WO2021142784A1 - 光学系统、镜头模组和电子设备 - Google Patents

光学系统、镜头模组和电子设备 Download PDF

Info

Publication number
WO2021142784A1
WO2021142784A1 PCT/CN2020/072787 CN2020072787W WO2021142784A1 WO 2021142784 A1 WO2021142784 A1 WO 2021142784A1 CN 2020072787 W CN2020072787 W CN 2020072787W WO 2021142784 A1 WO2021142784 A1 WO 2021142784A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
area
object side
Prior art date
Application number
PCT/CN2020/072787
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
赵迪
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/072787 priority Critical patent/WO2021142784A1/zh
Publication of WO2021142784A1 publication Critical patent/WO2021142784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application belongs to the field of optical imaging technology, and in particular relates to an optical system, a lens module and an electronic device.
  • the purpose of this application is to provide an optical system, a lens module and an electronic device, which can solve the above-mentioned problems.
  • the present application provides an optical system, which includes in order from the object side to the image side along the optical axis direction: a first lens having a negative refractive power, and an object near the optical axis area and a near circumferential area of the first lens
  • the side surfaces are convex, the image side of the first lens near the optical axis area and the near circumference area are both concave
  • the second lens has negative refractive power, and the object side of the second lens near the optical axis area and the near circumference area Both are convex, the image side surfaces of the second lens near the optical axis area and the near circumference area are both concave
  • the third lens has positive refractive power, and the object side surfaces of the third lens near the optical axis area and the near circumference area are both concave.
  • the image side surfaces of the near optical axis area and the near circumferential area of the third lens are both concave;
  • the fourth lens has positive refractive power, and the image side surfaces of the near optical axis area and the near circumferential area of the fourth lens are both concave Convex;
  • the fifth lens has positive refractive power, the object side surfaces of the fifth lens near the optical axis area and the near circumferential area are both convex, and the image side surfaces of the fifth lens near the optical axis area and the near circumferential area are all convex surfaces
  • the sixth lens has a negative refractive power, the object side surfaces of the near optical axis area and the near circumferential area of the sixth lens are both concave, and the image side surface of the near optical axis area of the sixth lens is convex.
  • the image side surface and the object side surface of the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are all aspherical.
  • the aspheric lens can achieve more light refraction angles, making the entire optical system meet the requirements of high pixels.
  • the material of the first lens is glass
  • the material of the second lens to the sixth lens is plastic. Since the first lens is closest to the object side and may be scratched due to bumps, the first lens is made of glass with higher hardness, and the second to sixth lenses are made of plastic, which can reduce costs and meet the requirements for lighter optical systems. Quantitative characteristics.
  • the optical system satisfies the conditional formula: 0 ⁇
  • f1 is the effective focal length of the first lens
  • f2 is the effective focal length of the second lens.
  • Focal length CT1 is the thickness of the first lens on the optical axis
  • CT2 is the thickness of the second lens on the optical axis. Satisfying the above formula makes the optical system have the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • the optical system satisfies the conditional formula: -5 ⁇ f1/f ⁇ 0; where f1 is the effective focal length of the first lens, and f is the effective focal length of the optical system. Satisfying the above formula makes the optical system have the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • the optical system satisfies the conditional formula: -3 ⁇ f2/RS4 ⁇ 0; where f2 is the effective focal length of the second lens, and RS4 is the radius of curvature of the image side surface of the second lens. Satisfying the above formula is conducive to controlling the degree of lens curvature, which is used to correct aberrations and further reduce the rate of ghosting.
  • the optical system satisfies the conditional formula: 2.5 ⁇ f3/f ⁇ 6.5; where f3 is the effective focal length of the third lens, and f is the effective focal length of the optical system. Satisfying the above formula makes it convenient to set a diaphragm on the image side of the third lens in the optical system, making the system compact and meeting the characteristics of miniaturization. Exceeding the lower limit of the conditional formula is not conducive to shrinking the beam width, causing the light to not completely enter the pupil, thereby reducing the brightness of the system's image surface and reducing the imaging resolution capability.
  • the optical system satisfies the conditional formula: 0 ⁇ f4/f ⁇ 3; where f4 is the effective focal length of the fourth lens, and f is the effective focal length of the optical system. Satisfying the above formula is conducive to reversing the direction of light exiting through the pupil, which is used to correct aberrations, improve the resolution of the optical system, and ensure a clear image surface.
  • the optical system satisfies the conditional formula: 0 ⁇ f56/D56 ⁇ 45; where f56 is the combined focal length of the fifth lens and the sixth lens, and D56 is the fifth lens and the The separation distance of the sixth lens on the optical axis.
  • Both the object side and the image side of the fifth lens are aspherical lenses, which satisfy the above formula, which makes the optical system compact and facilitates miniaturization.
  • the fifth lens provides positive refractive power for the optical system
  • the sixth lens provides negative refractive power for the optical system.
  • the combination of a positive and negative lens provides a positive refractive power for the system as a whole, which is beneficial to correct system aberrations and improve optics.
  • the resolution capability of the system ensures the high pixel characteristics of the imaging system.
  • the optical system satisfies the conditional formula: Nd5-Nd6>0; where Nd5 is the refractive index of the d-line of the fifth lens, and Nd6 is the refractive index of the d-line of the sixth lens. Satisfying the above formula is beneficial to correct the off-axis chromatic aberration, thereby improving the resolution of the optical system and ensuring a clear image surface.
  • the optical system satisfies the conditional formula: 1 ⁇
  • the side curvature radius, D56 is the separation distance between the fifth lens and the sixth lens on the optical axis. Satisfying the above formula is conducive to controlling the radius of curvature of the fifth lens image side and the sixth lens object side, reducing the generation of ghost images; at the same time, controlling the air gap between the fifth lens and the sixth lens to ensure high-pixel imaging quality. It is conducive to the compact structure of the imaging system and ensures the characteristics of miniaturization.
  • the optical system satisfies the conditional formula: 3 ⁇ TTL/FNO ⁇ 6; where TTL is the distance from the object side of the first lens to the image plane on the optical axis, and FNO is the optical system The number of apertures.
  • the impact of off-axis aberrations on the system can be reduced on the premise of meeting the miniaturization of the lens, and the image quality can be improved; exceeding the upper limit of the above conditional formula, ensuring the miniaturization will result in a smaller aperture of the system , It is not conducive to the improvement of the brightness of the image surface, thereby affecting the imaging analysis and reducing the depth of field of the shooting scene; exceeding the lower limit of the above conditional expression is not conducive to the miniaturization of the system.
  • the optical system satisfies the conditional formula: 3.0 ⁇ Imgh/f ⁇ 4.5; where Imgh is the diagonal length of the photosensitive area on the image surface of the optical system, and f is the effective focal length.
  • Imgh is the diagonal length of the photosensitive area on the image surface of the optical system
  • f is the effective focal length.
  • the focal length is too long, it will produce larger negative distortion; if it is too short, it will have poor workmanship, and it is not easy to ensure the brightness of the edge image surface. Satisfying the above conditional formula can effectively correct the distortion, and ensure the image quality and manufacturability.
  • the optical system satisfies the conditional formula: 2 ⁇ TTL/tan(1/2FOV) ⁇ 5; where TTL is the distance from the object side of the first lens to the image plane on the optical axis, and FOV Is the maximum angle of view of the optical system. Satisfying the above formula is conducive to the ultra-wide-angle characteristics and miniaturization of the imaging system.
  • the optical system further includes an aperture, and the optical system satisfies the conditional formula: 0.5 ⁇ EPL/ESL ⁇ 1.5; wherein, EPL is the object side of the first lens and the aperture in the optical axis ESL is the distance from the diaphragm to the image plane of the optical system on the optical axis.
  • EPL is the object side of the first lens
  • ESL is the distance from the diaphragm to the image plane of the optical system on the optical axis.
  • the present application also provides a lens module, which includes the optical system described in any one of the embodiments of the first aspect.
  • the lens module has the effects of large aperture, high pixels and miniaturization.
  • the present application also provides an electronic device, which includes a housing and the lens module described in the second aspect, and the lens module is disposed in the housing.
  • the electronic device By adding the lens module provided in the present application to the electronic device, the electronic device has the effects of high pixels, wide angle, and miniaturization.
  • Fig. 1a is a schematic diagram of the structure of the optical system of the first embodiment
  • Figure 1b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the first embodiment
  • 2a is a schematic diagram of the structure of the optical system of the second embodiment
  • Fig. 2b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the second embodiment
  • 3a is a schematic diagram of the structure of the optical system of the third embodiment
  • Fig. 3b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the third embodiment
  • 4a is a schematic diagram of the structure of the optical system of the fourth embodiment
  • 4b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fourth embodiment
  • 5a is a schematic diagram of the structure of the optical system of the fifth embodiment
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fifth embodiment.
  • An embodiment of the present application provides a lens module that includes a lens barrel and the optical system provided in the embodiment of the present application, and the first lens to the sixth lens of the optical system are installed in the lens barrel.
  • the lens module can be an independent lens of a digital camera, or it can be an imaging module integrated on an electronic device such as an industrial barcode scanner. By adding the optical system provided in the present application to the lens module, the lens module has the effects of large aperture, high pixels and miniaturization.
  • An embodiment of the application provides an electronic device, which includes a housing and the lens module provided in the embodiment of the application, and the lens module is disposed in the housing.
  • the electronic device may further include an electronic photosensitive element, the photosensitive surface of the electronic photosensitive element is located on the image surface of the optical system, and the light passing through the first lens to the sixth lens and incident on the object on the photosensitive surface of the electronic photosensitive element can be converted into Image of electrical signal.
  • the electronic photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • the electronic equipment can be industrial barcode scanners, smart phones, personal digital assistants (PDAs), tablets, smart watches, drones, e-book readers, driving recorders, wearable devices, monitors, security camera equipment, Medical camera equipment, production and assembly camera equipment, etc.
