WO2021142770A1 - Methods and apparatus of lossless handover for nr multicast services - Google Patents

Methods and apparatus of lossless handover for nr multicast services Download PDF

Info

Publication number
WO2021142770A1
WO2021142770A1 PCT/CN2020/072728 CN2020072728W WO2021142770A1 WO 2021142770 A1 WO2021142770 A1 WO 2021142770A1 CN 2020072728 W CN2020072728 W CN 2020072728W WO 2021142770 A1 WO2021142770 A1 WO 2021142770A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
entity
unicast
multicast
cell
Prior art date
Application number
PCT/CN2020/072728
Other languages
French (fr)
Inventor
Xuelong Wang
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2020/072728 priority Critical patent/WO2021142770A1/en
Priority to PCT/CN2021/072229 priority patent/WO2021143868A1/en
Publication of WO2021142770A1 publication Critical patent/WO2021142770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/023Buffering or recovering information during reselection

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to enable lossless handover for NR multicast based transmission for purpose of improving the reliability of NR multicast services.
  • 3GPP specified the support of MBMS transmission for LTE but no lossless handover is supported so far.
  • Mobility procedures for LTE MBMS reception allow the UE to start or continue receiving MBMS service (s) via MBSFN or SC-PTM when changing cell (s) .
  • E-UTRAN indicates in the SC-MCCH the list of neighbour cells providing this MBMS service so that the UE can request unicast reception of the service before changing to a cell not providing the MBMS service using SC-PTM.
  • LTE procedures provide support for service continuity with respect to mobility within the same MBSFN area.
  • UEs that are receiving MBMS service (s) in RRC_IDLE state performing cell reselection or are in RRC_CONNECTED state obtain target cell (SC-) MTCH information from the target cell (SC-) MCCH.
  • SC- target cell
  • the UE is made aware of which frequency is providing which MBMS services via MBSFN or SC-PTM through the combination of the following MBMS assistance information: user service description (USD) and system information.
  • USD user service description
  • 3GPP has specified the support of lossless handover for unicast.
  • the basic principle is that the non-acknowledged PDCP PDU is forwarded from the source Base Station to the target Base Station in order to enable reliable transmission for data bearers in RLC AM mode.
  • a method is provided to support lossless handover during cell change for a particular UE to enable reliable multicast transmission for NR multicast service.
  • an associated unicast RLC channel is established between the UE and the target cell during handover.
  • One associated unicast RLC channel may correspond to multiple multicast radio bearers.
  • the associated unicast RLC channel is used to retransmit the buffered or non-acknowledged data forwarded by source cell from the target cell to the UE.
  • the configuration of the associated unicast RLC channel is sent to the UE via RRC message e.g. handover command during handover preparation stage.
  • the RLC packets including both RLC SDU (s) and RLC segment (s) is forwarded from the source cell to the target cell for retransmission.
  • the RLC packets can be forwarded in either transparent mode or non-transparent mode.
  • the RLC packets can be forwarded within a gNB-DU or among different gNBDUs belonging to same gNB CU or different gNB CU.
  • FIG. 1 is a schematic system diagram illustrating an exemplary Base Station (i.e. BS) in accordance with embodiments of the current invention.
  • BS Base Station
  • Figure 1 (b) is a schematic system diagram illustrating an exemplary UE in accordance with embodiments of the current invention.
  • Figure 2 illustrates an exemplary NR wireless system in accordance with embodiments of the current invention.
  • Figure 3 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
  • Figure 4 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
  • Figure 4a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
  • Figure 5 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
  • Figure 6 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
  • Figure 6a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
  • Figure 7 illustrates an exemplary multicast-to-multicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
  • Figure 8 illustrates an exemplary multicast-to-unicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
  • FIG. 1 (a) is a schematic system diagram illustrating an exemplary Base Station (i.e. BS) in accordance with embodiments of the current invention.
  • the BS may also be referred to as an access point, an access terminal, a base station, a Node-B, an eNode-B, a gNB, or by other terminology used in the art.
  • base stations serve a number of mobile stations within a serving area, for example, a cell, or within a cell sector.
  • the Base Station has an antenna, which transmits and receives radio signals.
  • a RF transceiver coupled with the antenna, receives RF signals from antenna, converts them to baseband signals, and sends them to processor.
  • RF transceiver also converts received baseband signals from processor, converts them to RF signals, and sends out to antenna.
  • Processor processes the received baseband signals and invokes different functions.
  • Memory stores program instructions and data to control the operations of Base Station.
  • FIG. 1 (b) is a schematic system diagram illustrating an exemplary UE in accordance with embodiments of the current invention.
  • the UE may also be referred to as a mobile station, a mobile terminal, a mobile phone, smart phone, wearable, an IoT device, a table let, a laptop, or other terminology used in the art.
  • UE has an antenna, which transmits and receives radio signals.
  • a RF transceiver coupled with the antenna, receives RF signals from antenna, converts them to baseband signal, and sends them to processor.
