WO2021140633A1 - Radar supervising device, radar supervising method, and weather radar system - Google Patents

Radar supervising device, radar supervising method, and weather radar system Download PDF

Info

Publication number
WO2021140633A1
WO2021140633A1 PCT/JP2020/000580 JP2020000580W WO2021140633A1 WO 2021140633 A1 WO2021140633 A1 WO 2021140633A1 JP 2020000580 W JP2020000580 W JP 2020000580W WO 2021140633 A1 WO2021140633 A1 WO 2021140633A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather radar
weather
radar
devices
radar device
Prior art date
Application number
PCT/JP2020/000580
Other languages
French (fr)
Japanese (ja)
Inventor
智也 山岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/000580 priority Critical patent/WO2021140633A1/en
Priority to JP2020528354A priority patent/JP6873328B1/en
Publication of WO2021140633A1 publication Critical patent/WO2021140633A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present disclosure relates to a radar control device and a radar control method that output a control signal to a weather radar device, and a weather radar system including a plurality of weather radar devices.
  • radio waves radiated from another weather radar device near the installation position may directly arrive at each weather radar device.
  • Radio waves that come directly from other weather radar devices become interference signals for radar echoes, causing radio wave interference.
  • the occurrence of radio wave interference causes deterioration of meteorological observation in the meteorological radar device.
  • Patent Document 1 discloses a radar system including a plurality of transmitting / receiving stations and a plurality of receiving stations.
  • the transmitting / receiving station is a radar that radiates radio waves into space and receives radar echoes related to the radio waves to perform meteorological observation.
  • the receiving station is a radar that performs meteorological observation by receiving a radar echo related to a radio wave radiated from the transmitting / receiving station.
  • radio wave interference is reduced as compared with a radar system in which all radars radiate radio waves.
  • This disclosure is made in order to solve the above-mentioned problems, and among a plurality of weather radar devices, the weather radar device responsible for emitting radio waves is always the same weather radar device, rather than the weather observation device.
  • the purpose is to obtain a radar control device, a radar control method, and a weather radar system that can improve the accuracy.
  • the radar control device includes a weather information acquisition unit that acquires weather information indicating an area in which either water droplets or ice crystals are floating in the atmosphere, and a weather information acquisition unit among a plurality of weather radar devices.
  • a weather information acquisition unit that acquires weather information indicating an area in which either water droplets or ice crystals are floating in the atmosphere
  • a weather information acquisition unit among a plurality of weather radar devices One or more weather radar devices existing in the area indicated by the weather information acquired by the above are specified, and among the specified one or more weather radar devices, some or all the weather radar devices are used.
  • the radar device is selected as the first weather radar device that both emits radio waves and receives radar echoes, and among the plurality of weather radar devices, one of the weather radar devices other than the first weather radar device.
  • the selection unit that selects the weather radar device of the unit or all the weather radar devices as the second weather radar device that receives the radar echo, and the first weather radar device selected by the selection unit.
  • a first control signal instructing the emission of radio waves into the space is output, and a second control signal instructing the second weather radar device selected by the selection unit to stop radiating the radio waves into the space is output. It is provided with a control unit for output.
  • meteorological radar devices among a plurality of meteorological radar devices, one or more meteorological radar devices existing in the area indicated by the meteorological information acquired by the meteorological information acquisition unit are specified, and one or more specified one or more.
  • some or all meteorological radar devices are selected as the first meteorological radar device that both emits radio waves and receives radar echoes, and a plurality of meteorological radar devices are selected.
  • the meteorological radar devices other than the first meteorological radar device some or all meteorological radar devices are selected as the second meteorological radar device that receives radar echo.
  • the radar control device was configured to include a unit. Therefore, the radar control device according to the present disclosure can improve the accuracy of meteorological observation as compared with a plurality of meteorological radar devices in which the meteorological radar device responsible for emitting radio waves is always the same meteorological radar device.
  • FIG. 1 It is a block diagram which shows the weather radar system which concerns on Embodiment 1.
  • FIG. 2 It is a block diagram which shows the radar integrated apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of the radar integrated apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware configuration diagram of the computer when the radar control device 2 is realized by software, firmware, or the like.
  • It is a block diagram which shows the weather radar apparatus 1 of the weather radar system which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of the radar integrated apparatus 2 which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the processing procedure of the radar control apparatus 2.
  • FIG. 1 is a configuration diagram showing a weather radar system according to the first embodiment.
  • the weather radar system includes a plurality of weather radar devices 1-1 to 1-N, a radar control device 2, and a communication network 3.
  • N is an integer greater than or equal to 2.
  • the plurality of weather radar devices 1-1 to 1-N and the radar control device 2 are connected by a communication network 3.
  • each of the weather radar devices 1-1 to 1-N is not distinguished, it may be described as the weather radar device 1.
  • the radar control device 2 is one or more weather radar devices existing in a region in which either water droplets or ice crystals are floating in the atmosphere among a plurality of weather radar devices 1-1 to 1-N. Of 1, some weather radar devices 1 or all weather radar devices 1 are selected as the first weather radar device 1 that both emits radio waves and receives radar echoes. Areas where either water droplets or ice crystals are floating in the atmosphere are areas where either rain, snow or hail is falling, or where fog is occurring.
  • the radar control device 2 is a part of the weather radar devices 1 other than the first weather radar device 1 among the plurality of weather radar devices 1-1 to 1-N, or all of the weather radar devices 1.
  • the weather radar device 1 is selected as the second weather radar device 1 that receives the radar echo.
  • the radar control device 2 selects a part of the weather radar devices 1 other than the first weather radar device 1 as the second weather radar device 1 that receives the radar echo, for example, , Select the weather radar device 1 shown below.
  • the radar control device 2 is from the weather radar device 1 installed at a position where the radio waves radiated from the first weather radar device 1 do not directly arrive, or from the first weather radar device 1. Even if the radiated radio wave arrives directly, the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold Ths is selected. Further, the radar control device 2 is a weather radar capable of ignoring the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first meteorological radar device 1. Select device 1.
  • the radar control device 2 radiates radio waves from the transmission unit 71 included in the first weather radar device 1.
  • the radar control device 2 stops the radiation of radio waves from the transmission unit 71 included in the second weather radar device 1.
  • the radar control device 2 stops the radiation of radio waves from the transmission unit 71 included in the non-reception weather radar device 1, and the radar echo in the reception unit 72 included in the non-reception weather radar device 1. Stop receiving.
  • the communication network 3 is realized by the Internet, LAN (Local Area Network), or the like.
  • a plurality of weather radar devices 1-1 to 1-N and a radar control device 2 are connected to the communication network 3.
  • FIG. 2 is a configuration diagram showing a radar control device 2 according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram showing the hardware of the radar control device 2 according to the first embodiment.
  • the radar control device 2 includes a weather information acquisition unit 11, a selection unit 12, and a control unit 13.
  • the weather information acquisition unit 11 is realized by, for example, the weather information acquisition circuit 21 shown in FIG.
  • the meteorological information acquisition unit 11 acquires meteorological information indicating a region in which either water droplets or ice crystals are floating in the atmosphere from, for example, a meteorological information distribution device (not shown) via a communication network 3.
  • the weather information acquisition unit 11 outputs the weather information to the selection unit 12.
  • the selection unit 12 is realized by, for example, the selection circuit 22 shown in FIG.
  • the selection unit 12 selects one or more weather radar devices 1 existing in the area indicated by the weather information acquired by the weather information acquisition unit 11 among the plurality of weather radar devices 1-1 to 1-N. Identify.
  • the selection unit 12 causes a part of the weather radar devices 1 or all the weather radar devices 1 of the specified one or more weather radar devices 1 to both emit radio waves and receive radar echoes. Select as the weather radar device 1 of.
  • the selection unit 12 includes some weather radar devices 1 or all the weather among the weather radar devices 1 other than the first weather radar device 1.
  • the radar device 1 is selected as the second weather radar device 1 that receives the radar echo.
  • the first weather radar device 1 selected by the selection unit 12 is a weather radar device 1 for both transmission and reception that emits radio waves and receives radar echoes.
  • the first weather radar device 1 selected by the selection unit 12 may be a weather radar device 1 that emits radio waves but does not receive radar echoes.
  • the second weather radar device 1 selected by the selection unit 12 is a reception-only weather radar device 1 that receives radar echoes without radiating radio waves.
  • the selection unit 12 selects a part of the weather radar devices 1 among the weather radar devices 1 other than the first weather radar device 1 as the second weather radar device 1, for example, the weather radar device 1 shown below. Select.
  • the selection unit 12 emits radiation from the weather radar device 1 or the first weather radar device 1 installed at a position where the radio waves radiated from the first weather radar device 1 do not directly arrive. Even if the radio wave arrives directly, the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold Ths is selected. Further, the selection unit 12 is a weather radar device capable of ignoring the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first weather radar device 1. Select 1.
  • the selection unit 12 selects a part of the weather radar device 1 as the second weather radar device 1, among the weather radar devices 1 other than the first weather radar device 1, for example, the strength of the received radio wave.
  • the weather radar device 1 having a value greater than the threshold Ths is selected as the non-reception weather radar device 1. Further, even if the selection unit 12 performs the suppression processing of the radiated radio wave directly coming from the first weather radar device 1, the interference of the radiated radio wave with the received radar echo cannot be ignored. 1 is selected as the non-reception weather radar device 1.
  • the threshold value Ths may be stored in the internal memory of the selection unit 12 or may be given from the outside of the selection unit 12.
  • the selection unit 12 moves with the movement of the area indicated by the weather information acquired by the weather information acquisition unit 11, the first weather radar device 1, the second weather radar device 1, and the non-reception weather radar device 1. Change each of them.
  • the control unit 13 is realized by, for example, the control circuit 23 shown in FIG.
  • the control unit 13 outputs a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1 selected by the selection unit 12.
  • the control unit 13 outputs a second control signal instructing the second weather radar device 1 selected by the selection unit 12 to stop radiating radio waves into the space.
  • the control unit 13 outputs a third control signal instructing the non-reception weather radar device 1 selected by the selection unit 12 to stop radiating radio waves into the space and stop receiving radio waves.
  • each of the weather information acquisition unit 11, the selection unit 12, and the control unit 13, which are the components of the radar control device 2 is realized by the dedicated hardware as shown in FIG. .. That is, it is assumed that the radar control device 2 is realized by the weather information acquisition circuit 21, the selection circuit 22, and the control circuit 23.
  • Each of the weather information acquisition circuit 21, selection circuit 22, and control circuit 23 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). Gate Array) or a combination of these is applicable.
  • the components of the radar control device 2 are not limited to those realized by dedicated hardware, but the radar control device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
  • FIG. 4 is a hardware configuration diagram of a computer when the radar control device 2 is realized by software, firmware, or the like.
  • a program for causing a computer to execute each processing procedure of the weather information acquisition unit 11, the selection unit 12, and the control unit 13 is stored in the memory 31.
  • the processor 32 of the computer executes the program stored in the memory 31.
  • FIG. 3 shows an example in which each of the components of the radar control device 2 is realized by dedicated hardware
  • FIG. 4 shows an example in which the radar control device 2 is realized by software, firmware, or the like. There is. However, this is only an example, and some components in the radar control device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • FIG. 5 is a configuration diagram showing a weather radar device 1 of the weather radar system according to the first embodiment.
  • the weather radar device 1 includes a digital circuit 41, an analog circuit 42, an antenna 43, a storage device 44, a signal processing device 45, and a display device 46.
  • the digital circuit 41 includes a digital beamforming control unit (hereinafter referred to as “DBF control unit”) 51, a pulse generation unit 52, a transmission control unit 53, and a reception control unit 54.
  • DBF control unit digital beamforming control unit
  • the analog circuit 42 includes an oscillation unit 61, a digital-to-analog conversion unit (hereinafter referred to as “D / A conversion unit”) 62, a frequency conversion unit 63, a signal amplification unit 64, a switching unit 65, an out-of-band component removal unit 66, and a frequency. It includes a conversion unit 67 and an analog-to-digital conversion unit (hereinafter, referred to as “A / D conversion unit”) 68.
  • D / A conversion unit digital-to-analog conversion unit
  • a / D conversion unit analog-to-digital conversion unit
  • Each of the pulse generation unit 52, the transmission control unit 53, the oscillation unit 61, the D / A conversion unit 62, the frequency conversion unit 63, the signal amplification unit 64, the switching unit 65, and the antenna 43 is included in the transmission unit 71.
  • Each of the antenna 43, the oscillation unit 61, the switching unit 65, the out-of-band component removing unit 66, the frequency conversion unit 67, the A / D conversion unit 68, and the reception control unit 54 is included in the reception unit 72.
  • the transmitting unit 71 radiates radio waves into space, and the receiving unit 72 receives radar echoes, which are radio waves reflected by water droplets or ice crystals constituting clouds.
  • the DBF control unit 51 is realized by, for example, an FPGA.
  • the DBF control unit 51 receives the first control signal instructing the radiation of radio waves into the space from the radar control device 2 via the communication network 3
  • the DBF control unit 51 starts the execution of the transmission DBF in the transmission control unit 53.
  • the DBF control unit 51 receives a second control signal instructing the stop of radiation of radio waves to the space from the radar control device 2 via the communication network 3
  • the DBF control unit 51 stops the execution of the transmission DBF in the transmission control unit 53. ..
  • the transmission control unit 53 causes the transmission control unit 53 to stop.
  • the execution of the transmission DBF is stopped, and the execution of the reception DBF in the reception control unit 54 is stopped.
  • the DBF control unit 51 controls the execution of the reception DBF in the reception control unit 54 if the third control signal is not received from the radar control device 2 via the communication network 3.
  • the pulse generator 52 is realized by, for example, a pulse generator.
  • the pulse generation unit 52 generates, for example, a linear chirped pulse disclosed in Non-Patent Document 1 below as a transmission pulse, and outputs the transmission pulse to the transmission control unit 53.
  • Non-Patent Document 1 PeyTon Z. Peebles, Jr., “RADAR PRINCIPLES,” WILEY INTERSCIENCE, America, 1998
  • the pulse generation unit 52 generates a linear chirped pulse as a transmission pulse.
  • the pulse generation unit 52 may generate a non-linear chirped pulse disclosed in Non-Patent Document 2 below as a transmission pulse.
  • the pulse generation unit 52 may generate an FMCW (Frequency Modulated Continuous Wave) disclosed in Non-Patent Document 3 below instead of the transmission pulse, and output the FMCW to the transmission control unit 53.
  • Non-Patent Document 2 Mariusz Zych, “Suppression of GPR range sidelobes based on NLFM signal”, IRS 2012, pp.454-458
  • Non-Patent Document 3 Yeonghwan Ju, Youngseok Jin and Jonghun Lee, “Design and implementation of a 24 GHz FMCW radar system for automotive applications”, 2014 International Radar Conference, pp.1-4.
  • the sequence of transmission pulses output from the pulse generation unit 52 to the transmission control unit 53 may be, for example, a pulse sequence having a different PRF (Pulse Repetition Frequency) for staggering (see Non-Patent Document 4). .. Further, the transmission pulse output from the pulse generation unit 52 to the transmission control unit 53 may be a pulse subjected to inter-pulse modulation for separating multiple-order echoes (see Non-Patent Document 5).
  • Non-Patent Document 4 Cuong M. Nguyen, Dmitri N. Moisseev, and V.
  • the transmission control unit 53 is realized by, for example, an FPGA.
  • the transmission control unit 53 forms one or more transmission beams from the transmission pulses output from the pulse generation unit 52 according to the control of the transmission DBF by the DBF control unit 51, and D / D / digital signals indicating the respective transmission beams. Output to A conversion unit 62.
  • the reception control unit 54 is realized by, for example, an FPGA.
  • the reception control unit 54 executes the reception DBF for the digital signal output from the A / D conversion unit 68 according to the control of the reception DBF by the DBF control unit 51.
  • the reception control unit 54 outputs the digital signal after the reception DBF is executed to the storage device 44.
  • the oscillator 61 is realized by, for example, a signal oscillator.
  • the oscillating unit 61 oscillates a reference signal and outputs the reference signal to each of the frequency conversion unit 63 and the frequency conversion unit 67.
  • the D / A conversion unit 62 converts the digital signal output from the transmission control unit 53 into an analog signal, and outputs the analog signal to the frequency conversion unit 63.
  • the frequency conversion unit 63 is realized by, for example, a mixer.
  • the frequency conversion unit 63 mixes the reference signal output from the oscillation unit 61 with the analog signal output from the D / A conversion unit 62 to obtain the frequency of the analog signal output from the D / A conversion unit 62.
  • RF Radio Frequency
  • the frequency conversion unit 63 outputs a radio frequency signal, which is an analog signal after frequency conversion, to the signal amplification unit 64.
  • the signal amplification unit 64 is realized by, for example, an amplifier.
  • the signal amplification unit 64 amplifies the radio frequency signal output from the frequency conversion unit 63, and outputs the amplified radio frequency signal to the switching unit 65.
  • the changeover unit 65 is realized by, for example, a changeover switch. When the switching unit 65 receives the amplified radio frequency signal from the signal amplification unit 64, the switching unit 65 outputs the radio frequency signal as a transmission signal to the antenna 43. When the switching unit 65 receives the received signal from the antenna 43, the switching unit 65 outputs the received signal to the out-of-band component removing unit 66.
  • the antenna 43 is realized by, for example, an array antenna having a plurality of element antennas.
  • the antenna 43 radiates radio waves related to the transmission signal output from the switching unit 65 into space.
  • the direction of the radio wave radiated from the antenna 43 is changed for each pulse by electron scanning by the transmitting DBF.
  • the transmission control unit 53 changes the radiation direction of the radio wave by executing the transmission DBF.
  • this is only an example.
  • the antenna 43 receives the radar echo and outputs the received signal of the radar echo to the switching unit 65.
  • the out-of-band component removing unit 66 is realized by a low-pass filter, a band-pass filter, or the like.
  • the out-of-band component removing unit 66 removes unnecessary signals outside the desired band included in the received signal output from the switching unit 65, and outputs the received signal within the desired band to the frequency conversion unit 67.
  • the frequency conversion unit 67 is realized by, for example, a mixer.
  • the frequency conversion unit 67 mixes the reference signal output from the oscillation unit 61 with the reception signal output from the out-of-band component removal unit 66 to obtain the frequency of the reception signal output from the out-of-band component removal unit 66. , Convert to baseband frequency.
  • the A / D conversion unit 68 converts a baseband signal, which is a reception signal after frequency conversion by the frequency conversion unit 67, from an analog signal to a digital signal, and outputs the digital signal to the reception control unit 54.
  • the storage device 44 is a storage medium that stores the digital signal after the reception DBF is executed by the reception control unit 54, the result of the meteorological observation by the signal processing device 45, and the like.
  • the signal processing device 45 performs signal processing necessary for meteorological observation based on the digital signal stored in the storage device 44, and outputs the digital signal after the signal processing to a meteorological observation unit (not shown).
  • the signal processing device 45 performs signal processing necessary for meteorological observation based on a digital signal.
  • the signal processing device 45 stores the result of the meteorological observation by the meteorological observation unit (not shown) or the result of the meteorological observation carried out by itself in the storage device 44.
  • the display device 46 is realized by, for example, a display.
  • the display device 46 displays, for example, the result of meteorological observation.
  • FIG. 6 is a flowchart showing a processing procedure of the radar control device 2.
  • N 10 and the weather radar system shown in FIG. 1 includes 10 weather radar devices 1-1 to 1-10.
  • the initial setting information is stored in the internal memory of the selection unit 12 in the radar control device 2.
  • the initial setting information may be given to the selection unit 12 from the outside of the radar control device 2.
  • the initial setting information is the first weather radar in all areas where each of the weather radar devices 1-1 to 1-10 exists, under the condition that neither water droplets nor ice crystals are floating in the atmosphere.
  • the region where neither water droplets nor ice crystals are floating in the atmosphere is referred to as a "sunny region".
  • the weather information acquisition unit 11 of the radar control device 2 acquires weather information indicating a region in which either water droplets or ice crystals are floating in the atmosphere (hereinafter, referred to as a “water-containing region”) (step in FIG. 6). ST1).
  • the weather information acquisition unit 11 outputs the weather information to the selection unit 12.
  • the selection unit 12 of the radar control device 2 receives the weather information from the weather information acquisition unit 11, the area in which each of the weather radar devices 1-1 to 1-10 exists is "water” based on the weather information. It is determined whether it is a "containing region” or a "sunny region".
  • the selection unit 12 indicates the initial setting information if all the regions in which each of the weather radar devices 1-1 to 1-10 exist are “sunny regions" (step ST2 in FIG. 6: YES).
  • the weather radar device 1-5 is selected as the first weather radar device 1-5 that both emits radio waves and receives radar echoes (step ST3 in FIG. 6).
  • the selection unit 12 is among the weather radar devices 1-1 to 1-10, among the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5. , A part of the weather radar device 1 or all the weather radar devices 1 are selected as the second weather radar device 1 that receives the radar echo (step ST4 in FIG. 6).
  • the weather radar devices 1-4 and 4 installed next to the first weather radar device 1-5. It is assumed that the radio waves radiated from the first weather radar device 1-5 directly arrive at each of 1-6.
  • each of the weather radar devices 1-4, 1-6 becomes the first.
  • the radio waves radiated from the weather radar device 1-5 the radio waves that have arrived directly are received. If the strength of the received radio wave is larger than the threshold Ths, the received radio wave becomes an interference signal with respect to the radar echo, and the accuracy of each meteorological observation in the weather radar devices 1-4, 1-6 deteriorates. Therefore, if the strength of the received radio wave is larger than the threshold value Ths, it is desirable not to select each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1.
  • each of the weather radar devices 1-4, 1-6 is a second weather radar device 1 that does not emit radio waves, the radio waves radiated from each of the weather radar devices 1-4, 1-6 are directly emitted. It never arrives at the first weather radar device 1-5. Therefore, even if each of the weather radar devices 1-4 and 1-6 is selected as the second weather radar device 1, the accuracy of the weather observation in the first weather radar device 1-5 does not deteriorate. From the above, even if each of the weather radar devices 1-4 and 1-6 is selected as the second weather radar device 1, all of the weather radar devices 1-4 to 1-6 are used as the first weather radar device 1. The accuracy of meteorological observation of the entire weather radar system is not lower than when it is selected.
  • the selection unit 12 is a radio wave radiated from the first weather radar device 1-5 among the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5.
  • Each of the weather radar devices 1-1 to 1-3 and 1-7 to 1-10 installed at a position where is not directly arrived is selected as the second weather radar device 1.
  • the selection unit 12 when each of the weather radar devices 1-4 and 1-6 receives the radio waves directly arriving from the radio waves radiated from the first weather radar device 1-5, respectively. The strength of the received radio wave and the threshold Ths are compared.
  • the selection unit 12 selects each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1. If the strength of each received radio wave is greater than the threshold Ths, the selection unit 12 does not select each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1, but the weather radar device 1 Each of -4, 1-6 is selected as the non-reception weather radar device 1 (step ST5 in FIG. 6). Here, for convenience of explanation, it is assumed that the selection unit 12 selects each of the weather radar devices 1-4 and 1-6 as the non-reception weather radar device 1.
  • the selection unit 12 selects the weather radar devices 1-4, 1-. Each of 6 is selected as the second weather radar device 1. Further, if the strength of the received radio waves of the weather radar devices 1-4, 1-6 is greater than the threshold Ths, the selection unit 12 uses the weather radar devices 1-4, 1-6 for non-reception. It is selected as the weather radar device 1. However, this is only an example, and the selection unit 12 may select the second weather radar device 1 or the non-reception weather radar device 1 as follows.
  • Each of the weather radar devices 1-4 and 1-6 carries out the suppression processing of the radiated radio waves directly coming from the first weather radar device 1-5.
  • a known process such as a DBF process for forming a null beam in the direction of arrival of the radiated radio wave can be used. If the selection unit 12 can ignore the interference of the radiated radio waves after the suppression process with respect to the radar echo received by each of the weather radar devices 1-4, 1-6, the weather radar device 1-4, 1 Select each of -6 as the second weather radar device.
  • the selection unit 12 determines that the interference of the radiated radio wave can be ignored if, for example, the ratio of the intensity of the radar echo to the strength of the radiated radio wave after the suppression process is larger than the reference signal-to-noise ratio.
  • the selection unit 12 determines that the interference of the radiated radio wave cannot be ignored if, for example, the ratio of the intensity of the radar echo to the strength of the radiated radio wave after the suppression process is equal to or less than the reference signal-to-noise ratio.
  • the reference signal-to-noise ratio may be stored in the internal memory of the selection unit 12 or may be given from the outside of the selection unit 12.
  • the control unit 13 transmits a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1-5 selected by the selection unit 12 via the communication network 3 (FIG. 6). Step ST6).
  • the control unit 13 transmits a second control signal instructing the stop of radiation of radio waves to the space via the communication network 3 to the second weather radar devices 1-1 to 1-3 selected by the selection unit 12. It is transmitted to each of 1-7 to 1-10 (step ST7 in FIG. 6).
  • the control unit 13 is a non-reception weather radar device selected by the selection unit 12 via the communication network 3 for a third control signal instructing each of the stop of radiating the radio wave to the space and the stop of receiving the radio wave. It is transmitted to each of 1-4 and 1-6 (step ST8 in FIG. 6).
  • the DBF control unit 51 of the first weather radar device 1-5 receives the first control signal from the radar control device 2 via the communication network 3
  • the DBF control unit 51 of the transmission control unit 53 of the transmission unit 71 receives the first control signal.
  • the first control signal is represented so as to be given to the DBF control unit 51 from the communication network 3 via the storage device 44.
  • the first control signal may be directly given to the DBF control unit 51 from the communication network 3.
  • the transmission control unit 53 starts the execution of the transmission DBF, radio waves are radiated into space from the transmission unit 71 of the first weather radar device 1-5.
  • Each DBF control unit 51 in the second weather radar devices 1-1 to 1-3, 1-7 to 1-10 receives a second control signal from the radar control device 2 via the communication network 3. Then, the execution of the transmission DBF in the transmission control unit 53 of the transmission unit 71 is stopped.
  • the second control signal is represented so as to be given from the communication network 3 to the DBF control unit 51 via the storage device 44. However, this is only an example, and the second control signal may be directly given to the DBF control unit 51 from the communication network 3.
  • the transmission control unit 53 stops the execution of the transmission DBF radio waves are sent into space from the respective transmission units 71 in the second weather radar devices 1-1 to 1-4, 1-6 to 1-10. Not radiated.
  • each of the DBF control units 51 in the second weather radar devices 1-4 and 1-6 receives the third control signal from the radar control device 2 via the communication network 3, the transmission control of the transmission unit 71 is performed.
  • the execution of the transmission DBF in the unit 53 is stopped, and the execution of the reception DBF in the reception control unit 54 is stopped.
  • the reception control unit 54 stops the execution of the reception DBF, so that the reception of the radar echo is stopped. Therefore, the result of the meteorological observation that may have deteriorated is not stored in the storage device 44.
  • the reception control unit 54 has stopped the execution of the reception DBF.
  • reception control unit 54 stops the operations of the out-of-band component removing unit 66, the frequency conversion unit 67, and the A / D conversion unit 68, respectively, so that the operation of the reception unit 72 is performed. May be stopped.
  • Each DBF control unit 51 in the weather radar devices 1-1 to 1-3, 1-5, 1-7 to 1-10 controls the execution of the reception DBF in the reception control unit 54.
