WO2021141010A1 - Moisture percentage measuring device and moisture percentage measuring method - Google Patents

Moisture percentage measuring device and moisture percentage measuring method Download PDF

Info

Publication number
WO2021141010A1
WO2021141010A1 PCT/JP2021/000049 JP2021000049W WO2021141010A1 WO 2021141010 A1 WO2021141010 A1 WO 2021141010A1 JP 2021000049 W JP2021000049 W JP 2021000049W WO 2021141010 A1 WO2021141010 A1 WO 2021141010A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture content
nmr signal
capacitor
sample
coil
Prior art date
Application number
PCT/JP2021/000049
Other languages
French (fr)
Japanese (ja)
Inventor
郁美 渡辺
澤津橋 徹哉
中島 善人
Original Assignee
三菱重工業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 三菱重工業株式会社
Publication of WO2021141010A1 publication Critical patent/WO2021141010A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance

Definitions

  • the present disclosure relates to a moisture content measuring device and a moisture content measuring method.
  • the present application claims priority over Japanese Patent Application No. 2020-003027 filed on January 10, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 one side has sufficiently secured a space for accommodating a coil essential for an NMR (Nuclear Magnetic Resonance) sensor, and has improved uniformity and expansion of a sensitivity region, magnetic field strength, and exploration depth.
  • An open magnetic circuit is disclosed.
  • An object of the present disclosure is to provide a moisture content measuring device and a moisture content measuring method for solving the above-mentioned problems.
  • the moisture content measuring device includes a coil, a first capacitor capable of adjusting the capacitance connected in parallel to the coil, and a capacitance connected in series with the coil and the first capacitor. It arises from a second capacitor that can be adjusted, a transmitter that emits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor via a coil, and a sample that faces the transmitter by the RF pulse.
  • the receiver that receives the NMR signal, and when the NMR signal is received, the intensity of the NMR signal is specified while changing the capacitance of the second capacitor, and the moisture content is specified based on the intensity of the specified NMR signal. It is equipped with a rate identification unit.
  • the moisture content measuring method includes a coil, a first capacitor having an adjustable capacitance connected in parallel to the coil, and a capacitance connected in series to the coil and the first capacitor. It is a moisture content measuring method using a moisture content measuring device including a second capacitor capable of adjusting the above, and an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor is transmitted through a coil.
  • the step of transmitting, the step of receiving the NMR signal generated from the sample facing the transmitting part by the RF pulse, and the step of receiving the NMR signal, the intensity of the NMR signal is specified and specified while changing the capacitance of the second capacitor. It has a step of specifying the water content based on the strength of the obtained NMR signal.
  • FIG. 1 is a diagram showing an example of a moisture content measuring device 100 according to the present embodiment.
  • the moisture content measuring device 100 is an apparatus capable of measuring the moisture content of the sample 20 composed of a conductor by an NMR signal.
  • the moisture content measuring device 100 includes a spacer 30, a sensor 40, a display unit 50, and a control device 60.
  • the moisture content measuring device 100 is a one-sided open type in which the sensor 40 faces only one side of the sample 20.
  • the moisture content measuring device 100 may not be of the one-sided open type, but may have a configuration in which the sensor 40 faces a plurality of surfaces of the sample 20.
  • Sample 20 is a substance having conductivity or a substance having magnetism.
  • Examples of sample 20 include carbon fiber reinforced plastic, mortar, and cement. Carbon fiber reinforced plastic has high conductivity. In addition, since cement and mortar generally contain paramagnetic minerals in their aggregates, they are magnetic objects.
  • the spacer 30 is an insulator that covers the transmitting portion 44 of the sensor 40 and is sandwiched between the sample 20 and the sensor 40.
  • insulators include resins such as PTFE.
  • the spacer 30 is sandwiched between the sample 20 and the sensor 40 to define the distance between the sample 20 and the sensor 40. That is, by changing the thickness of the spacer 30, the distance between the sample 20 and the sensor 40 can be changed, and the location where the moisture content inside the sample 20 can be measured can be changed.
  • the sensor 40 transmits an RF pulse to the sample 20 and receives an NMR signal which is a response generated from the sample 20 by the RF pulse.
  • the RF pulse is a radio wave signal which is a kind of electromagnetic wave.
  • the NMR signal is a signal generated by a magnetic field released by a proton existing in the sample 20 when an electromagnetic wave is transmitted to the sample 20 using a magnet and a coil 42.
  • the display unit 50 is a device that displays the output from the control device 60.
  • An example of the display unit 50 is a display device.
  • An example of the output from the control device 60 is the moisture content.
  • the control device 60 measures the water content of the sample 20 based on the NMR signal received by the sensor 40.
  • the control device 60 is integrated with the sensor 40, but it exists independently of the sensor 40 and may be connected to the sensor 40 wirelessly or by wire.
  • FIG. 2 is a diagram showing an example of the configuration of the sensor 40.
  • the sensor 40 includes a housing 41, a coil 42, a magnet 43, a transmitting unit 44, a receiving unit 45, a first capacitor 46, and a second capacitor 47.
  • the housing 41 is a box-shaped object that houses a magnet 43, a transmitting unit 44, a receiving unit 45, a first capacitor 46, and a second capacitor 47.
  • the coil 42 transmits an RF pulse to the sample 20 using the magnetic force generated by the magnet 43, and receives the NMR signal of the sample 20 due to the RF pulse.
  • the coil 42 is connected to the first capacitor 46 in parallel and is connected to the second capacitor 47 in series.
  • the first capacitor 46 is used for tuning.
  • the magnet 43 is a magnetic material that generates a magnetic force and enables the coil 42 to transmit an RF pulse.
  • An example of the magnet 43 is a superconducting magnet.
  • the transmission unit 44 receives the input for starting measurement from the input unit 61 and transmits an RF pulse via the coil 42.
  • An example of a method of transmitting an RF pulse is a CPMG (Curr Purcel Mailboom Gil) method.
  • the operation according to the CPMG method is as follows. After giving an RF pulse with a phase of 90 °, an RF pulse with a phase of 180 ° is given. Then, 180 ° RF pulses are repeatedly applied to record the maximum intensity of the transverse magnetization vector each time, and a transition curve is obtained.
  • the receiving unit 45 receives the NMR signal of the sample 20 which is a response to the RF pulse transmitted by the transmitting unit 44 via the coil 42.
  • the first capacitor 46 is a variable capacitance capacitor provided in parallel with the coil 42.
  • the first capacitor 46 changes the capacitance according to the instruction from the control device 60.
  • the frequency of the RF pulse transmitted by the coil 42 changes according to the change in the capacitance of the first capacitor 46.
  • the control device 60 changes the capacitance of the first capacitor 46 so that the frequency of the RF pulse changes within the range of 0.01 MHz or more and 1000 MHz or less.
  • the second capacitor 47 is a variable capacitance capacitor provided in series with the coil 42 and the first capacitor 46.
  • the second capacitor 47 changes the capacitance according to the instruction from the control device 60, and the value of the impedance related to the coil 42 changes according to the change in the capacitance of the second capacitor 47.
  • the reception intensity of the NMR signal received by the coil 42 also changes due to the change in the impedance value of the coil 42.
  • FIG. 3 is a schematic block diagram showing an example of the configuration of the control device 60.
  • the control device 60 includes an input unit 61, an NMR signal identification unit 62, an optimum condition identification unit 63, a moisture content identification unit 64, and a storage unit 65.
  • the input unit 61 receives an input from the user of the moisture content measuring device 100.
  • the input unit 61 receives a frequency input from the user of the moisture content measuring device 100, and instructs the first capacitor 46 to change the capacitance so that the first capacitor 46 changes the frequency of the RF pulse of the coil 42. Is output.
  • the relationship between the value of the capacitance of the first capacitor 46 and the frequency of the RF pulse is stored in advance in a table or the like.
  • the input unit 61 receives an input of an impedance value from the user of the moisture content measuring device 100, and causes the second capacitor 47 to have a capacitance so that the second capacitor 47 changes the impedance value related to the coil 42.
  • Output change instructions The relationship between the value of the capacitance of the second capacitor 47 and the receiving impedance is stored in advance in a table or the like.
  • the input unit 61 receives the frequency input from the user of the moisture content measuring device 100 and outputs it to the transmitting unit 44 so as to transmit the frequency of the RF pulse.
  • the input unit 61 receives an input of a measurement start instruction from the user of the moisture content measuring device 100. Further, the input unit 61 receives an input of an optimum condition specifying instruction from the user of the moisture content measuring device 100. Further, the input unit 61 receives an input of a moisture content specifying instruction from the user of the moisture content measuring device 100.
  • the NMR signal specifying unit 62 specifies the value of the NMR signal of the sample 20 received by the receiving unit 45 via the coil 42.
  • the NMR signal identification unit 62 identifies a plurality of different NMR signal values in association with the frequency for each RF pulse having a frequency changed by the first capacitor 46.
  • the NMR signal specifying unit 62 identifies a plurality of different NMR signal values in association with the impedance value for each impedance value changed by the second capacitor 47. Further, the NMR signal specifying unit 62 records the value of the NMR signal in the storage unit 65 in association with the frequency related to the value of the NMR signal. Further, the value of the NMR signal is recorded in the storage unit 65 in association with the impedance value related to the value of the NMR signal.
  • the optimum condition specifying unit 63 accepts the input for specifying the optimum condition from the input unit 61, and specifies the optimum condition at which the value of the NMR signal of the sample 20 is maximized.
  • the optimum condition is a combination of the frequency and impedance values of the RF pulse that maximizes the value of the NMR signal of the sample 20.
  • the optimum condition specifying unit 63 identifies the frequency in which the value of the NMR signal associated with the frequency is maximum among the frequencies recorded in the storage unit 65, and determines the impedance value recorded in the storage unit 65. Among them, the value of the impedance that maximizes the value of the NMR signal associated with the value of the impedance is specified. As a result, the optimum condition specifying unit 63 specifies the combination of the frequency and impedance values that are the optimum conditions. The optimum condition specifying unit 63 records the optimum condition in the storage unit 65.
  • the moisture content specifying unit 64 receives an input for specifying the moisture content from the input unit 61, and causes the transmitting unit 44 to face the sample 20. Next, the moisture content specifying unit 64 transmits an RF pulse related to the optimum conditions from the transmitting unit 44, and identifies the moisture content of the sample 20 by the NMR signal received as a response. Specifically, the moisture content specifying unit 64 performs the following operations.
  • the moisture content specifying unit 64 has a th-position such that the frequency of the RF pulse transmitted through the coil 42 is changed to the frequency related to the optimum condition based on the frequency related to the optimum condition stored in the storage unit 65. 1 Outputs a change instruction to the capacitor 46.
  • the first capacitor 46 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum conditions. Further, the moisture content specifying unit 64 relates the impedance value of the coil 42, in which the second capacitor 47 transmits an RF pulse, to the optimum condition based on the impedance value of the optimum condition stored in the storage unit 65. Change to the impedance value and output. The second capacitor 47 changes the impedance value of the coil 42 that transmits the RF pulse to the value under the optimum condition.
  • the transmitting unit 44 transmits an RF pulse via the coil 42, and the receiving unit 45 receives the NMR signal.
  • the NMR signal specifying unit 62 specifies the value of the NMR signal.
  • the moisture content specifying unit 64 compares the value of the NMR signal specified by the NMR signal specifying unit 62 with the threshold value stored in the storage unit 65, and the time when the value of the NMR signal is equal to or greater than the threshold value. To identify.
  • the water content specifying unit 64 specifies the water content by comparing the information associated with the time stored in the storage unit 65 with the water content with the time specified above. Further, the moisture content specifying unit 64 outputs the specified moisture content to the display unit 50. As a result, the user of the moisture content measuring device 100 can confirm the moisture content displayed by the display unit 50.
  • the storage unit 65 is a device identified by the NMR signal identification unit 62 and stores the value of the NMR signal and the frequency in association with each other. Further, the value of the NMR signal and the value of the impedance specified by the NMR signal specifying unit 62 are stored in association with each other. Further, the storage unit 65 stores a combination of frequency and impedance values which are the optimum conditions specified by the optimum condition specifying unit 63.
  • FIG. 4 is a flowchart showing an example of an operation of specifying the optimum conditions of the moisture content measuring device 100 according to the present embodiment.
  • the user of the moisture content measuring device 100 prepares the sample 20 and the moisture content measuring device 100 as shown in FIG.
  • the sample 20 is a carbon fiber reinforced plastic which is a conductor.
  • the user of the moisture content measuring device 100 inputs the frequency to the moisture content measuring device 100.
  • the input unit 61 accepts a frequency input (step S1).
  • the user of the moisture content measuring device 100 inputs the impedance value to the moisture content measuring device 100.
  • the input unit 61 accepts the input of the impedance value (step S2).
  • the input unit 61 accepts the frequency input in step S1 and changes the capacitance of the first capacitor 46 to change the frequency of the RF pulse transmitted through the coil 42 (step S3).
  • the input unit 61 accepts the input of the impedance value in step S2 and changes the capacitance of the second capacitor 47 to change the impedance value related to the coil 42 (step S4).
  • the user of the moisture content measuring device 100 inputs the measurement start to the moisture content measuring device 100.
  • the input unit 61 accepts the input for starting measurement (step S5).
  • the transmitting unit 44 accepts the input of the measurement start in step S5 and transmits an RF pulse related to the frequency changed in step S3 and the impedance value changed in step S4 via the coil 42 (step S6). ..
  • a magnet 43 is used when the coil 42 emits an RF pulse.
  • the receiving unit 45 receives the NMR signal of the sample 20 which is the response of the RF pulse transmitted in step S6 via the coil 42 (step S7).
  • the NMR signal specifying unit 62 specifies the value of the NMR signal received by the receiving unit 45 in step S7 (step S8).
  • the NMR signal specifying unit 62 records the value of the NMR signal specified in step S8 in the storage unit 65 in association with the frequency changed in step S3 and the impedance value changed in step S4 (step S9).
  • the user of the moisture content measuring device 100 determines whether or not the reception intensity of the NMR signal has been measured for all the candidates of the frequency of the RF pulse in the predetermined frequency range (step S10).
  • step S10 If the reception intensity of the NMR signal has not been measured for all candidates for the frequency of the RF pulse in the predetermined frequency range (step S10: NO), the process returns to step S1 again, and the frequency of the RF pulse is set to the frequency related to the remaining candidates. change. After that, the operations from step S1 to step S9 are performed, and the user of the moisture content measuring device 100 again determines whether or not the reception intensity of the NMR signal has been measured for all the candidates of the RF pulse frequency in the predetermined frequency range. Determine (step S10).
  • step S10 When the user of the moisture content measuring device 100 measures the intensity for all frequency candidates (step S10: YES), whether or not the reception intensity of the NMR signal is measured for all the candidates in the predetermined impedance value range. Is determined (step S11).
