WO2021140622A1 - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
WO2021140622A1
WO2021140622A1 PCT/JP2020/000494 JP2020000494W WO2021140622A1 WO 2021140622 A1 WO2021140622 A1 WO 2021140622A1 JP 2020000494 W JP2020000494 W JP 2020000494W WO 2021140622 A1 WO2021140622 A1 WO 2021140622A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow path
air conditioner
valve
refrigerant
Prior art date
Application number
PCT/JP2020/000494
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 正典
和平 新宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/000494 priority Critical patent/WO2021140622A1/en
Priority to US17/777,143 priority patent/US20220397318A1/en
Priority to EP20912685.3A priority patent/EP4089344A4/en
Priority to JP2021569672A priority patent/JP7350892B2/en
Publication of WO2021140622A1 publication Critical patent/WO2021140622A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • This disclosure relates to an air conditioner.
  • CO 2 carbon dioxide
  • R407c refrigerant
  • the refrigeration cycle apparatus of JP-A-2003-194432 (Patent Document 1) operates as follows.
  • the cooling operation mode the high-temperature and high-pressure refrigerant discharged from the compressor is cooled by the heat source side heat exchanger and further cooled by the internal heat exchanger.
  • the heating operation mode the high-temperature and high-pressure refrigerant discharged from the compressor is cooled by the user-side heat exchanger, further decompressed by the decompressor, and then flows into the internal heat exchanger.
  • the internal heat exchanger is rarely used because the difference between the temperature of the refrigerant flowing through the low-pressure side flow path and the temperature of the refrigerant flowing through the high-pressure side flow path is small. With such a configuration, the refrigerant can be circulated in both the cooling operation mode and the heating operation mode without newly providing a four-way valve.
  • Patent Document 1 has the following problems.
  • the cooling operation mode since the external fluid that heat exchangers with the CO 2 refrigerant in the outdoor heat exchanger is the outside air (about 30 to 40 ° C.) in summer, the temperature of the refrigerant discharged from the compressor becomes very high.
  • the discharge temperature of the compressor becomes higher, which may exceed the limit value at which the compressor can operate normally. In such a case, the compressor motor is damaged and the refrigerating machine oil is deteriorated. Therefore, protection control such as lowering the frequency of the compressor is executed. As a result, the operating performance of the air conditioner deteriorates.
  • the CO 2 refrigerant becomes supercritical in the outdoor heat exchanger.
  • the operating performance of the air conditioner is lower than when the CO 2 refrigerant is used in the two-phase region.
  • Using the internal heat exchanger in the cooling operation mode increases the amount of refrigerant required, which increases the cost and the risk of leakage of CO 2 refrigerant.
  • the heating operation mode since the internal heat exchanger is not used, the amount of the refrigerant in the indoor heat exchanger is large, so that the high pressure in the air conditioner rises and the performance of the air conditioner deteriorates.
  • an object of the present disclosure is to provide an air conditioner that has two operating modes and can achieve high performance even when a CO 2 refrigerant is used.
  • the air conditioner of the present disclosure includes a compressor, a flow path switch, a first heat exchange unit, a second heat exchange unit, an internal heat exchanger, a first valve, and a second valve, and includes a refrigerant circuit through which a refrigerant flows.
  • the flow path switch includes a first opening, a second opening, a third opening, and a fourth opening.
  • the internal heat exchanger includes a first internal flow path and a second internal flow path. The discharge side of the compressor and the first opening of the flow path switch are connected. One end of the first heat exchange section and the fourth opening of the flow path switch are connected. The other end of the first heat exchange portion and one end of the first valve are connected.
  • the other end of the first valve and one end of the first internal flow path of the internal heat exchanger are connected.
  • the other end of the first internal flow path of the internal heat exchanger and one end of the second heat exchange portion are connected.
  • One end of the second internal flow path of the internal heat exchanger and the second opening of the flow path switch are connected.
  • the other end of the second heat exchange portion and the first branch portion are connected.
  • the first branch portion, one end of the second valve, and the third opening of the flow path switch are connected.
  • the other end of the second valve and the second branch portion are connected.
  • the second branch is connected to the suction side of the compressor and the other end of the second internal flow path of the internal heat exchanger.