  • PDAs personal digital assistants
  • e-book readers driving recorders
  • wearable devices monitors
  • security camera equipment Medical camera equipment
  • production and assembly camera equipment etc.
  • the electronic device is an industrial barcode scanner, because the lens module has the characteristics of large wide angle and high pixels, it can read multiple QR code information at the same time without too much manual work, which not only improves work efficiency, but also Reduce business costs.
  • the lens module provided in the present application to the electronic device, the electronic device has the effects of high pixels, wide angle, and miniaturization.
  • the optical system provided by the embodiments of the present application includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side along the optical axis direction.
  • any two adjacent lenses may have an air gap between them.
  • the specific shape and structure of the six lenses are as follows: the first lens has negative refractive power, the object side surfaces of the first lens near the optical axis area and the near circumference area are both convex, and the first lens near the optical axis area and the near circumference area are convex.
  • the image side surface of the area is concave; the second lens has negative refractive power.
  • the object side of the second lens near the optical axis area and the near-circumferential area are both convex.
  • the image side surface of the second lens near the optical axis area and the near-circumferential area are both convex.
  • the third lens is concave; the third lens has positive refractive power, the object side of the third lens near the optical axis area and the near circumference area are both convex, and the image side of the third lens near the optical axis area and the near circumference area are both concave; the fourth lens The lens has positive refractive power.
  • the image side of the fourth lens near the optical axis area and the near-circumferential area are both convex;
  • the fifth lens has positive refractive power, and the object side of the fifth lens near the optical axis area and the near-circumferential area are both convex.
  • the image side surface of the fifth lens near the optical axis and the near circumference area are both convex; the sixth lens has negative refractive power, the object side of the sixth lens near the optical axis area and the near circumference area are both concave, the sixth lens
  • the image side surfaces of the near optical axis area and the near circumferential area are both convex.
  • the optical system further includes a diaphragm, and the diaphragm can be arranged at any position between the first lens and the seventh lens, such as between the third lens and the fourth lens.
  • the refractive power and surface shape of the six optical lenses are rationally configured, so that the optical system meets high pixels while ensuring the system's wide-angle and miniaturization characteristics.
  • the first lens may be a spherical surface or an aspheric surface
  • the image side surface and the object side surface of the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are all aspherical surfaces.
  • the aspheric lens can achieve more light refraction angles, making the entire optical system meet the requirements of high pixels.
  • the material of the first lens is glass
  • the material of the second lens to the sixth lens is plastic.
  • the hardness of glass material is higher than that of plastic material, and the cost is also higher. Since the first lens is closest to the object side and may be scratched due to bumps, the first lens is made of glass with higher hardness, and the second to sixth lenses are made of plastic, which can reduce costs and meet the requirements for lighter optical systems. Quantitative characteristics.
  • An infrared cut-off filter can also be set between the sixth lens and the image plane to pass through the visible light waveband and cut off the infrared light waveband, avoiding the interference of non-working waveband light waves and generating false colors or ripples, and at the same time can improve the effectiveness Resolution and color reproduction.
  • the optical system satisfies the conditional formula: 0 ⁇
  • the thickness of the lens on the optical axis, CT2 is the thickness of the second lens on the optical axis.
  • the first lens and the second lens respectively provide negative refractive powers and satisfy the above formula, so that the optical system has the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • the object side and the image side of the second lens are both aspherical lenses, which are beneficial to correct system aberrations and improve the resolution of the optical system.
  • the optical system satisfies the conditional formula: -5 ⁇ f1/f ⁇ 0; where f1 is the effective focal length of the first lens, and f is the effective focal length of the optical system.
  • the first lens provides a negative refractive power for the optical system, which satisfies the above formula, so that the optical system has the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • the optical system satisfies the conditional formula: -3 ⁇ f2/RS4 ⁇ 0; where f2 is the effective focal length of the second lens, and RS4 is the radius of curvature of the image side surface of the second lens. Satisfying the above formula is conducive to controlling the degree of lens curvature, which is used to correct aberrations and further reduce the rate of ghosting.
  • the optical system satisfies the conditional formula: 2.5 ⁇ f3/f ⁇ 6.5; where f3 is the effective focal length of the third lens, and f is the effective focal length of the optical system.
  • Both the object side and the image side of the third lens are aspherical lenses, which help reduce the sensitivity of assembly, correct system aberrations, and ensure a clear image surface. Satisfying the above formula makes it convenient to set a diaphragm on the image side of the third lens in the optical system, making the system compact and meeting the characteristics of miniaturization.
  • Exceeding the lower limit of the conditional formula is not conducive to shrinking the beam width, causing the light to not completely enter the pupil, thereby reducing the brightness of the system's image surface and reducing the imaging resolution capability.
  • the optical system satisfies the conditional formula: 0 ⁇ f4/f ⁇ 3; where f4 is the effective focal length of the fourth lens, and f is the effective focal length of the optical system.
  • the fourth lens provides positive refractive power for the optical system, which satisfies the above formula, is beneficial to deflect the direction of light rays exiting through the pupil, and is used to correct aberrations, improve the resolution of the optical system, and ensure a clear image surface.
  • the optical system satisfies the conditional formula: 0 ⁇ f56/D56 ⁇ 45; where f56 is the combined focal length of the fifth lens and the sixth lens, and D56 is the distance between the fifth lens and the sixth lens on the optical axis distance.
  • Both the object side and the image side of the fifth lens are aspherical lenses, which satisfy the above formula, which makes the optical system compact and facilitates miniaturization.
  • the fifth lens provides positive refractive power for the optical system
  • the sixth lens provides negative refractive power for the optical system.
  • the combination of a positive and negative lens provides a positive refractive power for the system as a whole, which is beneficial to correct system aberrations and improve the optical system’s performance.
  • the resolution capability ensures the high pixel characteristics of the imaging system.
  • the optical system satisfies the conditional formula: Nd5-Nd6>0; where Nd5 is the refractive index of the d-line of the fifth lens, and Nd6 is the refractive index of the d-line of the sixth lens. Satisfying the above formula is beneficial to correct the off-axis chromatic aberration, thereby improving the resolution of the optical system and ensuring a clear image surface.
  • the optical system satisfies the conditional formula: 1 ⁇
  • the optical system satisfies the conditional formula: 3 ⁇ TTL/FNO ⁇ 6; where TTL is the distance from the object side of the first lens to the image plane on the optical axis, and FNO is the aperture number of the optical system.
  • the impact of off-axis aberrations on the system can be reduced on the premise of meeting the miniaturization of the lens, and the image quality can be improved; exceeding the upper limit of the above conditional formula, ensuring the miniaturization will result in a smaller aperture of the system , It is not conducive to the improvement of the brightness of the image surface, thereby affecting the imaging analysis and reducing the depth of field of the shooting scene; exceeding the lower limit of the above conditional expression is not conducive to the miniaturization of the system.
  • the optical system satisfies the conditional formula: 3.0 ⁇ Imgh/f ⁇ 4.5; where Imgh is the diagonal length of the photosensitive area on the image surface of the optical system, and f is the effective focal length of the optical system.
  • Imgh is the diagonal length of the photosensitive area on the image surface of the optical system
  • f is the effective focal length of the optical system.
  • the optical system satisfies the conditional formula: 2 ⁇ TTL/tan(1/2FOV) ⁇ 5; where TTL is the distance from the object side of the first lens to the image plane on the optical axis, and FOV is the distance of the optical system Maximum angle of view. Satisfying the above formula is conducive to the ultra-wide-angle characteristics and miniaturization of the imaging system.
  • the optical system satisfies the conditional formula: 0.5 ⁇ EPL/ESL ⁇ 1.5; where EPL is the distance between the object side of the first lens and the diaphragm on the optical axis, and ESL is the distance between the diaphragm and the image plane of the optical system. The distance on the optical axis.
  • EPL is the distance between the object side of the first lens and the diaphragm on the optical axis
  • ESL is the distance between the diaphragm and the image plane of the optical system.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the near optical axis area and the object side surface S1 of the near circumferential area of the first lens L1 are both convex surfaces, and the image side surface S2 of the near optical axis area and the near circumferential area of the first lens L1 are both concave surfaces ;
  • the second lens L2 has negative refractive power. Both the near optical axis area and the object side surface S3 of the near circumferential area of the second lens L2 are convex surfaces, and the near optical axis area and the image side surface S4 of the near circumferential area of the second lens L2 are both convex Concave
  • the third lens L3 has positive refractive power.
  • the near optical axis area and the object side surface S5 of the near circumferential area of the third lens L3 are both convex surfaces, and the image side surface S6 of the near optical axis area and the near circumferential area of the third lens L3 are both concave surfaces. ;
  • the fourth lens L4 has positive refractive power. Both the near optical axis area and the object side surface S7 of the near circumferential area of the fourth lens L4 are convex surfaces, and the near optical axis area and the image side surface S8 of the near circumferential area of the fourth lens L4 are both convex. Convex
  • the fifth lens L5 has positive refractive power, the object side surface S9 of the fifth lens L5 near the optical axis area and the near circumference area are both convex surfaces, and the image side surface S10 of the fifth lens L5 near the optical axis area and the near circumference area are both convex surfaces;
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the near optical axis area and the near circumferential area of the sixth lens L6 are both concave surfaces, and the image side surface S12 of the sixth lens L6 near optical axis area is convex.
  • the material of the first lens L1 is glass (GLASS), and the material of the second lens to the sixth lens L6 is plastic (Plastic).
  • the optical system also includes a stop ST0, an infrared cut filter, and an image plane S15.
  • the stop STO is arranged at a position between the image side surface of the third lens L3 and the object side surface of the fourth lens L4 for controlling the amount of light entering. In other embodiments, the stop STO can also be arranged between two adjacent lenses, or on other lenses.