  • Each DBF control unit 51 in the weather radar device 1-1 to 1-3, 1-5, 1-7 to 1-10 controls the execution of the reception DBF in the reception control unit 54, whereby the weather radar device 1
  • Each receiving unit 72 in -1 to 1-3, 1-5, 1-7 to 1-10 receives the radar echo.
  • the selection unit 12 of the radar control device 2 is a "water-containing region" (step ST2 in FIG. 6). : NO), one or more weather radar devices 1 existing in the "water-containing region” are identified based on the weather information (step ST9 in FIG. 6). The selection unit 12 selects a part of the weather radar device 1 or all the weather radar devices 1 among the specified one or more weather radar devices 1 as the first weather radar device 1 (step of FIG. 6). ST10).
  • the selection unit 12 first selects one weather radar device 1. Select as the weather radar device 1 of. If the weather radar device 1 existing in the "water-containing region" is, for example, only one of the weather radar devices 1-2, the selection unit 12 uses the weather radar device 1-2 as the first weather radar device. Select as 1-2.
  • the "water-containing region” may be divided into, for example, two. If there is only one weather radar device 1 existing in each of the two "water-containing areas", the selection unit 12 is one unit existing in each "water-containing area”. The weather radar device 1 is selected as the first weather radar device 1. If the weather radar device 1 existing in each "water-containing region" is, for example, the weather radar device 1-2 and the weather radar device 1-8, the selection unit 12 may select the weather radar device 1-2. And each of the weather radar device 1-8 is selected as the first weather radar device 1-2, 1-8.
  • the selection unit 12 may use two or more weather radars among the plurality of weather radar devices 1 existing in the "water-containing area".
  • Device 1 is selected as the first weather radar device 1.
  • the attenuation of the radio wave radiated from the weather radar device 1 existing in the "water-containing region” is larger than the attenuation amount of the radio wave radiated from the weather radar device 1 existing in the "sunny region”. Therefore, when there are a plurality of weather radar devices 1 existing in the "water-containing area", all the areas in which each of the weather radar devices 1-1 to 1-10 are present are “sunny areas”. Compared with the case, even if the number of the first weather radar devices 1 is increased, the possibility of radio wave interference is low.
  • the weather radar device 1 existing in the "water-containing region" is, for example, the weather radar device 1-2, 1-4, 1-5.
  • the selection unit 12 for selecting the first weather radar device 1 from the weather radar devices 1-2, 1-4, 1-5 will be described.
  • the respective installation conditions of the weather radar devices 1-1 to 1-10 satisfy the following conditions (1) and (2).
  • Condition (1) If the area where each of the weather radar devices 1-1 to 1-10 exists is a "sunny area", the weather radar is located at a position where radio wave interference occurs between the two weather radar devices 1 installed next to each other. Each of the devices 1-1 to 1-10 is installed.
  • Condition (2) If the area where each of the weather radar devices 1-1 to 1-10 exists is a "water-containing area", the two weather radar devices 1 installed next to each other are located at a position where radio wave interference does not occur. Each of the weather radar devices 1-1 to 1-10 is installed.
  • the conditions (1) and (2) are merely examples, and the respective installation conditions of the weather radar devices 1-1 to 1-10 are not limited to the conditions (1) and (2).
  • the weather radar devices 1-1 to 1-10 include the weather radar device 1 installed at a position where radio wave interference does not occur with the weather radar device 1 installed next to the weather radar device 1-1. It may be.
  • the weather radar device 1-2, 1-4, 1 is determined from the condition (2). No matter which two weather radar devices 1 are selected from -5, radio interference does not occur between the two selected weather radar devices 1. Therefore, the selection unit 12 selects each of any two weather radar devices 1 among the weather radar devices 1-2, 1-4, 1-5 as the first weather radar device 1.
  • the selection unit 12 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5.
  • the selection unit 12 selects each of any two weather radar devices 1 among the weather radar devices 1-2, 1-4, 1-5 as the first weather radar device 1.
  • the selection unit 12 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5.
  • the selection unit 12 selects the weather radar device 1-2, 1-5.
  • all the weather radar devices are selected as the second weather radar devices 1-1, 1-3, 1-4, 1-6 to 1-10 (step of FIG. 6).
  • the selection unit 12 selects all the weather radar devices 1 other than the first weather radar devices 1-2 and 1-5 as the second weather radar device 1.
  • the non-reception weather radar device 1 is not selected. ..
  • the selection unit 12 uses the weather radar devices 1-1 to 1-10 other than the first weather radar devices 1-2 and 1-5 among the weather radar devices 1-1 to 1-10.
  • a part of the weather radar device 1 may be selected as the second weather radar device 1. Therefore, the selection unit 12 may select, for example, the weather radar device 1-1, 1-3, 1-4, 1-6 as the second weather radar device.
  • the selection unit 12 selects each of the weather radar devices 1-1, 1-3, 1-4, 1-6 as the second weather radar device 1-1, 1-3, 1-4, 1-6.
  • each of the weather radar devices 1-7 to 1-10 is selected as the non-reception weather radar device 1-7 to 1-10 (step ST5 in FIG. 6).
  • the control unit 13 transmits the first control signal via the communication network 3. , Is transmitted to each of the first weather radar devices 1-2 and 1-5 (step ST6 in FIG. 6). If the second weather radar device 1 selected by the selection unit 12 is, for example, the weather radar device 1-1, 1-3, 1-4, 1-6, the control unit 13 has a second control signal. Is transmitted to each of the second weather radar devices 1-1, 1-3, 1-4, 1-6 via the communication network 3 (step ST7 in FIG. 6).
  • the control unit 13 transmits a third control signal via the communication network 3. Then, it is transmitted to each of the non-reception weather radar devices 1-7 to 1-10 (step ST8 in FIG. 6).
  • each of the DBF control units 51 in the first weather radar devices 1-2 and 1-5 receives the first control signal from the radar control device 2 via the communication network 3, the transmission control of the transmission unit 71 is performed.
  • the execution of the transmission DBF in the unit 53 is started.
  • the transmission control unit 53 starts the execution of the transmission DBF, radio waves are radiated into space from the respective transmission units 71 in the first weather radar devices 1-2 and 1-5.
  • Each DBF control unit 51 in the second weather radar device 1-1, 1-3, 1-4, 1-6 receives a second control signal from the radar control device 2 via the communication network 3. Then, the execution of the transmission DBF in the transmission control unit 53 of the transmission unit 71 is stopped. When the transmission control unit 53 stops the execution of the transmission DBF, the transmission unit 71 in each of the second weather radar devices 1-1, 1-3, 1-4, 1-6 to 1-10 Radio waves are not radiated into space. When each DBF control unit 51 in the non-reception weather radar devices 1-7 to 1-10 receives a third control signal from the radar control device 2 via the communication network 3, the transmission unit 71 transmits. The execution of the transmission DBF in the control unit 53 is stopped, and the execution of the reception DBF in the reception control unit 54 of the reception unit 72 is stopped. When the reception control unit 54 stops the execution of the reception DBF, the radar echo is not received.
  • Each DBF control unit 51 in the first weather radar device 1-2, 1-5 controls the execution of the reception DBF in the reception control unit 54.
  • Each DBF control unit 51 in the second weather radar device 1-1, 1-3, 1-4, 1-6 controls the execution of the reception DBF in the reception control unit 54. Therefore, the respective receiving units 72 in the first weather radar device 1-2, 1-5 and the second weather radar device 1-1, 1-3, 1-4, 1-6 receive the radar echo. Do.
  • the selection unit 12 of the radar control device 2 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5, and then the weather information acquisition unit.
  • each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5, and then the weather information acquisition unit.
  • the selection unit 12 selects some of the specified weather radar devices 1 or all of the weather radar devices 1 as the first weather radar device 1.
  • the “water-containing region” is, for example, the region where each of the weather radar devices 1-2, 1-4, 1-5 exists. Therefore, it is assumed that the weather radar devices 1-6, 1-8, and 1-9 are moved to the existing areas.
  • the selection unit 12 uses, for example, the weather radar device 1-6 and the weather radar device 1-9 as the first weather radar device 1 among the weather radar devices 1-6, 1-8, 1-9. Select as -6, 1-9.
  • the selection unit 12 uses a part of the weather radar devices 1 or all the weather radar devices 1 among the weather radar devices 1 other than the first weather radar devices 1-6 and 1-9 as the second weather. Select as radar device 1.
  • the selection unit 12 selects the weather radar device 1 that is not selected as the second weather radar device 1 among the weather radar devices 1 other than the first weather radar devices 1-6 and 1-9 for non-reception. Select as device 1.
  • the control unit 13 transmits the first control signal via the communication network 3. , 1st weather radar device 1-6, 1-9, respectively.
  • the second weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-7, 1-8, 1-10
  • the control unit 13 transmits the second control signal to the communication network. It is transmitted to each of the second weather radar devices 1-7, 1-8, and 1-10 via 3.
  • the non-reception weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-1 to 1-5
  • the control unit 13 transmits a third control signal via the communication network 3. Then, it is transmitted to each of the non-reception weather radar devices 1-1 to 1-5.
  • the weather information acquisition unit 11 that acquires weather information indicating a region in which either water droplets or ice crystals are floating in the atmosphere, and a plurality of weather radar devices 1-1 to 1-N.
  • one or more weather radar devices 1 existing in the area indicated by the weather information acquired by the weather information acquisition unit 11 are specified, and a part of the specified one or more weather radar devices 1 is specified.
  • the weather radar device 1 or all the weather radar devices 1 are selected as the first weather radar device 1 that emits radio waves and receives radar echoes, and a plurality of weather radar devices 1-1 to 1- Among the weather radar devices 1 other than the first weather radar device 1, some of the weather radar devices 1 or all the weather radar devices 1 in N are the second weather radars that receive the radar echo.
  • a first control signal instructing the emission of radio waves into space is output to the selection unit 12 selected as the device 1 and the first weather radar device 1 selected by the selection unit 12, and the selection unit 12 outputs the first control signal.
  • the radar control device 2 is configured to include a control unit 13 that outputs a second control signal instructing the selected second weather radar device 1 to stop radiating radio waves into the space. Therefore, the radar control device 2 has a higher accuracy of weather observation than the plurality of weather radar devices 1-1 to 1-N in which the weather radar device 1 responsible for emitting radio waves is always the same weather radar device 1. Can be enhanced.
  • the weather information acquisition unit 11 of the radar control device 2 collects weather information from a weather information distribution device (not shown) via a communication network 3.
  • a weather information distribution device not shown
  • some weather radar devices 1 carry out meteorological observation based on the radar echo received by the receiving unit 72.
  • the water-containing region may be detected and the detection result of the water-containing region may be transmitted to the radar control device 2 as weather information.
  • the signal processing device 45 of the weather radar device 1-5 or the meteorological observation unit (not shown) is received by the receiving unit 72 of the weather radar device 1-5. Water-containing areas are detected by conducting meteorological observations based on radar echoes.
  • the signal processing device 45 of the weather radar device 1-5 transmits the detection result of the water-containing region as weather information to the radar control device 2 via the communication network 3.
  • the meteorological observation by the signal processing device 45 or the like of the meteorological radar device 1-5 is a wide-area meteorological observation including the entire region where each of the meteorological radar devices 1-1 to 1-N exists.
  • the weather observation by the signal processing device 45 or the like of the weather radar device 1 other than the weather radar device 1-5 is performed more than the signal processing device 45 or the like of the weather radar device 1-5. It is a small area meteorological observation.
  • Embodiment 2 the radar control device 2 in which the selection unit 14 determines the number of the first weather radar devices 1 based on the amount of rainfall will be described.
  • the amount of attenuation of radio waves radiated from each of the weather radar devices 1-1 to 1-10 increases as the amount of rainfall increases.
  • the configuration showing the weather radar system according to the second embodiment is the same as the configuration showing the weather radar system according to the first embodiment, and the configuration diagram showing the weather radar system according to the second embodiment is FIG. ..
  • condition (3) If the area where each of the weather radar devices 1-1 to 1-10 exists is a "sunny area", the weather radar is located at a position where radio wave interference occurs between the two weather radar devices 1 installed next to each other. Each of the devices 1-1 to 1-10 is installed.
  • Condition (4) When the region where each of the weather radar devices 1-1 to 1-10 exists is the "water-containing region" and the rainfall amount R is less than the rainfall threshold Th R , the distance between them is smaller than the distance threshold Th L. If it is large, radio wave interference does not occur between the two weather radar devices 1 installed next to each other.
  • condition (5) When the region where each of the weather radar devices 1-1 to 1-10 exists is the "water-containing region" and the rainfall amount R is equal to or greater than the rainfall threshold Th R , the distance between them is equal to or less than the distance threshold Th L. Even if there is, radio wave interference does not occur between the two weather radar devices 1 installed next to each other.
  • the conditions (3) to (5) are merely examples, and the respective installation conditions of the weather radar devices 1-1 to 1-10 are not limited to the conditions (3) to (5).
  • FIG. 7 is a configuration diagram showing the radar control device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • FIG. 8 is a hardware configuration diagram showing the hardware of the radar control device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 3 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the weather information acquired by the weather information acquisition unit 11 includes information indicating the rainfall R.
  • the selection unit 14 is realized by, for example, the selection circuit 24 shown in FIG.
  • the internal memory of the selection unit 14 stores the rainfall threshold value Th R and the distance threshold value Th L.
  • each of the rainfall threshold value Th R and the distance threshold value Th L may be given to the selection unit 14 from the outside of the radar control device 2.
  • the selection unit 14 exists in the area indicated by the weather information acquired by the weather information acquisition unit 11 among the plurality of weather radar devices 1-1 to 1-N. Identify one or more weather radar devices 1 that are
  • the selection unit 14 selects some of the specified weather radar devices 1 or all of the weather radar devices 1 as the first weather radar device 1. If the rainfall amount R indicated by the weather information is less than the rainfall threshold Th R , the selection unit 14 has the weather of two of the specified one or more weather radar devices 1 whose distances from each other are larger than the distance threshold Th L. The radar device 1 is selected as the first weather radar device 1. If the rainfall amount R is equal to or higher than the rainfall threshold Th R , the selection unit 14 selects, for example, three weather radar devices 1 as the first weather radar device 1 among the specified one or more weather radar devices 1. To do. Similar to the selection unit 12 shown in FIG.
  • the selection unit 14 is a part of the weather radar devices 1 other than the first weather radar device 1 among the plurality of weather radar devices 1-1 to 1-N.
  • the weather radar device 1 or all the weather radar devices 1 are selected as the second weather radar device 1. Similar to the selection unit 12 shown in FIG. 2, the selection unit 14 moves the "water-containing region" indicated by the weather information acquired by the weather information acquisition unit 11, and the first weather radar device 1 and the second. The weather radar device 1 and the non-reception weather radar device 1 are changed.
  • each of the weather information acquisition unit 11, the selection unit 14, and the control unit 13, which are the components of the radar control device 2 is realized by the dedicated hardware as shown in FIG. .. That is, it is assumed that the radar control device 2 is realized by the weather information acquisition circuit 21, the selection circuit 24, and the control circuit 23.
  • Each of the weather information acquisition circuit 21, the selection circuit 24, and the control circuit 23 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. To do.
  • the components of the radar control device 2 are not limited to those realized by dedicated hardware, but the radar control device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the radar control device 2 is realized by software, firmware, or the like, a program for causing a computer to execute each processing procedure of the weather information acquisition unit 11, the selection unit 14, and the control unit 13 is stored in the memory 31 shown in FIG. Stored. Then, the processor 32 shown in FIG. 4 executes the program stored in the memory 31.
  • FIG. 9 is a flowchart showing a processing procedure of the radar control device 2.
  • N 10
  • the weather radar system shown in FIG. 1 includes 10 weather radar devices 1-1 to 1-10.
  • the meteorological information acquisition unit 11 acquires meteorological information indicating the “water-containing region” (step ST11 in FIG. 9).
  • the weather information acquisition unit 11 outputs the weather information to the selection unit 14.
  • the selection unit 14 When the selection unit 14 receives the weather information from the weather information acquisition unit 11, the area in which each of the weather radar devices 1-1 to 1-10 exists is the "water-containing area" based on the weather information. It is judged whether it is a "sunny area” or a "sunny area”. If all of the regions in which each of the weather radar devices 1-1 to 1-10 are present are "sunny regions" (step ST12 of FIG. 9: YES), the selection unit 14 indicates the initial setting information. The weather radar device 1 is selected as the first weather radar device 1 (step ST13 in FIG. 9). In the radar control device 2 shown in FIG.
  • the initial setting information is stored in the internal memory of the selection unit 14. However, the initial setting information may be given to the selection unit 14 from the outside of the radar control device 2.
  • the selection unit 14 is a weather radar device 1-1 to 1-1 other than the first weather radar device 1-5 among the weather radar devices 1-1 to 1-10. Of 4, 1-6 to 1-10, some weather radar devices 1 or all weather radar devices 1 are selected as the second weather radar device 1 (step ST14 in FIG. 9).
  • the selection unit 14 is selected from the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5, and the weather radar device 1-1. It is assumed that each of ⁇ 1-3, 1-7 ⁇ 1-10 is selected as the second weather radar device 1.
  • the selection unit 14 selects the non-reception weather radar device 1 in the same manner as the selection unit 12 shown in FIG. 2 (step ST15 in FIG. 9).
  • the selection unit 14 selects each of the weather radar devices 1-4 and 1-6 as the non-reception weather radar device 1.
  • the control unit 13 transmits a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1-5 selected by the selection unit 14 via the communication network 3 (FIG. 9). Step ST16). The control unit 13 transmits a second control signal instructing the stop of radiation of radio waves to the space via the communication network 3 to the second weather radar devices 1-1 to 1-3 selected by the selection unit 14. It is transmitted to each of 1-7 to 1-10 (step ST17 in FIG. 9). The control unit 13 is a non-reception weather radar device selected by the selection unit 14 via the communication network 3 for a third control signal instructing each of the stop of radiating the radio wave to the space and the stop of receiving the radio wave. It is transmitted to each of 1-4 and 1-6 (step ST18 in FIG. 9).
  • the selection unit 14 (in the case of step ST12: NO in FIG. 9). , One or more weather radar devices 1 existing in the "water-containing region” are identified based on the weather information (step ST19 in FIG. 9).
  • the selection unit 14 compares the rainfall amount R of the “water-containing region” indicated by the meteorological information with the rainfall threshold value Th R.
  • Th R the rainfall threshold value
  • the selection unit 14 has the distance threshold Th L between the specified one or more weather radar devices 1. Two larger weather radar devices 1 are selected as the first weather radar device 1 (step ST21 in FIG. 9). It is assumed that the weather radar devices existing in the "water-containing region" are, for example, the weather radar devices 1-1 to 1-4. At this time, the distance between the weather radar device 1-1 and the weather radar device 1-2 is larger than the distance threshold Th L , and the distance between the weather radar device 1-1 and the weather radar device 1-4 is the distance threshold Th. Greater than L.
  • the distance between the weather radar device 1-3 and the weather radar device 1-4 is larger than the distance threshold Th L
  • the distance between the weather radar device 1-2 and the weather radar device 1-4 is the distance threshold Th L. Greater than.
  • the distance between the weather radar device 1-2 and the weather radar device 1-3 is larger than the distance threshold Th L.
  • the distance between the weather radar device 1-1 and the weather radar device 1-3 is equal to or less than the distance threshold value Th L.
  • the selection unit 14 selects each of the weather radar device 1-1 and the weather radar device 1-4 as the first weather radar device 1-1, 1-2, the weather radar device 1-2, The radio waves radiated from each of the weather radar device 1-1 and the weather radar device 1-4 do not directly reach each of 1-3. Therefore, the selection unit 14 selects, for example, each of the weather radar device 1-1 and the weather radar device 1-4 as the first weather radar device 1-1, 1-2. Here, the selection unit 14 selects the two weather radar devices 1 as the first weather radar device 1. However, if there is only one weather radar device 1 existing in the "water-containing region", the selection unit 14 selects one weather radar device 1 as the first weather radar device 1.
  • the selection unit 14 has, for example, three weather radar devices among the specified one or more weather radar devices 1. 1 is selected as the first weather radar device 1 (step ST22 in FIG. 9). If the weather radar devices existing in the "water-containing region" are the weather radar devices 1-1 to 1-4, the selection unit 14 may select, for example, each of the weather radar devices 1-1 to 1-3. Select as the weather radar device 1-1 to 1-3 of 1. Here, the selection unit 14 selects the three weather radar devices 1 as the first weather radar device 1. The selection unit 14 may select each of the four weather radar devices 1-1 to 1-4 as the first weather radar devices 1-1 to 1-4.
  • the selection unit 14 selects one weather radar device 1 as the first weather radar device 1. Further, if there are two weather radar devices 1 existing in the "water-containing region", the selection unit 14 selects the two weather radar devices 1 as the first weather radar device 1.
  • the selection unit 14 may be, for example, one unit.
  • the weather radar device 1 of the above is selected as the first weather radar device 1. If any of the regions in which each of the weather radar devices 1-1 to 1-10 exists is a "water-containing region" and the rainfall amount R is smaller than the rainfall threshold Th R , the selection unit 14 However, for example, two weather radar devices 1 are selected as the first weather radar device 1.
  • any of the regions in which each of the weather radar devices 1-1 to 1-10 exists is a "water-containing region" and the rainfall amount R is equal to or higher than the rainfall threshold Th R, the selection unit 14 However, for example, three weather radar devices 1 are selected as the first weather radar device 1.
  • the selection unit 14 is a part of the weather radar devices 1 other than the first weather radar device 1 among the weather radar devices 1-1 to 1-10, or all the weather radar devices 1. 1 is selected as the second weather radar device 1 (step ST14 in FIG. 9).
  • the selection unit 14 receives radio waves radiated from the first weather radar device 1 as in the selection unit 12 shown in FIG. Select the weather radar device 1 installed at a position that does not come directly.
  • the selection unit 14 selects the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold value Ths, even if the radiated radio wave from the first weather radar device 1 directly arrives.
  • the selection unit 14 can ignore the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first weather radar device 1. Select 1.
  • the weather radar device 1 existing in the "water-containing region" is selected as the second weather radar device 1
  • the selection unit 14 uses the first weather radar.
  • the weather radar device 1 whose distance from the device 1 is larger than the distance threshold Th L is selected as the second weather radar device 1.
  • the selection unit 14 is one of the specified one or more weather radar devices 1-1 to 1-4, and the distance between the two first weather radars is larger than the distance threshold Th L.
  • the weather radar device 1-1 and the weather radar device 1-4 are selected as the device 1.
  • the selection unit 14 is the weather radar device. Select 1-2 as the second weather radar device 1. Further, since the radio waves radiated from the weather radar device 1-1 directly arrive at the weather radar device 1-3, the selection unit 14 uses the weather radar device 1-3 for non-reception of the weather radar. Select as device 1 (step ST15 in FIG. 9).
  • the control unit 13 transmits the first control signal to the first weather radar device 1 selected by the selection unit 14 via the communication network 3 (step ST16 in FIG. 9).
  • the control unit 13 transmits the second control signal to the second weather radar device 1 selected by the selection unit 14 via the communication network 3 (step ST17 in FIG. 9).
  • the control unit 13 transmits a third control signal to each of the non-reception weather radar devices 1-4 and 1-6 selected by the selection unit 14 via the communication network 3 (step 9 in FIG. 9). ST18).
  • the radar control device 2 is configured so that the selection unit 14 determines the number of the first weather radar devices 1 based on the rainfall R indicated by the weather information. Therefore, the radar control device 2 can improve the accuracy of meteorological observation by increasing the number of the first meteorological radar devices 1 in an environment where radio wave interference does not occur.
  • FIG. 10 is a configuration diagram showing a weather radar system according to the third embodiment.
  • the interference source 4 is, for example, a wireless LAN network device.
  • the weather radar device 1-n 1, ..., 10) stops the operation of its own receiving unit 72.
  • FIG. 11 is a configuration diagram showing a weather radar device 1 of the weather radar system according to the third embodiment.
  • the interference source detection unit 81 performs detection processing of the interference source 4 transmitting the interference wave.
  • the interference source detection unit 81 detects the interference source 4, it outputs a detection signal indicating that the interference source 4 has been detected to the reception control unit 82, which will be described later.
  • the reception control unit 82 operates in the same manner as the reception control unit 54 shown in FIG. 5, and also stops the operation of the reception unit 72 when it receives a detection signal from the interference source detection unit 81.
  • the interference source detection unit 81 detects the interference source 4, it outputs a detection signal indicating that the interference source 4 has been detected to the reception control unit 82.
  • the reception control unit 82 When the reception control unit 82 receives the detection signal from the interference source detection unit 81, for example, the reception unit 82 stops the operations of the out-of-band component removal unit 66, the frequency conversion unit 67, and the A / D conversion unit 68, respectively. The operation of 72 is stopped. The interference wave transmitted from the interference source 4 becomes a deterioration factor of the meteorological observation in the meteorological radar device 1-n.
  • the reception control unit 82 stops the operation of the reception unit 72, so that the observation result of the weather that may have deteriorated is stored in the storage device 44. It can be prevented from being memorized.
  • the interference source detection unit 81 After detecting the interference source 4 transmitting the interference wave, the interference source detection unit 81 subsequently executes the detection process of the interference source 4. If the interference source 4 is not detected, the interference source detection unit 81 outputs a non-detection signal indicating that the interference source 4 is not detected to the reception control unit 82.
  • the reception control unit 82 receives the non-detection signal from the interference source detection unit 81, the reception control unit 82 transmits the non-detection signal to the radar control device 2 via the communication network 3.
  • the control unit 13 of the radar control device 2 receives a non-detection signal from the interference source detection unit 81 of the weather radar device 1-n via the communication network 3, it communicates a control signal instructing the restart of the reception operation. It transmits to the weather radar device 1-n via the network 3.
  • the reception control unit 82 of the weather radar device 1-n receives a control signal instructing the restart of the reception operation from the radar control device 2 via the communication network 3, for example, the out-of-band component removal unit 66 and the frequency conversion
  • the operation of the receiving unit 72 is restarted.
  • the operation of the receiving unit 72 is stopped.
  • a weather radar system was constructed. Therefore, the weather radar system can stop the meteorological observation when the meteorological observation result is likely to deteriorate.
  • a transmission-only weather radar device that emits radio waves into space but does not receive radar echoes.
  • a weather radar system including 5 and a reception-only weather radar device 6 that receives radar echoes but does not radiate radio waves into space will be described.
  • FIG. 12 is a configuration diagram showing a weather radar device 5 dedicated to transmission.
  • the transmission-only weather radar device 5 shown in FIG. 12 does not include the receiving unit 72 included in the weather radar device 1 shown in FIG. Therefore, the transmission-only weather radar device 5 shown in FIG. 12 has a simpler configuration than the weather radar device 1 shown in FIG.
  • FIG. 13 is a configuration diagram showing a reception-only weather radar device 6.
  • the reception-only weather radar device 6 shown in FIG. 13 does not include the transmission unit 71 included in the weather radar device 1 shown in FIG. Therefore, the reception-only weather radar device 6 shown in FIG. 13 has a simpler configuration than the weather radar device 1 shown in FIG.
  • the weather radar device 5 dedicated to transmission always radiates radio waves into space, but does not receive radar echo.
  • the reception-only weather radar device 6 does not radiate radio waves into space, but always receives radar echoes.
  • the present disclosure is suitable for a radar control device and a radar control method that output a control signal to a weather radar device.
  • the present disclosure is also suitable for a weather radar system including a plurality of weather radar devices.
  • 1,1-1 to 1-N meteorological radar device 2 radar control device, 3 communication network, 4 interference source, 5 meteorological radar device, 6 meteorological radar device, 11 meteorological information acquisition section, 12, 14 selection section, 13 control Department, 21 weather information acquisition circuit, 22, 24 selection circuit, 23 control circuit, 31 memory, 32 processor, 41 digital circuit, 42 analog circuit, 43 antenna, 44 storage device, 45 signal processing device, 46 display device, 51 DBF Control unit, 52 pulse generation unit, 53 transmission control unit, 54 reception control unit, 61 oscillation unit, 62 D / A conversion unit, 63 frequency conversion unit, 64 signal amplification unit, 65 switching unit, 66 out-of-band component removal unit, 67 Frequency conversion unit, 68 A / D conversion unit, 71 transmission unit, 72 reception unit, 81 interference source detection unit, 82 reception control unit.