  • RF transceiver also converts received baseband signals from processor, converts them to RF signals, and sends out to antenna.
  • Processor processes the received baseband signals and invokes different functional modules to perform features in UE.
  • Memory stores program instructions and data to control the operations of mobile station.
  • FIG. 2 illustrates an exemplary NR wireless system in accordance with embodiments of the current invention.
  • Different protocol split options between Central Unit and Distributed Unit of gNB nodes may be possible.
  • SDAP and PDCP layer are located in the central unit, while RLC, MAC and PHY layers are located in the distributed unit.
  • the handover procedures described in the invention aims to achieve lossless handover or to reduce the loss of packets during handover. It assumes that an enhanced RLC UM entity (i.e. RLC UM entity in enhanced RLC UM mode) configured for multicast radio bearer performs the transmission of NR multicast service.
  • An associated unicast RLC channel in RLC AM mode is configured to assist the NR multicast radio bearer in the enhanced RLC UM mode.
  • the associated unicast RLC channel is configured for the UE during NR multicast radio bearer establishment.
  • the Base Station sends the Polling request to the UE through the associated unicast RLC channel.
  • For Uplink the UE sends the RLC Status Report PDU response to the Base Station through the associated unicast RLC channel.
  • the associated unicast RLC channel serves as the channel for Uplink feedback and data retransmission for NR multicast radio bearer (i.e. MRB) .
  • MRB NR multicast radio bearer
  • the characteristic of enhanced RLC UM mode is that this enhanced RLC UM mode requires the transmitter side (i.e. BS) to buffer the transmitted packets (e.g. in terms of RLC SDU and RLC SDU segment) in the buffer for a period after transmission in order to wait for the Uplink feedback from the UE (s) . Packet Discard functionality is supported by this enhanced RLC UM mode for MRB.
  • This RLC UM entity in enhanced RLC UM mode moves one or more transmitted packets (i.e. RLC SDU, and/or RLC SDU segments) from its buffer during packet discarding to the associated unicast RLC AM entity for retransmission, if there is a need to retransmit the transmitted packets to the UE via unicast mode.
  • Figure 3 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
  • intra-gNB and intra-DU cell change i.e. handover
  • the multicast service continuity is ensured if the target cell also supports multicast transmission of the NR multicast service.
  • the multicast radio bearer is already available. Then a new associated RLC AM entity is established at both target cell and UE during cell change (i.e. handover) in order to establish an associated RLC unicast channel to support Uplink feedback and needed unicast based retransmission after handover.
  • the configuration of the new associated RLC AM entity and corresponding associated RLC unicast channel including the RLC configuration and MAC configuration (e.g. logical channel configuration) is sent to UE during handover e.g. via Handover Command message. The UE applies these configurations when it is connected to the target cell.
  • lossless data delivery is achieved via retransmission of the buffered or non-acknowledged data packets at target cell.
  • the buffered or non-acknowledged RLC SDU and RLC SDU segments are forwarded to the target associated RLC AM entity from the source associated RLC AM entity.
  • the target associated RLC AM entity initiates retransmission of these RLC packets (i.e. RLC SDU and RLC SDU segments) when the UE successfully hands over to the target cell.
  • the UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell before.
  • the PDCP SN is consistent after handover.
  • Figure 4 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
  • the multicast transmission is not supported by the target cell.
  • a new unicast RLC AM entity is established at target cell during cell change (i.e. handover) .
  • the RLC UM entity for receiving MRB and the associated unicast RLC AM entity are replaced by a new unicast RLC AM entity.
  • the RLC UM entity for receiving MRB is released and the associated unicast RLC AM entity is reconfigured to be a new unicast RLC AM entity to support the succeeding unicast transmission between target cell and the UE.
  • a new unicast RLC channel specific to the UE is established to support unicast transmission between target cell and the UE.
  • the unicast based retransmission after handover occurs at the unicast RLC channel at target side.
  • lossless data delivery is achieved via retransmission at target cell of the buffered or non-acknowledged data packets forwarded by source cell.
  • non-acknowledged RLC SDU and RLC SDU segments are forwarded to the target unicast RLC AM entity from the source associated RLC AM entity.
  • the target unicast RLC AM entity initiates retransmission of these RLC packets (i.e. RLC SDU and RLC SDU segments) when the UE successfully hands over to the target cell.
  • the UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell. As the target cell and source cell shares the PDCP entity, the PDCP SN is consistent after handover.
  • the unicast RLC AM entity established at the target cell also delivers the packets he receives from PDCP entity (for multicast) .
  • PDCP entity for multicast
  • Figure 4a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
  • a new PDCP entity is established corresponding to the multicast SDAP entity at gNB CU.
  • this PDCP entity shares the same PDCP configuration (including security key configuration) as multicast PDCP entity.
  • this PDCP entity uses different PDCP configuration (including security key configuration) from the configuration of multicast PDCP entity.