  • the second valve When the operation mode of the air conditioner is the first mode, the second valve is opened, the first opening and the fourth opening are connected, and the second opening and the third opening are connected.
  • the second valve When the operation mode of the air conditioner is the second mode, the second valve is closed, the first opening and the third opening are connected, and the second opening and the fourth opening are connected.
  • the second valve when the operation mode of the air conditioner is the first mode, the second valve is opened, the first opening and the fourth opening are connected, and the second opening and the third opening are connected. And connect.
  • the operation mode of the air conditioner is the second mode, the second valve is closed, the first opening and the third opening are connected, and the second opening and the fourth opening are connected.
  • the air conditioner of the present disclosure it is possible to provide two operation modes and realize high performance even when a CO 2 refrigerant is used.
  • FIG. 1000 It is a figure which shows the structure of the air conditioner 1000 of Embodiment 1.
  • FIG. It is a figure which shows the structure of the air conditioner 1100 of a reference example. It is a side view of the outdoor unit 200. It is a side view of the outdoor unit 200. It is a figure which shows the structure of the air conditioner 1001 of Embodiment 2. It is a figure which shows the structure of the air conditioner 1002 of Embodiment 3.
  • FIG. 1 is a diagram showing the configuration of the air conditioner 1000 of the first embodiment.
  • the air conditioner 1000 includes an outdoor unit 200 and an indoor unit 100.
  • the outdoor unit 200 includes a compressor 230, a first heat exchange unit 210, a flow path switch 240, a first valve 250, a second valve 280, an internal heat exchanger 260, and an outdoor blower 220.
  • the first heat exchanger 210 includes a first outdoor heat exchanger 211 and a second outdoor heat exchanger 212.
  • the indoor unit 100 includes a second heat exchange unit 110 and an indoor blower 120.
  • the second heat exchanger 110 includes a first chamber heat exchanger 111 and a second chamber heat exchanger 112.
  • the refrigerant circuit RC1 includes a compressor 230, a flow path switch 240, a first heat exchange unit 210, a second heat exchange unit 110, an internal heat exchanger 260, a first valve 250, and a second valve 280.
  • the refrigerant sealed in the refrigerant circuit RC1 is a CO 2 refrigerant.
  • the flow path switch 240 is composed of a four-way valve.
  • the flow path switch 240 includes a first opening P1, a second opening P2, a third opening P3, and a fourth opening P4.
  • a second flow path connecting the first opening P1 and the third opening P3 or the fourth opening P4, and a second connecting the second opening P2 and the fourth opening P4 or the third opening P3.
  • a flow path is arranged.
  • the internal heat exchanger 260 includes a first internal flow path 261a and a second internal flow path 261b.
  • the refrigerant flowing through the first internal flow path 261a and the refrigerant flowing through the second internal flow path 261b exchange heat.
  • the first internal flow path 261a and the second internal flow path 261b are parallel.
  • One end of the first internal flow path 261a and one end of the second internal flow path 261b are arranged in the vicinity, and the other end of the first internal flow path 261a and the other end of the second internal flow path 261b are arranged in the vicinity. ..
  • the discharge side of the compressor 230 and the first opening P1 of the flow path switch 240 are connected by a pipe 315M.
  • One end of the first heat exchange section 210 and the fourth opening P4 of the flow path switch 240 are connected by a pipe 318M.
  • the other end of the first heat exchange section 210 and one end of the first valve 250 are connected by a pipe 317M.
  • the other end of the first valve 250 and one end of the first internal flow path 261a of the internal heat exchanger 260 are connected by a pipe 317M.
  • the other end of the first internal flow path 261a of the internal heat exchanger 260 and one end of the second heat exchange portion 110 are connected by a pipe 316M.
  • One end of the second internal flow path 261b of the internal heat exchanger 260 and the second opening P2 of the flow path switch 240 are connected by a pipe 312M.
  • the other end of the second heat exchange portion 110 and the first branch portion BP1 are connected by a pipe 310M.
  • the first branch portion BP1 and one end of the second valve 280 are connected by the first bypass pipe PB1.
  • the first branch portion BP1 and the third opening portion P3 of the flow path switch 240 are connected by a pipe 311M.