  • the infrared cut filter is arranged on the image side of the sixth lens L6, which includes the object side S13 and the image side S14.
  • the infrared cut filter is used to filter out infrared light so that the light entering the image surface S15 is visible light.
  • the wavelength is 380nm-780nm.
  • the infrared cut filter is made of glass (GLASS), and can be coated on the glass.
  • the effective pixel area of the electronic photosensitive element is located on the image plane S15.
  • Table 1a shows a table of the characteristics of the optical system of this embodiment, where the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum field of view of the optical system.
  • both the object side surface and the image side surface of the first lens L1 are spherical surfaces.
  • the object side surface and the image side surface of any one of the second lens L2 to the sixth lens L6 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical surface formula:
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 1b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A15, A17, A18, and A20 that can be used for each aspheric mirror surface S3-S12 in the first embodiment.
  • FIG. 1b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the first embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the near optical axis area and the object side surface S1 of the near circumferential area of the first lens L1 are both convex surfaces, and the image side surface S2 of the near optical axis area and the near circumferential area of the first lens L1 are both concave surfaces ;
  • the second lens L2 has negative refractive power. Both the near optical axis area and the object side surface S3 of the near circumferential area of the second lens L2 are convex surfaces, and the near optical axis area and the image side surface S4 of the near circumferential area of the second lens L2 are both convex Concave
  • the third lens L3 has positive refractive power.
  • the near optical axis area and the object side surface S5 of the near circumferential area of the third lens L3 are both convex surfaces, and the image side surface S6 of the near optical axis area and the near circumferential area of the third lens L3 are both concave surfaces. ;
  • the fourth lens L4 has positive refractive power. Both the near optical axis area and the object side surface S7 of the near circumferential area of the fourth lens L4 are convex surfaces, and the near optical axis area and the image side surface S8 of the near circumferential area of the fourth lens L4 are both convex. Convex
  • the fifth lens L5 has positive refractive power, the object side surface S9 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces, and the image side surface S10 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces;
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the near optical axis area and the near circumferential area of the sixth lens L6 are both concave surfaces, and the image side surface S12 of the sixth lens L6 near optical axis area is convex.
  • the other structure of the second embodiment is the same as that of the first embodiment, so refer to.
  • Table 2a shows a table of the characteristics of the optical system of this embodiment, where the units of Y radius, thickness, and focal length are all millimeters (mm).
  • each parameter in Table 2a is the same as the meaning of each parameter in the first embodiment.
  • Table 2b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the second embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Figure 2b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the second embodiment, wherein the longitudinal spherical aberration curve represents the deviation of the focusing point of light rays of different wavelengths after passing through the lenses of the optical system; astigmatism The curve represents the meridional image surface curvature and the sagittal image surface curvature; the distortion curve represents the distortion magnitude values corresponding to different field angles. According to Fig. 2b, it can be seen that the optical system provided in the second embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the near optical axis area and the object side surface S1 of the near circumferential area of the first lens L1 are both convex surfaces, and the image side surface S2 of the near optical axis area and the near circumferential area of the first lens L1 are both concave surfaces ;
  • the second lens L2 has negative refractive power. Both the near optical axis area and the object side surface S3 of the near circumferential area of the second lens L2 are convex surfaces, and the near optical axis area and the image side surface S4 of the near circumferential area of the second lens L2 are both convex Concave
  • the third lens L3 has positive refractive power.
  • the near optical axis area and the object side surface S5 of the near circumferential area of the third lens L3 are both convex surfaces, and the image side surface S6 of the near optical axis area and the near circumferential area of the third lens L3 are both concave surfaces. ;
  • the fourth lens L4 has positive refractive power. Both the near optical axis area and the object side surface S7 of the near circumferential area of the fourth lens L4 are convex surfaces, and the near optical axis area and the image side surface S8 of the near circumferential area of the fourth lens L4 are both convex. Convex
  • the fifth lens L5 has positive refractive power, the object side surface S9 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces, and the image side surface S10 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces;
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the near optical axis area and the near circumferential area of the sixth lens L6 are both concave surfaces, and the image side surface S12 of the sixth lens L6 near optical axis area is convex.
  • the other structure of the third embodiment is the same as that of the first embodiment, so refer to.
  • Table 3a shows a table of the characteristics of the optical system of this embodiment, where the units of Y radius, thickness, and focal length are all millimeters (mm).
  • each parameter in Table 3a is the same as the meaning of each parameter in the first embodiment.
  • Table 3b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the third embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Figure 3b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the third embodiment, where the longitudinal spherical aberration curve represents the deviation of the focusing point of light rays of different wavelengths after passing through the lenses of the optical system; astigmatism The curve represents the meridional image surface curvature and the sagittal image surface curvature; the distortion curve represents the distortion magnitude values corresponding to different field angles. According to FIG. 3b, it can be seen that the optical system provided in the third embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the near optical axis area and the object side surface S1 of the near circumferential area of the first lens L1 are both convex surfaces, and the image side surface S2 of the near optical axis area and the near circumferential area of the first lens L1 are both concave surfaces ;
  • the second lens L2 has negative refractive power. Both the near optical axis area and the object side surface S3 of the near circumferential area of the second lens L2 are convex surfaces, and the near optical axis area and the image side surface S4 of the near circumferential area of the second lens L2 are both convex Concave
  • the third lens L3 has positive refractive power.
  • the near optical axis area and the object side surface S5 of the near circumferential area of the third lens L3 are both convex surfaces, and the image side surface S6 of the near optical axis area and the near circumferential area of the third lens L3 are both concave surfaces. ;
  • the fourth lens L4 has positive refractive power.
  • the near optical axis area and the object side surface S7 of the near circumferential area of the fourth lens L4 are both concave.
  • the near optical axis area and the image side surface S8 of the near circumferential area of the fourth lens L4 are both concave Convex
  • the fifth lens L5 has positive refractive power, the object side surface S9 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces, and the image side surface S10 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces;
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the near optical axis area and the near circumferential area of the sixth lens L6 are both concave surfaces, and the image side surface S12 of the sixth lens L6 near optical axis area is convex.
  • the other structure of the fourth embodiment is the same as that of the first embodiment, so refer to.
  • Table 4a shows a table of the characteristics of the optical system of this embodiment, where the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 4b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the fourth embodiment, where each aspheric surface type can be defined by the formula given in the fourth embodiment.
  • FIG. 4b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the fourth embodiment, where the longitudinal spherical aberration curve represents the deviation of the focusing point of light rays of different wavelengths after passing through the lenses of the optical system; astigmatism The curve represents the meridional image surface curvature and the sagittal image surface curvature; the distortion curve represents the distortion magnitude values corresponding to different field angles. According to FIG. 4b, it can be seen that the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the near optical axis area and the object side surface S1 of the near circumferential area of the first lens L1 are both convex surfaces, and the image side surface S2 of the near optical axis area and the near circumferential area of the first lens L1 are both concave surfaces ;
  • the second lens L2 has negative refractive power. Both the near optical axis area and the object side surface S3 of the near circumferential area of the second lens L2 are convex surfaces, and the near optical axis area and the image side surface S4 of the near circumferential area of the second lens L2 are both convex Concave
  • the third lens L3 has positive refractive power.
  • the near optical axis area and the object side surface S5 of the near circumferential area of the third lens L3 are both convex surfaces, and the image side surface S6 of the near optical axis area and the near circumferential area of the third lens L3 are both concave surfaces. ;
  • the fourth lens L4 has positive refractive power.
  • the near optical axis area and the object side surface S7 of the near circumferential area of the fourth lens L4 are both concave.
  • the near optical axis area and the image side surface S8 of the near circumferential area of the fourth lens L4 are both concave Convex
  • the fifth lens L5 has positive refractive power, the object side surface S9 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces, and the image side surface S10 of the near optical axis area and the near circumferential area of the fifth lens L5 are both convex surfaces;
  • the sixth lens L6 has negative refractive power.
  • the object side surface S11 of the near optical axis area and the near circumferential area of the sixth lens L6 are both concave surfaces, and the image side surface S12 of the sixth lens L6 near optical axis area is convex.
  • the other structure of the fifth embodiment is the same as that of the first embodiment, so refer to.
  • Table 5a shows a table of the characteristics of the optical system of this embodiment, where the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 5b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the fifth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the fifth embodiment, where the longitudinal spherical aberration curve represents the deviation of the focusing point of light rays of different wavelengths after passing through the lenses of the optical system; astigmatism The curve represents the meridional image surface curvature and the sagittal image surface curvature; the distortion curve represents the distortion magnitude values corresponding to different field angles. According to FIG. 5b, it can be seen that the optical system provided in the fifth embodiment can achieve good imaging quality.
  • Table 6 shows the optical systems of the first to fifth embodiments
  • optical systems of the first embodiment to the fifth embodiment all satisfy the following conditional expressions: 0 ⁇