  • the PDCP configuration needs to configured to the UE via RRC message e.g. handover command.
  • the buffered or non-acknowledged PDCP PDU is forwarded from source multicast PDCP entity to target unicast PDCP entity.
  • the SN of buffered or non-acknowledged PDCP PDU is decided based on the delivery indication from MRB RLC UM entity and the feedback from MRB RLC UM entity and/or the associated RLC AM entity at source cell side.
  • the delivery indication from MRB RLC UM entity follows the legacy behavior, which indicates the delivery of a particular of PDCP PDU to PDCP entity.
  • the MRB RLC UM entity and/or the associated RLC AM entity in source cell feedbacks to PDCP entity the unsegmented RLC SDU (i.e.
  • PDCP PDU he received from PDCP entity, which is transmitted but is not successfully received by the UE based on the UL feedback.
  • the source PDCP entity forwards the received PDCP PDU to the established PDCP entity for the target cell.
  • RLC SDU segment of a particular RLC SDU is not transmitted but is not successfully received by the UE based on the UL feedback
  • the while RLC SDU needs to be feedbacked to PDCP entity. This requires the RLC entity at the source cell to buffer the while RLC SDU in case one of the segments is not successfully received by the UE.
  • the new established unicast PDCP entity needs to ensure synchronous PDCP SN numbering with the source cell multicast PDCP entity.
  • the multicast PDCP entity forwards the latest SN he allocated e.g. X to the unicast PDCP entity.
  • the first SN allocated by unicast PDCP entity for data flow from SDAP entity should be X+1.
  • the expected effect should be that the same SN allocated by source PDCP entity and unicast PDCP entity for the data coming from SDAP entity in order to maximize the service continuity for the UE.
  • the new PDCP entity delivers the retransmission PDU (s) as received from the source cell before delivering any new PDCP PDUs to the RLC entity.
  • Figure 5 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
  • the multicast service continuity is ensured if the target cell also supports multicast transmission of the NR multicast service.
  • a new associated RLC AM entity is established at both target cell and UE during cell change (i.e. handover) in order to establish an associated RLC unicast channel to support Uplink feedback and needed unicast based retransmission after handover.
  • the configuration of the new associated RLC AM entity and corresponding associated RLC unicast channel including the RLC configuration and MAC configuration (e.g.
  • the buffered RLC SDU, and RLC SDU segments can be put into transparent container and then be retransmitted from the associated RLC AM entity in source cell to the associated RLC AM entity in target cell via F1 interface between gNB-CU and gNB-DU.
  • the forwarding operation can be performed by the PDCP entity within gNB-CU.
  • the UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell in order to support lossless handover.
  • Figure 6 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
  • the multicast transmission is not supported by the target cell.
  • a new unicast RLC AM entity continuity is established at both target cell and UE during cell change (i.e. handover) .
  • a new unicast RLC channel is established to support unicast transmission for the UE.
  • the unicast based retransmission after handover occurs at the unicast RLC channel at target side.
  • the lossless data delivery is achieved via retransmission of the buffered or non-acknowledged data packets at target cell.
  • the buffered RLC SDU, and RLC SDU segments can be put into transparent container and then be retransmitted from the associated RLC AM entity in source cell to the associated RLC AM entity in target cell via F1 interface between gNB-CU and gNB-DU.
  • the forwarding operation can be performed by the PDCP entity or other entity within the gNB-CU.
  • the UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell in order to support lossless handover.
  • Figure 6a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
  • a new unicast PDCP entity is established corresponding to the multicast SDAP entity at gNB CU.
  • the buffered or non-acknowledged PDCP PDU is forwarded from source multicast PDCP entity to target unicast PDCP entity.
  • the decision on the set of PDCP PDU subject to forwarding uses the same mechanism as described for Figure 4a.
  • the SN allocation mechanism described for Figure 4a applies also to the scenario described at Figure 6a.
  • the same data retransmission mechanism as described for Figure 4a also applies to the scenario described at Figure 6a.
  • Figure 7 illustrates an exemplary multicast-to-multicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
  • the buffered or non-acknowledged RLC SDU and RLC segments are forwarded to the target from source associated RLC AM entity to the target associated RLC AM entity for purpose of retransmission.
  • the aligned PDCP SN is assumed for source PDCP entity and target PDCP entity for NR multicast service transmission.
  • the similar mechanisms described for other scenarios within this invention apply to scenario depicted in Figure 7.
  • Figure 8 illustrates an exemplary multicast-to-unicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
  • the buffered or non-acknowledged RLC SDU and RLC segments are forwarded to the target from source associated RLC AM entity to the target RLC AM unicast entity for purpose of retransmission.
  • the similar mechanisms described for other scenarios within this invention apply to scenario depicted in Figure 8.
  • a single associated unicast RLC AM channel is established between the UE and the target cell of target Base Station.
  • This configuration is indicated to the UE via RRC message e.g. handover command during handover preparation.
  • the description in this invention can be also applicable to the lossless handover procedure for NR broadcast services.