Abstract

This radar supervising device (2) is provided with: a weather information acquisition unit (11) which acquires weather information that indicates an area in which any of a droplet or an ice crystal floats in the air; a selection unit (12) which specifies, among a plurality of N weather radar devices, one or more weather radar devices (1) that are present within an area indicated by the weather information acquired by the weather information acquisition unit, selects some or all of the weather radar devices from among the specified one or more weather radar devices as first weather radar devices that perform both emission of a radiowave and reception of a radar echo, and selects, as second weather radar devices that receive a radar echo, some or all of the weather radar devices from among weather radar devices other than the first weather radar devices among the plurality of weather radar devices; and a control unit (13) which outputs, to the selected first weather radar devices, a first control signal that instructs the emission of the radiowave to a space, and outputs, to the selected second weather radar devices, a second control signal that instructs the stoppage of the emission of the radiowave to the space.

Description

レーダ統括装置、レーダ統括方法及び気象レーダシステムRadar control device, radar control method and weather radar system
 本開示は、気象レーダ装置に制御信号を出力するレーダ統括装置及びレーダ統括方法と、複数の気象レーダ装置を備える気象レーダシステムとに関するものである。 The present disclosure relates to a radar control device and a radar control method that output a control signal to a weather radar device, and a weather radar system including a plurality of weather radar devices.
 複数の気象レーダ装置がネットワーク化されている気象レーダシステムがある。
 それぞれの気象レーダ装置には、例えば、設置位置が近い他の気象レーダ装置から放射された電波が直接的に到来してくることがある。
 他の気象レーダ装置から直接的に到来してきた電波は、レーダエコーに対する干渉信号となり、電波干渉が発生する。電波干渉の発生は、気象レーダ装置における気象観測の劣化要因となる。
There is a weather radar system in which multiple weather radar devices are networked.
For example, radio waves radiated from another weather radar device near the installation position may directly arrive at each weather radar device.
Radio waves that come directly from other weather radar devices become interference signals for radar echoes, causing radio wave interference. The occurrence of radio wave interference causes deterioration of meteorological observation in the meteorological radar device.
 以下の特許文献1には、複数の送受信局と、複数の受信局とを備えるレーダシステムが開示されている。当該送受信局は、電波を空間に放射し、当該電波に係るレーダエコーを受信することによって、気象観測を行うレーダである。当該受信局は、当該送受信局から放射された電波に係るレーダエコーを受信することによって、気象観測を行うレーダである。
 特許文献1に開示されているレーダシステムでは、送受信局のみが電波の放射を担っているので、全てのレーダが電波の放射を行うレーダシステムよりも、電波干渉が低減されている。
The following Patent Document 1 discloses a radar system including a plurality of transmitting / receiving stations and a plurality of receiving stations. The transmitting / receiving station is a radar that radiates radio waves into space and receives radar echoes related to the radio waves to perform meteorological observation. The receiving station is a radar that performs meteorological observation by receiving a radar echo related to a radio wave radiated from the transmitting / receiving station.
In the radar system disclosed in Patent Document 1, since only the transmitting and receiving stations are responsible for radiating radio waves, radio wave interference is reduced as compared with a radar system in which all radars radiate radio waves.
特開2016-65810号公報Japanese Unexamined Patent Publication No. 2016-65510
 特許文献1に開示されているレーダシステムでは、複数のレーダのうち、送受信局であるレーダが固定され、受信局であるレーダが固定されている。したがって、電波の放射を担うレーダの台数が常に同じであるため、気象観測の精度が低下してしまうことがあるという課題があった。 In the radar system disclosed in Patent Document 1, among a plurality of radars, the radar that is the transmitting / receiving station is fixed, and the radar that is the receiving station is fixed. Therefore, since the number of radars responsible for radiating radio waves is always the same, there is a problem that the accuracy of meteorological observation may decrease.
 本開示は、上記のような課題を解決するためになされたもので、複数の気象レーダ装置のうち、電波の放射を担う気象レーダ装置が常に同じ気象レーダ装置であるものよりも、気象観測の精度を高めることができるレーダ統括装置、レーダ統括方法及び気象レーダシステムを得ることを目的とする。 This disclosure is made in order to solve the above-mentioned problems, and among a plurality of weather radar devices, the weather radar device responsible for emitting radio waves is always the same weather radar device, rather than the weather observation device. The purpose is to obtain a radar control device, a radar control method, and a weather radar system that can improve the accuracy.
 本開示に係るレーダ統括装置は、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得する気象情報取得部と、複数の気象レーダ装置の中で、気象情報取得部により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置を特定し、特定した1つ以上の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置として選択し、複数の気象レーダ装置の中で、第1の気象レーダ装置以外の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、レーダエコーの受信を行う第2の気象レーダ装置として選択する選択部と、選択部により選択された第1の気象レーダ装置に対して、空間への電波の放射を指示する第1の制御信号を出力し、選択部により選択された第2の気象レーダ装置に対して、空間への電波の放射停止を指示する第2の制御信号を出力する制御部とを備えるようにしたものである。 The radar control device according to the present disclosure includes a weather information acquisition unit that acquires weather information indicating an area in which either water droplets or ice crystals are floating in the atmosphere, and a weather information acquisition unit among a plurality of weather radar devices. One or more weather radar devices existing in the area indicated by the weather information acquired by the above are specified, and among the specified one or more weather radar devices, some or all the weather radar devices are used. The radar device is selected as the first weather radar device that both emits radio waves and receives radar echoes, and among the plurality of weather radar devices, one of the weather radar devices other than the first weather radar device. For the selection unit that selects the weather radar device of the unit or all the weather radar devices as the second weather radar device that receives the radar echo, and the first weather radar device selected by the selection unit. A first control signal instructing the emission of radio waves into the space is output, and a second control signal instructing the second weather radar device selected by the selection unit to stop radiating the radio waves into the space is output. It is provided with a control unit for output.
 本開示によれば、複数の気象レーダ装置の中で、気象情報取得部により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置を特定し、特定した1つ以上の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置として選択し、複数の気象レーダ装置の中で、第1の気象レーダ装置以外の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、レーダエコーの受信を行う第2の気象レーダ装置として選択する選択部を備えるように、レーダ統括装置を構成した。したがって、本開示に係るレーダ統括装置は、複数の気象レーダ装置のうち、電波の放射を担う気象レーダ装置が常に同じ気象レーダ装置であるものよりも、気象観測の精度を高めることができる。 According to the present disclosure, among a plurality of meteorological radar devices, one or more meteorological radar devices existing in the area indicated by the meteorological information acquired by the meteorological information acquisition unit are specified, and one or more specified one or more. Among the meteorological radar devices of the above, some or all meteorological radar devices are selected as the first meteorological radar device that both emits radio waves and receives radar echoes, and a plurality of meteorological radar devices are selected. Among the meteorological radar devices other than the first meteorological radar device, some or all meteorological radar devices are selected as the second meteorological radar device that receives radar echo. The radar control device was configured to include a unit. Therefore, the radar control device according to the present disclosure can improve the accuracy of meteorological observation as compared with a plurality of meteorological radar devices in which the meteorological radar device responsible for emitting radio waves is always the same meteorological radar device.
実施の形態1に係る気象レーダシステムを示す構成図である。It is a block diagram which shows the weather radar system which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ統括装置2を示す構成図である。It is a block diagram which shows the radar integrated apparatus 2 which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ統括装置2のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the radar integrated apparatus 2 which concerns on Embodiment 1. FIG. レーダ統括装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。It is a hardware configuration diagram of the computer when the radar control device 2 is realized by software, firmware, or the like. 実施の形態1に係る気象レーダシステムの気象レーダ装置1を示す構成図である。It is a block diagram which shows the weather radar apparatus 1 of the weather radar system which concerns on Embodiment 1. FIG. レーダ統括装置2の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the radar control apparatus 2. 実施の形態2に係るレーダ統括装置2を示す構成図である。It is a block diagram which shows the radar integrated apparatus 2 which concerns on Embodiment 2. FIG. 実施の形態2に係るレーダ統括装置2のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the radar integrated apparatus 2 which concerns on Embodiment 2. FIG. レーダ統括装置2の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the radar control apparatus 2. 実施の形態3に係る気象レーダシステムを示す構成図である。It is a block diagram which shows the weather radar system which concerns on Embodiment 3. 実施の形態3に係る気象レーダシステムの気象レーダ装置1を示す構成図である。It is a block diagram which shows the meteorological radar apparatus 1 of the meteorological radar system which concerns on Embodiment 3. 送信専用の気象レーダ装置5を示す構成図である。It is a block diagram which shows the weather radar apparatus 5 dedicated to transmission. 受信専用の気象レーダ装置6を示す構成図である。It is a block diagram which shows the weather radar apparatus 6 only for reception.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described with reference to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る気象レーダシステムを示す構成図である。
 気象レーダシステムは、複数の気象レーダ装置1-1~1-Nと、レーダ統括装置2と、通信ネットワーク3とを備えている。Nは、2以上の整数である。
 複数の気象レーダ装置1-1~1-Nと、レーダ統括装置2とは、通信ネットワーク3によって接続されている。
Embodiment 1.
FIG. 1 is a configuration diagram showing a weather radar system according to the first embodiment.
The weather radar system includes a plurality of weather radar devices 1-1 to 1-N, a radar control device 2, and a communication network 3. N is an integer greater than or equal to 2.
The plurality of weather radar devices 1-1 to 1-N and the radar control device 2 are connected by a communication network 3.
 気象レーダ装置1-n(n=1,・・・,N)は、電波を空間に放射する送信部71と、レーダエコーを受信する受信部72とを有している(図5を参照)。
 気象レーダ装置1-1~1-Nのそれぞれを区別しない場合は、気象レーダ装置1のように表記することがある。
The weather radar device 1-n (n = 1, ..., N) has a transmitting unit 71 that radiates radio waves into space and a receiving unit 72 that receives radar echoes (see FIG. 5). ..
When each of the weather radar devices 1-1 to 1-N is not distinguished, it may be described as the weather radar device 1.
 レーダ統括装置2は、複数の気象レーダ装置1-1~1-Nの中で、大気中に水滴又は氷晶のいずれかが浮かんでいる領域内に存在している1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置1として選択する。大気中に水滴又は氷晶のいずれかが浮かんでいる領域は、雨、雪又は雹のいずれかが降っている領域、あるいは、霧が発生している領域である。
 レーダ統括装置2は、複数の気象レーダ装置1-1~1-Nの中で、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、レーダエコーの受信を行う第2の気象レーダ装置1として選択する。
 レーダ統括装置2は、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1を、レーダエコーの受信を行う第2の気象レーダ装置1として選択する場合、例えば、以下に示す気象レーダ装置1を選択する。レーダ統括装置2は、第1の気象レーダ装置1からの放射電波が直接的に到来してくることのない位置に設置されている気象レーダ装置1、又は、第1の気象レーダ装置1からの放射電波が直接的に到来してきても、受信した当該電波の強さが閾値Ths以下の気象レーダ装置1を選択する。また、レーダ統括装置2は、第1の気象レーダ装置1から直接的に到来してきた放射電波の抑圧処理を実施すれば、受信したレーダエコーに対する放射電波の干渉を無視することが可能な気象レーダ装置1を選択する。
The radar control device 2 is one or more weather radar devices existing in a region in which either water droplets or ice crystals are floating in the atmosphere among a plurality of weather radar devices 1-1 to 1-N. Of 1, some weather radar devices 1 or all weather radar devices 1 are selected as the first weather radar device 1 that both emits radio waves and receives radar echoes. Areas where either water droplets or ice crystals are floating in the atmosphere are areas where either rain, snow or hail is falling, or where fog is occurring.
The radar control device 2 is a part of the weather radar devices 1 other than the first weather radar device 1 among the plurality of weather radar devices 1-1 to 1-N, or all of the weather radar devices 1. The weather radar device 1 is selected as the second weather radar device 1 that receives the radar echo.
When the radar control device 2 selects a part of the weather radar devices 1 other than the first weather radar device 1 as the second weather radar device 1 that receives the radar echo, for example, , Select the weather radar device 1 shown below. The radar control device 2 is from the weather radar device 1 installed at a position where the radio waves radiated from the first weather radar device 1 do not directly arrive, or from the first weather radar device 1. Even if the radiated radio wave arrives directly, the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold Ths is selected. Further, the radar control device 2 is a weather radar capable of ignoring the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first meteorological radar device 1. Select device 1.
 レーダ統括装置2は、第1の気象レーダ装置1に含まれている送信部71から電波を放射させる。
 レーダ統括装置2は、第2の気象レーダ装置1に含まれている送信部71からの電波の放射を停止させる。
 レーダ統括装置2は、非受信用の気象レーダ装置1に含まれている送信部71からの電波の放射を停止させ、非受信用の気象レーダ装置1に含まれている受信部72におけるレーダエコーの受信を停止させる。
The radar control device 2 radiates radio waves from the transmission unit 71 included in the first weather radar device 1.
The radar control device 2 stops the radiation of radio waves from the transmission unit 71 included in the second weather radar device 1.
The radar control device 2 stops the radiation of radio waves from the transmission unit 71 included in the non-reception weather radar device 1, and the radar echo in the reception unit 72 included in the non-reception weather radar device 1. Stop receiving.
 通信ネットワーク3は、インターネット又はLAN(Local Area Network)等によって実現される。
 通信ネットワーク3には、複数の気象レーダ装置1-1~1-Nと、レーダ統括装置2とが接続されている。
The communication network 3 is realized by the Internet, LAN (Local Area Network), or the like.
A plurality of weather radar devices 1-1 to 1-N and a radar control device 2 are connected to the communication network 3.
 図2は、実施の形態1に係るレーダ統括装置2を示す構成図である。
 図3は、実施の形態1に係るレーダ統括装置2のハードウェアを示すハードウェア構成図である。
 レーダ統括装置2は、気象情報取得部11、選択部12及び制御部13を備えている。
 気象情報取得部11は、例えば、図3に示す気象情報取得回路21によって実現される。
 気象情報取得部11は、例えば、図示せぬ気象情報配信装置から、通信ネットワーク3を介して、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得する。
 気象情報取得部11は、気象情報を選択部12に出力する。
FIG. 2 is a configuration diagram showing a radar control device 2 according to the first embodiment.
FIG. 3 is a hardware configuration diagram showing the hardware of the radar control device 2 according to the first embodiment.
The radar control device 2 includes a weather information acquisition unit 11, a selection unit 12, and a control unit 13.
The weather information acquisition unit 11 is realized by, for example, the weather information acquisition circuit 21 shown in FIG.
The meteorological information acquisition unit 11 acquires meteorological information indicating a region in which either water droplets or ice crystals are floating in the atmosphere from, for example, a meteorological information distribution device (not shown) via a communication network 3.
The weather information acquisition unit 11 outputs the weather information to the selection unit 12.
 選択部12は、例えば、図3に示す選択回路22によって実現される。
 選択部12は、複数の気象レーダ装置1-1~1-Nの中で、気象情報取得部11により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置1を特定する。
 選択部12は、特定した1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置1として選択する。
 選択部12は、複数の気象レーダ装置1-1~1-Nの中で、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、レーダエコーの受信を行う第2の気象レーダ装置1として選択する。
 図2に示すレーダ統括装置2では、選択部12により選択される第1の気象レーダ装置1は、電波の放射及びレーダエコーの受信の双方を行う送受兼用の気象レーダ装置1である。しかし、これは一例に過ぎず、選択部12により選択される第1の気象レーダ装置1は、電波の放射を行うが、レーダエコーの受信を行わない気象レーダ装置1であってもよい。
 図2に示すレーダ統括装置2では、選択部12により選択される第2の気象レーダ装置1は、電波を放射しないで、レーダエコーの受信を行う受信専用の気象レーダ装置1である。
The selection unit 12 is realized by, for example, the selection circuit 22 shown in FIG.
The selection unit 12 selects one or more weather radar devices 1 existing in the area indicated by the weather information acquired by the weather information acquisition unit 11 among the plurality of weather radar devices 1-1 to 1-N. Identify.
The selection unit 12 causes a part of the weather radar devices 1 or all the weather radar devices 1 of the specified one or more weather radar devices 1 to both emit radio waves and receive radar echoes. Select as the weather radar device 1 of.
Among the plurality of weather radar devices 1-1 to 1-N, the selection unit 12 includes some weather radar devices 1 or all the weather among the weather radar devices 1 other than the first weather radar device 1. The radar device 1 is selected as the second weather radar device 1 that receives the radar echo.
In the radar control device 2 shown in FIG. 2, the first weather radar device 1 selected by the selection unit 12 is a weather radar device 1 for both transmission and reception that emits radio waves and receives radar echoes. However, this is only an example, and the first weather radar device 1 selected by the selection unit 12 may be a weather radar device 1 that emits radio waves but does not receive radar echoes.
In the radar control device 2 shown in FIG. 2, the second weather radar device 1 selected by the selection unit 12 is a reception-only weather radar device 1 that receives radar echoes without radiating radio waves.
 選択部12は、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1を第2の気象レーダ装置1として選択する場合、例えば、以下に示す気象レーダ装置1を選択する。選択部12は、第1の気象レーダ装置1からの放射電波が直接的に到来してくることのない位置に設置されている気象レーダ装置1、又は、第1の気象レーダ装置1からの放射電波が直接的に到来してきても、受信した当該電波の強さが閾値Ths以下の気象レーダ装置1を選択する。また、選択部12は、第1の気象レーダ装置1から直接的に到来してきた放射電波の抑圧処理を実施すれば、受信したレーダエコーに対する放射電波の干渉を無視することが可能な気象レーダ装置1を選択する。
 選択部12は、一部の気象レーダ装置1を第2の気象レーダ装置1として選択する場合、第1の気象レーダ装置1以外の気象レーダ装置1のうち、例えば、受信した当該電波の強さが閾値Thsよりも大きい気象レーダ装置1を非受信用の気象レーダ装置1として選択する。また、選択部12は、第1の気象レーダ装置1から直接的に到来してきた放射電波の抑圧処理を実施しても、受信したレーダエコーに対する放射電波の干渉を無視することができない気象レーダ装置1を非受信用の気象レーダ装置1として選択する。
 閾値Thsは、選択部12の内部メモリに格納されていてもよいし、選択部12の外部から与えられるものであってもよい。
 選択部12は、気象情報取得部11により取得された気象情報が示す領域の移動に伴って、第1の気象レーダ装置1、及び第2の気象レーダ装置1及び非受信用の気象レーダ装置1のそれぞれを変更する。
When the selection unit 12 selects a part of the weather radar devices 1 among the weather radar devices 1 other than the first weather radar device 1 as the second weather radar device 1, for example, the weather radar device 1 shown below. Select. The selection unit 12 emits radiation from the weather radar device 1 or the first weather radar device 1 installed at a position where the radio waves radiated from the first weather radar device 1 do not directly arrive. Even if the radio wave arrives directly, the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold Ths is selected. Further, the selection unit 12 is a weather radar device capable of ignoring the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first weather radar device 1. Select 1.
When the selection unit 12 selects a part of the weather radar device 1 as the second weather radar device 1, among the weather radar devices 1 other than the first weather radar device 1, for example, the strength of the received radio wave. The weather radar device 1 having a value greater than the threshold Ths is selected as the non-reception weather radar device 1. Further, even if the selection unit 12 performs the suppression processing of the radiated radio wave directly coming from the first weather radar device 1, the interference of the radiated radio wave with the received radar echo cannot be ignored. 1 is selected as the non-reception weather radar device 1.
The threshold value Ths may be stored in the internal memory of the selection unit 12 or may be given from the outside of the selection unit 12.
The selection unit 12 moves with the movement of the area indicated by the weather information acquired by the weather information acquisition unit 11, the first weather radar device 1, the second weather radar device 1, and the non-reception weather radar device 1. Change each of them.
 制御部13は、例えば、図3に示す制御回路23によって実現される。
 制御部13は、選択部12により選択された第1の気象レーダ装置1に対して、空間への電波の放射を指示する第1の制御信号を出力する。
 制御部13は、選択部12により選択された第2の気象レーダ装置1に対して、空間への電波の放射停止を指示する第2の制御信号を出力する。
 制御部13は、選択部12により選択された非受信用の気象レーダ装置1に対して、空間への電波の放射停止及び電波の受信停止のそれぞれを指示する第3の制御信号を出力する。
The control unit 13 is realized by, for example, the control circuit 23 shown in FIG.
The control unit 13 outputs a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1 selected by the selection unit 12.
The control unit 13 outputs a second control signal instructing the second weather radar device 1 selected by the selection unit 12 to stop radiating radio waves into the space.
The control unit 13 outputs a third control signal instructing the non-reception weather radar device 1 selected by the selection unit 12 to stop radiating radio waves into the space and stop receiving radio waves.
 図2では、レーダ統括装置2の構成要素である気象情報取得部11、選択部12及び制御部13のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ統括装置2が、気象情報取得回路21、選択回路22及び制御回路23によって実現されるものを想定している。
 気象情報取得回路21、選択回路22及び制御回路23のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 2, it is assumed that each of the weather information acquisition unit 11, the selection unit 12, and the control unit 13, which are the components of the radar control device 2, is realized by the dedicated hardware as shown in FIG. .. That is, it is assumed that the radar control device 2 is realized by the weather information acquisition circuit 21, the selection circuit 22, and the control circuit 23.
Each of the weather information acquisition circuit 21, selection circuit 22, and control circuit 23 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). Gate Array) or a combination of these is applicable.
 レーダ統括装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ統括装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the radar control device 2 are not limited to those realized by dedicated hardware, but the radar control device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
 図4は、レーダ統括装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 レーダ統括装置2が、ソフトウェア又はファームウェア等によって実現される場合、気象情報取得部11、選択部12及び制御部13のそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
FIG. 4 is a hardware configuration diagram of a computer when the radar control device 2 is realized by software, firmware, or the like.
When the radar control device 2 is realized by software, firmware, or the like, a program for causing a computer to execute each processing procedure of the weather information acquisition unit 11, the selection unit 12, and the control unit 13 is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
 また、図3では、レーダ統括装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図4では、レーダ統括装置2が、ソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、レーダ統括装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 Further, FIG. 3 shows an example in which each of the components of the radar control device 2 is realized by dedicated hardware, and FIG. 4 shows an example in which the radar control device 2 is realized by software, firmware, or the like. There is. However, this is only an example, and some components in the radar control device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 図5は、実施の形態1に係る気象レーダシステムの気象レーダ装置1を示す構成図である。
 気象レーダ装置1は、デジタル回路41、アナログ回路42、アンテナ43、記憶装置44、信号処理装置45及び表示装置46を備えている。
 デジタル回路41は、デジタルビームフォーミング制御部(以下、「DBF制御部」と称する)51、パルス生成部52、送信制御部53及び受信制御部54を備えている。
 アナログ回路42は、発振部61、デジタルアナログ変換部(以下、「D/A変換部」と称する)62、周波数変換部63、信号増幅部64、切り換え部65、帯域外成分除去部66、周波数変換部67及びアナログデジタル変換部(以下、「A/D変換部」と称する)68を備えている。
FIG. 5 is a configuration diagram showing a weather radar device 1 of the weather radar system according to the first embodiment.
The weather radar device 1 includes a digital circuit 41, an analog circuit 42, an antenna 43, a storage device 44, a signal processing device 45, and a display device 46.
The digital circuit 41 includes a digital beamforming control unit (hereinafter referred to as “DBF control unit”) 51, a pulse generation unit 52, a transmission control unit 53, and a reception control unit 54.
The analog circuit 42 includes an oscillation unit 61, a digital-to-analog conversion unit (hereinafter referred to as “D / A conversion unit”) 62, a frequency conversion unit 63, a signal amplification unit 64, a switching unit 65, an out-of-band component removal unit 66, and a frequency. It includes a conversion unit 67 and an analog-to-digital conversion unit (hereinafter, referred to as “A / D conversion unit”) 68.
 パルス生成部52、送信制御部53、発振部61、D/A変換部62、周波数変換部63、信号増幅部64、切り換え部65及びアンテナ43のそれぞれは、送信部71に含まれている。
 アンテナ43、発振部61、切り換え部65、帯域外成分除去部66、周波数変換部67、A/D変換部68及び受信制御部54のそれぞれは、受信部72に含まれている。
 送信部71は、電波を空間に放射するものであり、受信部72は、雲を構成している水滴又は氷晶等に反射された電波であるレーダエコーを受信するものである。
Each of the pulse generation unit 52, the transmission control unit 53, the oscillation unit 61, the D / A conversion unit 62, the frequency conversion unit 63, the signal amplification unit 64, the switching unit 65, and the antenna 43 is included in the transmission unit 71.
Each of the antenna 43, the oscillation unit 61, the switching unit 65, the out-of-band component removing unit 66, the frequency conversion unit 67, the A / D conversion unit 68, and the reception control unit 54 is included in the reception unit 72.
The transmitting unit 71 radiates radio waves into space, and the receiving unit 72 receives radar echoes, which are radio waves reflected by water droplets or ice crystals constituting clouds.
 DBF制御部51は、例えば、FPGAによって実現される。
 DBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、空間への電波の放射を指示する第1の制御信号を受けると、送信制御部53における送信DBFの実施を開始させる。
 DBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、空間への電波の放射停止を指示する第2の制御信号を受けると、送信制御部53における送信DBFの実施を停止させる。
 DBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、空間への電波の放射停止及び電波の受信停止のそれぞれを指示する第3の制御信号を受けると、送信制御部53における送信DBFの実施を停止させ、受信制御部54における受信DBFの実施を停止させる。
 DBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第3の制御信号を受けていなければ、受信制御部54における受信DBFの実施を制御する。
The DBF control unit 51 is realized by, for example, an FPGA.
When the DBF control unit 51 receives the first control signal instructing the radiation of radio waves into the space from the radar control device 2 via the communication network 3, the DBF control unit 51 starts the execution of the transmission DBF in the transmission control unit 53.
When the DBF control unit 51 receives a second control signal instructing the stop of radiation of radio waves to the space from the radar control device 2 via the communication network 3, the DBF control unit 51 stops the execution of the transmission DBF in the transmission control unit 53. ..
When the DBF control unit 51 receives a third control signal from the radar control device 2 via the communication network 3 to instruct each of the stop of radiating the radio wave into the space and the stop of receiving the radio wave, the transmission control unit 53 causes the transmission control unit 53 to stop. The execution of the transmission DBF is stopped, and the execution of the reception DBF in the reception control unit 54 is stopped.
The DBF control unit 51 controls the execution of the reception DBF in the reception control unit 54 if the third control signal is not received from the radar control device 2 via the communication network 3.
 パルス生成部52は、例えば、パルス発生器によって実現される。
 パルス生成部52は、送信パルスとして、例えば、以下の非特許文献1に開示されている線形チャープパルスを生成し、送信パルスを送信制御部53に出力する。
[非特許文献1]
PeyTon Z. Peebles, Jr., “RADAR PRINCIPLES,” WILEY INTERSCIENCE, America, 1998
 図5に示す気象レーダ装置1では、パルス生成部52が、送信パルスとして、線形チャープパルスを生成している。しかし、これは一例に過ぎず、パルス生成部52が、送信パルスとして、以下の非特許文献2に開示されている非線形チャープパルスを生成するようにしてもよい。また、パルス生成部52が、送信パルスの代わりに、以下の非特許文献3に開示されているFMCW(Frequency Modulated Continuous Wave)を生成し、FMCWを送信制御部53に出力するようにしてもよい。
[非特許文献2]
Mariusz Zych, “Suppression of GPR range sidelobes based on NLFM signal”, IRS 2012, pp.454-458
[非特許文献3]
Yeonghwan Ju, Youngseok Jin and Jonghun Lee, “Design and implementation of a 24 GHz FMCW radar system for automotive applications”, 2014 International Radar Conference, pp.1-4.
The pulse generator 52 is realized by, for example, a pulse generator.
The pulse generation unit 52 generates, for example, a linear chirped pulse disclosed in Non-Patent Document 1 below as a transmission pulse, and outputs the transmission pulse to the transmission control unit 53.
[Non-Patent Document 1]
PeyTon Z. Peebles, Jr., “RADAR PRINCIPLES,” WILEY INTERSCIENCE, America, 1998