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统、镜头模组和电子设备,光学系统沿光轴方向的物侧至像侧依次包含第一透镜至第六透镜,第一透镜、第二透镜、和第六透镜具有负屈折力,第三透镜至第五透镜具有正屈折力,第一透镜、第二透镜、第三透镜的近光轴区域和近圆周区域的物侧面均为凸面,近光轴区域和近圆周区域的像侧面均为凹面;第四透镜和第五透镜的近光轴区域和近圆周区域的像侧面均为凸面;第五透镜近光轴区域和近圆周区域的物侧面均为凸面;第六透镜近光轴区域和近圆周区域的物侧面均为凹面,近光轴区域的像侧面为凸面。通过设置六片式透镜结构,对六片光学透镜的屈折力和面型合理配置,使光学系统在满足高像素的同时,保证系统的大广角和小型化特点。

Description

光学系统、镜头模组和电子设备 技术领域
本申请属于光学成像技术领域,尤其涉及一种光学系统、镜头模组和电子设备。
背景技术
传统的工业生产或物流仓储分拣流水线均为人工作业,近年来随着条形码技术的不断发展,人工分拣逐渐向自动化分拣蜕变,以现代化机器代替人力可提高作业和生产效率,推动现代化工厂向自动化和智能化方向发展。
很多企业通过使用工业条码扫描器、工业读码设备或手动式二维码扫描枪读取流水线传送过来的产品上的条码信息从而进行分拣,但是,普通的条码扫描器只能一次读取一个条码,如何在保证条码读取信息准确性的同时,提高扫码效率,实现产线的真正高效化是很多企业亟待解决的问题。
发明内容
本申请的目的是提供一种光学系统、镜头模组和电子设备,可解决上述问题。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种光学系统,沿光轴方向的物侧至像侧依次包含:第一透镜,具有负屈折力,所述第一透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第一透镜近光轴区域和近圆周区域的像侧面均为凹面;第二透镜,具有负屈折力,所述第二透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第二透镜近光轴区域和近圆周区域的像侧面均为凹面;第三透镜,具有正屈折力,所述第三透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第三透镜近光轴区域和近圆周区域的像侧面均为凹面;第四透镜,具有正屈折力,所述第四透镜近光轴区域和近圆周区域的像侧面均为凸面;第五透镜,具有正屈折力,所述第五透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第五透镜近光轴区域和近圆周区域的像侧面均为凸面;第六透镜,具有负屈折 力,所述第六透镜近光轴区域和近圆周区域的物侧面均为凹面,所述第六透镜近光轴区域的像侧面为凸面。通过设置六片式透镜结构,对六片光学透镜的屈折力和面型合理配置,使光学系统在满足高像素的同时,保证系统的大广角和小型化特点。
一种实施方式中,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和第六透镜的像侧面与物侧面均为非球面。非球面透镜可实现更多的光线折射角度,使得整个光学系统实现高像素的要求。
一种实施方式中,所述第一透镜的材质为玻璃,所述第二透镜至所述第六透镜的材质为塑料。由于第一透镜最靠近物侧,可能会因磕碰而产生划伤,故第一透镜采用硬度更高的玻璃材质,而第二透镜至第六透镜采用塑料材质,可降低成本,满足光学系统轻量化的特点。
一种实施方式中,所述光学系统满足条件式:0<|f1/CT1-f2/CT2|<4;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度。满足上式,使光学系统具有广视角、低敏感度以及小型化的特征。
一种实施方式中,所述光学系统满足条件式:-5<f1/f<0;其中,f1为所述第一透镜的有效焦距,f为所述光学系统的有效焦距。满足上式,使光学系统具有广视角、低敏感度以及小型化的特征。
一种实施方式中,所述光学系统满足条件式:-3<f2/RS4<0;其中,f2为所述第二透镜的有效焦距,RS4为所述第二透镜的像侧面的曲率半径。满足上式,有利于控制透镜弯曲程度,用于校正像差,进一步降低鬼影产生比率。
一种实施方式中,所述光学系统满足条件式:2.5<f3/f<6.5;其中,f3为所述第三透镜的有效焦距,f为所述光学系统的有效焦距。满足上式,方便在光学系统中,即第三透镜像侧设置光阑,使系统结构紧凑,满足小型化的特征。超过条件式下限,不利于收缩光束宽度,导致光线无法完全进入光瞳,从而降低系统像面亮度,降低成像解析能力。
一种实施方式中,所述光学系统满足条件式:0<f4/f<3;其中,f4为所述第四透镜的有效焦距,f为所述光学系统的有效焦距。满足上式,有利于折转经过光瞳出射的光线方向,用于校正像差,提升光学系统解像力,保证像面清晰。
一种实施方式中,所述光学系统满足条件式:0<f56/D56<45;其中,f56 为所述第五透镜和所述第六透镜的组合焦距,D56为所述第五透镜与所述第六透镜在光轴上的间隔距离。第五透镜物侧和像侧均为非球面透镜,满足上式,使光学系统结构紧凑,有利于小型化。所述第五透镜为光学系统提供正屈折力,第六透镜为光学系统提供负屈折力,利用一正一负透镜组合搭配,整体为系统提供正曲折力,有利于校正系统像差,提升光学系统的解像能力,保证成像系统的高像素特性。
一种实施方式中,所述光学系统满足条件式:Nd5-Nd6>0;其中,Nd5为所述第五透镜的d线的折射率,Nd6为所述第六透镜的d线的折射率。满足上式,有利于校正轴外色差,从而提高光学系统分辨率,保证像面清晰。
一种实施方式中,所述光学系统满足条件式:1<|RS11-RS12|/D56<6;其中,RS11为所述第五透镜的像侧面曲率半径,RS12为所述第六透镜的物侧面曲率半径,D56为所述第五透镜和所述第六透镜在光轴上的间隔距离。满足上式,有利于控制第五透镜像侧面与第六透镜物侧面的曲率半径,降低鬼影的产生;同时控制第五透镜与六透镜之间的空气间隔,保证高像素成像质量的同时,有利于成像系统的结构紧凑,保证小型化的特征。
一种实施方式中,所述光学系统满足条件式:3<TTL/FNO<6;其中,TTL为所述第一透镜的物侧面至像面在光轴上的距离,FNO为所述光学系统的光圈数。通过合理选择TTL和FNO的范围,能在满足镜头小型化的前提下,降低轴外像差对系统的影响,提升成像质量;超过上述条件式上限,保证小型化的同时会导致系统光圈变小,不利于像面亮度的提升,从而影响成像解析以及缩小拍摄景物的景深范围;超过上述条件式下限,不利于系统的小型化。
一种实施方式中,所述光学系统满足条件式:3.0<Imgh/f<4.5;其中,Imgh为所述光学系统的像面上感光区域的对角线长度,f为所述光学系统的有效焦距。相同像高下,焦距太长则会产生较大的负畸变;太短则会有较差的工艺性,且不易保证边缘像面的亮度。满足上述条件式能够有效的修正畸变,保证画质和可制造性。
一种实施方式中,所述光学系统满足条件式:2<TTL/tan(1/2FOV)<5;其中,TTL为所述第一透镜的物侧面至像面在光轴上的距离,FOV为所述光学系统的最大视场角。满足上式,有利于成像系统实现超广角特性和小型化的特征。
一种实施方式中,所述光学系统还包括光阑,所述光学系统满足条件式: 0.5<EPL/ESL<1.5;其中,EPL为所述第一透镜物侧面与所述光阑在光轴上的距离,ESL为所述光阑至所述光学系统的像面在光轴上的距离。满足上式,光阑设置的位置可使光学系统具有对称性,保证系统成像性质均匀,减轻像面的弯曲的程度,提高成像的解析能力。
第二方面,本申请还提供了一种镜头模组,该镜头模组包括第一方面任一项实施方式所述的光学系统。通过在镜头模组中加入本申请提供的光学系统,使得镜头模组具有大光圈、高像素和小型化的效果。
第三方面,本申请还提供了一种电子设备,该电子设备包括壳体和第二方面所述的镜头模组,所述镜头模组设置在所述壳体内。通过在电子设备中加入本申请提供的镜头模组,使得电子设备具有高像素、大广角和小型化的效果。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学系统的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学系统的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学系统的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学系统的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学系统的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式, 而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种镜头模组,该镜头模组包括镜筒和本申请实施例提供的光学系统,光学系统的第一透镜至第六透镜安装在镜筒内。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如工业条码扫描器等电子设备上的成像模块。通过在镜头模组中加入本申请提供的光学系统,使得镜头模组具有大光圈、高像素和小型化的效果。
本申请实施例提供了一种电子设备,该电子设备包括壳体和本申请实施例提供的镜头模组,镜头模组设置在壳体内。进一步的,电子设备还可包括电子感光元件,电子感光元件的感光面位于光学系统的像面,穿过第一透镜至第六透镜入射到电子感光元件的感光面上的物的光线可转换成图像的电信号。电子感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。该电子设备可以为工业条码扫描器、智能手机、个人数字助理(PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪、可穿戴装置、监控器、安防摄像设备、医疗摄像设备、生产装配摄像设备等。当电子设备为工业条码扫描器时,由于镜头模组具有大广角、高像素的特点,可在无需配备太多人工的情况下同时读取多个二维码信息,不仅提高了工作效率,而且降低了企业成本。通过在电子设备中加入本申请提供的镜头模组,使得电子设备具有高像素、大广角和小型化的效果。
本申请实施例提供的光学系统沿光轴方向的物侧至像侧依次包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。在第一透镜至第六透镜中,任意相邻的两片透镜之间均可具有空气间隔。
具体的,六片透镜的具体形状和结构如下:第一透镜,具有负屈折力,第一透镜近光轴区域和近圆周区域的物侧面均为凸面,第一透镜近光轴区域和近圆周区域的像侧面均为凹面;第二透镜,具有负屈折力,第二透镜近光轴区域和近圆周区域的物侧面均为凸面,第二透镜近光轴区域和近圆周区域的像侧面均为凹面;第三透镜,具有正屈折力,第三透镜近光轴区域和近圆周区域的物侧面均为凸面,第三透镜近光轴区域和近圆周区域的像侧面均为凹面;第四透 镜,具有正屈折力,第四透镜近光轴区域和近圆周区域的像侧面均为凸面;第五透镜,具有正屈折力,第五透镜近光轴区域和近圆周区域的物侧面均为凸面,第五透镜近光轴区域和近圆周区域的像侧面均为凸面;第六透镜,具有负屈折力,第六透镜近光轴区域和近圆周区域的物侧面均为凹面,第六透镜近光轴区域和近圆周区域的像侧面均为凸面。
光学系统还包括光阑,光阑可设置于第一透镜至第七透镜之间的任一位置,如设置在第三透镜与第四透镜之间。
通过设置六片式透镜结构,对六片光学透镜的屈折力和面型合理配置,使光学系统在满足高像素的同时,保证系统的大广角和小型化特点。
一种实施方式中,第一透镜可为球面或非球面,第二透镜、第三透镜、第四透镜、第五透镜和第六透镜的像侧面与物侧面均为非球面。非球面透镜可实现更多的光线折射角度,使得整个光学系统实现高像素的要求。
一种实施方式中,第一透镜的材质为玻璃,第二透镜至第六透镜的材质为塑料。玻璃材质的硬度比塑料材质更高,成本也更高。由于第一透镜最靠近物侧,可能会因磕碰而产生划伤,故第一透镜采用硬度更高的玻璃材质,而第二透镜至第六透镜采用塑料材质,可降低成本,满足光学系统轻量化的特点。
在第六透镜与像面之间还可设红外截止滤光片,用于透过可见光波段,截止红外光波段,避免非工作波段光波的干扰而产生伪色或波纹的现象,同时可以提高有效分辨率和色彩还原性。