  • step S11 NO
  • the process returns to step S2 again and the impedance value is changed to the impedance value for the remaining candidates. To do. After that, the operations from step S2 to step S10 are performed, and the user of the moisture content measuring device 100 again determines whether or not the reception intensity of the NMR signal has been measured for all the candidates in the range of the predetermined impedance value. (Step S11).
  • step S11 when it is determined that the user of the moisture content measuring device 100 has measured the reception intensity of the NMR signal for all the candidates in the range of the predetermined impedance value (step S11: YES), the user of the moisture content measuring device 100 Inputs the optimum condition specification to the moisture content measuring device 100.
  • the input unit 61 accepts an input specific to the optimum conditions (step S12).
  • the optimum condition specifying unit 63 specifies the optimum condition (step S13). That is, the optimum condition specifying unit 63 specifies the frequency in which the value of the NMR signal associated with the frequency is the maximum among the frequencies recorded in the storage unit 65. Further, among the impedance values recorded in the storage unit 65, the impedance value in which the value of the NMR signal associated with the impedance value is the maximum is specified. As a result, the optimum condition specifying unit 63 specifies the combination of the frequency and impedance values that are the optimum conditions.
  • the optimum condition specifying unit 63 records the optimum condition specified in step S12 in the storage unit 65 (step S14).
  • the moisture content measuring device 100 may output the optimum conditions specified in step S12 to the display unit 50 so that the user of the moisture content measuring device 100 can confirm the optimum conditions.
  • the moisture content measuring device 100 may not include the optimum condition specifying unit 63, and the user of the moisture content measuring device 100 may perform an operation related to specifying the optimum condition. For example, when the user of the moisture content measuring device 100 determines that all the frequency candidates have been measured in step S10, the user specifies the frequency related to the optimum condition by comparing with the value of the NMR signal. Further, when the user of the moisture content measuring device 100 determines in step S11 that the reception intensity of the NMR signal has been measured for all the candidates in the range of the predetermined impedance value, the optimum condition is compared with the value of the NMR signal. Specify the impedance value related to.
  • FIG. 5 is a flowchart showing an example of an operation of specifying the moisture content of the moisture content measuring device 100 according to the present embodiment. The operation of specifying the water content is performed after the operation of specifying the optimum conditions of the water content measuring device 100 described above.
  • the user of the moisture content measuring device 100 prepares a sample 20 composed of a conductor of the same type as the sample 20 used in the operation of specifying the optimum conditions, and the moisture content measuring device 100.
  • the sample 20 used in the operation of specifying the optimum conditions is a carbon fiber reinforced plastic
  • the sample 20 in the operation of specifying the water content is also a carbon fiber reinforced plastic.
  • the user of the moisture content measuring device 100 inputs the moisture content specification to the moisture content measuring device 100.
  • the input unit 61 accepts an input for specifying the moisture content (step S21).
  • the moisture content specifying unit 64 first changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition based on the frequency related to the optimum condition stored in the storage unit 65.
  • a change instruction is output to the capacitor 46 (step S22).
  • the input unit 61 receives the input of the frequency related to the optimum condition from the user of the moisture content measuring device 100, and the input unit 61 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition.
  • a change instruction may be output to the first capacitor 46.
  • the impedance value of the coil 42 in which the second capacitor 47 transmits an RF pulse is set to the impedance value of the optimum condition based on the impedance value of the optimum condition stored in the storage unit 65.
  • a change instruction is output to the second capacitor 47 so as to change the value (step S23).
  • the input unit 61 receives the input of the impedance value related to the optimum condition from the user of the moisture content measuring device 100, and the input unit 61 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition.
  • the change instruction may be output to the second capacitor 47 so as to do so.
  • the first capacitor 46 changes the frequency of the RF pulse transmitted via the coil 42 to the frequency according to the optimum conditions (step S24).
  • the second capacitor 47 changes the impedance value of the coil 42 that transmits the RF pulse to the impedance value related to the optimum conditions (step S25).
  • the transmitting unit 44 transmits an RF pulse having a frequency changed in step S24 via the coil 42 (step S26).
  • the receiving unit 45 receives the NMR signal via the coil 42 related to the impedance value changed in step S25 (step S27).
  • the NMR signal specifying unit 62 specifies the value of the NMR signal (step S28).
  • the moisture content specifying unit 64 compares the value of the NMR signal specified by the NMR signal specifying unit 62 with the threshold value stored in the storage unit 65, and specifies the time during which the value of the NMR signal is equal to or greater than the threshold value. (Step S29).
  • the moisture content specifying unit 64 specifies the moisture content by comparing the information associated with the time stored in the storage unit 65 with the moisture content with the time specified in step S29 (step S30).
  • the moisture content specifying unit 64 outputs the specified moisture content to the display unit 50 (step S31).
  • the water content of the sample 20 composed of the conductor can be measured by the NMR signal.
  • the moisture content measuring device 100 is connected in series with the coil 42, the first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46.
  • a second capacitor 47 whose connected capacitance can be adjusted, a transmitter 44 which transmits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor 46 via a coil 42, and RF.
  • the receiving unit 45 that receives the NMR signal generated from the sample 20 facing the transmitting unit 44 by the pulse and the NMR signal are received, the strength of the NMR signal is specified and specified while changing the capacitance of the second capacitor 47.
  • a moisture content specifying unit 64 for specifying the moisture content based on the strength of the NMR signal is provided.
  • the user of the moisture content measuring device 100 can specify the optimum condition which is the frequency of the RF pulse at which the moisture content of the sample 20 can be measured by the NMR signal generated by the sample 20 composed of the conductor.
  • the water content of the conductor sample is specified based on the NMR signal related to the maximum intensity.
  • the moisture content measuring device 100 specifies the moisture content based on the NMR signal related to the maximum intensity. As a result, the user of the moisture content measuring device 100 can more accurately identify the moisture content.
  • the moisture content measuring device 100 uses the first capacitor 46 to change the frequency of the RF pulse, and the NMR signal specifying unit 62 specifies the value of the NMR signal due to the RF pulse of the conductor sample 20 which is the conductor sample 20. And the optimum condition specifying unit 63 for specifying the optimum condition which is the frequency of the RF pulse at which the value of the NMR signal of the conductor sample is maximized.
  • the water content of the conductor sample is specified by the NMR signal received by transmitting the RF pulse related to the optimum condition from the transmitting unit 44.
  • the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and the optimum condition can be obtained. Based on this, the water content of the sample 20 can also be measured by an NMR signal.
  • the NMR signal specifying unit 62 specifies the value of the NMR signal due to the RF pulse of the conductor sample while changing the impedance value of the coil 42 using the second capacitor 47, and the optimum condition is that of the conductor sample. It is a combination of the frequency of the RF pulse that maximizes the value of the NMR signal and the value of the impedance.
  • the user of the moisture content measuring device 100 can specify the impedance value of the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and is based on the optimum condition. Therefore, the water content of the sample 20 can be measured by the NMR signal.
  • the sample 20 used in the moisture content measuring device 100 faces the transmitting portion 44 via the spacer 30 that covers the coil 42.
  • the user of the moisture content measuring device 100 can change the measurement point inside the sample 20.
  • the coil 42 is connected in series to the coil 42, the first capacitor 46 which is connected in parallel to the coil 42 and can adjust the capacitance, and the coil 42 and the first capacitor 46.
  • a step of transmitting an RF pulse whose frequency changes accordingly, a step of receiving an NMR signal generated from a sample 20 facing the transmitting unit 44 by the RF pulse, and a step of receiving the NMR signal, the capacitance of the second capacitor 47 is increased. It has a step of specifying the intensity of the NMR signal while changing it, and specifying the water content based on the intensity of the specified NMR signal.
  • the user who uses the moisture content measuring method can specify the optimum condition which is the frequency of the RF pulse at which the moisture content of the sample 20 can be measured by the NMR signal for the sample 20 composed of the conductor.
  • the user of the moisture content measuring device 100 directly inputs the frequency and impedance values to the input unit 61, but the predetermined frequency and impedance values may be automatically input.
  • the optimum condition specifying unit 63 automatically specifies the combination of the frequency and impedance values, which are the optimum conditions, based on the value of the NMR signal stored in the storage unit 65, but the moisture content measurement.
  • the device 100 may not include the optimum condition specifying unit 63, and the user of the moisture content measuring device 100 may specify the optimum condition.
  • the measurement is performed again to specify the water content, but after the optimum condition is specified, the measurement is not performed again, and the value of the NMR signal when the optimum condition is specified is used.
  • the water content may be specified.
  • FIG. 6 is a schematic block diagram showing the configuration of the computer 1100 according to at least one embodiment.
  • the computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
  • the above-mentioned control device 60 is mounted on the computer 1100.
  • the operation of each processing unit described above is stored in the storage 1130 in the form of a program.
  • the processor 1110 reads a program from the storage 1130, expands it into the main memory 1120, and executes the above processing according to the program. Further, the processor 1110 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 1120 according to the program.
  • the program may be for realizing a part of the functions exerted on the computer 1100.
  • the program may exert its function in combination with another program already stored in the storage 1130, or in combination with another program mounted on another device.
  • the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 1130 include magnetic disks, magneto-optical disks, semiconductor memories, and the like.
  • the storage 1130 may be internal media directly connected to the bus of computer 1100, or external media connected to computer 1100 via interface 1140 or a communication line.
  • this program is distributed to the computer 1100 via a communication line, the distributed computer 1100 may expand the program in the main memory 1120 and execute the above processing.
  • storage 1130 is a non-temporary tangible storage medium.
  • the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the storage 1130.
  • difference file difference program
  • the moisture content measuring device 100 described in each embodiment is grasped as follows, for example.
  • the moisture content measuring device 100 relates to a coil 42, a first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46.
  • a second capacitor 47 which is connected in series and whose capacitance can be adjusted, and a transmitter 44, which emits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor 46, via a coil 42.
  • the receiving unit 45 that receives the NMR signal generated from the sample 20 facing the transmitting unit 44 by the RF pulse, and when the NMR signal is received, the intensity of the NMR signal is specified while changing the capacitance of the second capacitor 47.
  • a water content specifying unit 64 that specifies the water content based on the intensity of the specified NMR signal is provided.
  • the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum conditions for measuring the moisture content of the sample 20 composed of the conductor by the NMR signal.
  • the water content of the conductor sample is specified based on the NMR signal related to the maximum intensity.
  • the moisture content measuring device 100 specifies the moisture content based on the NMR signal related to the maximum intensity. As a result, the user of the moisture content measuring device 100 can more accurately identify the moisture content.
  • the moisture content measuring device 100 uses the first capacitor 46 to change the frequency of the RF pulse while specifying the value of the NMR signal due to the RF pulse of the conductor sample 20 which is the conductor sample 20.
  • the identification unit 62 and the optimum condition identification unit 63 for specifying the optimum condition which is the frequency of the RF pulse that maximizes the value of the NMR signal of the conductor sample are provided, and the moisture content identification unit 64 includes the transmission unit 44.
  • the water content of the conductor sample is specified by the NMR signal received by facing the conductor sample and transmitting an RF pulse according to the optimum conditions from the transmitting unit 44.
  • the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and the optimum condition can be obtained. Based on this, the water content of the sample 20 can also be measured by an NMR signal.
  • the NMR signal specifying unit 62 specifies the value of the NMR signal by the RF pulse of the conductor sample while changing the value of the impedance related to the coil 42 by using the second capacitor 47, and the optimum condition is conductivity. It is a combination of the frequency of the RF pulse that maximizes the value of the NMR signal of the body sample and the value of the impedance that maximizes the value of the NMR signal of the conductor sample.
  • the user of the moisture content measuring device 100 can specify the impedance value of the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and is based on the optimum condition. Therefore, the water content of the sample 20 can be measured by the NMR signal.
  • the sample 20 used in the moisture content measuring device 100 faces the transmitting portion 44 via the spacer 30 covering the coil 42.
  • the user of the moisture content measuring device 100 can change the measurement point inside the sample 20.
  • the moisture content measuring method relates to the coil 42, the first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46. It is a moisture content measuring method using a moisture content measuring device 100 including a second capacitor 47 which is connected in series and can adjust the capacitance, and is a method of measuring the moisture content of the first capacitor 46 via a coil 42.
  • the step of transmitting an RF pulse whose frequency changes according to the change of the above, the step of receiving the NMR signal generated from the sample 20 facing the transmitting unit 44 by the RF pulse, and the step of receiving the NMR signal, the static of the second capacitor 47 It has a step of specifying the strength of the NMR signal while changing the capacitance, and specifying the water content based on the strength of the specified NMR signal.
  • the user who uses the moisture content measuring method can specify the frequency of the RF pulse under the optimum conditions for measuring the moisture content of the sample 20 composed of the conductor by the NMR signal.
  • the present invention relates to a moisture content measuring device and a moisture content measuring method. According to the present invention, the water content of a sample composed of a conductor can be measured by receiving an NMR signal.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A moisture percentage measuring device comprising: a coil; a first capacitor with adjustable capacitance; a second capacitor with adjustable capacitance connected in series to the coil and the first capacitor; a transmitting unit that transmits, via the coil, RF pulses having a frequency that changes in accordance with a change in the capacitance of the first capacitor; a receiving unit that receives a NMR signal generated by the RF pulses from a sample that faces the transmitting unit; and a moisture percentage specifying unit that specifies the NMR signal strength while changing the capacitance of the second capacitor, and specifies a moisture percentage on the basis of the specified NMR signal strength.