  • the other end of the second valve 280 and the second branch portion BP2 are connected by the first bypass pipe PB1.
  • the second branch portion BP2 and the suction side of the compressor 230 are connected by a pipe 314M.
  • the second branch portion BP2 and the other end of the second internal flow path 261b of the internal heat exchanger 260 are connected by the pipe 313M.
  • the main piping PM is composed of the piping 318M, the piping 317M, the piping 313M, the piping 314M, the piping 315M, the piping 316M, the piping 310M, the piping 311M, and the piping 312M.
  • the operation mode of the air conditioner 1000 includes a first mode, a second mode, and a third mode.
  • the first mode is, for example, a cooling operation mode.
  • the second mode is, for example, a heating operation mode.
  • the third mode is, for example, a high load cooling operation mode.
  • the operation mode of the air conditioner 1000 When the operation mode of the air conditioner 1000 is the first mode and the outside air temperature exceeds the specified value, the operation mode of the air conditioner 1000 changes to the third mode. At this time, the frequency of the compressor 230 does not change. In the present embodiment, high load cooling operation is possible without changing the frequency of the compressor 230.
  • the compressor 230 compresses the sucked refrigerant and discharges it.
  • the flow path switcher 240 switches the flow path of the refrigerant according to the operation mode of the air conditioner 1000.
  • the operation modes of the air conditioner 1000 are the first mode and the third mode
  • the first opening P1 and the fourth opening P4 are connected
  • the second opening P2 and the third opening P3 are connected.
  • the compressor 230 and the first heat exchange unit 210 are connected
  • the internal heat exchanger 260 and the second heat exchange unit are connected.
  • the 110 and the second valve 280 are connected.
  • the operation mode of the air conditioner 1000 is the second mode
  • the first opening P1 and the third opening P3 are connected
  • the second opening P2 and the fourth opening P4 are connected. Therefore, when the operation mode of the air conditioner 1000 is the second mode, the compressor 230 is connected to the second heat exchange unit 110 and the second valve 280, and the internal heat exchanger 260 and the first heat exchange unit are connected. Connects to 210.
  • the first heat exchange unit 210 operates as a condenser in the first mode and the third mode.
  • the first heat exchange unit 210 operates as an evaporator in the second mode.
  • the second heat exchange unit 110 operates as an evaporator in the first mode and the third mode.
  • the second heat exchange unit 110 operates as a condenser in the second mode.
  • the internal heat exchanger 260 exchanges heat between the refrigerant flowing from the flow path switch 240 to the compressor 230 and the refrigerant flowing from the first valve 250 to the second heat exchange unit 110 in the first mode and the third mode.
  • the internal heat exchanger 260 includes the refrigerant flowing from the flow path switch 240 to the compressor 230, the refrigerant flowing from the second heat exchanger 110 to the first valve 250, and the refrigerant flowing from the first valve 250. To exchange heat.
  • the first valve 250 is an electronic expansion valve.
  • the second valve 280 is a solenoid valve.
  • the second valve 280 opens in the first mode.
  • the second valve 280 closes in the second and third modes.
  • the outdoor blower 220 sends outdoor air to the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212.
  • the indoor blower 120 sends indoor air to the first indoor heat exchanger 111 and the second indoor heat exchanger 112.
  • the flow of the refrigerant in the first mode in which the operation mode of the air conditioner is the first mode will be described. As shown by the broken line in FIG. 1, the compressor 230, the flow path switch 240, the first heat exchange section 210, the first valve 250, the internal heat exchanger 260, the second heat exchange section 110, and the first branch section BP1. Refrigerant flows in order.
  • a part of the refrigerant flows in the order of the second valve 280, the second branch portion BP2, and the compressor 230.
  • the rest of the refrigerant flows in the order of the flow path switch 240, the internal heat exchanger 260, the second branch BP2, and the compressor 230.
  • FIG. 2 is a diagram showing the configuration of the air conditioner 1100 of the reference example.
  • the difference between the air conditioner 1100 of the reference example and the air conditioner 1000 of the first embodiment is that the air conditioner 1100 of the reference example has two compressors 230A and 230B and two flow path switches 240A and 240B. The point is that two first valves 250A and 250B are provided.