一种实施方式中,光学系统满足条件式:0<|f1/CT1-f2/CT2|<4;其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距,CT1为第一透镜于光轴上的厚度,CT2为第二透镜于光轴上的厚度。第一透镜、第二透镜分别提供负屈折力,满足上式,使光学系统具有广视角、低敏感度以及小型化的特征。其中,第二透镜的物侧和像侧均为非球面透镜,有利于校正系统像差、提升光学系统解像力。
一种实施方式中,光学系统满足条件式:-5<f1/f<0;其中,f1为第一透镜的有效焦距,f为光学系统的有效焦距。第一透镜为光学系统提供负屈折力,满足上式,使光学系统具有广视角、低敏感度以及小型化的特征。
一种实施方式中,光学系统满足条件式:-3<f2/RS4<0;其中,f2为第二透镜的有效焦距,RS4为第二透镜的像侧面的曲率半径。满足上式,有利于控制 透镜弯曲程度,用于校正像差,进一步降低鬼影产生比率。
一种实施方式中,光学系统满足条件式:2.5<f3/f<6.5;其中,f3为第三透镜的有效焦距,f为光学系统的有效焦距。第三透镜的物侧和像侧均为非球面透镜,有利于降低组装的敏感度,有利于校正系统像差,保证像面清晰。满足上式,方便在光学系统中,即第三透镜像侧设置光阑,使系统结构紧凑,满足小型化的特征。超过条件式下限,不利于收缩光束宽度,导致光线无法完全进入光瞳,从而降低系统像面亮度,降低成像解析能力。
一种实施方式中,光学系统满足条件式:0<f4/f<3;其中,f4为第四透镜的有效焦距,f为光学系统的有效焦距。第四透镜为光学系统提供正屈折力,满足上式,有利于折转经过光瞳出射的光线方向,用于校正像差,提升光学系统解像力,保证像面清晰。
一种实施方式中,光学系统满足条件式:0<f56/D56<45;其中,f56为第五透镜和第六透镜的组合焦距,D56为第五透镜与第六透镜在光轴上的间隔距离。第五透镜物侧和像侧均为非球面透镜,满足上式,使光学系统结构紧凑,有利于小型化。第五透镜为光学系统提供正屈折力,第六透镜为光学系统提供负屈折力,利用一正一负透镜组合搭配,整体为系统提供正曲折力,有利于校正系统像差,提升光学系统的解像能力,保证成像系统的高像素特性。
一种实施方式中,光学系统满足条件式:Nd5-Nd6>0;其中,Nd5为第五透镜的d线的折射率,Nd6为第六透镜的d线的折射率。满足上式,有利于校正轴外色差,从而提高光学系统分辨率,保证像面清晰。
一种实施方式中,光学系统满足条件式:1<|RS11-RS12|/D56<6;其中,RS11为第五透镜的像侧面曲率半径,RS12为第六透镜的物侧面曲率半径,D56为第五透镜和第六透镜在光轴上的间隔距离。满足上式,有利于控制第五透镜像侧面与第六透镜物侧面的曲率半径,降低鬼影的产生;同时控制第五透镜与六透镜之间的空气间隔,保证高像素成像质量的同时,有利于成像系统的结构紧凑,保证小型化的特征。
一种实施方式中,光学系统满足条件式:3<TTL/FNO<6;其中,TTL为第一透镜的物侧面至像面在光轴上的距离,FNO为光学系统的光圈数。通过合理选择TTL和FNO的范围,能在满足镜头小型化的前提下,降低轴外像差对系统的影响,提升成像质量;超过上述条件式上限,保证小型化的同时会导致系统 光圈变小,不利于像面亮度的提升,从而影响成像解析以及缩小拍摄景物的景深范围;超过上述条件式下限,不利于系统的小型化。
一种实施方式中,光学系统满足条件式:3.0<Imgh/f<4.5;其中,Imgh为光学系统的像面上感光区域的对角线长度,f为光学系统的有效焦距。相同像高下,焦距太长则会产生较大的负畸变;太短则会有较差的工艺性,且不易保证边缘像面的亮度。满足上述条件式能够有效的修正畸变,保证画质和可制造性。
一种实施方式中,光学系统满足条件式:2<TTL/tan(1/2FOV)<5;其中,TTL为第一透镜的物侧面至像面在光轴上的距离,FOV为光学系统的最大视场角。满足上式,有利于成像系统实现超广角特性和小型化的特征。
一种实施方式中,光学系统满足条件式:0.5<EPL/ESL<1.5;其中,EPL为第一透镜物侧面与光阑在光轴上的距离,ESL为光阑至光学系统的像面在光轴上的距离。满足上式,光阑设置的位置可使光学系统具有对称性,保证系统成像性质均匀,减轻像面的弯曲的程度,提高成像的解析能力。
第一实施例
请参考图1a和图1b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负屈折力,第一透镜L1的近光轴区域和近圆周区域的物侧面S1均为凸面,第一透镜L1近光轴区域和近圆周区域的像侧面S2均为凹面;
第二透镜L2,具有负屈折力,第二透镜L2的近光轴区域和近圆周区域的物侧面S3均为凸面,第二透镜L2的近光轴区域和近圆周区域的像侧面S4均为凹面;
第三透镜L3,具有正屈折力,第三透镜L3的近光轴区域和近圆周区域的物侧面S5均为凸面,第三透镜L3近光轴区域和近圆周区域的像侧面S6均为凹面;
第四透镜L4,具有正屈折力,第四透镜L4的近光轴区域和近圆周区域的物侧面S7均为凸面,第四透镜L4的近光轴区域和近圆周区域的像侧面S8均为凸面;
第五透镜L5,具有正屈折力,第五透镜L5近光轴区域和近圆周区域的物 侧面S9均为凸面,第五透镜L5近光轴区域和近圆周区域的像侧面S10均为凸面;
第六透镜L6,具有负屈折力,第六透镜L6近光轴区域和近圆周区域的物侧面S11均为凹面,第六透镜L6近光轴区域的像侧面S12为凸面。
上述第一透镜L1的材质为玻璃(GLASS),第二透镜至第六透镜L6的材质均为塑料(Plastic)。
此外,光学系统还包括光阑ST0、红外截止滤光片和像面S15。光阑STO设置在第三透镜L3的像侧面与第四透镜L4的物侧面之间的位置,用于控制进光量。其他实施例中,光阑STO还可以设置在相邻两透镜之间,或者是其他透镜上。红外截止滤光片设置在第六透镜L6的像方侧,其包括物侧面S13和像侧面S14,红外截止滤光片用于过滤掉红外光线,使得射入像面S15的光线为可见光,可见光的波长为380nm-780nm。红外截止滤光片的材质为玻璃(GLASS),并可在玻璃上镀膜。电子感光元件的有效像素区域位于像面S15。
表1a示出了本实施例的光学系统的特性的表格,其中,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure PCTCN2020072787-appb-000001
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的最大视场角。
在本实施例中,第一透镜L1的物侧面和像侧面均为球面。第二透镜L2至第六透镜L6的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020072787-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S3-S12的高次项系数A4、A6、A8、A10、A12、A14、A15、A17、A18和A20。
表1b
面序号 S3 S4 S5 S6 S7
K 6.48E+01 -1.28E+00 -1.25E+01 9.19E+00 7.29E+01
A4 2.66E-02 7.11E-02 1.11E-01 1.51E-01 1.35E-01
A6 -5.42E-03 4.67E-02 -4.37E-02 9.45E-03 -1.45E-02
A8 9.81E-04 -2.75E-02 2.76E-02 5.77E-02 -5.53E-02
A10 -7.47E-05 1.97E-02 -7.36E-03 -1.47E-01 1.43E-02
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
面序号 S8 S9 S10 S11 S12
K -9.69E+00 -1.17E-01 -1.08E-01 -2.17E+00 -2.32E+00
A4 -7.56E-02 -1.81E-02 1.17E-01 1.80E-01 1.74E-01
A6 6.28E-02 -9.59E-03 -2.76E-02 -9.02E-02 -5.96E-03
A8 -5.20E-02 0.00E+00 -4.96E-02 -6.50E-02 -3.37E-02
A10 4.17E-02 0.00E+00 3.60E-02 4.27E-02 9.57E-03
A12 000E+00 000E+00 000E+00 000E+00 000E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图1b示出了第一实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学系统能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负屈折力,第一透镜L1的近光轴区域和近圆周区域的物侧面S1均为凸面,第一透镜L1近光轴区域和近圆周区域的像侧面S2均为凹面;
第二透镜L2,具有负屈折力,第二透镜L2的近光轴区域和近圆周区域的物侧面S3均为凸面,第二透镜L2的近光轴区域和近圆周区域的像侧面S4均为凹面;
第三透镜L3,具有正屈折力,第三透镜L3的近光轴区域和近圆周区域的物侧面S5均为凸面,第三透镜L3近光轴区域和近圆周区域的像侧面S6均为凹面;
第四透镜L4,具有正屈折力,第四透镜L4的近光轴区域和近圆周区域的物侧面S7均为凸面,第四透镜L4的近光轴区域和近圆周区域的像侧面S8均为凸面;
第五透镜L5,具有正屈折力,第五透镜L5近光轴区域和近圆周区域的物侧面S9均为凸面,第五透镜L5近光轴区域和近圆周区域的像侧面S10均为凸面;
第六透镜L6,具有负屈折力,第六透镜L6近光轴区域和近圆周区域的物侧面S11均为凹面,第六透镜L6近光轴区域的像侧面S12为凸面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学系统的特性的表格,其中,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure PCTCN2020072787-appb-000003
Figure PCTCN2020072787-appb-000004
其中,表2a的各参数含义均与第一实施例各参数含义相同。
表2b给出了可用于第二实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
面序号 S3 S4 S5 S6 S7
K 2.20E+01 -1.28E+00 -1.77E+01 8.75E-01 4.03E+01
A4 2.20E-02 5.93E-02 9.66E-02 1.36E-01 1.26E-01
A6 -4.62E-03 3.29E-02 -4.64E-02 1.00E-02 -6.72E-03
A8 1.02E-03 -2.08E-02 3.31E-02 7.16E-02 -2.32E-02
A10 -7.82E-05 1.81E-02 -9.00E-03 -1.12E-01 8.97E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
面序号 S8 S9 S10 S11 S12
K -8.93E+00 -1.35E-01 -1.34E-01 -2.48E+00 -4.27E+00
A4 -8.74E-02 -2.22E-02 1.25E-01 1.79E-01 1.68E-01
A6 6.48E-02 3.79E-03 -2.82E-02 -8.45E-02 -6.66E-03
A8 -4.92E-02 0.00E+00 -5.76E-02 -6.08E-02 -2.98E-02
A10 2.32E-02 0.00E+00 3.50E-02 3.38E-02 8.04E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图2b示出了第二实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线,其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图2b可知,第二实施例所给出的光学系统能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负屈折力,第一透镜L1的近光轴区域和近圆周区域的物侧面S1均为凸面,第一透镜L1近光轴区域和近圆周区域的像侧面S2均为凹面;
第二透镜L2,具有负屈折力,第二透镜L2的近光轴区域和近圆周区域的物侧面S3均为凸面,第二透镜L2的近光轴区域和近圆周区域的像侧面S4均为凹面;
第三透镜L3,具有正屈折力,第三透镜L3的近光轴区域和近圆周区域的物侧面S5均为凸面,第三透镜L3近光轴区域和近圆周区域的像侧面S6均为凹面;
