and lower grooved structure of the transmission line can adopt any of mushroom-shaped, Jerusalem cross-shaped or Z-shaped structure.
- the above-mentioned various structures can realize the transmission of the super-surface.
- the upper and lower two-layer structures use positioning pins (not shown in the figure) to realize the position fixation and installation of the waveguide transmission line.
- FIG. 2 Please refer to FIG. 2 for a top view of the upper surface of the waveguide transmission line of the present invention.
- the upper first row of slots 102 are symmetrically arranged, and two symmetrical upper first row slots 102 are arranged at a certain angle to each other, which facilitates better implementation. Transmission effect. It is understandable that the slots 103 in the second row of the upper layer are also arranged at a certain angle between each other, and the angle of the included angle may be 0° to 90°.
- FIG. 3 is a bottom view of the lower surface of the waveguide transmission line of the present invention.
- the first row of slots 104 in the lower layer are symmetrically arranged, and the two symmetrical slots 104 in the first row of lower layer are arranged at a certain angle with each other to facilitate better implementation.
- the second row of slots 105 in the lower layer are also arranged at a certain angle between each other, and the angle of the included angle can be 0° ⁇ 90°.
- FIG. 4 Please refer to FIG. 4 for a cross-sectional view of the waveguide transmission line of the present invention. It can be seen that the upper first row of slots 102 and the lower first row of slots 104 are symmetrically arranged, and the upper first row of slots 102 and the lower first row of slots are arranged symmetrically. The orientation angles of the slots 104 are different. Those skilled in the art can understand that the orientation angles of the upper first row of slots 102 and the lower first row of slots 104 can be interchanged, and a good electromagnetic wave transmission effect can still be achieved in this setting.
- Fig. 5 is a waveform diagram of the simulated reflection coefficient of the waveguide transmission line of the present invention. It can be seen that when the electromagnetic wave frequency changes from 70 GHz to 100 GHz, the simulated reflection coefficient is below -30 dB, and the electromagnetic wave transmission effect is good.
- Figure 6 is the test reflection coefficient of the waveguide transmission line of the present invention. It can be seen that when the electromagnetic wave frequency changes from 70GHz to 90GHz, the test reflection coefficient is below -20dB, and the electromagnetic wave transmission effect is good. It can be seen that the transmission line structure is well realized. The transmission of high-frequency electromagnetic waves can effectively suppress the leakage of electromagnetic waves.