  • the air conditioner 1100 of the reference example is used in, for example, a train.
  • the air conditioner 1100 of the reference example uses R407c, which is a general refrigerant.
  • the air conditioner 1100 of the reference example uses two compressors 230A and 230B in order to realize the required performance.
  • the air conditioner uses an internal heat exchanger. You need to be prepared.
  • an air conditioner using a CO 2 refrigerant When an air conditioner using a CO 2 refrigerant is provided with two compressors as in the reference example, it is provided with two internal heat exchangers corresponding to the two compressors, or one internal heat. It is necessary to have a exchanger and a complicated control mechanism. As a result, the cost of air conditioners using CO 2 refrigerant increases.
  • the air conditioner using the CO 2 refrigerant of the present embodiment includes one compressor and one internal heat exchanger as shown in FIG.
  • FIG. 3 and 4 are side views of the outdoor unit 200.
  • the upper surface US of the outdoor unit 200 has an arc shape along the X-axis direction.
  • the outdoor unit 200 has the highest central portion in the X-axis direction.
  • the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 are performed. It is necessary to arrange the outdoor blower 220 between the vessels 212.
  • the outdoor blower 220 is arranged in the center of the outdoor unit 200 in the X-axis direction.
  • the first outdoor heat exchanger 211 is arranged on one side of the outdoor blower 220 in the X-axis direction
  • the second outdoor heat exchanger 212 is arranged on the other side of the outdoor blower 220.
  • the compressor 230 is arranged between one end E1 of the outdoor unit 200 and the first outdoor heat exchanger 211 in the X-axis direction.
  • the internal heat exchanger 260 is arranged between the other end E2 of the outdoor unit 200 and the second outdoor heat exchanger 212 in the X-axis direction. As a result, the compressor 230 and the internal heat exchanger 260 are arranged at positions separated from each other in the X-axis direction.
  • the portion between the outlet of the indoor unit 100 and the first branch portion BP1 is arranged along the Y-axis direction.
  • the first bypass pipe PB1 is arranged along the X-axis direction.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
  • the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
  • the refrigerant is depressurized at the first valve 250 and becomes a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant passes through the internal heat exchanger 260 and flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
  • the gas-state refrigerant reaches the first branch BP1.
  • the flow paths from the first branch BP1 to the second branch BP2 on the suction side of the compressor 230 include the first flow path 11 and the second flow. There is a road 12.
  • the first flow path 11 is a flow path that passes through the first bypass pipe PB1 and the second valve 280.
  • the second flow path 12 is a flow path that passes through the pipe 311M, the flow path switch 240, the pipe 312M, the internal heat exchanger 260, and the pipe 313M.
  • the flow path resistance LR2 of the second flow path 12 becomes the first flow path. It becomes larger than the flow path resistance LR1 of 11.
  • the flow rate of the refrigerant in the gas state reaching the first branch portion BP1 is F1
  • the flow rate of the refrigerant flowing in the first flow path 11 is F1 ⁇ a1 and flows in the second flow path 12.
  • the flow rate of the refrigerant is F1 ⁇ a2. a1> a2.
  • the refrigerant flowing through the first flow path 11 and the refrigerant flowing through the second flow path 12 merge and are sucked into the compressor 230. Since a large amount of refrigerant flows through the first flow path 11 having a small flow path resistance, the amount of decrease in the pressure of the second branch portion BP2 from the pressure of the first branch portion BP1 can be reduced. As a result, the performance of the air conditioner 1000 can be improved.
  • the internal heat exchanger 260 contains a gas-liquid two-phase refrigerant (refrigerant A) from the first valve 250 and a refrigerant (refrigerant) flowing from the second heat exchange unit 110 to the second flow path 12. B) and are inflowed.
  • the flow rate of the refrigerant B is small, and both the refrigerant A and the refrigerant B are decompressed refrigerants. Therefore, in the internal heat exchanger 260, the refrigerant A and the refrigerant B hardly exchange heat. Therefore, in the first mode, the internal heat exchanger 260 is not used.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 reaches the first branch portion BP1 via the flow path switch 240.