第四透镜L4,具有正屈折力,第四透镜L4的近光轴区域和近圆周区域的物侧面S7均为凸面,第四透镜L4的近光轴区域和近圆周区域的像侧面S8均为凸面;
第五透镜L5,具有正屈折力,第五透镜L5近光轴区域和近圆周区域的物侧面S9均为凸面,第五透镜L5近光轴区域和近圆周区域的像侧面S10均为凸面;
第六透镜L6,具有负屈折力,第六透镜L6近光轴区域和近圆周区域的物侧面S11均为凹面,第六透镜L6近光轴区域的像侧面S12为凸面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学系统的特性的表格,其中,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure PCTCN2020072787-appb-000005
Figure PCTCN2020072787-appb-000006
其中,表3a的各参数含义均与第一实施例各参数含义相同。
表3b给出了可用于第三实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
面序号 S3 S4 S5 S6 S7
K 2.03E+01 -1.26E+00 -1.68E+01 -4.79E+00 -9.99E+01
A4 2.39E-02 6.13E-02 9.78E-02 1.32E-01 1.17E-01
A6 -4.06E-03 3.66E-02 -4.26E-02 2.06E-02 -1.27E-02
A8 1.10E-03 -1.53E-02 3.51E-02 5.83E-02 -1.56E-02
A10 -1.03E-04 2.00E-02 -1.00E-02 -7.92E-02 8.18E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
面序号 S8 S9 S10 S11 S12
K -8.39E+00 -3.86E-01 -1.77E-01 -2.47E+00 -5.87E+00
A4 -1.00E-01 -2.44E-02 1.28E-01 1.66E-01 1.60E-01
A6 6.12E-02 4.42E-03 -2.58E-02 -8.84E-02 -8.48E-03
A8 -4.38E-02 0.00E+00 -6.07E-02 -5.87E-02 -2.89E-02
A10 2.01E-02 0.00E+00 3.58E-02 3.14E-02 7.86E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图3b示出了第三实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线,其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图3b可知,第三实施例所给出的光学系统能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学系统,沿光轴方向的物侧至像侧依次 包括:
第一透镜L1,具有负屈折力,第一透镜L1的近光轴区域和近圆周区域的物侧面S1均为凸面,第一透镜L1近光轴区域和近圆周区域的像侧面S2均为凹面;
第二透镜L2,具有负屈折力,第二透镜L2的近光轴区域和近圆周区域的物侧面S3均为凸面,第二透镜L2的近光轴区域和近圆周区域的像侧面S4均为凹面;
第三透镜L3,具有正屈折力,第三透镜L3的近光轴区域和近圆周区域的物侧面S5均为凸面,第三透镜L3近光轴区域和近圆周区域的像侧面S6均为凹面;
第四透镜L4,具有正屈折力,第四透镜L4的近光轴区域和近圆周区域的物侧面S7均为凹面,第四透镜L4的近光轴区域和近圆周区域的像侧面S8均为凸面;
第五透镜L5,具有正屈折力,第五透镜L5近光轴区域和近圆周区域的物侧面S9均为凸面,第五透镜L5近光轴区域和近圆周区域的像侧面S10均为凸面;
第六透镜L6,具有负屈折力,第六透镜L6近光轴区域和近圆周区域的物侧面S11均为凹面,第六透镜L6近光轴区域的像侧面S12为凸面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学系统的特性的表格,其中,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure PCTCN2020072787-appb-000007
Figure PCTCN2020072787-appb-000008
其中,表4a的各参数含义均与第一实施例各参数含义相同。
表4b给出了可用于第四实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第四实施例中给出的公式限定。
表4b
面序号 S3 S4 S5 S6 S7
K 6.14E+00 -1.10E+00 -1.59E+01 3.58E+00 -9.99E+01
A4 2.62E-02 6.79E-02 9.56E-02 1.36E-01 1.16E-01
A6 -4.34E-03 3.59E-02 -3.92E-02 4.13E-02 -1.29E-02
A8 1.34E-03 -1.66E-02 4.21E-02 4.97E-02 5.76E-03
A10 -6.96E-05 2.90E-02 -1.56E-02 -5.39E-02 -6.06E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
面序号 S8 S9 S10 S11 S12
K -6.95E+00 -4.88E-01 -2.93E-01 -2.13E+00 -3.92E+00
A4 -1.17E-01 -2.54E-02 1.42E-01 1.75E-01 1.56E-01
A6 5.67E-02 2.76E-03 -2.41E-02 -8.24E-02 -5.32E-03
A8 -4.24E-02 0.00E+00 -6.08E-02 -5.86E-02 -2.68E-02
A10 2.65E-02 0.00E+00 3.37E-02 3.04E-02 6.69E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图4b示出了第四实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线,其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图4b可知,第四实施例所给出的光学系统能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负屈折力,第一透镜L1的近光轴区域和近圆周区域的物侧面S1均为凸面,第一透镜L1近光轴区域和近圆周区域的像侧面S2均为凹面;
第二透镜L2,具有负屈折力,第二透镜L2的近光轴区域和近圆周区域的物侧面S3均为凸面,第二透镜L2的近光轴区域和近圆周区域的像侧面S4均为凹面;
第三透镜L3,具有正屈折力,第三透镜L3的近光轴区域和近圆周区域的物侧面S5均为凸面,第三透镜L3近光轴区域和近圆周区域的像侧面S6均为凹面;
第四透镜L4,具有正屈折力,第四透镜L4的近光轴区域和近圆周区域的物侧面S7均为凹面,第四透镜L4的近光轴区域和近圆周区域的像侧面S8均为凸面;
第五透镜L5,具有正屈折力,第五透镜L5近光轴区域和近圆周区域的物侧面S9均为凸面,第五透镜L5近光轴区域和近圆周区域的像侧面S10均为凸面;
第六透镜L6,具有负屈折力,第六透镜L6近光轴区域和近圆周区域的物侧面S11均为凹面,第六透镜L6近光轴区域的像侧面S12为凸面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学系统的特性的表格,其中,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure PCTCN2020072787-appb-000009
Figure PCTCN2020072787-appb-000010
其中,表5a的各参数含义均与第一实施例各参数含义相同。
表5b给出了可用于第五实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表5b
面序号 S3 S4 S5 S6 S7
K 9.99E+01 -2.11E+00 -1.49E+01 5.18E+00 1.26E+01
A4 2.65E-02 6.29E-02 1.00E-01 1.37E-01 9.39E-02
A6 -4.70E-03 5.23E-02 -4.69E-02 4.82E-02 -4.12E-03
A8 9.94E-04 -3.57E-02 3.69E-02 4.82E-02 -2.27E-02
A10 -7.86E-05 2.60E-02 -8.49E-03 -4.15E-02 1.79E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
面序号 S8 S9 S10 S11 S12
K -5.16E+00 -2.24E+00 -1.14E-01 -1.91E+00 -1.77E+00
A4 -1.34E-01 -2.48E-02 1.35E-01 1.87E-01 1.61E-01
A6 4.41E-02 6.05E-03 -2.00E-02 -7.54E-02 -4.02E-03
A8 -3.04E-02 0.00E+00 -5.53E-02 -5.92E-02 -2.62E-02
A10 -9.99E-04 0.00E+00 3.33E-02 2.91E-02 6.56E-03
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图5b示出了第五实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线,其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图5b可知,第五实施例所给出的光学系统能够实现良好的成像品质。
表6示出了第一实施例至第五实施例的光学系统中|f1/CT1-f2/CT2|、f1/f、f2/RS4、f2/RS4、f3/f、f4/f、f56/D56、Nd5-Nd6、|RS11-RS12|/D56、TTL/FNO、Imgh/f、TTL/tan(1/2FOV)和EPL/ESL的值。
表6
  0<|f1/CT1-f2/CT2|<4 -5<f1/f<0 -3<f2/RS4<0 2.5<f3/f<6.5
第一实施例 2.680 -3.505 -1.896 5.501
第二实施例 3.893 -3.221 -2.162 5.260
第三实施例 1.536 -2.790 -2.172 4.948
第四实施例 0.632 -2.612 -2.489 4.745
第五实施例 1.898 -3.196 -1.868 3.849
  0<f4/f<3 0<f56/D56<45 Nd5-Nd6>0 1<|RS11-RS12|/D56<6
第一实施例 2.511 30.488 0.12 2.961
第二实施例 2.559 42.910 0.12 5.610
第三实施例 2.507 41.093 0.12 4.827
第四实施例 2.497 38.333 0.12 4.173
第五实施例 2.403 40.007 0.12 4.560
  3<TTL/FNO<6 3.0<Imgh/f<4.5 2<TTL/tan(1/2FOV)<5 0.5<EPL/ESL<1.5
第一实施例 3.978 3.558 3.504 1.024
第二实施例 4.054 3.308 4.896 0.952
第三实施例 4.016 3.288 4.142 0.935
第四实施例 3.975 3.243 4.430 0.857
第五实施例 4.773 3.399 3.822 0.929
由表6可知,第一实施例至第五实施例的光学系统均满足下列条件式:0<|f1/CT1-f2/CT2|<4、-5<f1/f<0、-3<f2/RS4<0、2.5<f3/f<6.5、0<f4/f<3、0<f56/D56<45、Nd5-Nd6>0、1<|RS11-RS12|/D56<6、3<TTL/FNO<6、3.0<Imgh/f<4.5、2<TTL/tan(1/2FOV)<5、0.5<EPL/ESL<1.5。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (17)