Abstract

Apparatus and methods are provided to support lossless handover during cell change for a particular UE to enable reliable multicast transmission for NR multicast service. In one novel aspect, an associated unicast RLC channel is established between the UE and the target cell during handover. One associated unicast RLC channel may correspond to multiple multicast radio bearers. The associated unicast RLC channel is used to retransmit the buffered or non-acknowledged data from the target cell to the UE. The RLC packets including both RLC SDU (s) and RLC segment (s) is forwarded from the source cell to the target cell for retransmission.

Description

METHODS AND APPARATUS OF LOSSLESS HANDOVER FOR NR MULTICAST SERVICES TECHNICAL FIELD
The disclosed embodiments relate generally to wireless communication, and, more particularly, to enable lossless handover for NR multicast based transmission for purpose of improving the reliability of NR multicast services.
BACKGROUND
3GPPspecified the support of MBMS transmission for LTE but no lossless handover is supported so far.
Mobility procedures for LTE MBMS reception allow the UE to start or continue receiving MBMS service (s) via MBSFN or SC-PTM when changing cell (s) . For each MBMS service provided using SC-PTM, E-UTRAN indicates in the SC-MCCH the list of neighbour cells providing this MBMS service so that the UE can request unicast reception of the service before changing to a cell not providing the MBMS service using SC-PTM.
For MBSFN transmission, LTE procedures provide support for service continuity with respect to mobility within the same MBSFN area. UEs that are receiving MBMS service (s) in RRC_IDLE state performing cell reselection or are in RRC_CONNECTED state obtain target cell (SC-) MTCH information from the target cell (SC-) MCCH. To avoid the need to read MBMS related system information and potentially (SC-) MCCH on neighbour frequencies, the UE is made aware of which frequency is providing which MBMS services via MBSFN or SC-PTM through the combination of the following MBMS assistance information: user service description (USD) and system information.
3GPP has specified the support of lossless handover for unicast. The basic principle is that the non-acknowledged PDCP PDU is forwarded from the source Base Station to the target Base Station in order to enable reliable transmission for data bearers in RLC AM mode.
In Dec 2019, 3GPP approved a work item (WI) on the support of NR Broadcast and Multicast Services. Within the scope of the WI, the reliable transmission of the NR Multicast services is the key objective.
In this invention, it is sought to achieve reliable transmission between the network and  the UE via loss handover during connected mode mobilityfor NR Multicast services.
SUMMARY
A method is provided to support lossless handover during cell change for a particular UE to enable reliable multicast transmission for NR multicast service.
In one novel aspect, an associated unicast RLC channel is established between the UE and the target cell during handover. One associated unicast RLC channel may correspond to multiple multicast radio bearers. The associated unicast RLC channel is used to retransmit the buffered or non-acknowledged data forwarded by source cell from the target cell to the UE. The configuration of the associated unicast RLC channel is sent to the UE via RRC message e.g. handover command during handover preparation stage.
The RLC packets including both RLC SDU (s) and RLC segment (s) is forwarded from the source cell to the target cell for retransmission. The RLC packets can be forwarded in either transparent mode or non-transparent mode. The RLC packets can be forwarded within a gNB-DU or among different gNBDUs belonging to same gNB CU or different gNB CU.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Figure 1 (a) is a schematic system diagram illustrating an exemplary Base Station (i.e. BS) in accordance with embodiments of the current invention.
Figure 1 (b) is a schematic system diagram illustrating an exemplary UE in accordance with embodiments of the current invention.
Figure 2 illustrates an exemplary NR wireless system in accordance with embodiments of the current invention.
Figure 3 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
Figure 4 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention.
Figure 4a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
Figure 5 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
Figure 6 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention.
Figure 6a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention.
Figure 7 illustrates an exemplary multicast-to-multicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
Figure 8 illustrates an exemplary multicast-to-unicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention.
DETAILED DESCRIPTION
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Figure 1 (a) is a schematic system diagram illustrating an exemplary Base Station (i.e. BS) in accordance with embodiments of the current invention. The BS may also be referred to as an access point, an access terminal, a base station, a Node-B, an eNode-B, a gNB, or by other terminology used in the art. As an example, base stations serve a number of mobile stations within a serving area, for example, a cell, or within a cell sector. The Base Station has an antenna, which transmits and receives radio signals. A RF transceiver, coupled with the antenna, receives RF signals from antenna, converts them to baseband signals, and sends them to processor. RF transceiver also converts received baseband signals from processor, converts them to RF signals, and sends out to antenna. Processor processes the received baseband signals and invokes different functions. Memory stores program instructions and data to control the operations of Base Station.
Figure 1 (b) is a schematic system diagram illustrating an exemplary UE in accordance with embodiments of the current invention. The UE may also be referred to as a mobile station, a mobile terminal, a mobile phone, smart phone, wearable, an IoT device, a table let, a laptop, or other terminology used in the art. UE has an antenna, which transmits and receives radio signals. A RF transceiver, coupled with the antenna, receives RF signals from antenna, converts them to baseband signal, and sends them to processor. RF transceiver also converts received baseband signals from processor, converts them to RF signals, and sends out to antenna. Processor processes the received baseband signals and invokes different functional modules to perform features in UE. Memory stores  program instructions and data to control the operations of mobile station.