Description

水分率測定装置及び水分率測定方法Moisture content measuring device and moisture content measuring method
 本開示は、水分率測定装置及び水分率測定方法に関する。
 本願は、2020年1月10日に出願された特願2020-003027号に対して優先権を主張し、その内容をここに援用する。
The present disclosure relates to a moisture content measuring device and a moisture content measuring method.
The present application claims priority over Japanese Patent Application No. 2020-003027 filed on January 10, 2020, the contents of which are incorporated herein by reference.
 特許文献1には、NMR(Nuclear Magnetic Resonance、核磁気共鳴)センサに必須のコイルを収納するためのスペースを十分に確保し、感度領域の均一性と広がり、磁場強度、探査深度を改善した片側開放型磁気回路が開示されている。 In Patent Document 1, one side has sufficiently secured a space for accommodating a coil essential for an NMR (Nuclear Magnetic Resonance) sensor, and has improved uniformity and expansion of a sensitivity region, magnetic field strength, and exploration depth. An open magnetic circuit is disclosed.
特開2010-060438号公報Japanese Unexamined Patent Publication No. 2010-060438
 RF(Radio Frequency)パルスを発信してNMR信号を受信することでサンプルの特性を測定するセンサを用いるとき、サンプルが導電体である場合は、高電導度のサンプルに渦電流が流れて磁場を作られるため、NMR信号が弱まる。また、サンプルが鉄を含む常磁性鉱物である場合でも、磁場が乱れ、NMR信号が弱まる。これらにより、特性を測定することが困難となる。 When using a sensor that measures the characteristics of a sample by transmitting an RF (Radio Frequency) pulse and receiving an NMR signal, if the sample is a conductor, an eddy current flows through the sample with high conductivity to create a magnetic field. Since it is created, the NMR signal is weakened. Further, even when the sample is a paramagnetic mineral containing iron, the magnetic field is disturbed and the NMR signal is weakened. These make it difficult to measure the characteristics.
 本開示の目的は、上述した課題を解決する水分率測定装置及び水分率測定方法を提供することにある。 An object of the present disclosure is to provide a moisture content measuring device and a moisture content measuring method for solving the above-mentioned problems.
 本開示に係る水分率測定装置は、コイルと、コイルに対して並列に接続された静電容量を調整可能な第1コンデンサと、コイルおよび第1コンデンサに対して直列に接続された静電容量を調整可能な第2コンデンサと、コイルを介して、第1コンデンサの静電容量の変化に応じて周波数が変化するRFパルスを発信する発信部と、RFパルスによって発信部に対向するサンプルから生じるNMR信号を受信する受信部と、NMR信号を受信すると、第2コンデンサの静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定する水分率特定部と、を備える。 The moisture content measuring device according to the present disclosure includes a coil, a first capacitor capable of adjusting the capacitance connected in parallel to the coil, and a capacitance connected in series with the coil and the first capacitor. It arises from a second capacitor that can be adjusted, a transmitter that emits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor via a coil, and a sample that faces the transmitter by the RF pulse. The receiver that receives the NMR signal, and when the NMR signal is received, the intensity of the NMR signal is specified while changing the capacitance of the second capacitor, and the moisture content is specified based on the intensity of the specified NMR signal. It is equipped with a rate identification unit.
 本開示に係る水分率測定方法は、コイルと、コイルに対して並列に接続された静電容量を調整可能な第1コンデンサと、コイルおよび第1コンデンサに対して直列に接続された静電容量を調整可能な第2コンデンサと、を備える水分率測定装置を用いた水分率測定方法であって、コイルを介して、第1コンデンサの静電容量の変化に応じて周波数が変化するRFパルスを発信するステップと、RFパルスによって発信部に対向するサンプルから生じるNMR信号を受信するステップと、NMR信号を受信すると、第2コンデンサの静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定するステップと、を有する。 The moisture content measuring method according to the present disclosure includes a coil, a first capacitor having an adjustable capacitance connected in parallel to the coil, and a capacitance connected in series to the coil and the first capacitor. It is a moisture content measuring method using a moisture content measuring device including a second capacitor capable of adjusting the above, and an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor is transmitted through a coil. The step of transmitting, the step of receiving the NMR signal generated from the sample facing the transmitting part by the RF pulse, and the step of receiving the NMR signal, the intensity of the NMR signal is specified and specified while changing the capacitance of the second capacitor. It has a step of specifying the water content based on the strength of the obtained NMR signal.
 上記態様によれば、導電体により構成されるサンプルに対してもNMR信号の受信によって当該サンプルの水分率を測定可能な水分率測定方法及び水分率測定装置を提供することができる。 According to the above aspect, it is possible to provide a moisture content measuring method and a moisture content measuring device capable of measuring the moisture content of a sample composed of a conductor by receiving an NMR signal.
一実施形態に係る水分率測定装置の一例を示す図である。It is a figure which shows an example of the moisture content measuring apparatus which concerns on one Embodiment. 一実施形態に係るセンサの一例の構成を示す図である。It is a figure which shows the structure of an example of the sensor which concerns on one Embodiment. 一実施形態に係る制御装置の一例の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of an example of the control device which concerns on one Embodiment. 一実施形態に係る水分率測定装置の最適条件を特定する動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which specifies the optimum condition of the moisture content measuring apparatus which concerns on one Embodiment. 一実施形態に係る水分率測定装置の水分率を特定する動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which specifies the moisture content of the moisture content measuring apparatus which concerns on one Embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least one Embodiment.
(水分率測定装置の構成)
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、本実施形態に係る水分率測定装置100の一例を示す図である。
(Configuration of moisture content measuring device)
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an example of a moisture content measuring device 100 according to the present embodiment.
 水分率測定装置100は、導電体により構成されるサンプル20に対して、NMR信号により当該サンプル20の水分率を測定できる装置である。
 水分率測定装置100は、スペーサ30と、センサ40と、表示部50と、制御装置60と、を備える。
The moisture content measuring device 100 is an apparatus capable of measuring the moisture content of the sample 20 composed of a conductor by an NMR signal.
The moisture content measuring device 100 includes a spacer 30, a sensor 40, a display unit 50, and a control device 60.
 図1に示す一例では、水分率測定装置100はサンプル20の一面だけにセンサ40が対向する片側開放型である。水分率測定装置100は、片側開放型でなく、サンプル20の複数の面にセンサ40が対向する構成であっても良い。 In the example shown in FIG. 1, the moisture content measuring device 100 is a one-sided open type in which the sensor 40 faces only one side of the sample 20. The moisture content measuring device 100 may not be of the one-sided open type, but may have a configuration in which the sensor 40 faces a plurality of surfaces of the sample 20.
 サンプル20は、導電性を有する物質または磁性を有する物質である。サンプル20の例としては、炭素繊維強化プラスチックと、モルタルと、セメントと、が挙げられる。炭素繊維強化プラスチックは導電性が高い。また、一般的に、セメントやモルタルは骨材に常磁性鉱物を含むため、これらは磁性を有する物体である。 Sample 20 is a substance having conductivity or a substance having magnetism. Examples of sample 20 include carbon fiber reinforced plastic, mortar, and cement. Carbon fiber reinforced plastic has high conductivity. In addition, since cement and mortar generally contain paramagnetic minerals in their aggregates, they are magnetic objects.
 スペーサ30は、センサ40の発信部44を覆い、サンプル20と、センサ40との間に挟まれる絶縁体である。絶縁体の例としては、PTFEなどの樹脂が挙げられる。スペーサ30は、サンプル20とセンサ40との間に挟まれることで、サンプル20とセンサ40との距離を規定する。すなわち、スペーサ30の厚みを変更することにより、サンプル20とセンサ40との距離を変更することができ、サンプル20内部の水分率が測定可能な箇所を変更できる。 The spacer 30 is an insulator that covers the transmitting portion 44 of the sensor 40 and is sandwiched between the sample 20 and the sensor 40. Examples of insulators include resins such as PTFE. The spacer 30 is sandwiched between the sample 20 and the sensor 40 to define the distance between the sample 20 and the sensor 40. That is, by changing the thickness of the spacer 30, the distance between the sample 20 and the sensor 40 can be changed, and the location where the moisture content inside the sample 20 can be measured can be changed.
 センサ40は、サンプル20にRFパルスを発信し、当該RFパルスによってサンプル20から生じる応答であるNMR信号を受信する。上記RFパルスは、電磁波の一種であるラジオ波の信号である。上記NMR信号は、磁石とコイル42を用いてサンプル20に電磁波を発信したときに、当該サンプル20に存在するプロトンにより解放された磁場で発生する信号である。 The sensor 40 transmits an RF pulse to the sample 20 and receives an NMR signal which is a response generated from the sample 20 by the RF pulse. The RF pulse is a radio wave signal which is a kind of electromagnetic wave. The NMR signal is a signal generated by a magnetic field released by a proton existing in the sample 20 when an electromagnetic wave is transmitted to the sample 20 using a magnet and a coil 42.
 表示部50は、制御装置60からの出力を表示する装置である。表示部50の例としては、ディスプレイ装置が挙げられる。制御装置60からの出力の例としては、水分率が挙げられる。 The display unit 50 is a device that displays the output from the control device 60. An example of the display unit 50 is a display device. An example of the output from the control device 60 is the moisture content.
 制御装置60は、センサ40が受信したNMR信号に基づいて、サンプル20の水分率を測定する。図1に示す一例では、制御装置60がセンサ40と一体になっているが、センサ40とは独立して存在し、無線または有線でセンサ40と接続されても良い。 The control device 60 measures the water content of the sample 20 based on the NMR signal received by the sensor 40. In the example shown in FIG. 1, the control device 60 is integrated with the sensor 40, but it exists independently of the sensor 40 and may be connected to the sensor 40 wirelessly or by wire.
 図2は、センサ40の構成の一例を示す図である。センサ40は、筐体41と、コイル42と、磁石43と、発信部44と、受信部45と、第1コンデンサ46と、第2コンデンサ47と、を備える。 FIG. 2 is a diagram showing an example of the configuration of the sensor 40. The sensor 40 includes a housing 41, a coil 42, a magnet 43, a transmitting unit 44, a receiving unit 45, a first capacitor 46, and a second capacitor 47.
 筐体41は、磁石43と、発信部44と、受信部45と、第1コンデンサ46と、第2コンデンサ47と、を収容する箱状の物体である。 The housing 41 is a box-shaped object that houses a magnet 43, a transmitting unit 44, a receiving unit 45, a first capacitor 46, and a second capacitor 47.
 コイル42は、磁石43が発生させた磁力を用いてサンプル20にRFパルスを発信し、当該RFパルスによるサンプル20のNMR信号を受信する。コイル42は、並列に第1コンデンサ46と接続され、直列に第2コンデンサ47と接続される。第1コンデンサ46は、チューニングに用いられる。 The coil 42 transmits an RF pulse to the sample 20 using the magnetic force generated by the magnet 43, and receives the NMR signal of the sample 20 due to the RF pulse. The coil 42 is connected to the first capacitor 46 in parallel and is connected to the second capacitor 47 in series. The first capacitor 46 is used for tuning.
 磁石43は、磁力を発生させ、コイル42がRFパルスを発信できるようにする磁性体である。磁石43の例としては、超伝導磁石が挙げられる。 The magnet 43 is a magnetic material that generates a magnetic force and enables the coil 42 to transmit an RF pulse. An example of the magnet 43 is a superconducting magnet.
 発信部44は、入力部61から測定開始の入力を受け入れて、コイル42を介してRFパルスを発信する。RFパルスを発信する方法の例としては、CPMG(Curr Purcel Meilboom Gill)法が挙げられる。上記CPMG法に係る動作は以下の通りである。位相が90°のRFパルスを与えた後、180°のRFパルスを与える。その後、180°のRFパルスを繰り返し与えて、都度の横磁化ベクトルの最大強度を記録し、緩和曲線を得る。 The transmission unit 44 receives the input for starting measurement from the input unit 61 and transmits an RF pulse via the coil 42. An example of a method of transmitting an RF pulse is a CPMG (Curr Purcel Mailboom Gil) method. The operation according to the CPMG method is as follows. After giving an RF pulse with a phase of 90 °, an RF pulse with a phase of 180 ° is given. Then, 180 ° RF pulses are repeatedly applied to record the maximum intensity of the transverse magnetization vector each time, and a transition curve is obtained.
 受信部45は、コイル42を介して、発信部44が発信したRFパルスに対する応答であるサンプル20のNMR信号を受信する。 The receiving unit 45 receives the NMR signal of the sample 20 which is a response to the RF pulse transmitted by the transmitting unit 44 via the coil 42.
 第1コンデンサ46は、コイル42に対し並列に設けられる可変容量コンデンサである。第1コンデンサ46は、制御装置60からの指示に従って静電容量を変化させる。第1コンデンサ46の静電容量の変化に応じて、コイル42が発信するRFパルスの周波数が変化する。
 例えば、制御装置60は、RFパルスの周波数が0.01MHz以上且つ1000MHz以下の範囲内で変化するように、第1コンデンサ46の静電容量を変化させる。
The first capacitor 46 is a variable capacitance capacitor provided in parallel with the coil 42. The first capacitor 46 changes the capacitance according to the instruction from the control device 60. The frequency of the RF pulse transmitted by the coil 42 changes according to the change in the capacitance of the first capacitor 46.
For example, the control device 60 changes the capacitance of the first capacitor 46 so that the frequency of the RF pulse changes within the range of 0.01 MHz or more and 1000 MHz or less.
 第2コンデンサ47は、コイル42および第1コンデンサ46に対し直列に設けられる可変容量コンデンサである。第2コンデンサ47は、制御装置60からの指示に従って静電容量を変化させる、第2コンデンサ47の静電容量の変化に応じて、コイル42に係るインピーダンスの値が変化する。コイル42に係るインピーダンスの値の変化により、コイル42が受信するNMR信号の受信強度も変化する。 The second capacitor 47 is a variable capacitance capacitor provided in series with the coil 42 and the first capacitor 46. The second capacitor 47 changes the capacitance according to the instruction from the control device 60, and the value of the impedance related to the coil 42 changes according to the change in the capacitance of the second capacitor 47. The reception intensity of the NMR signal received by the coil 42 also changes due to the change in the impedance value of the coil 42.
 図3は、制御装置60の構成の一例を示す概略ブロック図である。制御装置60は、入力部61と、NMR信号特定部62と、最適条件特定部63と、水分率特定部64と、記憶部65と、を備える。 FIG. 3 is a schematic block diagram showing an example of the configuration of the control device 60. The control device 60 includes an input unit 61, an NMR signal identification unit 62, an optimum condition identification unit 63, a moisture content identification unit 64, and a storage unit 65.
 入力部61は、水分率測定装置100のユーザから入力を受け入れる。 The input unit 61 receives an input from the user of the moisture content measuring device 100.