In the weather radar device 1 shown in FIG. 5, the pulse generation unit 52 generates a linear chirped pulse as a transmission pulse. However, this is only an example, and the pulse generation unit 52 may generate a non-linear chirped pulse disclosed in Non-Patent Document 2 below as a transmission pulse. Further, the pulse generation unit 52 may generate an FMCW (Frequency Modulated Continuous Wave) disclosed in Non-Patent Document 3 below instead of the transmission pulse, and output the FMCW to the transmission control unit 53. ..
[Non-Patent Document 2]
Mariusz Zych, “Suppression of GPR range sidelobes based on NLFM signal”, IRS 2012, pp.454-458
[Non-Patent Document 3]
Yeonghwan Ju, Youngseok Jin and Jonghun Lee, “Design and implementation of a 24 GHz FMCW radar system for automotive applications”, 2014 International Radar Conference, pp.1-4.
 パルス生成部52から送信制御部53に出力される送信パルスの列は、例えば、スタガ化を行うために、PRF(Pulse Repetition Freuqency)が異なるパルス列であってもよい(非特許文献4を参照)。
 また、パルス生成部52から送信制御部53に出力される送信パルスは、多次エコーを分離するためのパルス間変調が施されたパルスであってもよい(非特許文献5を参照)。
[非特許文献4]
Cuong M. Nguyen,Dmitri N. Moisseev, and V.Chandrasekar, “A time domain clutter filter for staggered PRT and dual-PRF measurements”, 2007 IEEE IGARSS, pp.3325-3328
[非特許文献5]
C. Frush, R. F. Doviak, M. Sachidananda and D. S. Zrnic, “Application of the SZ Phase Code to Mitigate Range-Velocity Ambiguities in Weather Radars”, Journal of Atmospheric and oceanic technology, vol.19, pp.413-430, April, 2002.
The sequence of transmission pulses output from the pulse generation unit 52 to the transmission control unit 53 may be, for example, a pulse sequence having a different PRF (Pulse Repetition Frequency) for staggering (see Non-Patent Document 4). ..
Further, the transmission pulse output from the pulse generation unit 52 to the transmission control unit 53 may be a pulse subjected to inter-pulse modulation for separating multiple-order echoes (see Non-Patent Document 5).
[Non-Patent Document 4]
Cuong M. Nguyen, Dmitri N. Moisseev, and V. Chandrasekar, “A time domain clutter filter for staggered PRT and dual-PRF measurements”, 2007 IEEE IGARSS, pp.3325-3328
[Non-Patent Document 5]
C. Frush, RF Doviak, M. Sachidananda and DS Zrnic, “Application of the SZ Phase Code to Mitigate Range-Velocity Ambiguities in Weather Radars”, Journal of Atmospheric and oceanic technology, vol.19, pp.413-430, April , 2002.
 送信制御部53は、例えば、FPGAによって実現される。
 送信制御部53は、DBF制御部51による送信DBFの制御に従って、パルス生成部52より出力された送信パルスから、1つ以上の送信ビームを形成し、それぞれの送信ビームを示すデジタル信号をD/A変換部62に出力する。
 受信制御部54は、例えば、FPGAによって実現される。
 受信制御部54は、DBF制御部51による受信DBFの制御に従って、A/D変換部68から出力されたデジタル信号に対する受信DBFを実施する。
 受信制御部54は、受信DBF実施後のデジタル信号を記憶装置44に出力する。
The transmission control unit 53 is realized by, for example, an FPGA.
The transmission control unit 53 forms one or more transmission beams from the transmission pulses output from the pulse generation unit 52 according to the control of the transmission DBF by the DBF control unit 51, and D / D / digital signals indicating the respective transmission beams. Output to A conversion unit 62.
The reception control unit 54 is realized by, for example, an FPGA.
The reception control unit 54 executes the reception DBF for the digital signal output from the A / D conversion unit 68 according to the control of the reception DBF by the DBF control unit 51.
The reception control unit 54 outputs the digital signal after the reception DBF is executed to the storage device 44.
 発振部61は、例えば、信号発振器によって実現される。
 発振部61は、基準信号を発振し、基準信号を周波数変換部63及び周波数変換部67のそれぞれに出力する。
 D/A変換部62は、送信制御部53から出力されたデジタル信号をアナログ信号に変換し、当該アナログ信号を周波数変換部63に出力する。
 周波数変換部63は、例えば、ミキサによって実現される。
 周波数変換部63は、発振部61から出力された基準信号を、D/A変換部62から出力されたアナログ信号にミキシングすることにより、D/A変換部62から出力されたアナログ信号の周波数を、RF(Radio Frequency:無線周波数)に変換する。
 周波数変換部63は、周波数変換後のアナログ信号である無線周波数信号を信号増幅部64に出力する。
The oscillator 61 is realized by, for example, a signal oscillator.
The oscillating unit 61 oscillates a reference signal and outputs the reference signal to each of the frequency conversion unit 63 and the frequency conversion unit 67.
The D / A conversion unit 62 converts the digital signal output from the transmission control unit 53 into an analog signal, and outputs the analog signal to the frequency conversion unit 63.
The frequency conversion unit 63 is realized by, for example, a mixer.
The frequency conversion unit 63 mixes the reference signal output from the oscillation unit 61 with the analog signal output from the D / A conversion unit 62 to obtain the frequency of the analog signal output from the D / A conversion unit 62. , RF (Radio Frequency).
The frequency conversion unit 63 outputs a radio frequency signal, which is an analog signal after frequency conversion, to the signal amplification unit 64.
 信号増幅部64は、例えば、増幅器によって実現される。
 信号増幅部64は、周波数変換部63から出力された無線周波数信号を増幅し、増幅後の無線周波数信号を切り換え部65に出力する。
 切り換え部65は、例えば、切り換えスイッチによって実現される。
 切り換え部65は、信号増幅部64から増幅後の無線周波数信号を受けると、当該無線周波数信号を送信信号としてアンテナ43に出力する。
 切り換え部65は、アンテナ43から受信信号を受けると、受信信号を帯域外成分除去部66に出力する。
The signal amplification unit 64 is realized by, for example, an amplifier.
The signal amplification unit 64 amplifies the radio frequency signal output from the frequency conversion unit 63, and outputs the amplified radio frequency signal to the switching unit 65.
The changeover unit 65 is realized by, for example, a changeover switch.
When the switching unit 65 receives the amplified radio frequency signal from the signal amplification unit 64, the switching unit 65 outputs the radio frequency signal as a transmission signal to the antenna 43.
When the switching unit 65 receives the received signal from the antenna 43, the switching unit 65 outputs the received signal to the out-of-band component removing unit 66.
 アンテナ43は、例えば、複数の素子アンテナを有するアレーアンテナによって実現される。
 アンテナ43は、切り換え部65から出力された送信信号に係る電波を空間に放射する。
 アンテナ43から放射される電波の方向は、送信DBFによる電子走査によって、パルス毎に変更される。
 図5に示す気象レーダ装置1では、送信制御部53が、送信DBFを実施することによって、電波の放射方向が変更されている。しかし、これは一例に過ぎず、例えば、アンテナ43を回転台に設置し、DBF制御部51又は送信制御部53が、回転台を回転させる制御を行うことによって、電波の放射方向が変更されるものであってもよい。
 また、アンテナ43は、レーダエコーを受信し、レーダエコーの受信信号を切り換え部65に出力する。
The antenna 43 is realized by, for example, an array antenna having a plurality of element antennas.
The antenna 43 radiates radio waves related to the transmission signal output from the switching unit 65 into space.
The direction of the radio wave radiated from the antenna 43 is changed for each pulse by electron scanning by the transmitting DBF.
In the weather radar device 1 shown in FIG. 5, the transmission control unit 53 changes the radiation direction of the radio wave by executing the transmission DBF. However, this is only an example. For example, when the antenna 43 is installed on the rotary table and the DBF control unit 51 or the transmission control unit 53 controls to rotate the rotary table, the radiation direction of the radio wave is changed. It may be a thing.
Further, the antenna 43 receives the radar echo and outputs the received signal of the radar echo to the switching unit 65.
 帯域外成分除去部66は、低域通過フィルタ又は帯域通過フィルタ等によって実現される。
 帯域外成分除去部66は、切り換え部65から出力された受信信号に含まれている所望帯域外の不要信号を除去し、所望帯域内の受信信号を周波数変換部67に出力する。
 周波数変換部67は、例えば、ミキサによって実現される。
 周波数変換部67は、発振部61から出力された基準信号を、帯域外成分除去部66から出力された受信信号にミキシングすることにより、帯域外成分除去部66から出力された受信信号の周波数を、ベースバンドの周波数に変換する。
 A/D変換部68は、周波数変換部67による周波数変換後の受信信号であるベースバンド信号をアナログ信号からデジタル信号に変換し、当該デジタル信号を受信制御部54に出力する。
The out-of-band component removing unit 66 is realized by a low-pass filter, a band-pass filter, or the like.
The out-of-band component removing unit 66 removes unnecessary signals outside the desired band included in the received signal output from the switching unit 65, and outputs the received signal within the desired band to the frequency conversion unit 67.
The frequency conversion unit 67 is realized by, for example, a mixer.
The frequency conversion unit 67 mixes the reference signal output from the oscillation unit 61 with the reception signal output from the out-of-band component removal unit 66 to obtain the frequency of the reception signal output from the out-of-band component removal unit 66. , Convert to baseband frequency.
The A / D conversion unit 68 converts a baseband signal, which is a reception signal after frequency conversion by the frequency conversion unit 67, from an analog signal to a digital signal, and outputs the digital signal to the reception control unit 54.
 記憶装置44は、受信制御部54による受信DBF実施後のデジタル信号、及び、信号処理装置45等による気象観測の結果等を記憶する記憶媒体である。
 信号処理装置45は、記憶装置44に記憶されているデジタル信号に基づいて、気象観測に必要な信号処理を実施し、信号処理後のデジタル信号を図示せぬ気象観測部に出力する。
 図5に示す気象レーダ装置では、信号処理装置45が、デジタル信号に基づいて、気象観測に必要な信号処理を実施している。しかし、これは一例に過ぎず、信号処理装置45が、デジタル信号に基づいて、気象観測を実施するようにしてもよい。
 信号処理装置45は、図示せぬ気象観測部による気象観測の結果、又は、自己が実施した気象観測の結果を記憶装置44に格納する。
 表示装置46は、例えば、ディスプレイによって実現される。
 表示装置46は、例えば、気象観測の結果を表示する。
The storage device 44 is a storage medium that stores the digital signal after the reception DBF is executed by the reception control unit 54, the result of the meteorological observation by the signal processing device 45, and the like.
The signal processing device 45 performs signal processing necessary for meteorological observation based on the digital signal stored in the storage device 44, and outputs the digital signal after the signal processing to a meteorological observation unit (not shown).
In the weather radar device shown in FIG. 5, the signal processing device 45 performs signal processing necessary for meteorological observation based on a digital signal. However, this is only an example, and the signal processing device 45 may perform meteorological observation based on the digital signal.
The signal processing device 45 stores the result of the meteorological observation by the meteorological observation unit (not shown) or the result of the meteorological observation carried out by itself in the storage device 44.
The display device 46 is realized by, for example, a display.
The display device 46 displays, for example, the result of meteorological observation.
 次に、図1に示す気象レーダシステムの動作について説明する。
 図6は、レーダ統括装置2の処理手順を示すフローチャートである。ここでは、説明の便宜上、N=10として、図1に示す気象レーダシステムが、10台の気象レーダ装置1-1~1-10を備えているものとする。
 図1に示す気象レーダシステムでは、初期設定情報が、レーダ統括装置2における選択部12の内部メモリに格納されている。ただし、初期設定情報は、レーダ統括装置2の外部から選択部12に与えられるものであってもよい。
 初期設定情報は、気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てにおいて、水滴及び氷晶のいずれも、大気中に浮かんでいない状況下では、第1の気象レーダ装置1として選択される気象レーダ装置1を示す情報である。以下、水滴及び氷晶のいずれも、大気中に浮かんでいない領域は、「晴れ領域」と称する。
Next, the operation of the weather radar system shown in FIG. 1 will be described.
FIG. 6 is a flowchart showing a processing procedure of the radar control device 2. Here, for convenience of explanation, it is assumed that N = 10 and the weather radar system shown in FIG. 1 includes 10 weather radar devices 1-1 to 1-10.
In the weather radar system shown in FIG. 1, the initial setting information is stored in the internal memory of the selection unit 12 in the radar control device 2. However, the initial setting information may be given to the selection unit 12 from the outside of the radar control device 2.
The initial setting information is the first weather radar in all areas where each of the weather radar devices 1-1 to 1-10 exists, under the condition that neither water droplets nor ice crystals are floating in the atmosphere. Information indicating the weather radar device 1 selected as the device 1. Hereinafter, the region where neither water droplets nor ice crystals are floating in the atmosphere is referred to as a "sunny region".
 気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てが「晴れ領域」である場合、気象レーダ装置1-1~1-10のうちのいずれの気象レーダ装置1から放射される電波についても、減衰量が小さい。したがって、電波を放射する気象レーダ装置1の台数が多いと、電波干渉を生じる可能性が高い。このため、図1に示す気象レーダシステムでは、気象レーダ装置1-1~1-10のうち、気象レーダ装置1-5の1台だけが、第1の気象レーダ装置1-5として選択されるという初期設定情報が選択部12の内部メモリに格納されているものとする。 When all of the areas where each of the weather radar devices 1-1 to 1-10 are present are "sunny areas", radiation is emitted from any of the weather radar devices 1-1 to 1-10. The amount of attenuation of the generated radio waves is also small. Therefore, if the number of weather radar devices 1 that radiate radio waves is large, there is a high possibility that radio wave interference will occur. Therefore, in the weather radar system shown in FIG. 1, only one of the weather radar devices 1-1 to 1-10 is selected as the first weather radar device 1-5. It is assumed that the initial setting information is stored in the internal memory of the selection unit 12.
 レーダ統括装置2の気象情報取得部11は、大気中に水滴又は氷晶のいずれかが浮かんでいる領域(以下、「水含有領域」と称する)を示す気象情報を取得する(図6のステップST1)。
 気象情報取得部11は、気象情報を選択部12に出力する。
The weather information acquisition unit 11 of the radar control device 2 acquires weather information indicating a region in which either water droplets or ice crystals are floating in the atmosphere (hereinafter, referred to as a “water-containing region”) (step in FIG. 6). ST1).
The weather information acquisition unit 11 outputs the weather information to the selection unit 12.
 レーダ統括装置2の選択部12は、気象情報取得部11から気象情報を受けると、気象情報に基づいて、気象レーダ装置1-1~1-10のそれぞれが存在している領域が、「水含有領域」であるのか、「晴れ領域」であるのかを判定する。
 選択部12は、気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てが「晴れ領域」であれば(図6のステップST2:YESの場合)、初期設定情報が示す気象レーダ装置1-5を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置1-5として選択する(図6のステップST3)。
When the selection unit 12 of the radar control device 2 receives the weather information from the weather information acquisition unit 11, the area in which each of the weather radar devices 1-1 to 1-10 exists is "water" based on the weather information. It is determined whether it is a "containing region" or a "sunny region".
The selection unit 12 indicates the initial setting information if all the regions in which each of the weather radar devices 1-1 to 1-10 exist are "sunny regions" (step ST2 in FIG. 6: YES). The weather radar device 1-5 is selected as the first weather radar device 1-5 that both emits radio waves and receives radar echoes (step ST3 in FIG. 6).
 選択部12は、気象レーダ装置1-1~1-10の中で、第1の気象レーダ装置1-5以外の気象レーダ装置1-1~1-4,1-6~1-10のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、レーダエコーの受信を行う第2の気象レーダ装置1として選択する(図6のステップST4)。
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「晴れ領域」であるとき、第1の気象レーダ装置1-5の隣に設置されている気象レーダ装置1-4,1-6のそれぞれには、第1の気象レーダ装置1-5から放射された電波が直接的に到来する状況を想定する。この状況下で、選択部12が、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置1として選択すると、気象レーダ装置1-4,1-6のそれぞれが、第1の気象レーダ装置1-5から放射された電波のうち、直接的に到来してきた電波を受信する。当該受信電波の強さが閾値Thsよりも大きければ、当該受信電波がレーダエコーに対する干渉信号となり、気象レーダ装置1-4,1-6におけるそれぞれの気象観測の精度が劣化する。したがって、当該受信電波の強さが閾値Thsよりも大きければ、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置1として選択しないことが望ましい。しかし、気象レーダ装置1-4,1-6のそれぞれは、電波を放射しない第2の気象レーダ装置1であるため、気象レーダ装置1-4,1-6のそれぞれから放射された電波が直接的に第1の気象レーダ装置1-5に到来することがない。よって、気象レーダ装置1-4,1-6のそれぞれが第2の気象レーダ装置1として選択されても、第1の気象レーダ装置1-5おける気象観測の精度が劣化することがない。
 以上より、気象レーダ装置1-4,1-6のそれぞれが第2の気象レーダ装置1として選択されても、気象レーダ装置1-4~1-6の全てが第1の気象レーダ装置1として選択される場合よりも、気象レーダシステム全体の気象観測の精度が低下しない。
The selection unit 12 is among the weather radar devices 1-1 to 1-10, among the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5. , A part of the weather radar device 1 or all the weather radar devices 1 are selected as the second weather radar device 1 that receives the radar echo (step ST4 in FIG. 6).
When the area where each of the weather radar devices 1-1 to 1-10 exists is the "sunny area", the weather radar devices 1-4 and 4 installed next to the first weather radar device 1-5. It is assumed that the radio waves radiated from the first weather radar device 1-5 directly arrive at each of 1-6. Under this circumstance, when the selection unit 12 selects each of the weather radar devices 1-4, 1-6 as the second weather radar device 1, each of the weather radar devices 1-4, 1-6 becomes the first. Of the radio waves radiated from the weather radar device 1-5, the radio waves that have arrived directly are received. If the strength of the received radio wave is larger than the threshold Ths, the received radio wave becomes an interference signal with respect to the radar echo, and the accuracy of each meteorological observation in the weather radar devices 1-4, 1-6 deteriorates. Therefore, if the strength of the received radio wave is larger than the threshold value Ths, it is desirable not to select each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1. However, since each of the weather radar devices 1-4, 1-6 is a second weather radar device 1 that does not emit radio waves, the radio waves radiated from each of the weather radar devices 1-4, 1-6 are directly emitted. It never arrives at the first weather radar device 1-5. Therefore, even if each of the weather radar devices 1-4 and 1-6 is selected as the second weather radar device 1, the accuracy of the weather observation in the first weather radar device 1-5 does not deteriorate.
From the above, even if each of the weather radar devices 1-4 and 1-6 is selected as the second weather radar device 1, all of the weather radar devices 1-4 to 1-6 are used as the first weather radar device 1. The accuracy of meteorological observation of the entire weather radar system is not lower than when it is selected.
 以下、選択部12による第2の気象レーダ装置1の選択の具体例を説明する。
 選択部12は、第1の気象レーダ装置1-5以外の気象レーダ装置1-1~1-4,1-6~1-10のうち、第1の気象レーダ装置1-5からの放射電波が直接的に到来してくることのない位置に設置されている気象レーダ装置1-1~1-3,1-7~1-10のそれぞれを第2の気象レーダ装置1として選択する。
 また、選択部12は、気象レーダ装置1-4,1-6のそれぞれが、第1の気象レーダ装置1-5からの放射電波のうち、直接的に到来してきた電波を受信したとき、それぞれの受信電波の強さと閾値Thsとを比較する。受信電波の強さを示す情報は、気象レーダ装置1-4,1-6のそれぞれからレーダ統括装置2に送信されるものとする。
 選択部12は、それぞれの受信電波の強さが閾値Ths以下であれば、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置1として選択する。
 選択部12は、それぞれの受信電波の強さが閾値Thsよりも大きければ、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置1として選択せずに、気象レーダ装置1-4,1-6のそれぞれを非受信用の気象レーダ装置1として選択する(図6のステップST5)。
 ここでは、説明の便宜上、選択部12が、気象レーダ装置1-4,1-6のそれぞれを非受信用の気象レーダ装置1として選択しているものとする。
Hereinafter, a specific example of selection of the second weather radar device 1 by the selection unit 12 will be described.
The selection unit 12 is a radio wave radiated from the first weather radar device 1-5 among the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5. Each of the weather radar devices 1-1 to 1-3 and 1-7 to 1-10 installed at a position where is not directly arrived is selected as the second weather radar device 1.
Further, in the selection unit 12, when each of the weather radar devices 1-4 and 1-6 receives the radio waves directly arriving from the radio waves radiated from the first weather radar device 1-5, respectively. The strength of the received radio wave and the threshold Ths are compared. Information indicating the strength of the received radio wave shall be transmitted from each of the weather radar devices 1-4 and 1-6 to the radar control device 2.
If the strength of each received radio wave is equal to or less than the threshold value Ths, the selection unit 12 selects each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1.
If the strength of each received radio wave is greater than the threshold Ths, the selection unit 12 does not select each of the weather radar devices 1-4 and 1-6 as the second weather radar device 1, but the weather radar device 1 Each of -4, 1-6 is selected as the non-reception weather radar device 1 (step ST5 in FIG. 6).
Here, for convenience of explanation, it is assumed that the selection unit 12 selects each of the weather radar devices 1-4 and 1-6 as the non-reception weather radar device 1.
 図2に示すレーダ統括装置2では、気象レーダ装置1-4,1-6のそれぞれの受信電波の強さが閾値Ths以下であれば、選択部12が、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置1として選択する。また、気象レーダ装置1-4,1-6のそれぞれの受信電波の強さが閾値Thsよりも大きければ、選択部12が、気象レーダ装置1-4,1-6のそれぞれを非受信用の気象レーダ装置1として選択している。
 しかし、これは一例に過ぎず、選択部12は、以下のようにして、第2の気象レーダ装置1、又は、非受信用の気象レーダ装置1を選択するようにしてもよい。
 気象レーダ装置1-4,1-6のそれぞれは、第1の気象レーダ装置1-5から直接的に到来してきた放射電波の抑圧処理を実施する。放射電波の抑圧処理としては、当該放射電波の到来方向にヌルビームを形成するDBF処理等の公知処理を用いることができる。
 選択部12は、気象レーダ装置1-4,1-6のそれぞれにより受信されたレーダエコーに対する抑圧処理後の放射電波の干渉を無視することが可能であれば、気象レーダ装置1-4,1-6のそれぞれを第2の気象レーダ装置として選択する。
 選択部12は、気象レーダ装置1-4,1-6のそれぞれにより受信されたレーダエコーに対する抑圧処理後の放射電波の干渉を無視することができなければ、気象レーダ装置1-4,1-6のそれぞれを非受信用の気象レーダ装置として選択する。
 選択部12は、例えば、抑圧処理後の放射電波の強さに対するレーダエコーの強さの比が、基準の信号対雑音比よりも大きければ、放射電波の干渉を無視できると判定する。選択部12は、例えば、抑圧処理後の放射電波の強さに対するレーダエコーの強さの比が、基準の信号対雑音比以下であれば、放射電波の干渉を無視できないと判定する。
 基準の信号対雑音比は、選択部12の内部メモリに格納されていてもよいし、選択部12の外部から与えられるものであってもよい。
In the radar control device 2 shown in FIG. 2, if the strength of the received radio waves of the weather radar devices 1-4, 1-6 is equal to or less than the threshold Ths, the selection unit 12 selects the weather radar devices 1-4, 1-. Each of 6 is selected as the second weather radar device 1. Further, if the strength of the received radio waves of the weather radar devices 1-4, 1-6 is greater than the threshold Ths, the selection unit 12 uses the weather radar devices 1-4, 1-6 for non-reception. It is selected as the weather radar device 1.
However, this is only an example, and the selection unit 12 may select the second weather radar device 1 or the non-reception weather radar device 1 as follows.
Each of the weather radar devices 1-4 and 1-6 carries out the suppression processing of the radiated radio waves directly coming from the first weather radar device 1-5. As the radiated radio wave suppression process, a known process such as a DBF process for forming a null beam in the direction of arrival of the radiated radio wave can be used.
If the selection unit 12 can ignore the interference of the radiated radio waves after the suppression process with respect to the radar echo received by each of the weather radar devices 1-4, 1-6, the weather radar device 1-4, 1 Select each of -6 as the second weather radar device.
If the selection unit 12 cannot ignore the interference of the radiated radio waves after the suppression process with respect to the radar echo received by each of the weather radar devices 1-4, 1-6, the weather radar device 1-4, 1- Each of 6 is selected as a non-reception weather radar device.
The selection unit 12 determines that the interference of the radiated radio wave can be ignored if, for example, the ratio of the intensity of the radar echo to the strength of the radiated radio wave after the suppression process is larger than the reference signal-to-noise ratio. The selection unit 12 determines that the interference of the radiated radio wave cannot be ignored if, for example, the ratio of the intensity of the radar echo to the strength of the radiated radio wave after the suppression process is equal to or less than the reference signal-to-noise ratio.
The reference signal-to-noise ratio may be stored in the internal memory of the selection unit 12 or may be given from the outside of the selection unit 12.
 制御部13は、空間への電波の放射を指示する第1の制御信号を、通信ネットワーク3を介して、選択部12により選択された第1の気象レーダ装置1-5に送信する(図6のステップST6)。
 制御部13は、空間への電波の放射停止を指示する第2の制御信号を、通信ネットワーク3を介して、選択部12により選択された第2の気象レーダ装置1-1~1-3,1-7~1-10のそれぞれに送信する(図6のステップST7)。
 制御部13は、空間への電波の放射停止及び電波の受信停止のそれぞれを指示する第3の制御信号を、通信ネットワーク3を介して、選択部12により選択された非受信用の気象レーダ装置1-4,1-6のそれぞれに送信する(図6のステップST8)。
The control unit 13 transmits a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1-5 selected by the selection unit 12 via the communication network 3 (FIG. 6). Step ST6).
The control unit 13 transmits a second control signal instructing the stop of radiation of radio waves to the space via the communication network 3 to the second weather radar devices 1-1 to 1-3 selected by the selection unit 12. It is transmitted to each of 1-7 to 1-10 (step ST7 in FIG. 6).
The control unit 13 is a non-reception weather radar device selected by the selection unit 12 via the communication network 3 for a third control signal instructing each of the stop of radiating the radio wave to the space and the stop of receiving the radio wave. It is transmitted to each of 1-4 and 1-6 (step ST8 in FIG. 6).
 第1の気象レーダ装置1-5のDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第1の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を開始させる。図5に示す気象レーダ装置1では、第1の制御信号が、通信ネットワーク3から、記憶装置44を介して、DBF制御部51に与えられるように表されている。しかし、これは一例に過ぎず、第1の制御信号が、通信ネットワーク3から、直接的に、DBF制御部51に与えられるものであってもよい。
 送信制御部53が、送信DBFの実施を開始することにより、第1の気象レーダ装置1-5の送信部71から電波が空間に放射される。
When the DBF control unit 51 of the first weather radar device 1-5 receives the first control signal from the radar control device 2 via the communication network 3, the DBF control unit 51 of the transmission control unit 53 of the transmission unit 71 receives the first control signal. Start implementation. In the weather radar device 1 shown in FIG. 5, the first control signal is represented so as to be given to the DBF control unit 51 from the communication network 3 via the storage device 44. However, this is only an example, and the first control signal may be directly given to the DBF control unit 51 from the communication network 3.
When the transmission control unit 53 starts the execution of the transmission DBF, radio waves are radiated into space from the transmission unit 71 of the first weather radar device 1-5.
 第2の気象レーダ装置1-1~1-3,1-7~1-10におけるそれぞれのDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第2の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を停止させる。図5に示す気象レーダ装置1では、第2の制御信号が、通信ネットワーク3から、記憶装置44を介して、DBF制御部51に与えられるように表されている。しかし、これは一例に過ぎず、第2の制御信号が、通信ネットワーク3から、直接的に、DBF制御部51に与えられるものであってもよい。
 送信制御部53が、送信DBFの実施を停止することにより、第2の気象レーダ装置1-1~1-4,1-6~1-10におけるそれぞれの送信部71からは、電波が空間に放射されない。
Each DBF control unit 51 in the second weather radar devices 1-1 to 1-3, 1-7 to 1-10 receives a second control signal from the radar control device 2 via the communication network 3. Then, the execution of the transmission DBF in the transmission control unit 53 of the transmission unit 71 is stopped. In the weather radar device 1 shown in FIG. 5, the second control signal is represented so as to be given from the communication network 3 to the DBF control unit 51 via the storage device 44. However, this is only an example, and the second control signal may be directly given to the DBF control unit 51 from the communication network 3.
When the transmission control unit 53 stops the execution of the transmission DBF, radio waves are sent into space from the respective transmission units 71 in the second weather radar devices 1-1 to 1-4, 1-6 to 1-10. Not radiated.
 第2の気象レーダ装置1-4,1-6におけるそれぞれのDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第3の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を停止させ、受信制御部54における受信DBFの実施を停止させる。
 受信制御部54が、受信DBFの実施を停止させることにより、レーダエコーの受信が停止される。したがって、劣化を生じている可能性がある気象観測の結果が記憶装置44に保存されないようになる。
 ここでは、受信制御部54が、受信DBFの実施を停止している。しかし、これは一例に過ぎず、受信制御部54が、例えば、帯域外成分除去部66、周波数変換部67及びA/D変換部68におけるそれぞれの動作を停止させることによって、受信部72の動作を停止させるようにしてもよい。
When each of the DBF control units 51 in the second weather radar devices 1-4 and 1-6 receives the third control signal from the radar control device 2 via the communication network 3, the transmission control of the transmission unit 71 is performed. The execution of the transmission DBF in the unit 53 is stopped, and the execution of the reception DBF in the reception control unit 54 is stopped.
The reception control unit 54 stops the execution of the reception DBF, so that the reception of the radar echo is stopped. Therefore, the result of the meteorological observation that may have deteriorated is not stored in the storage device 44.
Here, the reception control unit 54 has stopped the execution of the reception DBF. However, this is only an example, and the reception control unit 54 stops the operations of the out-of-band component removing unit 66, the frequency conversion unit 67, and the A / D conversion unit 68, respectively, so that the operation of the reception unit 72 is performed. May be stopped.
 気象レーダ装置1-1~1-3,1-5,1-7~1-10におけるそれぞれのDBF制御部51は、受信制御部54における受信DBFの実施を制御する。
 気象レーダ装置1-1~1-3,1-5,1-7~1-10におけるそれぞれのDBF制御部51が、受信制御部54における受信DBFの実施を制御することにより、気象レーダ装置1-1~1-3,1-5,1-7~1-10におけるそれぞれの受信部72が、レーダエコーの受信を行う。
Each DBF control unit 51 in the weather radar devices 1-1 to 1-3, 1-5, 1-7 to 1-10 controls the execution of the reception DBF in the reception control unit 54.
Each DBF control unit 51 in the weather radar device 1-1 to 1-3, 1-5, 1-7 to 1-10 controls the execution of the reception DBF in the reception control unit 54, whereby the weather radar device 1 Each receiving unit 72 in -1 to 1-3, 1-5, 1-7 to 1-10 receives the radar echo.
 レーダ統括装置2の選択部12は、気象レーダ装置1-1~1-10のそれぞれが存在している領域のうち、いずれかの領域が「水含有領域」であれば(図6のステップST2:NOの場合)、気象情報に基づいて、「水含有領域」に存在している1つ以上の気象レーダ装置1を特定する(図6のステップST9)。
 選択部12は、特定した1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第1の気象レーダ装置1として選択する(図6のステップST10)。
If any of the regions in which each of the weather radar devices 1-1 to 1-10 exists, the selection unit 12 of the radar control device 2 is a "water-containing region" (step ST2 in FIG. 6). : NO), one or more weather radar devices 1 existing in the "water-containing region" are identified based on the weather information (step ST9 in FIG. 6).