Figure 2 illustrates an exemplary NR wireless system in accordance with embodiments of the current invention. Different protocol split options between Central Unit and Distributed Unit of gNB nodes may be possible. In one embodiment, SDAP and PDCP layer are located in the central unit, while RLC, MAC and PHY layers are located in the distributed unit.
The handover procedures described in the invention aims to achieve lossless handover or to reduce the loss of packets during handover. It assumes that an enhanced RLC UM entity (i.e. RLC UM entity in enhanced RLC UM mode) configured for multicast radio bearer performs the transmission of NR multicast service. An associated unicast RLC channel in RLC AM mode is configured to assist the NR multicast radio bearer in the enhanced RLC UM mode. The associated unicast RLC channel is configured for the UE during NR multicast radio bearer establishment. For Downlink, the Base Station sends the Polling request to the UE through the associated unicast RLC channel. For Uplink, the UE sends the RLC Status Report PDU response to the Base Station through the associated unicast RLC channel. The associated unicast RLC channel serves as the channel for Uplink feedback and data retransmission for NR multicast radio bearer (i.e. MRB) . The characteristic of enhanced RLC UM mode is that this enhanced RLC UM mode requires the transmitter side (i.e. BS) to buffer the transmitted packets (e.g. in terms of RLC SDU and RLC SDU segment) in the buffer for a period after transmission in order to wait for the Uplink feedback from the UE (s) . Packet Discard functionality is supported by this enhanced RLC UM mode for MRB. This RLC UM entity in enhanced RLC UM mode moves one or more transmitted packets (i.e. RLC SDU, and/or RLC SDU segments) from its buffer during packet discarding to the associated unicast RLC AM entity for retransmission, if there is a need to retransmit the transmitted packets to the UE via unicast mode.
Figure 3 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention. During intra-gNB and intra-DU cell change (i.e. handover) , the multicast service continuity is ensured if the target cell also supports multicast transmission of the NR multicast service.
As depicted by Figure 3, the multicast radio bearer is already available. Then a new associated RLC AM entity is established at both target cell and UE during cell change (i.e. handover) in order to establish an associated RLC unicast channel to support Uplink feedback and needed unicast based retransmission after handover. The configuration of the new associated RLC AM entity and corresponding associated RLC unicast channel including the RLC configuration and MAC configuration (e.g. logical channel configuration) is sent to UE during handover e.g. via Handover Command message. The UE applies these configurations when it is connected to the target cell.
For the case described at Figure 3, lossless data delivery is achieved via retransmission  of the buffered or non-acknowledged data packets at target cell. As shown in the dash line of Figure 3 from source associated RLC AM entity to target associated RLC AM entity, the buffered or non-acknowledged RLC SDU and RLC SDU segments are forwarded to the target associated RLC AM entity from the source associated RLC AM entity. The target associated RLC AM entity initiates retransmission of these RLC packets (i.e. RLC SDU and RLC SDU segments) when the UE successfully hands over to the target cell. The UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell before. As the target cell and source cell shares the PDCP entity, the PDCP SN is consistent after handover.
Figure 4 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change in accordance with embodiments of the current invention. During intra-gNB and intra-DU cell change, the multicast transmission is not supported by the target cell. In this case, during cell change for UE, a new unicast RLC AM entity is established at target cell during cell change (i.e. handover) .
As first option, within the UE, the RLC UM entity for receiving MRB and the associated unicast RLC AM entity are replaced by a new unicast RLC AM entity. As second option, the RLC UM entity for receiving MRB is released and the associated unicast RLC AM entity is reconfigured to be a new unicast RLC AM entity to support the succeeding unicast transmission between target cell and the UE.
Correspondingly, a new unicast RLC channel specific to the UEis established to support unicast transmission between target cell and the UE. The unicast based retransmission after handover occurs at the unicast RLC channel at target side. For the case described at Figure 4, lossless data delivery is achieved via retransmission at target cell of the buffered or non-acknowledged data packets forwarded by source cell.
As shown in the dash line of Figure 4 from source associated RLC AM entity to target unicast RLC AM entity, non-acknowledged RLC SDU and RLC SDU segments are forwarded to the target unicast RLC AM entity from the source associated RLC AM entity. The target unicast RLC AM entity initiates retransmission of these RLC packets (i.e. RLC SDU and RLC SDU segments) when the UE successfully hands over to the target cell. The UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell. As the target cell and source cell shares the PDCP entity, the PDCP SN is consistent after handover.
As shown in Figure 4, the unicast RLC AM entity established at the target cell also delivers the packets he receives from PDCP entity (for multicast) . This presents the case where one multicast PDCP entity corresponds to different RLC entities including AM mode RLC entity (for unicast) and UM mode RLC entity (for multicast) .
Figure 4a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and intra-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention. As depicted in Figure 4a, a new PDCP entity is established corresponding to the multicast SDAP entity at gNB CU. As first option, this PDCP entity shares the same PDCP configuration (including security key configuration) as multicast PDCP entity. As second option, this PDCP entity uses different PDCP configuration (including security key configuration) from the configuration of multicast PDCP entity. In this case, the PDCP configuration needs to configured to the UE via RRC message e.g. handover command.