 例えば、入力部61は、水分率測定装置100のユーザから周波数の入力を受け入れ、第1コンデンサ46がコイル42のRFパルスの周波数を変更するように、第1コンデンサ46に静電容量の変更指示を出力する。第1コンデンサ46の静電容量の値とRFパルスの周波数との関係は、予めテーブルなどで記憶されている。 For example, the input unit 61 receives a frequency input from the user of the moisture content measuring device 100, and instructs the first capacitor 46 to change the capacitance so that the first capacitor 46 changes the frequency of the RF pulse of the coil 42. Is output. The relationship between the value of the capacitance of the first capacitor 46 and the frequency of the RF pulse is stored in advance in a table or the like.
 また、入力部61は、水分率測定装置100のユーザからインピーダンスの値の入力を受け入れ、第2コンデンサ47がコイル42に係るインピーダンスの値を変更するように、第2コンデンサ47に静電容量の変更指示を出力する。第2コンデンサ47の静電容量の値と受信インピーダンスとの関係は、予めテーブルなどで記憶されている。 Further, the input unit 61 receives an input of an impedance value from the user of the moisture content measuring device 100, and causes the second capacitor 47 to have a capacitance so that the second capacitor 47 changes the impedance value related to the coil 42. Output change instructions. The relationship between the value of the capacitance of the second capacitor 47 and the receiving impedance is stored in advance in a table or the like.
 また、入力部61は、水分率測定装置100のユーザから周波数の入力を受け入れ、発信部44に、RFパルスの周波数を発信するように出力する。 Further, the input unit 61 receives the frequency input from the user of the moisture content measuring device 100 and outputs it to the transmitting unit 44 so as to transmit the frequency of the RF pulse.
 入力部61は、水分率測定装置100のユーザから、測定開始指示の入力を受け入れる。また、入力部61は、水分率測定装置100のユーザから、最適条件特定指示の入力を受け入れる。また、入力部61は、水分率測定装置100のユーザから、水分率特定指示の入力を受け入れる。 The input unit 61 receives an input of a measurement start instruction from the user of the moisture content measuring device 100. Further, the input unit 61 receives an input of an optimum condition specifying instruction from the user of the moisture content measuring device 100. Further, the input unit 61 receives an input of a moisture content specifying instruction from the user of the moisture content measuring device 100.
 NMR信号特定部62は、受信部45がコイル42を介して受け入れたサンプル20のNMR信号の値を特定する。例えば、NMR信号特定部62は、第1コンデンサ46により変更された周波数のRFパルス別に、異なる複数のNMR信号の値を当該周波数に関連付けて特定する。 The NMR signal specifying unit 62 specifies the value of the NMR signal of the sample 20 received by the receiving unit 45 via the coil 42. For example, the NMR signal identification unit 62 identifies a plurality of different NMR signal values in association with the frequency for each RF pulse having a frequency changed by the first capacitor 46.
 例えば、NMR信号特定部62は、第2コンデンサ47により変更されたインピーダンスの値別に、異なる複数のNMR信号の値を当該インピーダンスの値に関連付けて特定する。また、NMR信号特定部62は、NMR信号の値を当該NMR信号の値に係る周波数に関連付けて記憶部65に記録する。また、NMR信号の値を当該NMR信号の値に係るインピーダンスの値に関連付けて記憶部65に記録する。 For example, the NMR signal specifying unit 62 identifies a plurality of different NMR signal values in association with the impedance value for each impedance value changed by the second capacitor 47. Further, the NMR signal specifying unit 62 records the value of the NMR signal in the storage unit 65 in association with the frequency related to the value of the NMR signal. Further, the value of the NMR signal is recorded in the storage unit 65 in association with the impedance value related to the value of the NMR signal.
 最適条件特定部63は、入力部61から、最適条件特定の入力を受け入れ、サンプル20のNMR信号の値が最大となる最適条件を特定する。上記最適条件は、サンプル20のNMR信号の値が最大となるRFパルスの周波数及びインピーダンスの値の組み合わせである。 The optimum condition specifying unit 63 accepts the input for specifying the optimum condition from the input unit 61, and specifies the optimum condition at which the value of the NMR signal of the sample 20 is maximized. The optimum condition is a combination of the frequency and impedance values of the RF pulse that maximizes the value of the NMR signal of the sample 20.
 最適条件特定部63は、記憶部65に記録されている周波数のうち、当該周波数に関連付けられたNMR信号の値が最大となる周波数を特定し、記憶部65に記録されているインピーダンスの値のうち、当該インピーダンスの値に関連付けられたNMR信号の値が最大となるインピーダンスの値を特定する。これにより、最適条件特定部63は、最適条件となる周波数及びインピーダンスの値の組み合わせを特定する。最適条件特定部63は、上記最適条件を記憶部65に記録する。 The optimum condition specifying unit 63 identifies the frequency in which the value of the NMR signal associated with the frequency is maximum among the frequencies recorded in the storage unit 65, and determines the impedance value recorded in the storage unit 65. Among them, the value of the impedance that maximizes the value of the NMR signal associated with the value of the impedance is specified. As a result, the optimum condition specifying unit 63 specifies the combination of the frequency and impedance values that are the optimum conditions. The optimum condition specifying unit 63 records the optimum condition in the storage unit 65.
 水分率特定部64は、入力部61から、水分率特定の入力を受け入れ、発信部44をサンプル20に対向させる。次いで、水分率特定部64は、発信部44から最適条件に係るRFパルスを発信し、応答として受信するNMR信号により、サンプル20の水分率を特定する。
 水分率特定部64は、具体的には以下の動作を行う。
The moisture content specifying unit 64 receives an input for specifying the moisture content from the input unit 61, and causes the transmitting unit 44 to face the sample 20. Next, the moisture content specifying unit 64 transmits an RF pulse related to the optimum conditions from the transmitting unit 44, and identifies the moisture content of the sample 20 by the NMR signal received as a response.
Specifically, the moisture content specifying unit 64 performs the following operations.
 水分率特定部64は、記憶部65が記憶している最適条件に係る周波数に基づいて、コイル42を介して発信されるRFパルスの周波数が最適条件に係る周波数に変更されるように、第1コンデンサ46に変更指示を出力する。 The moisture content specifying unit 64 has a th-position such that the frequency of the RF pulse transmitted through the coil 42 is changed to the frequency related to the optimum condition based on the frequency related to the optimum condition stored in the storage unit 65. 1 Outputs a change instruction to the capacitor 46.
 第1コンデンサ46は、コイル42を介して発信されるRFパルスの周波数を最適条件に係る周波数に変更する。また、水分率特定部64は、記憶部65が記憶している最適条件に係るインピーダンスの値に基づいて、第2コンデンサ47が、RFパルスを発信するコイル42のインピーダンスの値を最適条件に係るインピーダンスの値に変更して出力する。第2コンデンサ47は、RFパルスを発信するコイル42のインピーダンスの値が最適条件の値に変更する。 The first capacitor 46 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum conditions. Further, the moisture content specifying unit 64 relates the impedance value of the coil 42, in which the second capacitor 47 transmits an RF pulse, to the optimum condition based on the impedance value of the optimum condition stored in the storage unit 65. Change to the impedance value and output. The second capacitor 47 changes the impedance value of the coil 42 that transmits the RF pulse to the value under the optimum condition.
 この後、発信部44はコイル42を介してRFパルスを発信し、受信部45がNMR信号を受け入れる。NMR信号特定部62は、NMR信号の値を特定する。 After that, the transmitting unit 44 transmits an RF pulse via the coil 42, and the receiving unit 45 receives the NMR signal. The NMR signal specifying unit 62 specifies the value of the NMR signal.
 また、水分率特定部64は、NMR信号特定部62により特定されたNMR信号の値と、記憶部65が記憶している閾値とを照らし合わせて、NMR信号の値が当該閾値以上である時間を特定する。 Further, the moisture content specifying unit 64 compares the value of the NMR signal specified by the NMR signal specifying unit 62 with the threshold value stored in the storage unit 65, and the time when the value of the NMR signal is equal to or greater than the threshold value. To identify.
 その後、水分率特定部64は、記憶部65が記憶している時間と水分率とが関連付けられた情報に、上記で特定した時間を照らし合わせて、水分率を特定する。また、水分率特定部64は、特定した水分率を表示部50に出力する。
 これにより、水分率測定装置100のユーザは、表示部50により表示される水分率を確認できる。
After that, the water content specifying unit 64 specifies the water content by comparing the information associated with the time stored in the storage unit 65 with the water content with the time specified above. Further, the moisture content specifying unit 64 outputs the specified moisture content to the display unit 50.
As a result, the user of the moisture content measuring device 100 can confirm the moisture content displayed by the display unit 50.
 記憶部65は、NMR信号特定部62により特定された、NMR信号の値と周波数とを関連付けて記憶する装置である。また、NMR信号特定部62により特定された、NMR信号の値とインピーダンスの値とを関連付けて記憶する。また、記憶部65は、最適条件特定部63が特定した最適条件である周波数及びインピーダンスの値の組み合わせを記憶する。 The storage unit 65 is a device identified by the NMR signal identification unit 62 and stores the value of the NMR signal and the frequency in association with each other. Further, the value of the NMR signal and the value of the impedance specified by the NMR signal specifying unit 62 are stored in association with each other. Further, the storage unit 65 stores a combination of frequency and impedance values which are the optimum conditions specified by the optimum condition specifying unit 63.
(最適条件を特定する動作)
 以下、水分率測定装置100の最適条件を特定する動作について説明する。
 図4は、本実施形態に係る水分率測定装置100の最適条件を特定する動作の一例を示すフローチャートである。
(Operation to specify the optimum condition)
Hereinafter, an operation of specifying the optimum conditions of the moisture content measuring device 100 will be described.
FIG. 4 is a flowchart showing an example of an operation of specifying the optimum conditions of the moisture content measuring device 100 according to the present embodiment.
 水分率測定装置100のユーザは、図1に示すように、サンプル20と、水分率測定装置100と、を準備する。ここで、サンプル20は、導電体である炭素繊維強化プラスチックとする。 The user of the moisture content measuring device 100 prepares the sample 20 and the moisture content measuring device 100 as shown in FIG. Here, the sample 20 is a carbon fiber reinforced plastic which is a conductor.
 水分率測定装置100のユーザは、周波数を水分率測定装置100に入力する。入力部61は、周波数の入力を受け入れる(ステップS1)。 The user of the moisture content measuring device 100 inputs the frequency to the moisture content measuring device 100. The input unit 61 accepts a frequency input (step S1).
 水分率測定装置100のユーザは、インピーダンスの値を水分率測定装置100に入力する。入力部61は、インピーダンスの値の入力を受け入れる(ステップS2)。 The user of the moisture content measuring device 100 inputs the impedance value to the moisture content measuring device 100. The input unit 61 accepts the input of the impedance value (step S2).
 入力部61は、ステップS1での周波数の入力を受け入れて、第1コンデンサ46の静電容量を変更することで、コイル42を介して発信されるRFパルスの周波数を変更する(ステップS3)。 The input unit 61 accepts the frequency input in step S1 and changes the capacitance of the first capacitor 46 to change the frequency of the RF pulse transmitted through the coil 42 (step S3).
 入力部61は、ステップS2でのインピーダンスの値の入力を受け入れて、第2コンデンサ47の静電容量を変更することで、コイル42に係るインピーダンスの値を変更する(ステップS4)。 The input unit 61 accepts the input of the impedance value in step S2 and changes the capacitance of the second capacitor 47 to change the impedance value related to the coil 42 (step S4).
 水分率測定装置100のユーザは、測定開始を水分率測定装置100に入力する。入力部61は、測定開始の入力を受け入れる(ステップS5)。 The user of the moisture content measuring device 100 inputs the measurement start to the moisture content measuring device 100. The input unit 61 accepts the input for starting measurement (step S5).
 発信部44は、ステップS5での測定開始の入力を受け入れて、コイル42を介してステップS3で変更された周波数及びステップS4で変更されたインピーダンスの値に係るRFパルスを発信する(ステップS6)。コイル42がRFパルスを発信するとき、磁石43を用いる。 The transmitting unit 44 accepts the input of the measurement start in step S5 and transmits an RF pulse related to the frequency changed in step S3 and the impedance value changed in step S4 via the coil 42 (step S6). .. A magnet 43 is used when the coil 42 emits an RF pulse.
 受信部45は、ステップS6で発信されたRFパルスの応答であるサンプル20のNMR信号を、コイル42を介して受信する(ステップS7)。 The receiving unit 45 receives the NMR signal of the sample 20 which is the response of the RF pulse transmitted in step S6 via the coil 42 (step S7).
 NMR信号特定部62は、ステップS7で受信部45が受信したNMR信号の値を特定する(ステップS8)。 The NMR signal specifying unit 62 specifies the value of the NMR signal received by the receiving unit 45 in step S7 (step S8).
 NMR信号特定部62は、ステップS8で特定したNMR信号の値を、ステップS3で変更された周波数と、ステップS4で変更されたインピーダンスの値に関連付けて記憶部65に記録する(ステップS9)。 The NMR signal specifying unit 62 records the value of the NMR signal specified in step S8 in the storage unit 65 in association with the frequency changed in step S3 and the impedance value changed in step S4 (step S9).
 水分率測定装置100のユーザは、所定周波数範囲におけるRFパルスの周波数のすべての候補について、NMR信号の受信強度を測定したか否かを判定する(ステップS10)。 The user of the moisture content measuring device 100 determines whether or not the reception intensity of the NMR signal has been measured for all the candidates of the frequency of the RF pulse in the predetermined frequency range (step S10).
 所定周波数範囲におけるRFパルスの周波数のすべての候補について、NMR信号の受信強度を測定していない場合(ステップS10:NO)、再度ステップS1に戻り、RFパルスの周波数を残りの候補に係る周波数に変更する。その後、ステップS1からステップS9までの動作を行い、水分率測定装置100のユーザは、再度、所定周波数範囲におけるRFパルスの周波数のすべての候補について、NMR信号の受信強度を測定したか否かを判定する(ステップS10)。 If the reception intensity of the NMR signal has not been measured for all candidates for the frequency of the RF pulse in the predetermined frequency range (step S10: NO), the process returns to step S1 again, and the frequency of the RF pulse is set to the frequency related to the remaining candidates. change. After that, the operations from step S1 to step S9 are performed, and the user of the moisture content measuring device 100 again determines whether or not the reception intensity of the NMR signal has been measured for all the candidates of the RF pulse frequency in the predetermined frequency range. Determine (step S10).
 水分率測定装置100のユーザは、すべての周波数の候補について強度を測定した場合(ステップS10:YES)、所定インピーダンスの値の範囲におけるすべての候補について、NMR信号の受信強度を測定したか否かを判定する(ステップS11)。 When the user of the moisture content measuring device 100 measures the intensity for all frequency candidates (step S10: YES), whether or not the reception intensity of the NMR signal is measured for all the candidates in the predetermined impedance value range. Is determined (step S11).