The selection unit 12 selects a part of the weather radar device 1 or all the weather radar devices 1 among the specified one or more weather radar devices 1 as the first weather radar device 1 (step of FIG. 6). ST10).
 気象レーダ装置1-1~1-10のうち、「水含有領域」に存在している気象レーダ装置1が1台だけであれば、選択部12は、1台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 「水含有領域」に存在している気象レーダ装置1が、例えば、気象レーダ装置1-2の1台のみであれば、選択部12は、気象レーダ装置1-2を第1の気象レーダ装置1-2として選択する。
If only one weather radar device 1 exists in the "water-containing region" among the weather radar devices 1-1 to 1-10, the selection unit 12 first selects one weather radar device 1. Select as the weather radar device 1 of.
If the weather radar device 1 existing in the "water-containing region" is, for example, only one of the weather radar devices 1-2, the selection unit 12 uses the weather radar device 1-2 as the first weather radar device. Select as 1-2.
 「水含有領域」が、例えば、2つに分かれている場合がある。2つに分かれているそれぞれの「水含有領域」に存在している気象レーダ装置1が1台だけであれば、選択部12は、それぞれの「水含有領域」に存在している1台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 それぞれの「水含有領域」に存在している気象レーダ装置1が、例えば、気象レーダ装置1-2及び気象レーダ装置1-8のそれぞれであれば、選択部12は、気象レーダ装置1-2及び気象レーダ装置1-8のそれぞれを第1の気象レーダ装置1-2,1-8として選択する。
The "water-containing region" may be divided into, for example, two. If there is only one weather radar device 1 existing in each of the two "water-containing areas", the selection unit 12 is one unit existing in each "water-containing area". The weather radar device 1 is selected as the first weather radar device 1.
If the weather radar device 1 existing in each "water-containing region" is, for example, the weather radar device 1-2 and the weather radar device 1-8, the selection unit 12 may select the weather radar device 1-2. And each of the weather radar device 1-8 is selected as the first weather radar device 1-2, 1-8.
 「水含有領域」に存在している気象レーダ装置1が複数台あれば、選択部12は、「水含有領域」に存在している複数の気象レーダ装置1のうち、2台以上の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 「水含有領域」に存在している気象レーダ装置1から放射される電波の減衰量は、「晴れ領域」に存在している気象レーダ装置1から放射される電波の減衰量よりも大きい。このため、「水含有領域」に存在している気象レーダ装置1が複数台ある場合、気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てが「晴れ領域」である場合と比べて、第1の気象レーダ装置1の台数を増やしても、電波干渉が発生する可能性が低い。
If there are a plurality of weather radar devices 1 existing in the "water-containing area", the selection unit 12 may use two or more weather radars among the plurality of weather radar devices 1 existing in the "water-containing area". Device 1 is selected as the first weather radar device 1.
The attenuation of the radio wave radiated from the weather radar device 1 existing in the "water-containing region" is larger than the attenuation amount of the radio wave radiated from the weather radar device 1 existing in the "sunny region". Therefore, when there are a plurality of weather radar devices 1 existing in the "water-containing area", all the areas in which each of the weather radar devices 1-1 to 1-10 are present are "sunny areas". Compared with the case, even if the number of the first weather radar devices 1 is increased, the possibility of radio wave interference is low.
 「水含有領域」に存在している気象レーダ装置1が、例えば、気象レーダ装置1-2,1-4,1-5である場合を想定する。
 以下、気象レーダ装置1-2,1-4,1-5の中から、第1の気象レーダ装置1を選択する選択部12の具体例を説明する。
 ここでは、説明の便宜上、気象レーダ装置1-1~1-10におけるそれぞれの設置条件が、以下の条件(1)(2)を満足しているものとする。
It is assumed that the weather radar device 1 existing in the "water-containing region" is, for example, the weather radar device 1-2, 1-4, 1-5.
Hereinafter, a specific example of the selection unit 12 for selecting the first weather radar device 1 from the weather radar devices 1-2, 1-4, 1-5 will be described.
Here, for convenience of explanation, it is assumed that the respective installation conditions of the weather radar devices 1-1 to 1-10 satisfy the following conditions (1) and (2).
条件(1)
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「晴れ領域」であれば、隣に設置されている2つの気象レーダ装置1同士で電波干渉を生じる位置に、気象レーダ装置1-1~1-10のそれぞれが設置されている。
条件(2)
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「水含有領域」であれば、隣に設置されている2つの気象レーダ装置1同士で電波干渉を生じない位置に、気象レーダ装置1-1~1-10のそれぞれが設置されている。
 なお、条件(1)(2)は、あくまでも一例であり、気象レーダ装置1-1~1-10におけるそれぞれの設置条件が、条件(1)(2)に限るものではない。例えば、条件(1)において、気象レーダ装置1-1~1-10の中に、隣に設置されている気象レーダ装置1と電波干渉を生じない位置に設置されている気象レーダ装置1が含まれていてもよい。
Condition (1)
If the area where each of the weather radar devices 1-1 to 1-10 exists is a "sunny area", the weather radar is located at a position where radio wave interference occurs between the two weather radar devices 1 installed next to each other. Each of the devices 1-1 to 1-10 is installed.
Condition (2)
If the area where each of the weather radar devices 1-1 to 1-10 exists is a "water-containing area", the two weather radar devices 1 installed next to each other are located at a position where radio wave interference does not occur. Each of the weather radar devices 1-1 to 1-10 is installed.
The conditions (1) and (2) are merely examples, and the respective installation conditions of the weather radar devices 1-1 to 1-10 are not limited to the conditions (1) and (2). For example, in the condition (1), the weather radar devices 1-1 to 1-10 include the weather radar device 1 installed at a position where radio wave interference does not occur with the weather radar device 1 installed next to the weather radar device 1-1. It may be.
 気象レーダ装置1-2,1-4,1-5のそれぞれが存在している領域が「水含有領域」であれば、条件(2)より、気象レーダ装置1-2,1-4,1-5の中から、どの2つの気象レーダ装置1を選択しても、選択した2つの気象レーダ装置1同士で電波干渉が生じない。
 そこで、選択部12は、気象レーダ装置1-2,1-4,1-5のうち、任意の2つの気象レーダ装置1のそれぞれを第1の気象レーダ装置1として選択する。選択部12は、例えば、気象レーダ装置1-2及び気象レーダ装置1-5のそれぞれを第1の気象レーダ装置1-2,1-5として選択する。
 ここでは、選択部12が、気象レーダ装置1-2,1-4,1-5のうち、任意の2つの気象レーダ装置1のそれぞれを第1の気象レーダ装置1として選択している。しかし、これは一例に過ぎず、条件(2)を満足していれば、選択部12が、気象レーダ装置1-2,1-4,1-5の全てを第1の気象レーダ装置1-2,1-4,1-5として選択するようにしてもよい。
If the region in which each of the weather radar devices 1-2, 1-4, 1-5 exists is a "water-containing region", the weather radar device 1-2, 1-4, 1 is determined from the condition (2). No matter which two weather radar devices 1 are selected from -5, radio interference does not occur between the two selected weather radar devices 1.
Therefore, the selection unit 12 selects each of any two weather radar devices 1 among the weather radar devices 1-2, 1-4, 1-5 as the first weather radar device 1. The selection unit 12 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5.
Here, the selection unit 12 selects each of any two weather radar devices 1 among the weather radar devices 1-2, 1-4, 1-5 as the first weather radar device 1. However, this is only an example, and if the condition (2) is satisfied, the selection unit 12 sets all of the weather radar devices 1-2, 1-4, 1-5 to the first weather radar device 1-. It may be selected as 2,1-4,1-5.
 選択部12は、例えば、気象レーダ装置1-2及び気象レーダ装置1-5のそれぞれを第1の気象レーダ装置1-2,1-5として選択すると、気象レーダ装置1-2,1-5以外の気象レーダ装置1のうち、例えば、全部の気象レーダ装置を第2の気象レーダ装置1-1,1-3,1-4,1-6~1-10として選択する(図6のステップST4)。
 ここでは、選択部12が、第1の気象レーダ装置1-2,1-5以外の全ての気象レーダ装置1を第2の気象レーダ装置1として選択している。選択部12が、第1の気象レーダ装置1-2,1-5以外の全ての気象レーダ装置1を第2の気象レーダ装置1として選択する場合、非受信用の気象レーダ装置1を選択しない。
 しかし、これは一例に過ぎず、選択部12は、気象レーダ装置1-1~1-10の中で、第1の気象レーダ装置1-2,1-5以外の気象レーダ装置1-1,1-3,1-4,1-6~1-10のうち、一部の気象レーダ装置1を第2の気象レーダ装置1として選択するようにしてもよい。したがって、選択部12は、例えば、気象レーダ装置1-1,1-3,1-4,1-6を第2の気象レーダ装置として選択するようにしてもよい。選択部12が、気象レーダ装置1-1,1-3,1-4,1-6のそれぞれを第2の気象レーダ装置1-1,1-3,1-4,1-6として選択する場合、気象レーダ装置1-7~1-10のそれぞれを非受信用の気象レーダ装置1-7~1-10として選択する(図6のステップST5)。
When the selection unit 12 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5, the selection unit 12 selects the weather radar device 1-2, 1-5. Of the other weather radar devices 1, for example, all the weather radar devices are selected as the second weather radar devices 1-1, 1-3, 1-4, 1-6 to 1-10 (step of FIG. 6). ST4).
Here, the selection unit 12 selects all the weather radar devices 1 other than the first weather radar devices 1-2 and 1-5 as the second weather radar device 1. When the selection unit 12 selects all the weather radar devices 1 other than the first weather radar devices 1-2 and 1-5 as the second weather radar device 1, the non-reception weather radar device 1 is not selected. ..
However, this is only an example, and the selection unit 12 uses the weather radar devices 1-1 to 1-10 other than the first weather radar devices 1-2 and 1-5 among the weather radar devices 1-1 to 1-10. Of 1-3, 1-4, 1-6 to 1-10, a part of the weather radar device 1 may be selected as the second weather radar device 1. Therefore, the selection unit 12 may select, for example, the weather radar device 1-1, 1-3, 1-4, 1-6 as the second weather radar device. The selection unit 12 selects each of the weather radar devices 1-1, 1-3, 1-4, 1-6 as the second weather radar device 1-1, 1-3, 1-4, 1-6. In this case, each of the weather radar devices 1-7 to 1-10 is selected as the non-reception weather radar device 1-7 to 1-10 (step ST5 in FIG. 6).
 制御部13は、選択部12により選択された第1の気象レーダ装置1が、例えば、気象レーダ装置1-2,1-5であれば、第1の制御信号を、通信ネットワーク3を介して、第1の気象レーダ装置1-2,1-5のそれぞれに送信する(図6のステップST6)。
 制御部13は、選択部12により選択された第2の気象レーダ装置1が、例えば、気象レーダ装置1-1,1-3,1-4,1-6であれば、第2の制御信号を、通信ネットワーク3を介して、第2の気象レーダ装置1-1,1-3,1-4,1-6のそれぞれに送信する(図6のステップST7)。
 制御部13は、選択部12により選択された非受信用の気象レーダ装置1が、例えば、気象レーダ装置1-7~1-10であれば、第3の制御信号を、通信ネットワーク3を介して、非受信用の気象レーダ装置1-7~1-10のそれぞれに送信する(図6のステップST8)。
If the first weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-2, 1-5, the control unit 13 transmits the first control signal via the communication network 3. , Is transmitted to each of the first weather radar devices 1-2 and 1-5 (step ST6 in FIG. 6).
If the second weather radar device 1 selected by the selection unit 12 is, for example, the weather radar device 1-1, 1-3, 1-4, 1-6, the control unit 13 has a second control signal. Is transmitted to each of the second weather radar devices 1-1, 1-3, 1-4, 1-6 via the communication network 3 (step ST7 in FIG. 6).
If the non-reception weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-7 to 1-10, the control unit 13 transmits a third control signal via the communication network 3. Then, it is transmitted to each of the non-reception weather radar devices 1-7 to 1-10 (step ST8 in FIG. 6).
 第1の気象レーダ装置1-2,1-5におけるそれぞれのDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第1の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を開始させる。
 送信制御部53が、送信DBFの実施を開始することにより、第1の気象レーダ装置1-2,1-5におけるそれぞれの送信部71から電波が空間に放射される。
When each of the DBF control units 51 in the first weather radar devices 1-2 and 1-5 receives the first control signal from the radar control device 2 via the communication network 3, the transmission control of the transmission unit 71 is performed. The execution of the transmission DBF in the unit 53 is started.
When the transmission control unit 53 starts the execution of the transmission DBF, radio waves are radiated into space from the respective transmission units 71 in the first weather radar devices 1-2 and 1-5.
 第2の気象レーダ装置1-1,1-3,1-4,1-6におけるそれぞれのDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第2の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を停止させる。
 送信制御部53が、送信DBFの実施を停止することにより、第2の気象レーダ装置1-1,1-3,1-4,1-6~1-10におけるそれぞれの送信部71からは、電波が空間に放射されない。
 非受信用の気象レーダ装置1-7~1-10におけるそれぞれのDBF制御部51は、レーダ統括装置2から、通信ネットワーク3を介して、第3の制御信号を受けると、送信部71の送信制御部53における送信DBFの実施を停止させ、受信部72の受信制御部54における受信DBFの実施を停止させる。
 受信制御部54が、受信DBFの実施を停止することにより、レーダエコーの受信が行われなくなる。
Each DBF control unit 51 in the second weather radar device 1-1, 1-3, 1-4, 1-6 receives a second control signal from the radar control device 2 via the communication network 3. Then, the execution of the transmission DBF in the transmission control unit 53 of the transmission unit 71 is stopped.
When the transmission control unit 53 stops the execution of the transmission DBF, the transmission unit 71 in each of the second weather radar devices 1-1, 1-3, 1-4, 1-6 to 1-10 Radio waves are not radiated into space.
When each DBF control unit 51 in the non-reception weather radar devices 1-7 to 1-10 receives a third control signal from the radar control device 2 via the communication network 3, the transmission unit 71 transmits. The execution of the transmission DBF in the control unit 53 is stopped, and the execution of the reception DBF in the reception control unit 54 of the reception unit 72 is stopped.
When the reception control unit 54 stops the execution of the reception DBF, the radar echo is not received.
 第1の気象レーダ装置1-2,1-5におけるそれぞれのDBF制御部51は、受信制御部54における受信DBFの実施を制御する。
 第2の気象レーダ装置1-1,1-3,1-4,1-6におけるそれぞれのDBF制御部51は、受信制御部54における受信DBFの実施を制御する。
 したがって、第1の気象レーダ装置1-2,1-5及び第2の気象レーダ装置1-1,1-3,1-4,1-6におけるそれぞれの受信部72は、レーダエコーの受信を行う。
Each DBF control unit 51 in the first weather radar device 1-2, 1-5 controls the execution of the reception DBF in the reception control unit 54.
Each DBF control unit 51 in the second weather radar device 1-1, 1-3, 1-4, 1-6 controls the execution of the reception DBF in the reception control unit 54.
Therefore, the respective receiving units 72 in the first weather radar device 1-2, 1-5 and the second weather radar device 1-1, 1-3, 1-4, 1-6 receive the radar echo. Do.
 レーダ統括装置2の選択部12は、例えば、気象レーダ装置1-2及び気象レーダ装置1-5のそれぞれを第1の気象レーダ装置1-2,1-5として選択したのち、気象情報取得部11から出力された気象情報が示す「水含有領域」が移動すると、移動後の「水含有領域」に存在している1つ以上の気象レーダ装置1を特定する。
 選択部12は、特定した1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第1の気象レーダ装置1として選択する。
The selection unit 12 of the radar control device 2 selects, for example, each of the weather radar device 1-2 and the weather radar device 1-5 as the first weather radar device 1-2, 1-5, and then the weather information acquisition unit. When the "water-containing region" indicated by the weather information output from 11 moves, one or more weather radar devices 1 existing in the "water-containing region" after the movement are specified.
The selection unit 12 selects some of the specified weather radar devices 1 or all of the weather radar devices 1 as the first weather radar device 1.
 「水含有領域」が、図1中、右方向に移動することによって、「水含有領域」が、例えば、気象レーダ装置1-2,1-4,1-5のそれぞれが存在している領域から、気象レーダ装置1-6,1-8,1-9のそれぞれが存在している領域に移動した場合を想定する。
 この場合、選択部12は、気象レーダ装置1-6,1-8,1-9のうち、例えば、気象レーダ装置1-6及び気象レーダ装置1-9のそれぞれを第1の気象レーダ装置1-6,1-9として選択する。
By moving the "water-containing region" to the right in FIG. 1, the "water-containing region" is, for example, the region where each of the weather radar devices 1-2, 1-4, 1-5 exists. Therefore, it is assumed that the weather radar devices 1-6, 1-8, and 1-9 are moved to the existing areas.
In this case, the selection unit 12 uses, for example, the weather radar device 1-6 and the weather radar device 1-9 as the first weather radar device 1 among the weather radar devices 1-6, 1-8, 1-9. Select as -6, 1-9.
 また、選択部12は、第1の気象レーダ装置1-6,1-9以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第2の気象レーダ装置1として選択する。
 選択部12は、第1の気象レーダ装置1-6,1-9以外の気象レーダ装置1のうち、第2の気象レーダ装置1として選択していない気象レーダ装置1を非受信用の気象レーダ装置1として選択する。
Further, the selection unit 12 uses a part of the weather radar devices 1 or all the weather radar devices 1 among the weather radar devices 1 other than the first weather radar devices 1-6 and 1-9 as the second weather. Select as radar device 1.
The selection unit 12 selects the weather radar device 1 that is not selected as the second weather radar device 1 among the weather radar devices 1 other than the first weather radar devices 1-6 and 1-9 for non-reception. Select as device 1.
 制御部13は、選択部12により選択された第1の気象レーダ装置1が、例えば、気象レーダ装置1-6,1-9であれば、第1の制御信号を、通信ネットワーク3を介して、第1の気象レーダ装置1-6,1-9のそれぞれに送信する。
 制御部13は、選択部12により選択された第2の気象レーダ装置1が、例えば、気象レーダ装置1-7,1-8,1-10であれば、第2の制御信号を、通信ネットワーク3を介して、第2の気象レーダ装置1-7,1-8,1-10のそれぞれに送信する。
 制御部13は、選択部12により選択された非受信用の気象レーダ装置1が、例えば、気象レーダ装置1-1~1-5であれば、第3の制御信号を、通信ネットワーク3を介して、非受信用の気象レーダ装置1-1~1-5のそれぞれに送信する。
If the first weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-6 and 1-9, the control unit 13 transmits the first control signal via the communication network 3. , 1st weather radar device 1-6, 1-9, respectively.
If the second weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-7, 1-8, 1-10, the control unit 13 transmits the second control signal to the communication network. It is transmitted to each of the second weather radar devices 1-7, 1-8, and 1-10 via 3.
If the non-reception weather radar device 1 selected by the selection unit 12 is, for example, the weather radar devices 1-1 to 1-5, the control unit 13 transmits a third control signal via the communication network 3. Then, it is transmitted to each of the non-reception weather radar devices 1-1 to 1-5.
 以上の実施の形態1では、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得する気象情報取得部11と、複数の気象レーダ装置1-1~1-Nの中で、気象情報取得部11により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置1を特定し、特定した1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置1として選択し、複数の気象レーダ装置1-1~1-Nの中で、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を、レーダエコーの受信を行う第2の気象レーダ装置1として選択する選択部12と、選択部12により選択された第1の気象レーダ装置1に対して、空間への電波の放射を指示する第1の制御信号を出力し、選択部12により選択された第2の気象レーダ装置1に対して、空間への電波の放射停止を指示する第2の制御信号を出力する制御部13とを備えるように、レーダ統括装置2を構成した。したがって、レーダ統括装置2は、複数の気象レーダ装置1-1~1-Nのうち、電波の放射を担う気象レーダ装置1が常に同じ気象レーダ装置1であるものよりも、気象観測の精度を高めることができる。 In the above-described first embodiment, the weather information acquisition unit 11 that acquires weather information indicating a region in which either water droplets or ice crystals are floating in the atmosphere, and a plurality of weather radar devices 1-1 to 1-N. Among them, one or more weather radar devices 1 existing in the area indicated by the weather information acquired by the weather information acquisition unit 11 are specified, and a part of the specified one or more weather radar devices 1 is specified. The weather radar device 1 or all the weather radar devices 1 are selected as the first weather radar device 1 that emits radio waves and receives radar echoes, and a plurality of weather radar devices 1-1 to 1- Among the weather radar devices 1 other than the first weather radar device 1, some of the weather radar devices 1 or all the weather radar devices 1 in N are the second weather radars that receive the radar echo. A first control signal instructing the emission of radio waves into space is output to the selection unit 12 selected as the device 1 and the first weather radar device 1 selected by the selection unit 12, and the selection unit 12 outputs the first control signal. The radar control device 2 is configured to include a control unit 13 that outputs a second control signal instructing the selected second weather radar device 1 to stop radiating radio waves into the space. Therefore, the radar control device 2 has a higher accuracy of weather observation than the plurality of weather radar devices 1-1 to 1-N in which the weather radar device 1 responsible for emitting radio waves is always the same weather radar device 1. Can be enhanced.
 図1に示す気象レーダシステムでは、レーダ統括装置2の気象情報取得部11が、図示せぬ気象情報配信装置から、通信ネットワーク3を介して、気象情報を収集している。
 しかし、これは一例に過ぎず、複数の気象レーダ装置1-1~1-Nのうち、一部の気象レーダ装置1が、受信部72により受信されたレーダエコーに基づく気象観測を実施することによって、水含有領域を検出し、水含有領域の検出結果を気象情報としてレーダ統括装置2に送信するようにしてもよい。
 気象レーダ装置1-1~1-Nのうち、例えば、気象レーダ装置1-5の信号処理装置45、又は、図示せぬ気象観測部が、気象レーダ装置1-5の受信部72により受信されたレーダエコーに基づく気象観測を実施することによって、水含有領域を検出する。そして、気象レーダ装置1-5の信号処理装置45が、水含有領域の検出結果を気象情報として、通信ネットワーク3を介して、レーダ統括装置2に送信する。
 例えば、気象レーダ装置1-5の信号処理装置45等による気象観測は、気象レーダ装置1-1~1-Nのそれぞれが存在している領域の全てを含む広域の気象観測である。
 気象レーダ装置1-1~1-Nのうち、気象レーダ装置1-5以外の気象レーダ装置1の信号処理装置45等による気象観測は、気象レーダ装置1-5の信号処理装置45等よりも狭い領域の気象観測である。
In the weather radar system shown in FIG. 1, the weather information acquisition unit 11 of the radar control device 2 collects weather information from a weather information distribution device (not shown) via a communication network 3.
However, this is only an example, and among a plurality of weather radar devices 1-1 to 1-N, some weather radar devices 1 carry out meteorological observation based on the radar echo received by the receiving unit 72. The water-containing region may be detected and the detection result of the water-containing region may be transmitted to the radar control device 2 as weather information.
Of the weather radar devices 1-1 to 1-N, for example, the signal processing device 45 of the weather radar device 1-5 or the meteorological observation unit (not shown) is received by the receiving unit 72 of the weather radar device 1-5. Water-containing areas are detected by conducting meteorological observations based on radar echoes. Then, the signal processing device 45 of the weather radar device 1-5 transmits the detection result of the water-containing region as weather information to the radar control device 2 via the communication network 3.
For example, the meteorological observation by the signal processing device 45 or the like of the meteorological radar device 1-5 is a wide-area meteorological observation including the entire region where each of the meteorological radar devices 1-1 to 1-N exists.
Of the weather radar devices 1-1 to 1-N, the weather observation by the signal processing device 45 or the like of the weather radar device 1 other than the weather radar device 1-5 is performed more than the signal processing device 45 or the like of the weather radar device 1-5. It is a small area meteorological observation.
実施の形態2.
 実施の形態2では、選択部14が、降雨量に基づいて、第1の気象レーダ装置1の台数を決定するレーダ統括装置2について説明する。
 気象レーダ装置1-1~1-10のそれぞれから放射される電波の減衰量は、降雨量が多い程、大きくなる。
 実施の形態2に係る気象レーダシステムを示す構成は、実施の形態1に係る気象レーダシステムを示す構成と同様であり、実施の形態2に係る気象レーダシステムを示す構成図は、図1である。
Embodiment 2.
In the second embodiment, the radar control device 2 in which the selection unit 14 determines the number of the first weather radar devices 1 based on the amount of rainfall will be described.
The amount of attenuation of radio waves radiated from each of the weather radar devices 1-1 to 1-10 increases as the amount of rainfall increases.
The configuration showing the weather radar system according to the second embodiment is the same as the configuration showing the weather radar system according to the first embodiment, and the configuration diagram showing the weather radar system according to the second embodiment is FIG. ..
 実施の形態2に係る気象レーダシステムでは、気象レーダ装置1-1~1-10におけるそれぞれの設置条件が、以下の条件(3)~(5)を満足しているものとする。
条件(3)
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「晴れ領域」であれば、隣に設置されている2つの気象レーダ装置1同士で電波干渉を生じる位置に、気象レーダ装置1-1~1-10のそれぞれが設置されている。
条件(4)
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「水含有領域」であり、降雨量Rが降雨閾値Thよりも少ない場合、互いの距離が距離閾値Thよりも大きければ、隣に設置されている2つの気象レーダ装置1同士で電波干渉が生じない。しかし、互いの距離が距離閾値Th以下であれば、隣に設置されている2つの気象レーダ装置1同士で電波干渉が生じる。
条件(5)
 気象レーダ装置1-1~1-10のそれぞれが存在している領域が「水含有領域」であり、降雨量Rが降雨閾値Th以上である場合、互いの距離が距離閾値Th以下であっても、隣に設置されている2つの気象レーダ装置1同士で電波干渉が生じない。
 なお、条件(3)~(5)は、あくまでも一例であり、気象レーダ装置1-1~1-10におけるそれぞれの設置条件が、条件(3)~(5)に限るものではない。
In the weather radar system according to the second embodiment, it is assumed that the respective installation conditions of the weather radar devices 1-1 to 1-10 satisfy the following conditions (3) to (5).
Condition (3)
If the area where each of the weather radar devices 1-1 to 1-10 exists is a "sunny area", the weather radar is located at a position where radio wave interference occurs between the two weather radar devices 1 installed next to each other. Each of the devices 1-1 to 1-10 is installed.
Condition (4)
When the region where each of the weather radar devices 1-1 to 1-10 exists is the "water-containing region" and the rainfall amount R is less than the rainfall threshold Th R , the distance between them is smaller than the distance threshold Th L. If it is large, radio wave interference does not occur between the two weather radar devices 1 installed next to each other. However, if the distance between them is equal to or less than the distance threshold value Th L , radio wave interference occurs between the two weather radar devices 1 installed next to each other.
Condition (5)
When the region where each of the weather radar devices 1-1 to 1-10 exists is the "water-containing region" and the rainfall amount R is equal to or greater than the rainfall threshold Th R , the distance between them is equal to or less than the distance threshold Th L. Even if there is, radio wave interference does not occur between the two weather radar devices 1 installed next to each other.
The conditions (3) to (5) are merely examples, and the respective installation conditions of the weather radar devices 1-1 to 1-10 are not limited to the conditions (3) to (5).
 図7は、実施の形態2に係るレーダ統括装置2を示す構成図である。図7において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 図8は、実施の形態2に係るレーダ統括装置2のハードウェアを示すハードウェア構成図である。図8において、図3と同一符号は同一又は相当部分を示すので説明を省略する。
 実施の形態2に係る気象レーダシステムでは、気象情報取得部11により取得された気象情報が、降雨量Rを示す情報を含んでいるものとする。
FIG. 7 is a configuration diagram showing the radar control device 2 according to the second embodiment. In FIG. 7, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
FIG. 8 is a hardware configuration diagram showing the hardware of the radar control device 2 according to the second embodiment. In FIG. 8, the same reference numerals as those in FIG. 3 indicate the same or corresponding parts, and thus the description thereof will be omitted.
In the weather radar system according to the second embodiment, it is assumed that the weather information acquired by the weather information acquisition unit 11 includes information indicating the rainfall R.
 選択部14は、例えば、図8に示す選択回路24によって実現される。
 選択部14の内部メモリは、降雨閾値Th、距離閾値Thを格納している。しかし、これは一例に過ぎず、降雨閾値Th及び距離閾値Thのそれぞれが、レーダ統括装置2の外部から選択部14に与えられるものであってもよい。
 選択部14は、図2に示す選択部12と同様に、複数の気象レーダ装置1-1~1-Nの中で、気象情報取得部11により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置1を特定する。
The selection unit 14 is realized by, for example, the selection circuit 24 shown in FIG.
The internal memory of the selection unit 14 stores the rainfall threshold value Th R and the distance threshold value Th L. However, this is only an example, and each of the rainfall threshold value Th R and the distance threshold value Th L may be given to the selection unit 14 from the outside of the radar control device 2.
Similar to the selection unit 12 shown in FIG. 2, the selection unit 14 exists in the area indicated by the weather information acquired by the weather information acquisition unit 11 among the plurality of weather radar devices 1-1 to 1-N. Identify one or more weather radar devices 1 that are
 選択部14は、特定した1つ以上の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第1の気象レーダ装置1として選択する。選択部14は、気象情報が示す降雨量Rが降雨閾値Thよりも少なければ、特定した1つ以上の気象レーダ装置1のうち、互いの距離が距離閾値Thよりも大きい2台の気象レーダ装置1を第1の気象レーダ装置1として選択する。選択部14は、降雨量Rが降雨閾値Th以上であれば、特定した1つ以上の気象レーダ装置1のうち、例えば、3台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 選択部14は、図2に示す選択部12と同様に、複数の気象レーダ装置1-1~1-Nの中で、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第2の気象レーダ装置1として選択する。
 選択部14は、図2に示す選択部12と同様に、気象情報取得部11により取得された気象情報が示す「水含有領域」の移動に伴って、第1の気象レーダ装置1、第2の気象レーダ装置1及び非受信用の気象レーダ装置1のそれぞれを変更する。
The selection unit 14 selects some of the specified weather radar devices 1 or all of the weather radar devices 1 as the first weather radar device 1. If the rainfall amount R indicated by the weather information is less than the rainfall threshold Th R , the selection unit 14 has the weather of two of the specified one or more weather radar devices 1 whose distances from each other are larger than the distance threshold Th L. The radar device 1 is selected as the first weather radar device 1. If the rainfall amount R is equal to or higher than the rainfall threshold Th R , the selection unit 14 selects, for example, three weather radar devices 1 as the first weather radar device 1 among the specified one or more weather radar devices 1. To do.
Similar to the selection unit 12 shown in FIG. 2, the selection unit 14 is a part of the weather radar devices 1 other than the first weather radar device 1 among the plurality of weather radar devices 1-1 to 1-N. The weather radar device 1 or all the weather radar devices 1 are selected as the second weather radar device 1.
Similar to the selection unit 12 shown in FIG. 2, the selection unit 14 moves the "water-containing region" indicated by the weather information acquired by the weather information acquisition unit 11, and the first weather radar device 1 and the second. The weather radar device 1 and the non-reception weather radar device 1 are changed.
 図7では、レーダ統括装置2の構成要素である気象情報取得部11、選択部14及び制御部13のそれぞれが、図8に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ統括装置2が、気象情報取得回路21、選択回路24及び制御回路23によって実現されるものを想定している。
 気象情報取得回路21、選択回路24及び制御回路23のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
In FIG. 7, it is assumed that each of the weather information acquisition unit 11, the selection unit 14, and the control unit 13, which are the components of the radar control device 2, is realized by the dedicated hardware as shown in FIG. .. That is, it is assumed that the radar control device 2 is realized by the weather information acquisition circuit 21, the selection circuit 24, and the control circuit 23.