- the transmission line structure uses rectangular holes on the upper and lower surfaces of the metal waveguide joint to achieve a metasurface, thereby limiting the leakage of electromagnetic waves within the structure of the ridge waveguide.
- the millimeter wave ridge waveguide transmission line with the perforated super-surface of the present invention can not only solve the requirements of small size and low cost at a specific frequency, but also suppress electromagnetic wave leakage, and is suitable for large-scale industrial applications.
Landscapes
- Waveguides (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明提供一种毫米波脊波导传输线,该传输线采用在金属波导结合处的上下表面设置长方形的孔来实现超表面,从而将电磁波的泄露限制在脊波导的结构之内,包括设置在上表面的上层第一列开槽及上层第二列开槽,设置在下表面的下层第一列开槽和下层第二列开槽,所述上层第一列开槽及上层第二列开槽相互对称设置,所述下层第一列开槽和下层第二列开槽相互对称设置,开槽的形状为长方形或蘑菇型或耶路撒冷十字形或Z字型结构的任一种,采用本发明的开孔超表面的毫米波脊波导传输线,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。
Description
本发明涉及一种基于超表面的脊波导传输线结构,特别是涉及一种应用频率为30GHz~110GHz的脊波导传输线结构。
在微波系统应用中,实心矩形波导和同轴传输线是目前应用最广泛的导波与传输线系统,这两种传输方式的阐述效果比较好。但是,当遇到电磁波频率上升,同时要求微波传输器件的物理特征尺寸上按比例缩小时,该类传输方式在高频系统中时就会遇到一些实际问题,例如,实心矩形波导需要良好的导电侧壁和对准才能保证电磁波传输性能良好,即使在某些传输结构中不需要坚固的壁,仍然需要在单独制造的零件之间进行良好的电接触。
另一方面,微带线和共面波导线是最具代表性的平面传输线,它们是坚固,低成本的解决方案,非常适合在电路板上集成有源微波组件。但是由于存在有损耗的介质材料,这两种平面传输线在毫米波频谱中均会遭受较高的介质损耗,从而引起电磁波的传输损耗。
有鉴于此,有必要开发新的传输线结构,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。
本发明的目的是为了解决现有技术的不足,提供一种能够抑制泄露波,具备低损耗和低成本的开孔超表面的毫米波脊波导传输线。
本发明的技术方案如下:
一种毫米波脊波导传输线,包括脊型波导,还包括设置在上表面的上层第一列开槽及上层第二列开槽,设置在下表面的下层第一列开槽和下层第二列开槽,所述上层第一列开槽及上层第二列开槽相互对称设置,所述下层第一列开槽和下层第二列开槽相互对称设置。
进一步的,所述的上表面的上层第一列开槽及上层第二列开槽的形状为长方形。
进一步的,所述的下表面的下层第一列开槽和下层第二列开槽的形状为长方形。
进一步的,所述的上表面的上层第一列开槽及上层第二列开槽的形状为蘑菇型或耶路撒冷十字形或Z字型结构的任一种。
进一步的,所述的下表面的下层第一列开槽和下层第二列开槽的形状为蘑菇型或耶路撒冷十字形或Z字型结构的任一种。
进一步的,所述的上层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
进一步的,所述的上层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
进一步的,所述的下层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°
进一步的,所述的下层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
采用本发明的开孔超表面的毫米波脊波导传输线,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。
图1为本发明波导传输线的原理图;
图2为本发明波导传输线的上表面俯视图;
图3为本发明波导传输线的下表面仰视图;
图4为本发明波导传输线的剖切图;
图5为采用本发明波导传输线的仿真反射系数波形图;
图6为采用本发明波导传输线的测试反射系数波形图。
附图标记说明:
101:脊型波导;
102:上层第一列开槽;
103:上层第二列开槽;
104:下层第一列开槽;
105:下层第二列开槽
下面将详细参考本发明的优选实施例,其示例在附图中示出,虽然将结合优选实施例描述本发明,但是本领域技术人员应该理解,这些实施例并不是将本发明限制于这些实施例,相反,本发明旨在覆盖可包括在由所附权利要求限定的本发明的精神和范围内的替代、修改和等同物。此外,在本发明的以下详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解,然而,对于本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下实施本发明。
如图1为本发明的原理图所示,本发明涉及一种开孔超表面的毫米波脊波导传输线,超表面是经过人工改造而成的,超表面通常是通过结构来改变电磁场的边界条件来获得其特性的,不需要在两个平行金属板之间加上良好的导电侧壁或精确对准。