For the scenario depicted in Figure 4a, the buffered or non-acknowledged PDCP PDU is forwarded from source multicast PDCP entity to target unicast PDCP entity. The SN of buffered or non-acknowledged PDCP PDU is decided based on the delivery indication from MRB RLC UM entity and the feedback from MRB RLC UM entity and/or the associated RLC AM entity at source cell side. The delivery indication from MRB RLC UM entity follows the legacy behavior, which indicates the delivery of a particular of PDCP PDU to PDCP entity. The MRB RLC UM entity and/or the associated RLC AM entity in source cell feedbacks to PDCP entity the unsegmented RLC SDU (i.e. PDCP PDU) he received from PDCP entity, which is transmitted but is not successfully received by the UE based on the UL feedback. The source PDCP entity forwards the received PDCP PDU to the established PDCP entity for the target cell. In addition, if one RLC SDU segment of a particular RLC SDU is not transmitted but is not successfully received by the UE based on the UL feedback, the while RLC SDU needs to be feedbacked to PDCP entity. This requires the RLC entity at the source cell to buffer the while RLC SDU in case one of the segments is not successfully received by the UE. This operation will lead to the fact that some of the RLC SDU segment of a particular RLC SDU is successfully received by the UE, but the UE needs to discard the RLC SDU segment since the additional RLC SDU segments is not successfully received. As stated above, the whole RLC SDU will be retransmitted by the target cell. The RLC SDU segments received from source cell is out of date.
For the scenario depicted in Figure 4a, during the handover stage, the new established unicast PDCP entity needs to ensure synchronous PDCP SN numbering with the source cell multicast PDCP entity. To be specific, the multicast PDCP entity forwards the latest SN he allocated e.g. X to the unicast PDCP entity. Then the first SN allocated by unicast PDCP entity for data flow from SDAP entity should be X+1. The expected effect should be that the same SN allocated by source PDCP entity and unicast PDCP entity for the data coming from SDAP entity in order to maximize the service continuity for the UE.
For the scenario depicted in Figure 4a, The new PDCP entity delivers the retransmission  PDU (s) as received from the source cell before delivering any new PDCP PDUs to the RLC entity.
Figure 5 illustrates an exemplary multicast-to-multicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention. During intra-gNB and inter-DU cell change, the multicast service continuity is ensured if the target cell also supports multicast transmission of the NR multicast service. As depicted by Figure 5, a new associated RLC AM entity is established at both target cell and UE during cell change (i.e. handover) in order to establish an associated RLC unicast channel to support Uplink feedback and needed unicast based retransmission after handover. The configuration of the new associated RLC AM entity and corresponding associated RLC unicast channel including the RLC configuration and MAC configuration (e.g. logical channel configuration) is sent to UE during handover e.g. via Handover Command message. The UE applies these configurations when it is connected to the target cell. In this scenario, the buffered RLC SDU, and RLC SDU segments can be put into transparent container and then be retransmitted from the associated RLC AM entity in source cell to the associated RLC AM entity in target cell via F1 interface between gNB-CU and gNB-DU. The forwarding operation can be performed by the PDCP entity within gNB-CU. The UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell in order to support lossless handover.
Figure 6 illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change in accordance with embodiments of the current invention. During intra-gNB and inter-DU cell change, the multicast transmission is not supported by the target cell. In this case, during cell change for UE, a new unicast RLC AM entity continuity is established at both target cell and UE during cell change (i.e. handover) . Correspondingly, a new unicast RLC channel is established to support unicast transmission for the UE. The unicast based retransmission after handover occurs at the unicast RLC channel at target side. The lossless data delivery is achieved via retransmission of the buffered or non-acknowledged data packets at target cell. In this scenario, the buffered RLC SDU, and RLC SDU segments can be put into transparent container and then be retransmitted from the associated RLC AM entity in source cell to the associated RLC AM entity in target cell via F1 interface between gNB-CU and gNB-DU. The forwarding operation can be performed by the PDCP entity or other entity within the gNB-CU. The UE assemblies the RLC SDU and RLC SDU segments received from target cell with the packets he received from source cell in order to support lossless handover.
Figure 6a illustrates an exemplary multicast-to-unicast radio bearer change during intra-gNB and inter-DU cell change with the establishment of a new PDCP entity in accordance with embodiments of the current invention. As depicted in Figure 6a, a new unicast PDCP entity is  established corresponding to the multicast SDAP entity at gNB CU. The buffered or non-acknowledged PDCP PDU is forwarded from source multicast PDCP entity to target unicast PDCP entity. The decision on the set of PDCP PDU subject to forwarding uses the same mechanism as described for Figure 4a. The SN allocation mechanism described for Figure 4a applies also to the scenario described at Figure 6a. The same data retransmission mechanism as described for Figure 4a also applies to the scenario described at Figure 6a.
Figure 7 illustrates an exemplary multicast-to-multicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention. As depicted in Figure 7, the buffered or non-acknowledged RLC SDU and RLC segments are forwarded to the target from source associated RLC AM entity to the target associated RLC AM entity for purpose of retransmission. The aligned PDCP SN is assumed for source PDCP entity and target PDCP entity for NR multicast service transmission. The similar mechanisms described for other scenarios within this invention apply to scenario depicted in Figure 7.
Figure 8 illustrates an exemplary multicast-to-unicast radio bearer change during inter-gNB cell change in accordance with embodiments of the current invention. As depicted in Figure 8, the buffered or non-acknowledged RLC SDU and RLC segments are forwarded to the target from source associated RLC AM entity to the target RLC AM unicast entity for purpose of retransmission. The similar mechanisms described for other scenarios within this invention apply to scenario depicted in Figure 8.
For all of the scenarios described in this invention, when the UE receives multiple multicast services at source cell of a source Base Station, during handover, a single associated unicast RLC AM channel is established between the UE and the target cell of target Base Station. This configuration is indicated to the UE via RRC message e.g. handover command during handover preparation.
The description in this invention can be also applicable to the lossless handover procedure for NR broadcast services.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (6)