Each of the weather information acquisition circuit 21, the selection circuit 24, and the control circuit 23 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. To do.
 レーダ統括装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ統括装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 レーダ統括装置2が、ソフトウェア又はファームウェア等によって実現される場合、気象情報取得部11、選択部14及び制御部13のそれぞれの処理手順をコンピュータに実行させるためのプログラムが図4に示すメモリ31に格納される。そして、図4に示すプロセッサ32がメモリ31に格納されているプログラムを実行する。
The components of the radar control device 2 are not limited to those realized by dedicated hardware, but the radar control device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
When the radar control device 2 is realized by software, firmware, or the like, a program for causing a computer to execute each processing procedure of the weather information acquisition unit 11, the selection unit 14, and the control unit 13 is stored in the memory 31 shown in FIG. Stored. Then, the processor 32 shown in FIG. 4 executes the program stored in the memory 31.
 次に、図7に示すレーダ統括装置2の動作について説明する。
 図9は、レーダ統括装置2の処理手順を示すフローチャートである。ここでは、説明の便宜上、N=10として、図1に示す気象レーダシステムが、10台の気象レーダ装置1-1~1-10を備えているものとする。
 気象情報取得部11は、「水含有領域」を示す気象情報を取得する(図9のステップST11)。
 気象情報取得部11は、気象情報を選択部14に出力する。
Next, the operation of the radar control device 2 shown in FIG. 7 will be described.
FIG. 9 is a flowchart showing a processing procedure of the radar control device 2. Here, for convenience of explanation, it is assumed that N = 10 and the weather radar system shown in FIG. 1 includes 10 weather radar devices 1-1 to 1-10.
The meteorological information acquisition unit 11 acquires meteorological information indicating the “water-containing region” (step ST11 in FIG. 9).
The weather information acquisition unit 11 outputs the weather information to the selection unit 14.
 選択部14は、気象情報取得部11から気象情報を受けると、気象情報に基づいて、気象レーダ装置1-1~1-10のそれぞれが存在している領域が、「水含有領域」であるのか、「晴れ領域」であるのかを判定する。
 選択部14は、気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てが「晴れ領域」であれば(図9のステップST12:YESの場合)、初期設定情報が示す気象レーダ装置1を第1の気象レーダ装置1として選択する(図9のステップST13)。
 図7に示すレーダ統括装置2では、気象レーダ装置1-1~1-10のうち、例えば、気象レーダ装置1-5の1台だけが、第1の気象レーダ装置1-5として選択されるという初期設定情報が、選択部14の内部メモリに格納されているものとする。ただし、初期設定情報は、レーダ統括装置2の外部から選択部14に与えられるものであってもよい。
When the selection unit 14 receives the weather information from the weather information acquisition unit 11, the area in which each of the weather radar devices 1-1 to 1-10 exists is the "water-containing area" based on the weather information. It is judged whether it is a "sunny area" or a "sunny area".
If all of the regions in which each of the weather radar devices 1-1 to 1-10 are present are "sunny regions" (step ST12 of FIG. 9: YES), the selection unit 14 indicates the initial setting information. The weather radar device 1 is selected as the first weather radar device 1 (step ST13 in FIG. 9).
In the radar control device 2 shown in FIG. 7, of the weather radar devices 1-1 to 1-10, for example, only one of the weather radar devices 1-5 is selected as the first weather radar device 1-5. It is assumed that the initial setting information is stored in the internal memory of the selection unit 14. However, the initial setting information may be given to the selection unit 14 from the outside of the radar control device 2.
 選択部14は、図2に示す選択部12と同様に、気象レーダ装置1-1~1-10の中で、第1の気象レーダ装置1-5以外の気象レーダ装置1-1~1-4,1-6~1-10のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第2の気象レーダ装置1として選択する(図9のステップST14)。
 ここでは、説明の便宜上、選択部14が、第1の気象レーダ装置1-5以外の気象レーダ装置1-1~1-4,1-6~1-10のうち、気象レーダ装置1-1~1-3,1-7~1-10のそれぞれを第2の気象レーダ装置1として選択しているものとする。
 選択部14は、図2に示す選択部12と同様に、非受信用の気象レーダ装置1を選択する(図9のステップST15)。
 ここでは、説明の便宜上、選択部14が、気象レーダ装置1-4,1-6のそれぞれを非受信用の気象レーダ装置1として選択しているものとする。
Similar to the selection unit 12 shown in FIG. 2, the selection unit 14 is a weather radar device 1-1 to 1-1 other than the first weather radar device 1-5 among the weather radar devices 1-1 to 1-10. Of 4, 1-6 to 1-10, some weather radar devices 1 or all weather radar devices 1 are selected as the second weather radar device 1 (step ST14 in FIG. 9).
Here, for convenience of explanation, the selection unit 14 is selected from the weather radar devices 1-1 to 1-4, 1-6 to 1-10 other than the first weather radar device 1-5, and the weather radar device 1-1. It is assumed that each of ~ 1-3, 1-7 ~ 1-10 is selected as the second weather radar device 1.
The selection unit 14 selects the non-reception weather radar device 1 in the same manner as the selection unit 12 shown in FIG. 2 (step ST15 in FIG. 9).
Here, for convenience of explanation, it is assumed that the selection unit 14 selects each of the weather radar devices 1-4 and 1-6 as the non-reception weather radar device 1.
 制御部13は、空間への電波の放射を指示する第1の制御信号を、通信ネットワーク3を介して、選択部14により選択された第1の気象レーダ装置1-5に送信する(図9のステップST16)。
 制御部13は、空間への電波の放射停止を指示する第2の制御信号を、通信ネットワーク3を介して、選択部14により選択された第2の気象レーダ装置1-1~1-3,1-7~1-10のそれぞれに送信する(図9のステップST17)。
 制御部13は、空間への電波の放射停止及び電波の受信停止のそれぞれを指示する第3の制御信号を、通信ネットワーク3を介して、選択部14により選択された非受信用の気象レーダ装置1-4,1-6のそれぞれに送信する(図9のステップST18)。
The control unit 13 transmits a first control signal instructing the radiation of radio waves into the space to the first weather radar device 1-5 selected by the selection unit 14 via the communication network 3 (FIG. 9). Step ST16).
The control unit 13 transmits a second control signal instructing the stop of radiation of radio waves to the space via the communication network 3 to the second weather radar devices 1-1 to 1-3 selected by the selection unit 14. It is transmitted to each of 1-7 to 1-10 (step ST17 in FIG. 9).
The control unit 13 is a non-reception weather radar device selected by the selection unit 14 via the communication network 3 for a third control signal instructing each of the stop of radiating the radio wave to the space and the stop of receiving the radio wave. It is transmitted to each of 1-4 and 1-6 (step ST18 in FIG. 9).
 選択部14は、気象レーダ装置1-1~1-10のそれぞれが存在している領域のうち、いずれかの領域が「水含有領域」であれば(図9のステップST12:NOの場合)、気象情報に基づいて、「水含有領域」に存在している1つ以上の気象レーダ装置1を特定する(図9のステップST19)。
 選択部14は、気象情報が示す「水含有領域」の降雨量Rと降雨閾値Thとを比較する。
 ここでは、説明の簡単化のため、「水含有領域」の降雨量Rは、水含有領域内において一様であるものとする。
If any of the regions in which each of the weather radar devices 1-1 to 1-10 exists is the "water-containing region", the selection unit 14 (in the case of step ST12: NO in FIG. 9). , One or more weather radar devices 1 existing in the "water-containing region" are identified based on the weather information (step ST19 in FIG. 9).
The selection unit 14 compares the rainfall amount R of the “water-containing region” indicated by the meteorological information with the rainfall threshold value Th R.
Here, for the sake of simplification of the description, it is assumed that the rainfall R in the “water-containing region” is uniform in the water-containing region.
 選択部14は、降雨量Rが降雨閾値Thよりも少なければ(図9のステップST20:YESの場合)、特定した1つ以上の気象レーダ装置1のうち、互いの距離が距離閾値Thよりも大きい2台の気象レーダ装置1を第1の気象レーダ装置1として選択する(図9のステップST21)。
 「水含有領域」に存在している気象レーダ装置が、例えば、気象レーダ装置1-1~1-4であるとする。このとき、気象レーダ装置1-1と気象レーダ装置1-2との距離が、距離閾値Thよりも大きく、気象レーダ装置1-1と気象レーダ装置1-4との距離が、距離閾値Thよりも大きい。また、気象レーダ装置1-3と気象レーダ装置1-4との距離が、距離閾値Thよりも大きく、気象レーダ装置1-2と気象レーダ装置1-4との距離が、距離閾値Thよりも大きい。また、気象レーダ装置1-2と気象レーダ装置1-3との距離が、距離閾値Thよりも大きい。しかし、気象レーダ装置1-1と気象レーダ装置1-3との距離が、距離閾値Th以下である場合を想定する。
 この場合、選択部14が、気象レーダ装置1-1及び気象レーダ装置1-4のそれぞれを第1の気象レーダ装置1-1,1-2として選択しても、気象レーダ装置1-2,1-3のそれぞれには、気象レーダ装置1-1及び気象レーダ装置1-4のそれぞれから放射された電波が直接的に到来しない。
 したがって、選択部14は、例えば、気象レーダ装置1-1及び気象レーダ装置1-4のそれぞれを第1の気象レーダ装置1-1,1-2として選択する。
 ここでは、選択部14が、2台の気象レーダ装置1を第1の気象レーダ装置1として選択している。しかし、「水含有領域」に存在している気象レーダ装置1が1台だけであれば、選択部14は、1台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
If the rainfall amount R is smaller than the rainfall threshold Th R (in the case of step ST20: YES in FIG. 9), the selection unit 14 has the distance threshold Th L between the specified one or more weather radar devices 1. Two larger weather radar devices 1 are selected as the first weather radar device 1 (step ST21 in FIG. 9).
It is assumed that the weather radar devices existing in the "water-containing region" are, for example, the weather radar devices 1-1 to 1-4. At this time, the distance between the weather radar device 1-1 and the weather radar device 1-2 is larger than the distance threshold Th L , and the distance between the weather radar device 1-1 and the weather radar device 1-4 is the distance threshold Th. Greater than L. Further, the distance between the weather radar device 1-3 and the weather radar device 1-4 is larger than the distance threshold Th L , and the distance between the weather radar device 1-2 and the weather radar device 1-4 is the distance threshold Th L. Greater than. Further, the distance between the weather radar device 1-2 and the weather radar device 1-3 is larger than the distance threshold Th L. However, it is assumed that the distance between the weather radar device 1-1 and the weather radar device 1-3 is equal to or less than the distance threshold value Th L.
In this case, even if the selection unit 14 selects each of the weather radar device 1-1 and the weather radar device 1-4 as the first weather radar device 1-1, 1-2, the weather radar device 1-2, The radio waves radiated from each of the weather radar device 1-1 and the weather radar device 1-4 do not directly reach each of 1-3.
Therefore, the selection unit 14 selects, for example, each of the weather radar device 1-1 and the weather radar device 1-4 as the first weather radar device 1-1, 1-2.
Here, the selection unit 14 selects the two weather radar devices 1 as the first weather radar device 1. However, if there is only one weather radar device 1 existing in the "water-containing region", the selection unit 14 selects one weather radar device 1 as the first weather radar device 1.
 選択部14は、降雨量Rが降雨閾値Th以上であれば(図9のステップST20:NOの場合)、特定した1つ以上の気象レーダ装置1のうち、例えば、3台の気象レーダ装置1を第1の気象レーダ装置1として選択する(図9のステップST22)。
 「水含有領域」に存在している気象レーダ装置が、気象レーダ装置1-1~1-4であれば、選択部14は、例えば、気象レーダ装置1-1~1-3のそれぞれを第1の気象レーダ装置1-1~1-3として選択する。
 ここでは、選択部14が、3台の気象レーダ装置1を第1の気象レーダ装置1として選択している。選択部14が、4台の気象レーダ装置1-1~1-4のそれぞれを第1の気象レーダ装置1-1~1-4として選択してもよい。
 「水含有領域」に存在している気象レーダ装置1が1台だけであれば、選択部14は、1台の気象レーダ装置1を第1の気象レーダ装置1として選択する。また、「水含有領域」に存在している気象レーダ装置1が2台であれば、選択部14は、2台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
If the rainfall amount R is equal to or higher than the rainfall threshold Th R (in the case of step ST20: NO in FIG. 9), the selection unit 14 has, for example, three weather radar devices among the specified one or more weather radar devices 1. 1 is selected as the first weather radar device 1 (step ST22 in FIG. 9).
If the weather radar devices existing in the "water-containing region" are the weather radar devices 1-1 to 1-4, the selection unit 14 may select, for example, each of the weather radar devices 1-1 to 1-3. Select as the weather radar device 1-1 to 1-3 of 1.
Here, the selection unit 14 selects the three weather radar devices 1 as the first weather radar device 1. The selection unit 14 may select each of the four weather radar devices 1-1 to 1-4 as the first weather radar devices 1-1 to 1-4.
If there is only one weather radar device 1 existing in the "water-containing region", the selection unit 14 selects one weather radar device 1 as the first weather radar device 1. Further, if there are two weather radar devices 1 existing in the "water-containing region", the selection unit 14 selects the two weather radar devices 1 as the first weather radar device 1.
 したがって、図7に示すレーダ統括装置2では、気象レーダ装置1-1~1-10のそれぞれが存在している領域の全てが「晴れ領域」であれば、選択部14が、例えば、1台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 気象レーダ装置1-1~1-10のそれぞれが存在している領域のうち、いずれかの領域が「水含有領域」であり、降雨量Rが降雨閾値Thよりも少なければ、選択部14が、例えば、2台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
 気象レーダ装置1-1~1-10のそれぞれが存在している領域のうち、いずれかの領域が「水含有領域」であり、降雨量Rが降雨閾値Th以上であれば、選択部14が、例えば、3台の気象レーダ装置1を第1の気象レーダ装置1として選択する。
Therefore, in the radar control device 2 shown in FIG. 7, if all of the areas in which each of the weather radar devices 1-1 to 1-10 are present are “sunny areas”, the selection unit 14 may be, for example, one unit. The weather radar device 1 of the above is selected as the first weather radar device 1.
If any of the regions in which each of the weather radar devices 1-1 to 1-10 exists is a "water-containing region" and the rainfall amount R is smaller than the rainfall threshold Th R , the selection unit 14 However, for example, two weather radar devices 1 are selected as the first weather radar device 1.
If any of the regions in which each of the weather radar devices 1-1 to 1-10 exists is a "water-containing region" and the rainfall amount R is equal to or higher than the rainfall threshold Th R, the selection unit 14 However, for example, three weather radar devices 1 are selected as the first weather radar device 1.
 選択部14は、気象レーダ装置1-1~1-10の中で、第1の気象レーダ装置1以外の気象レーダ装置1のうち、一部の気象レーダ装置1、又は、全部の気象レーダ装置1を第2の気象レーダ装置1として選択する(図9のステップST14)。
 第2の気象レーダ装置1として、一部の気象レーダ装置1を選択する場合、選択部14は、図2に示す選択部12と同様に、第1の気象レーダ装置1から放射された電波が直接的に到来してこない位置に設置されている気象レーダ装置1を選択する。あるいは、選択部14は、第1の気象レーダ装置1からの放射電波が直接的に到来してきても、受信した当該電波の強さが閾値Ths以下の気象レーダ装置1を選択する。あるいは、選択部14は、第1の気象レーダ装置1から直接的に到来してきた放射電波の抑圧処理を実施すれば、受信したレーダエコーに対する放射電波の干渉を無視することが可能な気象レーダ装置1を選択する。
 「水含有領域」に存在している気象レーダ装置1を第2の気象レーダ装置1として選択する場合、降雨量Rが降雨閾値Thよりも少なければ、選択部14は、第1の気象レーダ装置1からの距離が距離閾値Thよりも大きい気象レーダ装置1を第2の気象レーダ装置1として選択する。
 ここでは、説明の便宜上、選択部14が、特定した1つ以上の気象レーダ装置1-1~1-4のうち、互いの距離が距離閾値Thよりも大きい2台の第1の気象レーダ装置1として、気象レーダ装置1-1と気象レーダ装置1-4とを選択している場合を想定する。
 この場合、気象レーダ装置1-2には、気象レーダ装置1-1及び気象レーダ装置1-4のそれぞれから放射された電波が直接的に到来してこないので、選択部14は、気象レーダ装置1-2を第2の気象レーダ装置1として選択する。
 また、気象レーダ装置1-3には、気象レーダ装置1-1から放射された電波が直接的に到来してくるので、選択部14は、気象レーダ装置1-3を非受信用の気象レーダ装置1として選択する(図9のステップST15)。
The selection unit 14 is a part of the weather radar devices 1 other than the first weather radar device 1 among the weather radar devices 1-1 to 1-10, or all the weather radar devices 1. 1 is selected as the second weather radar device 1 (step ST14 in FIG. 9).
When a part of the weather radar device 1 is selected as the second weather radar device 1, the selection unit 14 receives radio waves radiated from the first weather radar device 1 as in the selection unit 12 shown in FIG. Select the weather radar device 1 installed at a position that does not come directly. Alternatively, the selection unit 14 selects the weather radar device 1 whose strength of the received radio wave is equal to or less than the threshold value Ths, even if the radiated radio wave from the first weather radar device 1 directly arrives. Alternatively, the selection unit 14 can ignore the interference of the radiated radio waves with the received radar echo by performing the suppression processing of the radiated radio waves directly coming from the first weather radar device 1. Select 1.
When the weather radar device 1 existing in the "water-containing region" is selected as the second weather radar device 1, if the rainfall amount R is less than the rainfall threshold Th R , the selection unit 14 uses the first weather radar. The weather radar device 1 whose distance from the device 1 is larger than the distance threshold Th L is selected as the second weather radar device 1.
Here, for convenience of explanation, the selection unit 14 is one of the specified one or more weather radar devices 1-1 to 1-4, and the distance between the two first weather radars is larger than the distance threshold Th L. It is assumed that the weather radar device 1-1 and the weather radar device 1-4 are selected as the device 1.
In this case, since the radio waves radiated from each of the weather radar device 1-1 and the weather radar device 1-4 do not directly reach the weather radar device 1-2, the selection unit 14 is the weather radar device. Select 1-2 as the second weather radar device 1.
Further, since the radio waves radiated from the weather radar device 1-1 directly arrive at the weather radar device 1-3, the selection unit 14 uses the weather radar device 1-3 for non-reception of the weather radar. Select as device 1 (step ST15 in FIG. 9).
 制御部13は、第1の制御信号を、通信ネットワーク3を介して、選択部14により選択された第1の気象レーダ装置1に送信する(図9のステップST16)。
 制御部13は、第2の制御信号を、通信ネットワーク3を介して、選択部14により選択された第2の気象レーダ装置1に送信する(図9のステップST17)。
 制御部13は、第3の制御信号を、通信ネットワーク3を介して、選択部14により選択された非受信用の気象レーダ装置1-4,1-6のそれぞれに送信する(図9のステップST18)。
The control unit 13 transmits the first control signal to the first weather radar device 1 selected by the selection unit 14 via the communication network 3 (step ST16 in FIG. 9).
The control unit 13 transmits the second control signal to the second weather radar device 1 selected by the selection unit 14 via the communication network 3 (step ST17 in FIG. 9).
The control unit 13 transmits a third control signal to each of the non-reception weather radar devices 1-4 and 1-6 selected by the selection unit 14 via the communication network 3 (step 9 in FIG. 9). ST18).
 以上の実施の形態2では、選択部14が、気象情報が示す降雨量Rに基づいて、第1の気象レーダ装置1の台数を決定するように、レーダ統括装置2を構成した。したがって、レーダ統括装置2は、電波干渉が生じない環境化では、第1の気象レーダ装置1の台数を増やして、気象観測の精度を高めることができる。 In the above embodiment 2, the radar control device 2 is configured so that the selection unit 14 determines the number of the first weather radar devices 1 based on the rainfall R indicated by the weather information. Therefore, the radar control device 2 can improve the accuracy of meteorological observation by increasing the number of the first meteorological radar devices 1 in an environment where radio wave interference does not occur.
実施の形態3.
 実施の形態3では、気象レーダ装置1-n(n=1,・・・,10)が、干渉波を送信している干渉源4を検出すると、受信部72の動作を停止させる気象レーダシステムについて説明する。
Embodiment 3.
In the third embodiment, when the weather radar device 1-n (n = 1, ..., 10) detects the interference source 4 transmitting the interference wave, the weather radar system stops the operation of the receiving unit 72. Will be described.
 図10は、実施の形態3に係る気象レーダシステムを示す構成図である。図10において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 干渉源4は、例えば、無線LANのネットワーク機器である。
 気象レーダ装置1-n(n=1,・・・,10)は、干渉波を送信している干渉源4を検出すると、自己が有している受信部72の動作を停止させる。
FIG. 10 is a configuration diagram showing a weather radar system according to the third embodiment. In FIG. 10, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The interference source 4 is, for example, a wireless LAN network device.
When the weather radar device 1-n (n = 1, ..., 10) detects the interference source 4 transmitting the interference wave, the weather radar device 1-n (n = 1, ..., 10) stops the operation of its own receiving unit 72.
 図11は、実施の形態3に係る気象レーダシステムの気象レーダ装置1を示す構成図である。図11において、図5と同一符号は同一又は相当部分を示すので説明を省略する。
 干渉源検出部81は、干渉波を送信している干渉源4の検出処理を実施する。
 干渉源検出部81は、干渉源4を検出すると、干渉源4を検出した旨を示す検出信号を後述する受信制御部82に出力する。
 受信制御部82は、図5に示す受信制御部54と同様に動作するほか、干渉源検出部81から検出信号を受けると、受信部72の動作を停止させる。
FIG. 11 is a configuration diagram showing a weather radar device 1 of the weather radar system according to the third embodiment. In FIG. 11, the same reference numerals as those in FIG. 5 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The interference source detection unit 81 performs detection processing of the interference source 4 transmitting the interference wave.
When the interference source detection unit 81 detects the interference source 4, it outputs a detection signal indicating that the interference source 4 has been detected to the reception control unit 82, which will be described later.
The reception control unit 82 operates in the same manner as the reception control unit 54 shown in FIG. 5, and also stops the operation of the reception unit 72 when it receives a detection signal from the interference source detection unit 81.
 次に、図10に示す気象レーダシステムの動作について説明する。
 ここでは、実施の形態1,2に係る気象レーダシステムと相違する部分のみを説明する。
 気象レーダ装置1-n(n=1,・・・,10)の干渉源検出部81は、干渉波を送信している干渉源4の検出処理を実施する。
 干渉源検出部81による干渉源4の検出処理自体は、公知の技術であるため詳細な説明を省略する。
 干渉源検出部81は、干渉源4を検出すると、干渉源4を検出した旨を示す検出信号を受信制御部82に出力する。
Next, the operation of the weather radar system shown in FIG. 10 will be described.
Here, only the parts different from the weather radar system according to the first and second embodiments will be described.
The interference source detection unit 81 of the weather radar device 1-n (n = 1, ..., 10) executes the detection process of the interference source 4 transmitting the interference wave.
Since the interference source 4 detection process itself by the interference source detection unit 81 is a known technique, detailed description thereof will be omitted.
When the interference source detection unit 81 detects the interference source 4, it outputs a detection signal indicating that the interference source 4 has been detected to the reception control unit 82.
 受信制御部82は、干渉源検出部81から検出信号を受けると、例えば、帯域外成分除去部66、周波数変換部67及びA/D変換部68におけるそれぞれの動作を停止させることによって、受信部72の動作を停止させる。
 干渉源4から送信されている干渉波は、気象レーダ装置1-nにおける気象観測の劣化要因となる。干渉源検出部81により干渉源4が検出されたときに、受信制御部82が、受信部72の動作を停止させることで、劣化している可能性がある気象の観測結果を記憶装置44に記憶させないようにすることができる。
When the reception control unit 82 receives the detection signal from the interference source detection unit 81, for example, the reception unit 82 stops the operations of the out-of-band component removal unit 66, the frequency conversion unit 67, and the A / D conversion unit 68, respectively. The operation of 72 is stopped.
The interference wave transmitted from the interference source 4 becomes a deterioration factor of the meteorological observation in the meteorological radar device 1-n. When the interference source 4 is detected by the interference source detection unit 81, the reception control unit 82 stops the operation of the reception unit 72, so that the observation result of the weather that may have deteriorated is stored in the storage device 44. It can be prevented from being memorized.
 干渉源検出部81は、干渉波を送信している干渉源4を検出した後、引き続き、干渉源4の検出処理を実施する。
 干渉源検出部81は、干渉源4を検出しなければ、干渉源4を検出しない旨を示す非検出信号を受信制御部82に出力する。
 受信制御部82は、干渉源検出部81から非検出信号を受けると、非検出信号を、通信ネットワーク3を介して、レーダ統括装置2に送信する。
 レーダ統括装置2の制御部13は、気象レーダ装置1-nの干渉源検出部81から、通信ネットワーク3を介して、非検出信号を受けると、受信動作の再開を指示する制御信号を、通信ネットワーク3を介して、気象レーダ装置1-nに送信する。
After detecting the interference source 4 transmitting the interference wave, the interference source detection unit 81 subsequently executes the detection process of the interference source 4.
If the interference source 4 is not detected, the interference source detection unit 81 outputs a non-detection signal indicating that the interference source 4 is not detected to the reception control unit 82.
When the reception control unit 82 receives the non-detection signal from the interference source detection unit 81, the reception control unit 82 transmits the non-detection signal to the radar control device 2 via the communication network 3.
When the control unit 13 of the radar control device 2 receives a non-detection signal from the interference source detection unit 81 of the weather radar device 1-n via the communication network 3, it communicates a control signal instructing the restart of the reception operation. It transmits to the weather radar device 1-n via the network 3.
 気象レーダ装置1-nの受信制御部82は、レーダ統括装置2から、通信ネットワーク3を介して、受信動作の再開を指示する制御信号を受けると、例えば、帯域外成分除去部66、周波数変換部67及びA/D変換部68におけるそれぞれの動作を再開させることによって、受信部72の動作を再開させる。 When the reception control unit 82 of the weather radar device 1-n receives a control signal instructing the restart of the reception operation from the radar control device 2 via the communication network 3, for example, the out-of-band component removal unit 66 and the frequency conversion By restarting the respective operations of the unit 67 and the A / D conversion unit 68, the operation of the receiving unit 72 is restarted.
 以上の実施の形態3では、気象レーダ装置1-n(n=1,・・・,10)が、干渉波を送信している干渉源4を検出すると、受信部72の動作を停止させるように、気象レーダシステムを構成した。したがって、気象レーダシステムは、気象の観測結果が劣化する可能性が高いときは、気象観測を止めることができる。 In the third embodiment, when the weather radar device 1-n (n = 1, ..., 10) detects the interference source 4 transmitting the interference wave, the operation of the receiving unit 72 is stopped. In addition, a weather radar system was constructed. Therefore, the weather radar system can stop the meteorological observation when the meteorological observation result is likely to deteriorate.
実施の形態4.
 実施の形態1~3に係る気象レーダシステムでは、気象レーダ装置1-n(n=1,・・・,10)が、送信部71及び受信部72の双方を備えている。
 実施の形態4では、気象レーダ装置1-n(n=1,・・・,10)のほかに、空間への電波の放射を行うが、レーダエコーの受信を行わない送信専用の気象レーダ装置5と、レーダエコーの受信を行うが、空間への電波の放射を行わない受信専用の気象レーダ装置6とを備えている気象レーダシステムについて説明する。
 気象レーダ装置1-n(n=1,・・・,10)の一部が、送信専用の気象レーダ装置5であってもよいし、気象レーダ装置1-n(n=1,・・・,10)の一部が、受信専用の気象レーダ装置6であってもよい。
Embodiment 4.
In the weather radar system according to the first to third embodiments, the weather radar device 1-n (n = 1, ..., 10) includes both a transmitting unit 71 and a receiving unit 72.
In the fourth embodiment, in addition to the weather radar device 1-n (n = 1, ..., 10), a transmission-only weather radar device that emits radio waves into space but does not receive radar echoes. A weather radar system including 5 and a reception-only weather radar device 6 that receives radar echoes but does not radiate radio waves into space will be described.
A part of the weather radar device 1-n (n = 1, ..., 10) may be the weather radar device 5 dedicated to transmission, or the weather radar device 1-n (n = 1, ..., 10). , 10) may be a reception-only weather radar device 6.
 図12は、送信専用の気象レーダ装置5を示す構成図である。
 図12に示す送信専用の気象レーダ装置5は、図5に示す気象レーダ装置1が有する受信部72を備えていない。したがって、図12に示す送信専用の気象レーダ装置5は、図5に示す気象レーダ装置1よりも構成が簡単化されている。
 図13は、受信専用の気象レーダ装置6を示す構成図である。
 図13に示す受信専用の気象レーダ装置6は、図5に示す気象レーダ装置1が有する送信部71を備えていない。したがって、図13に示す受信専用の気象レーダ装置6は、図5に示す気象レーダ装置1よりも構成が簡単化されている。
FIG. 12 is a configuration diagram showing a weather radar device 5 dedicated to transmission.
The transmission-only weather radar device 5 shown in FIG. 12 does not include the receiving unit 72 included in the weather radar device 1 shown in FIG. Therefore, the transmission-only weather radar device 5 shown in FIG. 12 has a simpler configuration than the weather radar device 1 shown in FIG.
FIG. 13 is a configuration diagram showing a reception-only weather radar device 6.
The reception-only weather radar device 6 shown in FIG. 13 does not include the transmission unit 71 included in the weather radar device 1 shown in FIG. Therefore, the reception-only weather radar device 6 shown in FIG. 13 has a simpler configuration than the weather radar device 1 shown in FIG.
 送信専用の気象レーダ装置5は、気象レーダ装置1-n(n=1,・・・,10)と異なり、常に、電波を空間に放射しているが、レーダエコーの受信を行わない。
 受信専用の気象レーダ装置6は、図5に示す気象レーダ装置1と異なり、電波を空間に放射することはないが、常に、レーダエコーの受信を行っている。
Unlike the weather radar device 1-n (n = 1, ..., 10), the weather radar device 5 dedicated to transmission always radiates radio waves into space, but does not receive radar echo.
Unlike the weather radar device 1 shown in FIG. 5, the reception-only weather radar device 6 does not radiate radio waves into space, but always receives radar echoes.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, it is possible to freely combine the embodiments, modify any component of each embodiment, or omit any component in each embodiment.
 本開示は、気象レーダ装置に制御信号を出力するレーダ統括装置及びレーダ統括方法に適している。
 また、本開示は、複数の気象レーダ装置を備える気象レーダシステムに適している。
The present disclosure is suitable for a radar control device and a radar control method that output a control signal to a weather radar device.
The present disclosure is also suitable for a weather radar system including a plurality of weather radar devices.
 1,1-1~1-N 気象レーダ装置、2 レーダ統括装置、3 通信ネットワーク、4 干渉源、5 気象レーダ装置、6 気象レーダ装置、11 気象情報取得部、12,14 選択部、13 制御部、21 気象情報取得回路、22,24 選択回路、23 制御回路、31 メモリ、32 プロセッサ、41 デジタル回路、42 アナログ回路、43 アンテナ、44 記憶装置、45 信号処理装置、46 表示装置、51 DBF制御部、52 パルス生成部、53 送信制御部、54 受信制御部、61 発振部、62 D/A変換部、63 周波数変換部、64 信号増幅部、65 切り換え部、66 帯域外成分除去部、67 周波数変換部、68 A/D変換部、71 送信部、72 受信部、81 干渉源検出部、82 受信制御部。 1,1-1 to 1-N meteorological radar device, 2 radar control device, 3 communication network, 4 interference source, 5 meteorological radar device, 6 meteorological radar device, 11 meteorological information acquisition section, 12, 14 selection section, 13 control Department, 21 weather information acquisition circuit, 22, 24 selection circuit, 23 control circuit, 31 memory, 32 processor, 41 digital circuit, 42 analog circuit, 43 antenna, 44 storage device, 45 signal processing device, 46 display device, 51 DBF Control unit, 52 pulse generation unit, 53 transmission control unit, 54 reception control unit, 61 oscillation unit, 62 D / A conversion unit, 63 frequency conversion unit, 64 signal amplification unit, 65 switching unit, 66 out-of-band component removal unit, 67 Frequency conversion unit, 68 A / D conversion unit, 71 transmission unit, 72 reception unit, 81 interference source detection unit, 82 reception control unit.