该波导传输线包括从下往上依次设置的含有脊型波导101,上层第一列开槽102,上层第二列开槽103,下层第一列开槽104和下层第二列开槽105,上下层表面均形成开槽结构化的超表面,该传输线的上下两层开槽结构可以采用蘑菇型或耶路撒冷十字形或Z字型结构的任一种,上述各种结构均可以实现超表面的传输能力,实现电磁波的抑制泄露,上下两层结构均采用定位销(图中未示出)来实现波导传输线的位置固定和安装。
请参考图2为本发明波导传输线的上表面俯视图,上层第一列开槽102呈对称设置,两个对称的上层第一列开槽102相互之间呈一定夹角设置,便于实现更好的传输效果。可以理解的是,上层第二列开槽103相互之间亦呈一定夹角设置,夹角的角度可以为0°~90°。
请参考图3为本发明波导传输线的下表面仰视图,下层第一列开槽104呈对称设置,两个对称的下层第一列开槽104相互之间呈一定夹角设置,便于实现更好的传输效果;可以理解的是,下层第二列开槽105相互之间亦呈一定夹角设置,夹角的角度可以为0°~90°。
请参考图4为本发明波导传输线的剖切图,可以看出上层第一列开槽102与下层第一列开槽104均为对称设置,且上层第一列开槽102与下层第一列开槽104的朝向角度不同。本领域技术人员可以理解的是,上层第一列开槽102与下层第一列开槽104的朝向角度可以相互调换设置,这种设置情况下依然可以实现良好的电磁波传输效果。
图5是采用本发明波导传输线的仿真反射系数波形图,可以看出电磁波频率从70GHz到100GHz变化时,仿真反射系数均处于-30dB以下,电磁波传输效果良好。
图6是采用本发明波导传输线的测试反射系数,可以看出电磁波频率从70GHz到90GHz变化时,测试反射系数均处于-20dB以下,电磁波传输效果良好,可以看出该传输线结构很好地实现了高频电磁波的传输,并且有效地抑制了电磁波的泄露,该传输线结构采用在金属波导结合处的上下表面设置长方形的孔来实现超表面,从而将电磁波的泄露限制在脊波导的结构之内。
对新型的开孔超表面毫米波脊波导技术的研究表明,与微带线或共面波导相比,该项新技术的电磁波损耗要低得多,并且比传统的金属波导更灵活,更易于制造,因此,这种基于开孔超表面波导技术的新型微波解决方案在低损耗和制造灵活性这两个相反的标准之间取得了很好的统一。
采用本发明的开孔超表面的毫米波脊波导传输线,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。
Claims (9)
- 一种毫米波脊波导传输线,包括脊型波导,其特征在于,还包括设置在上表面的上层第一列开槽及上层第二列开槽,设置在下表面的下层第一列开槽和下层第二列开槽,所述上层第一列开槽及上层第二列开槽相互对称设置,所述下层第一列开槽和下层第二列开槽相互对称设置。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的上表面的上层第一列开槽及上层第二列开槽的形状为长方形。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的下表面的下层第一列开槽和下层第二列开槽的形状为长方形。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的上表面的上层第一列开槽及上层第二列开槽的形状为蘑菇型或耶路撒冷十字形或Z字型结构的任一种。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的下表面的下层第一列开槽和下层第二列开槽的形状为蘑菇型或耶路撒冷十字形或Z字型结构的任一种。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的上层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的上层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的下层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
- 如权利要求1所述的毫米波脊波导传输线,其特征在于,所述的下层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010043837.X | 2020-01-15 | ||
CN202010043837.XA CN110931929B (zh) | 2020-01-15 | 2020-01-15 | 一种毫米波脊波导传输线 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021142866A1 true WO2021142866A1 (zh) | 2021-07-22 |
Family
ID=69854778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/074658 WO2021142866A1 (zh) | 2020-01-15 | 2020-02-10 | 一种毫米波脊波导传输线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110931929B (zh) |
WO (1) | WO2021142866A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003304106A (ja) * | 2002-04-08 | 2003-10-24 | Mitsubishi Electric Corp | 導波路構造体 |
CN102160236A (zh) * | 2008-10-29 | 2011-08-17 | 松下电器产业株式会社 | 高频波导及使用该高频波导的移相器、辐射器和使用该移相器及辐射器的电子设备、天线装置及具备该天线装置的电子设备 |
CN108695585A (zh) * | 2017-04-12 | 2018-10-23 | 日本电产株式会社 | 高频构件的制造方法 |
CN109216842A (zh) * | 2017-07-07 | 2019-01-15 | 日本电产株式会社 | 波导装置的制造方法 |
WO2019093948A1 (en) * | 2017-11-07 | 2019-05-16 | Rahiminejad Sofia | Contactless waveguide switch and method for manufacturing a waveguide switch |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324363A (zh) * | 2011-08-11 | 2012-01-18 | 电子科技大学 | 一种脊加载曲折矩形槽波导慢波线 |