  1. 一种光学系统,其特征在于,沿光轴方向的物侧至像侧依次包含:
    第一透镜,具有负屈折力,所述第一透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第一透镜近光轴区域和近圆周区域的像侧面均为凹面;
    第二透镜,具有负屈折力,所述第二透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第二透镜近光轴区域和近圆周区域的像侧面均为凹面;
    第三透镜,具有正屈折力,所述第三透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第三透镜近光轴区域和近圆周区域的像侧面均为凹面;
    第四透镜,具有正屈折力,所述第四透镜近光轴区域和近圆周区域的像侧面均为凸面;
    第五透镜,具有正屈折力,所述第五透镜近光轴区域和近圆周区域的物侧面均为凸面,所述第五透镜近光轴区域和近圆周区域的像侧面均为凸面;
    第六透镜,具有负屈折力,所述第六透镜近光轴区域和近圆周区域的物侧面均为凹面,所述第六透镜近光轴区域的像侧面为凸面。
  2. 如权利要求1所述的光学系统,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和是第六透镜的像侧面与物侧面均为非球面。
  3. 如权利要求1所述的光学系统,其特征在于,所述第一透镜的材质为玻璃,所述第二透镜至所述第六透镜的材质为塑料。
  4. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    0<|f1/CT1-f2/CT2|<4;
    其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度。
  5. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -5<f1/f<0;
    其中,f1为所述第一透镜的有效焦距,f为所述光学系统的有效焦距。
  6. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -3<f2/RS4<0;
    其中,f2为所述第二透镜的有效焦距,RS4为所述第二透镜的像侧面的曲率半径。
  7. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    2.5<f3/f<6.5;
    其中,f3为所述第三透镜的有效焦距,f为所述光学系统的有效焦距。
  8. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    0<f4/f<3;
    其中,f4为所述第四透镜的有效焦距,f为所述光学系统的有效焦距。
  9. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    0<f56/D56<45;
    其中,f56为所述第五透镜和所述第六透镜的组合焦距,D56为所述第五透镜与所述第六透镜在光轴上的间隔距离。
  10. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    Nd5-Nd6>0;
    其中,Nd5为所述第五透镜的d线的折射率,Nd6为所述第六透镜的d线的折射率。
  11. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    1<|RS11-RS12|/D56<6;
    其中,RS11为所述第五透镜的像侧面曲率半径,RS12为所述第六透镜的物侧面曲率半径,D56为所述第五透镜和所述第六透镜在光轴上的间隔距离。
  12. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    3<TTL/FNO<6;
    其中,TTL为所述第一透镜的物侧面至像面在光轴上的距离,FNO为所述 光学系统的光圈数。
  13. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    3.0<Imgh/f<4.5;
    其中,Imgh为所述光学系统的像面上感光区域的对角线长度,f为所述光学系统的有效焦距。
  14. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    2<TTL/tan(1/2FOV)<5;
    其中,TTL为所述第一透镜的物侧面至像面在光轴上的距离,FOV为所述光学系统的最大视场角。
  15. 如权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统还包括光阑,所述光学系统满足条件式:
    0.5<EPL/ESL<1.5;
    其中,EPL为所述第一透镜物侧面与所述光阑在光轴上的距离,ESL为所述光阑至所述光学系统的像面在光轴上的距离。
  16. 一种镜头模组,其特征在于,包括如权利要求1至15任一项所述的光学系统。
  17. 一种电子设备,其特征在于,所述电子设备包括壳体和如权利要求16所述的镜头模组,所述镜头模组设置在所述壳体内。
PCT/CN2020/072787 2020-01-17 2020-01-17 光学系统、镜头模组和电子设备 WO2021142784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072787 WO2021142784A1 (zh) 2020-01-17 2020-01-17 光学系统、镜头模组和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072787 WO2021142784A1 (zh) 2020-01-17 2020-01-17 光学系统、镜头模组和电子设备