Claims (16)

  1.  大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得する気象情報取得部と、
     複数の気象レーダ装置の中で、前記気象情報取得部により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置を特定し、特定した1つ以上の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置として選択し、前記複数の気象レーダ装置の中で、前記第1の気象レーダ装置以外の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、レーダエコーの受信を行う第2の気象レーダ装置として選択する選択部と、
     前記選択部により選択された第1の気象レーダ装置に対して、空間への電波の放射を指示する第1の制御信号を出力し、前記選択部により選択された第2の気象レーダ装置に対して、空間への電波の放射停止を指示する第2の制御信号を出力する制御部と
     を備えたレーダ統括装置。
    A meteorological information acquisition unit that acquires meteorological information indicating areas where either water droplets or ice crystals are floating in the atmosphere, and a meteorological information acquisition unit.
    Among a plurality of weather radar devices, one or more weather radar devices existing in the area indicated by the weather information acquired by the weather information acquisition unit are specified, and the specified one or more weather radar devices Among these, some weather radar devices or all weather radar devices are selected as the first weather radar device that emits radio waves and receives radar echoes, and among the plurality of weather radar devices, the weather radar devices are selected. A selection unit that selects some or all of the weather radar devices other than the first weather radar device as the second weather radar device that receives the radar echo.
    A first control signal instructing the emission of radio waves into space is output to the first weather radar device selected by the selection unit, and the second weather radar device selected by the selection unit is output. A radar control device equipped with a control unit that outputs a second control signal that instructs the space to stop radiating radio waves.
  2.  前記選択部により選択される第1の気象レーダ装置は、電波の放射及びレーダエコーの受信の双方を行う送受兼用の気象レーダ装置であり、
     前記選択部により選択される第2の気象レーダ装置は、電波を放射しないで、レーダエコーの受信を行う受信専用の気象レーダ装置であることを特徴とする請求項1記載のレーダ統括装置。
    The first weather radar device selected by the selection unit is a weather radar device for both transmission and reception that emits radio waves and receives radar echoes.
    The radar control device according to claim 1, wherein the second weather radar device selected by the selection unit is a reception-only weather radar device that receives radar echoes without radiating radio waves.
  3.  前記選択部は、前記第1の気象レーダ装置以外の気象レーダ装置のうち、前記第1の気象レーダ装置からの放射電波が直接的に到来してくることのない位置に設置されている気象レーダ装置、又は、前記第1の気象レーダ装置からの放射電波が直接的に到来してきても、受信した当該電波の強さが閾値以下の気象レーダ装置、又は、前記第1の気象レーダ装置から直接的に到来してきた放射電波の抑圧処理を実施すれば、受信したレーダエコーに対する前記放射電波の干渉を無視することが可能な気象レーダ装置を前記第2の気象レーダ装置として選択することを特徴とする請求項1記載のレーダ統括装置。 The selection unit is a meteorological radar installed at a position among the meteorological radar devices other than the first meteorological radar device so that the radiated radio waves from the first meteorological radar device do not directly arrive. Even if the radiated radio wave from the device or the first meteorological radar device arrives directly, the received radio wave intensity is directly below the threshold value of the meteorological radar device or the first meteorological radar device. The feature is that a meteorological radar device capable of ignoring the interference of the radiated radio waves with the received radar echo is selected as the second meteorological radar device by performing the suppression processing of the radiated radio waves that have arrived. The radar control device according to claim 1.
  4.  前記選択部は、前記第1の気象レーダ装置以外の気象レーダ装置のうち、前記受信した当該電波の強さが前記閾値よりも大きい気象レーダ装置、又は、前記第1の気象レーダ装置から直接的に到来してきた放射電波の抑圧処理を実施しても、受信したレーダエコーに対する前記放射電波の干渉を無視することができない気象レーダ装置を非受信用の気象レーダ装置として選択し、
     前記制御部は、前記選択部により選択された非受信用の気象レーダ装置に対して、空間への電波の放射停止及び電波の受信停止のそれぞれを指示する第3の制御信号を出力することを特徴とする請求項3記載のレーダ統括装置。
    The selection unit is directly from the weather radar device other than the first weather radar device, the weather radar device in which the strength of the received radio wave is larger than the threshold value, or the first weather radar device. A weather radar device that cannot ignore the interference of the radiated radio waves with the received radar echo even if the radiated radio waves that have arrived in the above are suppressed is selected as the non-reception weather radar device.
    The control unit outputs a third control signal instructing the non-reception weather radar device selected by the selection unit to stop radiating radio waves into space and stop receiving radio waves. The radar control device according to claim 3, which is characterized.
  5.  前記選択部は、前記気象情報取得部により取得された気象情報が示す領域の移動に伴って、前記第1の気象レーダ装置及び前記第2の気象レーダ装置のそれぞれを変更することを特徴とする請求項1記載のレーダ統括装置。 The selection unit is characterized in that each of the first weather radar device and the second weather radar device is changed as the region indicated by the weather information acquired by the weather information acquisition unit moves. The radar control device according to claim 1.
  6.  前記気象情報取得部により取得された気象情報は、当該領域での降雨量を示す情報を含んでおり、
     前記選択部は、前記気象情報が示す降雨量に基づいて、前記第1の気象レーダ装置の台数を決定することを特徴とする請求項1記載のレーダ統括装置。
    The meteorological information acquired by the meteorological information acquisition unit includes information indicating the amount of rainfall in the area.
    The radar control device according to claim 1, wherein the selection unit determines the number of the first weather radar devices based on the amount of rainfall indicated by the weather information.
  7.  気象情報取得部が、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得し、
     選択部が、複数の気象レーダ装置の中で、前記気象情報取得部により取得された気象情報が示す領域内に存在している1つ以上の気象レーダ装置を特定し、特定した1つ以上の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置として選択し、前記複数の気象レーダ装置の中で、前記第1の気象レーダ装置以外の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を、レーダエコーの受信を行う第2の気象レーダ装置として選択し、
     制御部が、前記選択部により選択された第1の気象レーダ装置に対して、空間への電波の放射を指示する第1の制御信号を出力し、前記選択部により選択された第2の気象レーダ装置に対して、空間への電波の放射停止を指示する第2の制御信号を出力する
     レーダ統括方法。
    The meteorological information acquisition department acquires meteorological information indicating the area where either water droplets or ice crystals are floating in the atmosphere.
    The selection unit identifies one or more weather radar devices existing in the area indicated by the weather information acquired by the weather information acquisition unit among the plurality of weather radar devices, and one or more specified weather radar devices. Among the weather radar devices, some weather radar devices or all weather radar devices are selected as the first weather radar device that both emits radio waves and receives radar echoes, and the plurality of weather radar devices are selected. Among the weather radar devices other than the first weather radar device, some weather radar devices or all the weather radar devices are selected as the second weather radar device that receives the radar echo. ,
    The control unit outputs a first control signal instructing the radiation of radio waves to the space to the first weather radar device selected by the selection unit, and the second weather selected by the selection unit. A radar control method that outputs a second control signal instructing the radar device to stop radiating radio waves into space.
  8.  電波を空間に放射する送信部と、レーダエコーを受信する受信部とを有する複数の気象レーダ装置と、
     前記複数の気象レーダ装置の中から、電波の放射及びレーダエコーの受信の双方を行う第1の気象レーダ装置を選択して、前記第1の気象レーダ装置に含まれている前記送信部から電波を放射させ、前記複数の気象レーダ装置の中から、レーダエコーの受信を行う第2の気象レーダ装置を選択して、前記第2の気象レーダ装置に含まれている前記送信部からの電波の放射を停止させるレーダ統括装置とを備え、
     前記レーダ統括装置は、前記複数の気象レーダ装置の中で、大気中に水滴又は氷晶のいずれかが浮かんでいる領域内に存在している1つ以上の気象レーダ装置を特定し、特定した1つ以上の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を前記第1の気象レーダ装置として選択し、前記複数の気象レーダ装置の中で、前記第1の気象レーダ装置以外の気象レーダ装置のうち、一部の気象レーダ装置、又は、全部の気象レーダ装置を前記第2の気象レーダ装置として選択することを特徴とする気象レーダシステム。
    A plurality of weather radar devices having a transmitting unit that radiates radio waves into space and a receiving unit that receives radar echo,
    From the plurality of weather radar devices, a first weather radar device that emits radio waves and receives radar echoes is selected, and radio waves are transmitted from the transmitting unit included in the first weather radar device. Is selected from the plurality of weather radar devices to receive radar echo, and the radio waves from the transmitting unit included in the second weather radar device are transmitted. Equipped with a radar control device that stops radiation
    The radar control device identifies and identifies one or more weather radar devices existing in a region where either water droplets or ice crystals are floating in the atmosphere among the plurality of weather radar devices. Among the one or more weather radar devices, some weather radar devices or all the weather radar devices are selected as the first weather radar device, and among the plurality of weather radar devices, the first weather radar device is selected. A weather radar system characterized in that some weather radar devices or all weather radar devices are selected as the second weather radar device among the weather radar devices other than the weather radar device.
  9.  前記レーダ統括装置は、前記第1の気象レーダ装置以外の気象レーダ装置のうち、前記第1の気象レーダ装置からの放射電波が直接的に到来してくることのない位置に設置されている気象レーダ装置、又は、前記第1の気象レーダ装置からの放射電波が直接的に到来してきても、受信した当該電波の強さが閾値以下の気象レーダ装置、又は、前記第1の気象レーダ装置から直接的に到来してきた放射電波の抑圧処理を実施すれば、受信したレーダエコーに対する前記放射電波の干渉を無視することが可能な気象レーダ装置を前記第2の気象レーダ装置として選択することを特徴とする請求項8記載の気象レーダシステム。 The radar control device is a meteorological radar device other than the first meteorological radar device, which is installed at a position where radiated radio waves from the first meteorological radar device do not directly arrive. Even if the radiated radio wave from the radar device or the first meteorological radar device arrives directly, the received radio wave intensity is equal to or less than the threshold value from the meteorological radar device or the first meteorological radar device. It is characterized in that a meteorological radar device capable of ignoring the interference of the radiated radio waves with the received radar echo is selected as the second meteorological radar device by performing the suppression processing of the radiated radio waves that have arrived directly. The meteorological radar system according to claim 8.
  10.  前記レーダ統括装置は、前記第1の気象レーダ装置以外の気象レーダ装置のうち、前記受信した当該電波の強さが前記閾値よりも大きい気象レーダ装置、又は、前記第1の気象レーダ装置から直接的に到来してきた放射電波の抑圧処理を実施しても、受信したレーダエコーに対する前記放射電波の干渉を無視することができない気象レーダ装置を非受信用の気象レーダ装置として選択し、前記非受信用の気象レーダ装置に含まれている前記送信部からの電波の放射を停止させ、前記非受信用の気象レーダ装置に含まれている前記受信部におけるレーダエコーの受信を停止させることを特徴とする請求項9記載の気象レーダシステム。 Among the meteorological radar devices other than the first meteorological radar device, the radar control device is a meteorological radar device in which the intensity of the received radio wave is larger than the threshold value, or directly from the first meteorological radar device. A meteorological radar device whose interference with the received radar echo cannot be ignored even if the radiated radio wave that has arrived is suppressed is selected as the non-reception meteorological radar device, and the non-reception is performed. It is characterized in that the emission of radio waves from the transmitting unit included in the meteorological radar device for non-reception is stopped, and the reception of radar echo in the receiving unit included in the non-reception meteorological radar device is stopped. The meteorological radar system according to claim 9.
  11.  前記レーダ統括装置は、大気中に水滴又は氷晶のいずれかが浮かんでいる領域の移動に伴って、前記第1の気象レーダ装置及び前記第2の気象レーダ装置のそれぞれを変更することを特徴とする請求項8記載の気象レーダシステム。 The radar control device is characterized in that each of the first weather radar device and the second weather radar device is changed as the region where either water droplets or ice crystals are floating in the atmosphere moves. The weather radar system according to claim 8.
  12.  前記レーダ統括装置は、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を示す気象情報を取得し、前記複数の気象レーダ装置の中で、前記気象情報が示す領域内に存在している1つ以上の気象レーダ装置を特定することを特徴とする請求項8記載の気象レーダシステム。 The radar control device acquires weather information indicating a region in which either water droplets or ice crystals are floating in the atmosphere, and exists in the region indicated by the weather information among the plurality of weather radar devices. The weather radar system according to claim 8, wherein one or more weather radar devices are specified.
  13.  前記複数の気象レーダ装置のうち、一部の気象レーダ装置は、前記受信部により受信されたレーダエコーに基づく気象観測を実施することによって、大気中に水滴又は氷晶のいずれかが浮かんでいる領域を検出し、前記領域の検出結果を前記気象情報として前記レーダ統括装置に送信することを特徴とする請求項12記載の気象レーダシステム。 Among the plurality of weather radar devices, some weather radar devices have either water droplets or ice crystals floating in the atmosphere by performing meteorological observation based on the radar echo received by the receiving unit. The weather radar system according to claim 12, wherein a region is detected and the detection result of the region is transmitted as the weather information to the radar control device.
  14.  前記気象情報は、当該領域での降雨量を示す情報を含んでおり、
     前記レーダ統括装置は、前記気象情報が示す降雨量に基づいて、前記第1の気象レーダ装置の台数を決定することを特徴とする請求項12記載の気象レーダシステム。
    The meteorological information includes information indicating the amount of rainfall in the area.
    The weather radar system according to claim 12, wherein the radar control device determines the number of the first weather radar devices based on the amount of rainfall indicated by the weather information.
  15.  前記複数の気象レーダ装置におけるそれぞれの気象レーダ装置は、干渉波を送信している干渉源を検出すると、自己が有している前記受信部の動作を停止させることを特徴とする請求項8記載の気象レーダシステム。 The eighth aspect of claim 8, wherein each of the weather radar devices in the plurality of weather radar devices stops the operation of the receiving unit possessed by the weather radar device when it detects an interference source transmitting an interference wave. Weather radar system.
  16.  前記複数の気象レーダ装置のほかに、空間への電波の放射を行うが、レーダエコーの受信を行わない送信専用の気象レーダ装置と、レーダエコーの受信を行うが、空間への電波の放射を行わない受信専用の気象レーダ装置とを備えていることを特徴とする請求項8記載の気象レーダシステム。 In addition to the plurality of weather radar devices, a weather radar device dedicated to transmission that emits radio waves to space but does not receive radar echo, and a weather radar device that receives radar echo but emits radio waves to space. The weather radar system according to claim 8, further comprising a reception-only weather radar device that does not perform.
PCT/JP2020/000580 2020-01-10 2020-01-10 Radar supervising device, radar supervising method, and weather radar system WO2021140633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/000580 WO2021140633A1 (en) 2020-01-10 2020-01-10 Radar supervising device, radar supervising method, and weather radar system
JP2020528354A JP6873328B1 (en) 2020-01-10 2020-01-10 Radar control device, radar control method and weather radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000580 WO2021140633A1 (en) 2020-01-10 2020-01-10 Radar supervising device, radar supervising method, and weather radar system