  1. A method comprising:
    establishing a multicast radio bearer and an associated unicast RLC channel at target cell between a target Base Station and the UE,
    forwarding buffered or non-acknowledged packets from the source cell of a source Base Station to a target cell of a target Base Station, and
    retransmitting buffered or non-acknowledged packets by a target cell of a target Base Station to UE.
  2. The method of claim 1, wherein the associated unicast RLC channel requires the establishment of the associated unicast RLC AM entity at both target cell and UE.
  3. The method of claim 1, wherein the associated unicast RLC channel can correspond to multiple multicast radio bearer established at target cell and UE.
  4. The method of claim 1, wherein the buffered or non-acknowledged packets is RLC packets (including RLC SDU and RLC SDU segments) or PDCP packets.
  5. The method of claim 1, wherein buffered or non-acknowledged packets can be retransmitted to the UE via the associated unicast RLC channel when multicast radio bearer is supported at target cell.
  6. The method of claim 1, wherein buffered or non-acknowledged packets can be retransmitted to the UE via a unicast RLC channel when multicast radio bearer is not supported at target cell.
PCT/CN2020/072728 2020-01-17 2020-01-17 Methods and apparatus of lossless handover for nr multicast services WO2021142770A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072728 WO2021142770A1 (en) 2020-01-17 2020-01-17 Methods and apparatus of lossless handover for nr multicast services
PCT/CN2021/072229 WO2021143868A1 (en) 2020-01-17 2021-01-15 Methods and apparatus of lossless handover for nr multicast services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072728 WO2021142770A1 (en) 2020-01-17 2020-01-17 Methods and apparatus of lossless handover for nr multicast services