 所定インピーダンスの値の範囲におけるすべての候補について、NMR信号の受信強度を測定していない場合(ステップS11:NO)、再度ステップS2に戻り、インピーダンスの値を残りの候補に係るインピーダンスの値に変更する。その後、ステップS2からステップS10までの動作を行い、水分率測定装置100のユーザは、再度、所定インピーダンスの値の範囲におけるすべての候補について、NMR信号の受信強度を測定したか否かを判定する(ステップS11)。 If the reception intensity of the NMR signal has not been measured for all the candidates in the predetermined impedance value range (step S11: NO), the process returns to step S2 again and the impedance value is changed to the impedance value for the remaining candidates. To do. After that, the operations from step S2 to step S10 are performed, and the user of the moisture content measuring device 100 again determines whether or not the reception intensity of the NMR signal has been measured for all the candidates in the range of the predetermined impedance value. (Step S11).
 他方、水分率測定装置100のユーザは、所定インピーダンスの値の範囲におけるすべての候補について、NMR信号の受信強度を測定したと判定した場合(ステップS11:YES)は、水分率測定装置100のユーザは、最適条件特定を水分率測定装置100に入力する。入力部61は、最適条件特定の入力を受け入れる(ステップS12)。 On the other hand, when it is determined that the user of the moisture content measuring device 100 has measured the reception intensity of the NMR signal for all the candidates in the range of the predetermined impedance value (step S11: YES), the user of the moisture content measuring device 100 Inputs the optimum condition specification to the moisture content measuring device 100. The input unit 61 accepts an input specific to the optimum conditions (step S12).
 最適条件特定部63は、最適条件を特定する(ステップS13)。すなわち、最適条件特定部63は、記憶部65に記録されている周波数のうち、当該周波数に関連付けられたNMR信号の値が最大である周波数を特定する。また、記憶部65に記録されているインピーダンスの値のうち、当該インピーダンスの値に関連付けられたNMR信号の値が最大であるインピーダンスの値を特定する。これにより、最適条件特定部63は、最適条件となる周波数及びインピーダンスの値の組み合わせを特定する。 The optimum condition specifying unit 63 specifies the optimum condition (step S13). That is, the optimum condition specifying unit 63 specifies the frequency in which the value of the NMR signal associated with the frequency is the maximum among the frequencies recorded in the storage unit 65. Further, among the impedance values recorded in the storage unit 65, the impedance value in which the value of the NMR signal associated with the impedance value is the maximum is specified. As a result, the optimum condition specifying unit 63 specifies the combination of the frequency and impedance values that are the optimum conditions.
 最適条件特定部63は、ステップS12で特定された最適条件を記憶部65に記録する(ステップS14)。 The optimum condition specifying unit 63 records the optimum condition specified in step S12 in the storage unit 65 (step S14).
 水分率測定装置100は、ステップS12で特定された最適条件を表示部50に出力し、水分率測定装置100のユーザが当該最適条件を確認できるようにしても良い。 The moisture content measuring device 100 may output the optimum conditions specified in step S12 to the display unit 50 so that the user of the moisture content measuring device 100 can confirm the optimum conditions.
 また、水分率測定装置100が最適条件特定部63を備えず、最適条件の特定に係る動作を水分率測定装置100のユーザが行っても良い。例えば、水分率測定装置100のユーザは、ステップS10で周波数のすべての候補について測定したと判定した場合、NMR信号の値と照らし合わせて、最適条件に係る周波数を特定する。また、水分率測定装置100のユーザは、ステップS11で所定インピーダンスの値の範囲におけるすべての候補について、NMR信号の受信強度を測定したと判定した場合、NMR信号の値と照らし合わせて、最適条件に係るインピーダンスの値を特定する。 Further, the moisture content measuring device 100 may not include the optimum condition specifying unit 63, and the user of the moisture content measuring device 100 may perform an operation related to specifying the optimum condition. For example, when the user of the moisture content measuring device 100 determines that all the frequency candidates have been measured in step S10, the user specifies the frequency related to the optimum condition by comparing with the value of the NMR signal. Further, when the user of the moisture content measuring device 100 determines in step S11 that the reception intensity of the NMR signal has been measured for all the candidates in the range of the predetermined impedance value, the optimum condition is compared with the value of the NMR signal. Specify the impedance value related to.
 上記の動作により、導電体により構成されるサンプル20に対してもNMR信号により当該サンプル20の水分率を測定できるRFパルスの最適条件となる周波数及びインピーダンスの値の組み合わせを特定できる。 By the above operation, it is possible to specify the combination of the frequency and impedance values that are the optimum conditions for the RF pulse that can measure the water content of the sample 20 by the NMR signal even for the sample 20 composed of the conductor.
(水分率を特定する動作)
 以下、水分率測定装置100の水分率を特定する動作について説明する。
 図5は、本実施形態に係る水分率測定装置100の水分率を特定する動作の一例を示すフローチャートである。
 水分率を特定する動作は、上記で説明した水分率測定装置100の最適条件を特定する動作の後に行われる。
(Operation to specify the moisture content)
Hereinafter, the operation of specifying the moisture content of the moisture content measuring device 100 will be described.
FIG. 5 is a flowchart showing an example of an operation of specifying the moisture content of the moisture content measuring device 100 according to the present embodiment.
The operation of specifying the water content is performed after the operation of specifying the optimum conditions of the water content measuring device 100 described above.
 水分率測定装置100のユーザは、最適条件を特定する動作で用いられたサンプル20と同じ種別の導電体から構成されるサンプル20と、水分率測定装置100と、を準備する。例えば、最適条件を特定する動作で用いられたサンプル20が炭素繊維強化プラスチックである場合は、水分率を特定する動作におけるサンプル20も、同じく炭素繊維強化プラスチックである。 The user of the moisture content measuring device 100 prepares a sample 20 composed of a conductor of the same type as the sample 20 used in the operation of specifying the optimum conditions, and the moisture content measuring device 100. For example, when the sample 20 used in the operation of specifying the optimum conditions is a carbon fiber reinforced plastic, the sample 20 in the operation of specifying the water content is also a carbon fiber reinforced plastic.
 水分率測定装置100のユーザは、水分率測定装置100に対し、水分率特定を入力する。入力部61は、水分率特定の入力を受け入れる(ステップS21)。 The user of the moisture content measuring device 100 inputs the moisture content specification to the moisture content measuring device 100. The input unit 61 accepts an input for specifying the moisture content (step S21).
 水分率特定部64は、記憶部65が記憶している最適条件に係る周波数に基づいて、コイル42を介して発信されるRFパルスの周波数を最適条件に係る周波数に変更するように、第1コンデンサ46に変更指示を出力する(ステップS22)。入力部61が水分率測定装置100のユーザから最適条件に係る周波数の入力を受け入れ、当該入力部61が、コイル42を介して発信されるRFパルスの周波数を最適条件に係る周波数に変更するように、第1コンデンサ46に変更指示を出力しても良い。 The moisture content specifying unit 64 first changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition based on the frequency related to the optimum condition stored in the storage unit 65. A change instruction is output to the capacitor 46 (step S22). The input unit 61 receives the input of the frequency related to the optimum condition from the user of the moisture content measuring device 100, and the input unit 61 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition. In addition, a change instruction may be output to the first capacitor 46.
 水分率特定部64は、記憶部65が記憶している最適条件に係るインピーダンスの値に基づいて、第2コンデンサ47が、RFパルスを発信するコイル42のインピーダンスの値を最適条件に係るインピーダンスの値に変更するように、第2コンデンサ47に変更指示を出力する(ステップS23)。入力部61が水分率測定装置100のユーザから最適条件に係るインピーダンスの値の入力を受け入れ、当該入力部61が、コイル42を介して発信されるRFパルスの周波数を最適条件に係る周波数に変更するように、第2コンデンサ47に変更指示を出力しても良い。 In the moisture content specifying unit 64, the impedance value of the coil 42 in which the second capacitor 47 transmits an RF pulse is set to the impedance value of the optimum condition based on the impedance value of the optimum condition stored in the storage unit 65. A change instruction is output to the second capacitor 47 so as to change the value (step S23). The input unit 61 receives the input of the impedance value related to the optimum condition from the user of the moisture content measuring device 100, and the input unit 61 changes the frequency of the RF pulse transmitted through the coil 42 to the frequency related to the optimum condition. The change instruction may be output to the second capacitor 47 so as to do so.
 第1コンデンサ46は、コイル42を介して発信されるRFパルスの周波数を最適条件に係る周波数に変更する(ステップS24)。 The first capacitor 46 changes the frequency of the RF pulse transmitted via the coil 42 to the frequency according to the optimum conditions (step S24).
 第2コンデンサ47は、RFパルスを発信するコイル42のインピーダンスの値を最適条件に係るインピーダンスの値に変更する(ステップS25)。 The second capacitor 47 changes the impedance value of the coil 42 that transmits the RF pulse to the impedance value related to the optimum conditions (step S25).
 発信部44は、コイル42を介してステップS24で変更された周波数のRFパルスを発信する(ステップS26)。 The transmitting unit 44 transmits an RF pulse having a frequency changed in step S24 via the coil 42 (step S26).
 受信部45は、ステップS25で変更されたインピーダンスの値に係るコイル42を介してNMR信号を受け入れる(ステップS27)。 The receiving unit 45 receives the NMR signal via the coil 42 related to the impedance value changed in step S25 (step S27).
 NMR信号特定部62は、NMR信号の値を特定する(ステップS28)。 The NMR signal specifying unit 62 specifies the value of the NMR signal (step S28).
 水分率特定部64は、NMR信号特定部62により特定されたNMR信号の値と、記憶部65が記憶している閾値とを照らし合わせて、NMR信号の値が当該閾値以上である時間を特定する(ステップS29)。 The moisture content specifying unit 64 compares the value of the NMR signal specified by the NMR signal specifying unit 62 with the threshold value stored in the storage unit 65, and specifies the time during which the value of the NMR signal is equal to or greater than the threshold value. (Step S29).
 水分率特定部64は、記憶部65が記憶している時間と水分率とが関連付けられた情報を、ステップS29で特定された時間と照らし合わせて、水分率を特定する(ステップS30)。 The moisture content specifying unit 64 specifies the moisture content by comparing the information associated with the time stored in the storage unit 65 with the moisture content with the time specified in step S29 (step S30).
 水分率特定部64は、特定した水分率を表示部50に出力する(ステップS31)。 The moisture content specifying unit 64 outputs the specified moisture content to the display unit 50 (step S31).
 上記の一連の動作により、導電体により構成されるサンプル20に対してもNMR信号により当該サンプル20の水分率を測定することができる。 By the above series of operations, the water content of the sample 20 composed of the conductor can be measured by the NMR signal.
(作用・効果) (Action / effect)
 本開示に係る水分率測定装置100は、コイル42と、コイル42に対して並列に接続された静電容量を調整可能な第1コンデンサ46と、コイル42および第1コンデンサ46に対して直列に接続された静電容量を調整可能な第2コンデンサ47と、コイル42を介して、第1コンデンサ46の静電容量の変化に応じて周波数が変化するRFパルスを発信する発信部44と、RFパルスによって発信部44に対向するサンプル20から生じるNMR信号を受信する受信部45と、NMR信号を受信すると、第2コンデンサ47の静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定する水分率特定部64と、を備える。 The moisture content measuring device 100 according to the present disclosure is connected in series with the coil 42, the first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46. A second capacitor 47 whose connected capacitance can be adjusted, a transmitter 44 which transmits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor 46 via a coil 42, and RF. When the receiving unit 45 that receives the NMR signal generated from the sample 20 facing the transmitting unit 44 by the pulse and the NMR signal are received, the strength of the NMR signal is specified and specified while changing the capacitance of the second capacitor 47. A moisture content specifying unit 64 for specifying the moisture content based on the strength of the NMR signal is provided.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20が発するNMR信号により当該サンプル20の水分率を測定できるRFパルスの周波数である最適条件を特定できる。 Thereby, the user of the moisture content measuring device 100 can specify the optimum condition which is the frequency of the RF pulse at which the moisture content of the sample 20 can be measured by the NMR signal generated by the sample 20 composed of the conductor.
 また、導電体サンプルの水分率は、最大の強度に係るNMR信号に基づいて、特定される。 Further, the water content of the conductor sample is specified based on the NMR signal related to the maximum intensity.
 水分率測定装置100は、最大の強度に係るNMR信号に基づいて水分率を特定する。これにより、水分率測定装置100のユーザは、より正確に水分率を特定できる。 The moisture content measuring device 100 specifies the moisture content based on the NMR signal related to the maximum intensity. As a result, the user of the moisture content measuring device 100 can more accurately identify the moisture content.
 また、水分率測定装置100は、第1コンデンサ46を用いてRFパルスの周波数を変えながら、導電体のサンプル20である導電体サンプルのRFパルスによるNMR信号の値を特定するNMR信号特定部62と、導電体サンプルのNMR信号の値が最大となる、RFパルスの周波数である最適条件を特定する最適条件特定部63と、を備え、水分率特定部64は、発信部44を導電体サンプルに対向させ、発信部44から最適条件に係るRFパルスを発信することで受信されるNMR信号により、導電体サンプルの水分率を特定する。 Further, the moisture content measuring device 100 uses the first capacitor 46 to change the frequency of the RF pulse, and the NMR signal specifying unit 62 specifies the value of the NMR signal due to the RF pulse of the conductor sample 20 which is the conductor sample 20. And the optimum condition specifying unit 63 for specifying the optimum condition which is the frequency of the RF pulse at which the value of the NMR signal of the conductor sample is maximized. The water content of the conductor sample is specified by the NMR signal received by transmitting the RF pulse related to the optimum condition from the transmitting unit 44.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のRFパルスの周波数を特定でき、当該最適条件に基づいて、当該サンプル20に対してもNMR信号により水分率を測定できる。 As a result, the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and the optimum condition can be obtained. Based on this, the water content of the sample 20 can also be measured by an NMR signal.
 また、NMR信号特定部62は、第2コンデンサ47を用いてコイル42に係るインピーダンスの値を変えながら、導電体サンプルのRFパルスによるNMR信号の値を特定し、最適条件は、導電体サンプルのNMR信号の値が最大となるRFパルスの周波数とインピーダンスの値と、の組み合わせである。 Further, the NMR signal specifying unit 62 specifies the value of the NMR signal due to the RF pulse of the conductor sample while changing the impedance value of the coil 42 using the second capacitor 47, and the optimum condition is that of the conductor sample. It is a combination of the frequency of the RF pulse that maximizes the value of the NMR signal and the value of the impedance.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のインピーダンスの値を特定でき、当該最適条件に基づいて、当該サンプル20に対してもNMR信号により水分率を測定できる。 As a result, the user of the moisture content measuring device 100 can specify the impedance value of the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and is based on the optimum condition. Therefore, the water content of the sample 20 can be measured by the NMR signal.