Publications (1)

Publication Number Publication Date
WO2021140633A1 true WO2021140633A1 (en) 2021-07-15

Family

ID=75896348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000580 WO2021140633A1 (en) 2020-01-10 2020-01-10 Radar supervising device, radar supervising method, and weather radar system

Country Status (2)

Country Link
JP (1) JP6873328B1 (en)
WO (1) WO2021140633A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281740A (en) * 1998-03-30 1999-10-15 Mitsubishi Electric Corp Meteorological observation radar system
JP2000028705A (en) * 1998-07-09 2000-01-28 Mitsubishi Electric Corp Weather radar network system
JP2001174547A (en) * 1999-12-17 2001-06-29 Mitsubishi Electric Corp Plural radar linkage system and its operation method and plural radar managing control device
JP2009186317A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Radar control system
JP2011059024A (en) * 2009-09-11 2011-03-24 Toshiba Corp Interference wave detection device, radar device, and interference wave detection method
WO2013114081A1 (en) * 2012-02-01 2013-08-08 Secretary Of State For Business, Innovation And Skills Meteorological apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051051A (en) * 1999-08-05 2001-02-23 Mitsubishi Electric Corp Radar controller
JP3783843B2 (en) * 2001-03-14 2006-06-07 三菱電機株式会社 Radar equipment
JP4391430B2 (en) * 2005-03-02 2009-12-24 三菱電機株式会社 Network radar system
JPWO2018034064A1 (en) * 2016-08-18 2019-06-27 コニカミノルタ株式会社 Care support system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281740A (en) * 1998-03-30 1999-10-15 Mitsubishi Electric Corp Meteorological observation radar system
JP2000028705A (en) * 1998-07-09 2000-01-28 Mitsubishi Electric Corp Weather radar network system
JP2001174547A (en) * 1999-12-17 2001-06-29 Mitsubishi Electric Corp Plural radar linkage system and its operation method and plural radar managing control device
JP2009186317A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Radar control system
JP2011059024A (en) * 2009-09-11 2011-03-24 Toshiba Corp Interference wave detection device, radar device, and interference wave detection method
WO2013114081A1 (en) * 2012-02-01 2013-08-08 Secretary Of State For Business, Innovation And Skills Meteorological apparatus

Also Published As

Publication number Publication date
JPWO2021140633A1 (en) 2021-07-15
JP6873328B1 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
US6121917A (en) FM-CW radar
CN106772296B (en) Meteorological radar echo intensity calibration device and method
KR101653466B1 (en) Multi-band sweep radar system and beam irradiation method for reflector therof
Wang et al. 64 GHz 5G-Based Phased-Arrays for UAV Detection and Automotive Traffic-Monitoring Radars
KR20150126997A (en) Marine radar based on cylindrical array antennas with other applications
Röttger et al. First low-power VHF radar observations of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo Observatory
JPWO2007020704A1 (en) Target detection method and target detection apparatus
JP2009505037A (en) Aircraft radar system
JP2005233723A (en) Distributed aperture radar device
Li et al. A miniaturized and high frequency response 35GHz FMCW radar for short range target detections
KR100940918B1 (en) Method of transmitting pulse waveform in pulse-compression radar for detection of blind zone, pulse-compression radar using the same and radar network thereof
CN113406569B (en) Three-coordinate radar system applied to low-speed small target detection
WO2021140633A1 (en) Radar supervising device, radar supervising method, and weather radar system
Kinghorn Where next for airborne AESA technology?
CN113126097B (en) Meteorological detection method and digital phased array weather radar
Van Caekenberghe et al. A 94 GHz OFDM frequency scanning radar for autonomous landing guidance
Lee et al. 35 GHz compact radar using fan beam antenna array for obstacle detection
Muzhikyan et al. Short-range Ku-band hybrid-mode CW-LFM radar
JP7358939B2 (en) radar equipment
CN113687313B (en) Satellite-borne X+S dual-frequency SAR system based on dual-reflector antenna
Cao et al. EEC's next generation weather radar: Solid-state polarimetric weather radar with advanced time-frequency multiplexing waveform design
KR102089509B1 (en) Radar for removing cone of silence
Gomi et al. Pulse Compression Weather Radar with Improved Sensitivity, Range Resolution, and Range Sidelobe
Turso et al. A low-cost mechanically-steered weather radar concept
Parvathi et al. Frequency Modulated Continuous Wave (FMCW) Radar

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528354

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911497

Country of ref document: EP

Kind code of ref document: A1