Publications (1)

Publication Number Publication Date
WO2021142784A1 true WO2021142784A1 (zh) 2021-07-22

Family

ID=76863192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072787 WO2021142784A1 (zh) 2020-01-17 2020-01-17 光学系统、镜头模组和电子设备

Country Status (1)

Country Link
WO (1) WO2021142784A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455488A (zh) * 2010-10-29 2012-05-16 鸿富锦精密工业(深圳)有限公司 超广角镜头
CN105068218A (zh) * 2015-09-15 2015-11-18 中山市弘景光电科技有限公司 超广角镜头
US20160299317A1 (en) * 2015-04-13 2016-10-13 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
CN106405791A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像系统
CN106443963A (zh) * 2015-08-12 2017-02-22 先进光电科技股份有限公司 光学成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455488A (zh) * 2010-10-29 2012-05-16 鸿富锦精密工业(深圳)有限公司 超广角镜头
US20160299317A1 (en) * 2015-04-13 2016-10-13 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
CN106405791A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像系统
CN106443963A (zh) * 2015-08-12 2017-02-22 先进光电科技股份有限公司 光学成像系统
CN105068218A (zh) * 2015-09-15 2015-11-18 中山市弘景光电科技有限公司 超广角镜头

Similar Documents

Publication Publication Date Title
US11422341B2 (en) Camera lens assembly
US9958645B2 (en) Photographing optical lens assembly, image capturing unit and electronic device
US11163134B2 (en) Imaging lens system, identification module and electronic device
US11487090B2 (en) Camera optical lens including five lenses of +−++− refractive powers
WO2021189431A1 (zh) 光学系统、镜头模组及电子设备
US20180275371A1 (en) Optical imaging system
WO2022033326A1 (zh) 光学系统、镜头模组和电子设备
CN111983782A (zh) 光学镜组、摄像头模组及电子设备
CN111338063A (zh) 光学系统、镜头模组和电子设备
WO2021196030A1 (zh) 光学系统、镜头模组和电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN111399180A (zh) 摄像透镜组
US20210405330A1 (en) Optical system, lens module, and electronic device
US11099355B2 (en) Camera lens assembly
US20210389557A1 (en) Optical system, lens module, and electronic device
CN212647134U (zh) 光学成像系统
CN112034593A (zh) 光学成像系统、取像模组及电子装置
CN112612135A (zh) 一种目镜光学系统
US20220308314A1 (en) Optical imaging system
CN113608335B (zh) 光学镜头、光学模组及电子设备
US20220137337A1 (en) Camera lens
WO2021142784A1 (zh) 光学系统、镜头模组和电子设备
CN212540859U (zh) 光学镜组、摄像头模组及电子设备
CN214474193U (zh) 光学系统、摄像模组及电子设备
CN111142234A (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914419

Country of ref document: EP

Kind code of ref document: A1