 また、水分率測定装置100に用いられるサンプル20は、コイル42を覆うスペーサ30を介して発信部44に対向する。 Further, the sample 20 used in the moisture content measuring device 100 faces the transmitting portion 44 via the spacer 30 that covers the coil 42.
 これにより、水分率測定装置100のユーザは、サンプル20の内部における測定箇所を変更することができる。 As a result, the user of the moisture content measuring device 100 can change the measurement point inside the sample 20.
 本開示に係る水分率測定方法は、コイル42と、コイル42に対して並列に接続された静電容量を調整可能な第1コンデンサ46と、コイル42および第1コンデンサ46に対して直列に接続された静電容量を調整可能な第2コンデンサ47と、を備える水分率測定装置100を用いた水分率測定方法であって、コイル42を介して、第1コンデンサ46の静電容量の変化に応じて周波数が変化するRFパルスを発信するステップと、RFパルスによって発信部44に対向するサンプル20から生じるNMR信号を受信するステップと、NMR信号を受信すると、第2コンデンサ47の静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定するステップと、を有する。 In the moisture content measuring method according to the present disclosure, the coil 42 is connected in series to the coil 42, the first capacitor 46 which is connected in parallel to the coil 42 and can adjust the capacitance, and the coil 42 and the first capacitor 46. It is a moisture content measuring method using a moisture content measuring device 100 including a second capacitor 47 capable of adjusting the capacitance, and changes in the capacitance of the first capacitor 46 via a coil 42. A step of transmitting an RF pulse whose frequency changes accordingly, a step of receiving an NMR signal generated from a sample 20 facing the transmitting unit 44 by the RF pulse, and a step of receiving the NMR signal, the capacitance of the second capacitor 47 is increased. It has a step of specifying the intensity of the NMR signal while changing it, and specifying the water content based on the intensity of the specified NMR signal.
 これにより、水分率測定方法を用いるユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できるRFパルスの周波数である最適条件を特定できる。 Thereby, the user who uses the moisture content measuring method can specify the optimum condition which is the frequency of the RF pulse at which the moisture content of the sample 20 can be measured by the NMR signal for the sample 20 composed of the conductor.
(その他の実施形態)
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
(Other embodiments)
Although one embodiment has been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like can be made.
 上記の実施形態では、水分率測定装置100のユーザが、直接周波数及びインピーダンスの値を入力部61に入力するが、予め決められた周波数及びインピーダンスの値が自動的に入力されても良い。 In the above embodiment, the user of the moisture content measuring device 100 directly inputs the frequency and impedance values to the input unit 61, but the predetermined frequency and impedance values may be automatically input.
 上記の実施形態では、最適条件特定部63が、記憶部65が記憶しているNMR信号の値により、自動的に最適条件である周波数とインピーダンスの値との組み合わせを特定するが、水分率測定装置100が最適条件特定部63を備えず、水分率測定装置100のユーザにより最適条件の特定が行われても良い。 In the above embodiment, the optimum condition specifying unit 63 automatically specifies the combination of the frequency and impedance values, which are the optimum conditions, based on the value of the NMR signal stored in the storage unit 65, but the moisture content measurement. The device 100 may not include the optimum condition specifying unit 63, and the user of the moisture content measuring device 100 may specify the optimum condition.
 上記の実施形態では、最適条件を特定した後に、再度計測を行って水分率を特定したが、最適条件を特定した後に再度計測を行わず、最適条件を特定したときのNMR信号の値を用いて、水分率を特定するようにしても良い。 In the above embodiment, after the optimum condition is specified, the measurement is performed again to specify the water content, but after the optimum condition is specified, the measurement is not performed again, and the value of the NMR signal when the optimum condition is specified is used. The water content may be specified.
(コンピュータ構成)
 図6は、少なくとも1つの実施形態に係るコンピュータ1100の構成を示す概略ブロック図である。コンピュータ1100は、プロセッサ1110、メインメモリ1120、ストレージ1130、インタフェース1140を備える。
(Computer configuration)
FIG. 6 is a schematic block diagram showing the configuration of the computer 1100 according to at least one embodiment. The computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
 上述の制御装置60は、コンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ1120に確保する。 The above-mentioned control device 60 is mounted on the computer 1100. The operation of each processing unit described above is stored in the storage 1130 in the form of a program. The processor 1110 reads a program from the storage 1130, expands it into the main memory 1120, and executes the above processing according to the program. Further, the processor 1110 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 1120 according to the program.
 プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ1100は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The program may be for realizing a part of the functions exerted on the computer 1100. For example, the program may exert its function in combination with another program already stored in the storage 1130, or in combination with another program mounted on another device. In another embodiment, the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions realized by the processor 1110 may be realized by the integrated circuit.
 ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インタフェース1140または通信回線を介してコンピュータ1100に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ1130は、一時的でない有形の記憶媒体である。 Examples of the storage 1130 include magnetic disks, magneto-optical disks, semiconductor memories, and the like. The storage 1130 may be internal media directly connected to the bus of computer 1100, or external media connected to computer 1100 via interface 1140 or a communication line. When this program is distributed to the computer 1100 via a communication line, the distributed computer 1100 may expand the program in the main memory 1120 and execute the above processing. In at least one embodiment, storage 1130 is a non-temporary tangible storage medium.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the storage 1130.
(付記)
 各実施形態に記載の水分率測定装置100は、例えば以下のように把握される。
(Additional note)
The moisture content measuring device 100 described in each embodiment is grasped as follows, for example.
 (1)本開示に係る水分率測定装置100は、コイル42と、コイル42に対して並列に接続された静電容量を調整可能な第1コンデンサ46と、コイル42および第1コンデンサ46に対して直列に接続された静電容量を調整可能な第2コンデンサ47と、コイル42を介して、第1コンデンサ46の静電容量の変化に応じて周波数が変化するRFパルスを発信する発信部44と、RFパルスによって発信部44に対向するサンプル20から生じるNMR信号を受信する受信部45と、NMR信号を受信すると、第2コンデンサ47の静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定する水分率特定部64と、を備える。 (1) The moisture content measuring device 100 according to the present disclosure relates to a coil 42, a first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46. A second capacitor 47, which is connected in series and whose capacitance can be adjusted, and a transmitter 44, which emits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor 46, via a coil 42. And the receiving unit 45 that receives the NMR signal generated from the sample 20 facing the transmitting unit 44 by the RF pulse, and when the NMR signal is received, the intensity of the NMR signal is specified while changing the capacitance of the second capacitor 47. A water content specifying unit 64 that specifies the water content based on the intensity of the specified NMR signal is provided.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のRFパルスの周波数を特定できる。 Thereby, the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum conditions for measuring the moisture content of the sample 20 composed of the conductor by the NMR signal.
 (2)また、導電体サンプルの水分率は、最大の強度に係るNMR信号に基づいて、特定される。 (2) Further, the water content of the conductor sample is specified based on the NMR signal related to the maximum intensity.
 水分率測定装置100は、最大の強度に係るNMR信号に基づいて水分率を特定する。これにより、水分率測定装置100のユーザは、より正確に水分率を特定できる。 The moisture content measuring device 100 specifies the moisture content based on the NMR signal related to the maximum intensity. As a result, the user of the moisture content measuring device 100 can more accurately identify the moisture content.
 (3)また、水分率測定装置100は、第1コンデンサ46を用いてRFパルスの周波数を変えながら、導電体のサンプル20である導電体サンプルのRFパルスによるNMR信号の値を特定するNMR信号特定部62と、導電体サンプルのNMR信号の値が最大となる、RFパルスの周波数である最適条件を特定する最適条件特定部63と、を備え、水分率特定部64は、発信部44を導電体サンプルに対向させ、発信部44から最適条件に係るRFパルスを発信することで受信されるNMR信号により、導電体サンプルの水分率を特定する。 (3) Further, the moisture content measuring device 100 uses the first capacitor 46 to change the frequency of the RF pulse while specifying the value of the NMR signal due to the RF pulse of the conductor sample 20 which is the conductor sample 20. The identification unit 62 and the optimum condition identification unit 63 for specifying the optimum condition which is the frequency of the RF pulse that maximizes the value of the NMR signal of the conductor sample are provided, and the moisture content identification unit 64 includes the transmission unit 44. The water content of the conductor sample is specified by the NMR signal received by facing the conductor sample and transmitting an RF pulse according to the optimum conditions from the transmitting unit 44.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のRFパルスの周波数を特定でき、当該最適条件に基づいて、当該サンプル20に対してもNMR信号により水分率を測定できる。 As a result, the user of the moisture content measuring device 100 can specify the frequency of the RF pulse under the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and the optimum condition can be obtained. Based on this, the water content of the sample 20 can also be measured by an NMR signal.
 (4)また、NMR信号特定部62は、第2コンデンサ47を用いてコイル42に係るインピーダンスの値を変えながら、導電体サンプルのRFパルスによるNMR信号の値を特定し、最適条件は、導電体サンプルのNMR信号の値が最大となるRFパルスの周波数と導電体サンプルのNMR信号の値が最大となるインピーダンスの値と、の組み合わせである。 (4) Further, the NMR signal specifying unit 62 specifies the value of the NMR signal by the RF pulse of the conductor sample while changing the value of the impedance related to the coil 42 by using the second capacitor 47, and the optimum condition is conductivity. It is a combination of the frequency of the RF pulse that maximizes the value of the NMR signal of the body sample and the value of the impedance that maximizes the value of the NMR signal of the conductor sample.
 これにより、水分率測定装置100のユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のインピーダンスの値を特定でき、当該最適条件に基づいて、当該サンプル20に対してもNMR信号により水分率を測定できる。 As a result, the user of the moisture content measuring device 100 can specify the impedance value of the optimum condition for measuring the moisture content of the sample 20 by the NMR signal with respect to the sample 20 composed of the conductor, and is based on the optimum condition. Therefore, the water content of the sample 20 can be measured by the NMR signal.
 (5)また、水分率測定装置100に用いられるサンプル20は、コイル42を覆うスペーサ30を介して発信部44に対向する。 (5) Further, the sample 20 used in the moisture content measuring device 100 faces the transmitting portion 44 via the spacer 30 covering the coil 42.
 これにより、水分率測定装置100のユーザは、サンプル20の内部における測定箇所を変更することができる。 As a result, the user of the moisture content measuring device 100 can change the measurement point inside the sample 20.
 (6)本開示に係る水分率測定方法は、コイル42と、コイル42に対して並列に接続された静電容量を調整可能な第1コンデンサ46と、コイル42および第1コンデンサ46に対して直列に接続された静電容量を調整可能な第2コンデンサ47と、を備える水分率測定装置100を用いた水分率測定方法であって、コイル42を介して、第1コンデンサ46の静電容量の変化に応じて周波数が変化するRFパルスを発信するステップと、RFパルスによって発信部44に対向するサンプル20から生じるNMR信号を受信するステップと、NMR信号を受信すると、第2コンデンサ47の静電容量を変化させながらNMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定するステップと、を有する。 (6) The moisture content measuring method according to the present disclosure relates to the coil 42, the first capacitor 46 connected in parallel to the coil 42 and capable of adjusting the capacitance, and the coil 42 and the first capacitor 46. It is a moisture content measuring method using a moisture content measuring device 100 including a second capacitor 47 which is connected in series and can adjust the capacitance, and is a method of measuring the moisture content of the first capacitor 46 via a coil 42. The step of transmitting an RF pulse whose frequency changes according to the change of the above, the step of receiving the NMR signal generated from the sample 20 facing the transmitting unit 44 by the RF pulse, and the step of receiving the NMR signal, the static of the second capacitor 47 It has a step of specifying the strength of the NMR signal while changing the capacitance, and specifying the water content based on the strength of the specified NMR signal.
 これにより、水分率測定方法を用いるユーザは、導電体により構成されるサンプル20に対してNMR信号により当該サンプル20の水分率を測定できる最適条件のRFパルスの周波数を特定できる。 Thereby, the user who uses the moisture content measuring method can specify the frequency of the RF pulse under the optimum conditions for measuring the moisture content of the sample 20 composed of the conductor by the NMR signal.
 本発明は、水分率測定装置及び水分率測定方法に関する。
 本発明によれば、導電体により構成されるサンプルに対してもNMR信号の受信によって、当該サンプルの水分率を測定できる。
The present invention relates to a moisture content measuring device and a moisture content measuring method.
According to the present invention, the water content of a sample composed of a conductor can be measured by receiving an NMR signal.
 20 サンプル
 30 スペーサ
 40 センサ
 41 筐体
 42 コイル
 43 磁石
 44 発信部
 45 受信部
 46 第1コンデンサ
 47 第2コンデンサ
 50 表示部
 60 制御装置
 61 入力部
 62 NMR信号特定部
 63 最適条件特定部
 64 水分率特定部
 65 記憶部
 100 水分率測定装置
 1100 コンピュータ
 1110 プロセッサ
 1120 メインメモリ
 1130 ストレージ
 1140 インタフェース
20 Sample 30 Spacer 40 Sensor 41 Housing 42 Coil 43 Magnet 44 Transmitter 45 Receiver 46 1st Capacitor 47 2nd Capacitor 50 Display 60 Controller 61 Input 62 NMR Signal Identification 63 Optimal Condition Identification 64 Moisture Content Identification Unit 65 Storage unit 100 Moisture content measuring device 1100 Computer 1110 Processor 1120 Main memory 1130 Storage 1140 Interface