Publications (1)

Publication Number Publication Date
WO2021142770A1 true WO2021142770A1 (en) 2021-07-22

Family

ID=76863238

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/072728 WO2021142770A1 (en) 2020-01-17 2020-01-17 Methods and apparatus of lossless handover for nr multicast services
PCT/CN2021/072229 WO2021143868A1 (en) 2020-01-17 2021-01-15 Methods and apparatus of lossless handover for nr multicast services

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072229 WO2021143868A1 (en) 2020-01-17 2021-01-15 Methods and apparatus of lossless handover for nr multicast services

Country Status (1)

Country Link
WO (2) WO2021142770A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942257A (en) 2021-08-03 2023-04-07 北京三星通信技术研究有限公司 Flow control method and device
US11818609B2 (en) 2021-12-03 2023-11-14 Nokia Technologies Oy Mobility in cellular communication networks
WO2023156595A1 (en) * 2022-02-18 2023-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Handling multicast communications
WO2024031298A1 (en) * 2022-08-08 2024-02-15 Apple Inc. Mobility with pre-configuration of candidate cells at ue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236776A1 (en) * 2011-03-17 2012-09-20 Qualcomm Incorporated Target cell selection for multimedia broadcast multicast service continuity
US20130301509A1 (en) * 2012-05-14 2013-11-14 Rene Purnadi Maintaining mbms continuity
US9386425B2 (en) * 2013-03-22 2016-07-05 Mediatek Inc. Group communication over LTE eMBMS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038904B (en) * 2014-06-09 2017-05-10 电子科技大学 Method and system for outer cell reselection of transmission mode multicast single frequency network
US10123226B2 (en) * 2015-12-02 2018-11-06 At&T Intellectual Property I, L.P. Detection of active listeners and dynamic provisioning of cell sites for broadcast

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236776A1 (en) * 2011-03-17 2012-09-20 Qualcomm Incorporated Target cell selection for multimedia broadcast multicast service continuity
US20130301509A1 (en) * 2012-05-14 2013-11-14 Rene Purnadi Maintaining mbms continuity
US9386425B2 (en) * 2013-03-22 2016-07-05 Mediatek Inc. Group communication over LTE eMBMS

Also Published As

Publication number Publication date
WO2021143868A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US11076334B2 (en) Data forwarding method, device, and communications system
WO2021142770A1 (en) Methods and apparatus of lossless handover for nr multicast services
ES2820715T3 (en) Techniques for switching bearers between radio access technologies (RATS)
CN116567747A (en) Communication system, communication terminal device, and base station device
US20220232657A1 (en) Method and device for re-establishing pdcp in wireless communication system
US20190104560A1 (en) Method of Data Recovery with Uplink Switching
EP2765731A1 (en) Method and apparatus of small cell enhancement in a wireless communication system
KR20160119426A (en) Methods for reconfiguring radio bearer and Apparatuses thereof
WO2015066281A1 (en) User equipment and methods of bearer operation for carrier aggregation
US20220256413A1 (en) Method and apparatus for performing handover procedure in wireless communication system
CN114375593A (en) Group switching for layer 2side link relaying with delayed or ignored signals
US20200322094A1 (en) Submitting a PDCP PDU for Transmission
CN111183697A (en) Dual protocol for mobility enhancement
US20220201786A1 (en) Methods and apparatus to reduce packet latency in multi-leg transmission
WO2021143869A1 (en) Uplink feedback and retransmission for new radio (nr) multicast services
CN113556687B (en) Method and equipment used for wireless communication
CN114846836A (en) Communication system, base station, and communication terminal
US20230134356A1 (en) Methods and apparatus to set initial pdcp state variables for multicast
WO2020150997A1 (en) Apparatus and methods to support dual-protocol for mobility enhancement
JP2023062188A (en) Communication control method, user equipment, processor, and base station
WO2021237526A1 (en) Methods and apparatus of rlc based reliable multicast transmission
WO2022082340A1 (en) Methods and apparatus to deliver reliable multicast services via mrb
WO2021142654A1 (en) Methods and apparatus of dynamic switch between multicast and unicast for nr multicast service
WO2023060512A1 (en) Methods and apparatus to set initial pdcp state variables for multicast services
EP4167604A1 (en) Methods and apparatus to set initial pdcp state variables for multicast

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914412

Country of ref document: EP

Kind code of ref document: A1