CN103985928B (zh) * | 2014-05-09 | 2016-09-28 | 南京航空航天大学 | 一种基于开槽线结构的超宽带平衡滤波器 |
CN107968261B (zh) * | 2016-10-25 | 2021-04-30 | 电子科技大学 | 基于平面单极子和基片集成波导开槽的多频带天线 |
CN107331974B (zh) * | 2017-06-05 | 2020-05-22 | 西安电子科技大学 | 一种基于脊间隙波导的圆极化天线 |
CN207834545U (zh) * | 2017-12-27 | 2018-09-07 | 厦门大学 | 一种基片集成人工表面等离激元波导 |
CN108011164A (zh) * | 2017-12-27 | 2018-05-08 | 厦门大学 | 基片集成人工表面等离激元波导 |
CN108899655A (zh) * | 2018-06-22 | 2018-11-27 | 中国人民解放军63653部队 | 一种高功率微波测量用宽带波导开槽型低轴比圆极化天线 |
CN110289466A (zh) * | 2019-06-04 | 2019-09-27 | 南京理工大学 | 基于电耦合技术的四阶介质集成波导滤波器 |
CN210926265U (zh) * | 2020-01-15 | 2020-07-03 | 盛纬伦(深圳)通信技术有限公司 | 一种毫米波脊波导传输线 |
-
2020
- 2020-01-15 CN CN202010043837.XA patent/CN110931929B/zh active Active
- 2020-02-10 WO PCT/CN2020/074658 patent/WO2021142866A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003304106A (ja) * | 2002-04-08 | 2003-10-24 | Mitsubishi Electric Corp | 導波路構造体 |
CN102160236A (zh) * | 2008-10-29 | 2011-08-17 | 松下电器产业株式会社 | 高频波导及使用该高频波导的移相器、辐射器和使用该移相器及辐射器的电子设备、天线装置及具备该天线装置的电子设备 |
CN108695585A (zh) * | 2017-04-12 | 2018-10-23 | 日本电产株式会社 | 高频构件的制造方法 |
CN109216842A (zh) * | 2017-07-07 | 2019-01-15 | 日本电产株式会社 | 波导装置的制造方法 |
WO2019093948A1 (en) * | 2017-11-07 | 2019-05-16 | Rahiminejad Sofia | Contactless waveguide switch and method for manufacturing a waveguide switch |
Also Published As
Publication number | Publication date |
---|---|
CN110931929A (zh) | 2020-03-27 |
CN110931929B (zh) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9819067B2 (en) | Planar-transmission-line-to-waveguide adapter | |
CN102509833B (zh) | 一种基片集成波导到同轴波导的转换装置 | |
JP7468937B2 (ja) | 印刷リッジギャップ導波路に基づく4次Ka周波数帯バンドパスフィルタ | |
CN108777343B (zh) | 基片集成波导传输结构、天线结构及连接方法 | |
CN103022614B (zh) | 基片集成波导与矩形金属波导的过渡结构 | |
CN113013642B (zh) | 一种阵列天线及通信设备 | |
CN110212273B (zh) | 基于基片集成波导的双频双工器 | |
CN210926265U (zh) | 一种毫米波脊波导传输线 | |
CN110739514A (zh) | 一种基片集成波导到矩形波导的毫米波转接结构 | |
CN105514556A (zh) | 微带线与金属矩形波导间的转换装置与方法 | |
CN108196405B (zh) | 液晶移相器及电子装置 | |
CN112467327A (zh) | 基于电磁带隙结构的波导-共面波导过渡结构及背靠背结构 | |
CN105226367A (zh) | 加载延时线的高方向性微带线定向耦合器 | |
CN105261811B (zh) | 基片集成波导结构的双通带差分滤波器 | |
CN111816968A (zh) | 一种基于周期碎钉结构的慢波缝隙波导 | |
CN111540992B (zh) | 一种小型化环行器电路及由该电路组成的环行器 | |
CN204167446U (zh) | 槽线扰动的集成波导双模滤波器 | |
WO2021142866A1 (zh) | 一种毫米波脊波导传输线 | |
WO2024168962A1 (zh) | 基于电流对消模型e/h面解耦的毫米波mimo天线 | |
CN114171872B (zh) | 一种宽带小型化毫米波双通道交叉电桥 | |
CN202275909U (zh) | 一种基片集成波导到同轴波导的转换装置 | |
CN112864565A (zh) | 一种宽带高隔离度的威尔金森功分器 | |
CN100388556C (zh) | 基片集成波导180度三分贝定向耦合器 | |
CN105720340A (zh) | 一种含有低频传输零点的紧凑型带通滤波器 | |
CN103094651B (zh) | 基片集成波导环行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20913770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20913770 Country of ref document: EP Kind code of ref document: A1 |