Claims (6)

  1.  コイルと、
     前記コイルに対して並列に接続された静電容量を調整可能な第1コンデンサと、
     前記コイルおよび前記第1コンデンサに対して直列に接続された静電容量を調整可能な第2コンデンサと、
     前記コイルを介して、前記第1コンデンサの静電容量の変化に応じて周波数が変化するRFパルスを発信する発信部と、
     前記RFパルスによって前記発信部に対向するサンプルから生じるNMR信号を受信する受信部と、
     前記NMR信号を受信すると、前記第2コンデンサの静電容量を変化させながら前記NMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定する水分率特定部と、
     を備える水分率測定装置。
    With the coil
    A first capacitor connected in parallel to the coil and capable of adjusting the capacitance,
    A second capacitor with adjustable capacitance connected in series with the coil and the first capacitor,
    An transmitter that emits an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor via the coil.
    A receiver that receives an NMR signal generated from a sample facing the transmitter by the RF pulse, and a receiver.
    Upon receiving the NMR signal, a moisture content specifying unit that specifies the intensity of the NMR signal while changing the capacitance of the second capacitor and specifies the moisture content based on the intensity of the identified NMR signal,
    Moisture content measuring device.
  2.  前記サンプルの水分率は、最大の強度に係る前記NMR信号に基づいて、特定される
     請求項1に記載の水分率測定装置。
    The moisture content measuring device according to claim 1, wherein the moisture content of the sample is specified based on the NMR signal relating to the maximum intensity.
  3.  前記サンプルは、前記コイルを覆うスペーサを介して前記発信部に対向する
     請求項1または請求項2に記載の水分率測定装置。
    The moisture content measuring device according to claim 1 or 2, wherein the sample faces the transmitting portion via a spacer covering the coil.
  4.  前記第1コンデンサを用いて前記RFパルスの周波数を変えながら、導電体の前記サンプルである導電体サンプルの前記RFパルスによるNMR信号の値を特定するNMR信号特定部と、
     前記導電体サンプルのNMR信号の値が最大となる、前記RFパルスの周波数である最適条件を特定する最適条件特定部と、
     を備え、
     前記水分率特定部は、前記発信部を前記導電体サンプルに対向させ、前記発信部から前記最適条件に係るRFパルスを発信することで受信されるNMR信号により、前記導電体サンプルの水分率を特定する、
     請求項1から請求項3の何れか1項に記載の水分率測定装置。
    An NMR signal specifying unit that specifies the value of the NMR signal due to the RF pulse of the conductor sample, which is the sample of the conductor, while changing the frequency of the RF pulse using the first capacitor.
    An optimum condition specifying unit that specifies the optimum condition, which is the frequency of the RF pulse, at which the value of the NMR signal of the conductor sample is maximized.
    With
    The moisture content specifying unit measures the moisture content of the conductor sample by an NMR signal received by making the transmitting unit face the conductor sample and transmitting an RF pulse according to the optimum conditions from the transmitting unit. Identify,
    The moisture content measuring device according to any one of claims 1 to 3.
  5.  前記NMR信号特定部は、前記第2コンデンサを用いて前記コイルに係るインピーダンスの値を変えながら、前記導電体サンプルの前記RFパルスによるNMR信号の値を特定し、
     前記最適条件は、前記導電体サンプルのNMR信号の値が最大となる前記RFパルスの周波数と前記導電体サンプルのNMR信号の値が最大となる前記インピーダンスの値と、の組み合わせである
     請求項4に記載の水分率測定装置。
    The NMR signal specifying unit identifies the value of the NMR signal by the RF pulse of the conductor sample while changing the impedance value related to the coil using the second capacitor.
    The optimum condition is a combination of the frequency of the RF pulse that maximizes the value of the NMR signal of the conductor sample and the value of the impedance that maximizes the value of the NMR signal of the conductor sample. Moisture content measuring device according to.
  6.  コイルと、前記コイルに対して並列に接続された静電容量を調整可能な第1コンデンサと、前記コイルおよび前記第1コンデンサに対して直列に接続された静電容量を調整可能な第2コンデンサと、を備える水分率測定装置を用いた水分率測定方法であって、
     前記コイルを介して、前記第1コンデンサの静電容量の変化に応じて周波数が変化するRFパルスを発信するステップと、
     前記RFパルスによってサンプルから生じるNMR信号を受信するステップと、
     前記NMR信号を受信すると、前記第2コンデンサの静電容量を変化させながら前記NMR信号の強度を特定し、特定されたNMR信号の強度を基に水分率を特定するステップと、
     を有する水分率測定方法。
    A coil, a first capacitor with adjustable capacitance connected in parallel to the coil, and a second capacitor with adjustable capacitance connected in series with the coil and the first capacitor. It is a moisture content measuring method using a moisture content measuring device provided with
    A step of transmitting an RF pulse whose frequency changes according to a change in the capacitance of the first capacitor through the coil, and a step of transmitting the RF pulse.
    The step of receiving the NMR signal generated from the sample by the RF pulse, and
    When the NMR signal is received, the intensity of the NMR signal is specified while changing the capacitance of the second capacitor, and the moisture content is specified based on the intensity of the specified NMR signal.
    Moisture content measuring method having.
PCT/JP2021/000049 2020-01-10 2021-01-05 Moisture percentage measuring device and moisture percentage measuring method WO2021141010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-003027 2020-01-10
JP2020003027A JP2021110650A (en) 2020-01-10 2020-01-10 Moisture content measuring device and moisture content measurement method

Publications (1)

Publication Number Publication Date
WO2021141010A1 true WO2021141010A1 (en) 2021-07-15

Family

ID=76787935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000049 WO2021141010A1 (en) 2020-01-10 2021-01-05 Moisture percentage measuring device and moisture percentage measuring method

Country Status (2)

Country Link
JP (1) JP2021110650A (en)
WO (1) WO2021141010A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020175681A1 (en) * 2001-05-22 2002-11-28 Taicher Gersh Zvi NMR apparatus and method utilizing pulsed static magnetic fields
JP2005017291A (en) * 2003-06-11 2005-01-20 Spinlock Srl Method and sensor element for detecting and/or analyzing compound generating simultaneously nuclear quadrupole resonance and nuclear magnetic resonance, or double nuclear quadrupole resonance, and arrangement therefor
JP2007121037A (en) * 2005-10-26 2007-05-17 Keio Gijuku Measuring instrument for measuring distribution of behavior of protonic solvent in sample using magnetic resonance method, measuring method and program
JP2009302040A (en) * 2008-05-13 2009-12-24 Keio Gijuku Fuel cell system
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system
JP2011508213A (en) * 2007-12-21 2011-03-10 ティツー・バイオシステムズ・インコーポレーテッド Magnetic resonance system with implantable components and method of use
JP2013536940A (en) * 2010-08-31 2013-09-26 メッツォ オートメーション オイ Low-field NMR apparatus for measuring the water content of solids and slurries
JP2015141194A (en) * 2014-01-28 2015-08-03 邦康 小川 Signal detection apparatus for fuel cells using nuclear magnetic resonance method
US20170325710A1 (en) * 2016-05-16 2017-11-16 Bitome, Inc. Small form factor in vivo nmr biometric monitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020175681A1 (en) * 2001-05-22 2002-11-28 Taicher Gersh Zvi NMR apparatus and method utilizing pulsed static magnetic fields
JP2005017291A (en) * 2003-06-11 2005-01-20 Spinlock Srl Method and sensor element for detecting and/or analyzing compound generating simultaneously nuclear quadrupole resonance and nuclear magnetic resonance, or double nuclear quadrupole resonance, and arrangement therefor
JP2007121037A (en) * 2005-10-26 2007-05-17 Keio Gijuku Measuring instrument for measuring distribution of behavior of protonic solvent in sample using magnetic resonance method, measuring method and program
JP2011508213A (en) * 2007-12-21 2011-03-10 ティツー・バイオシステムズ・インコーポレーテッド Magnetic resonance system with implantable components and method of use
JP2009302040A (en) * 2008-05-13 2009-12-24 Keio Gijuku Fuel cell system
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system
JP2013536940A (en) * 2010-08-31 2013-09-26 メッツォ オートメーション オイ Low-field NMR apparatus for measuring the water content of solids and slurries
JP2015141194A (en) * 2014-01-28 2015-08-03 邦康 小川 Signal detection apparatus for fuel cells using nuclear magnetic resonance method
US20170325710A1 (en) * 2016-05-16 2017-11-16 Bitome, Inc. Small form factor in vivo nmr biometric monitor

Also Published As

Publication number Publication date
JP2021110650A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US6573715B2 (en) Porosity and permeability measurement of underground formations containing crude oil, using EPR response data
US10101288B2 (en) Wireless impedance spectrometer
GB2311864A (en) An NMR resistivity logging tool
CA2230908A1 (en) Longitudinal nmr well logging apparatus and method
US2844789A (en) Microwave magnetic detectors
GB876043A (en) Gyromagnetic resonance apparatus
Gaydamak et al. Magnetopiezoelectric effect and magnetocapacitance in SmFe 3 (BO 3) 4
CA2995594C (en) An apparatus for on-line detection of magnetic resonance signals from a target material in a mineral slurry
WO2021141010A1 (en) Moisture percentage measuring device and moisture percentage measuring method
EP1073916A1 (en) Porosity and permeability measurement of underground formations containing crude oil, using epr response data
CN204439814U (en) Microwave ferromagnetic resonance experimental system
US3768003A (en) Pulsed resonance spectrometer system employing improved radio frequency pulse turn-off method and apparatus
US2810882A (en) Method and apparatus for measuring saturation magnetization of small ferromagnetic specimens
US3798532A (en) Electron double resonance spectrometer with a microwave cavity bridge arrangement
US20100283468A1 (en) Remotely located tuning circuits for multi-frequency, multi-puropse induction antennae in downhole tools
Ostrovsky et al. Application of three-dimensional resonant acoustic spectroscopy method to rock and building materials
US3434043A (en) Nuclear magnetic resonance probe apparatus having double tuned coil systems for spectrometers employing an internal reference
US4290017A (en) Apparatus and method for nondestructive evaluation of surface flaws in conductive materials
Jordanova et al. B1 estimation using adiabatic refocusing: BEAR
US3090003A (en) Gyromagnetic resonance method and apparatus
Alakshin et al. Experimental Setup for Observation the Bose–Einstein Condensation of Magnons in Solid Antiferromagnets CsMnF 3 and MnCO 3
JP2021124337A (en) Percentage measuring method and percentage measuring device
CN207675564U (en) It is a kind of measure pore water feature ring cut device
Kurpad et al. Eight channel transmit array volume coil using on-coil radiofrequency current sources
US4920522A (en) Method and apparatus for measuring electrical or magnetic fields

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738828

Country of ref document: EP

Kind code of ref document: A1