  • the second valve 280 since the second valve 280 is closed, the refrigerant does not flow into the first flow path 11, but flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the liquid refrigerant radiated in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 is further cooled in the internal heat exchanger 260.
  • the refrigerant is depressurized in the first valve 250, becomes a gas-liquid two-phase state, and flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212.
  • the refrigerant absorbed in the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 passes through the flow path switch 240 and flows into the internal heat exchanger 260.
  • the refrigerant is heated in the internal heat exchanger 260 to become a gas refrigerant. After that, the refrigerant is sucked into the compressor 230 via the second branch portion BP2.
  • the liquid refrigerant (refrigerant C) from the first indoor heat exchanger 111 and the second indoor heat exchanger 112 and the first outdoor heat exchanger 211 and the second outdoor heat exchanger are exchanged.
  • the refrigerant (refrigerant D) from the vessel 212 exchanges heat.
  • the refrigerant C is cooled by dissipating heat to the refrigerant D.
  • the refrigerant D is heated by absorbing heat from the refrigerant C. Therefore, in the second mode, the internal heat exchanger 260 is effectively used.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
  • the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
  • the refrigerant is depressurized at the first valve 250 and becomes a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant passes through the internal heat exchanger 260 and flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
  • the gas-state refrigerant reaches the first branch BP1.
  • the second valve 280 since the second valve 280 is closed, the only flow path from the first branch BP1 to the second branch BP2 on the suction side of the compressor 230 is the second flow path 12.
  • the second flow path 12 is a flow path that passes through the pipe 311M, the flow path switch 240, the pipe 312M, the internal heat exchanger 260, and the pipe 313M.
  • the internal heat exchanger 260 contains a gas-liquid two-phase refrigerant (refrigerant A) from the first valve 250 and a refrigerant (refrigerant) flowing from the second heat exchange unit 110 to the second flow path 12. B) and are inflowed. Both the refrigerant A and the refrigerant B are decompressed refrigerants. Therefore, in the internal heat exchanger 260, the refrigerant A and the refrigerant B hardly exchange heat. Therefore, in the third mode, the internal heat exchanger 260 is not used.
  • the gaseous refrigerant absorbed from the outside air in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 flows through the second flow path 12 having a large flow path resistance, so that the compressor 230 A large pressure drop occurs on the suction side.
  • the circulating flow rate of the refrigerant is reduced, so that the cooling capacity of the air conditioner 1000 is reduced. Therefore, when the outside air temperature exceeds the specified value, the high pressure pressure discharged by the compressor 230 can be reduced by setting the air conditioner 1000 to the third mode, so that the discharge pressure of the compressor 230 is high. Therefore, it is possible to prevent the protection operation from being executed.
  • an internal heat exchanger is used at the time of heating operation in an air conditioner including one compressor and using a CO 2 refrigerant.
  • the performance of the air conditioner can be improved.
  • a bypass path provided with a solenoid valve is provided in a portion where the low-pressure refrigerant flows during the cooling operation. As a result, the pressure loss in the low pressure portion can be reduced, so that the efficiency of the air conditioner can be increased.
  • FIG. 5 is a diagram showing the configuration of the air conditioner 1001 of the second embodiment.
  • the difference between the air conditioner 1001 of FIG. 5 and the air conditioner 1000 of the embodiment of FIG. 1 is as follows.
  • the refrigerant circuit RC2 of the air conditioner 1001 of FIG. 5 includes a second bypass pipe 271 and a third valve 270.
  • the third valve is between the third branch BP3 between the first valve 250 and the internal heat exchanger 260 and the fourth branch BP4 between the internal heat exchanger 260 and the second heat exchanger 110. It is connected by the second bypass pipe 271 via 270.
  • the third valve 270 is composed of, for example, a check valve.
  • the check valve allows the flow of the refrigerant from the third branch BP3 to the fourth branch BP4 to pass, and shuts off the flow of the refrigerant from the fourth branch BP4 to the third branch BP3.
  • the refrigerant flows through the second bypass pipe 271 by the third valve 270, and when the operation mode of the air conditioner 1001 is the second mode, Refrigerant does not flow through the second bypass pipe 271.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
  • the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
  • the refrigerant is depressurized at the first valve 250, becomes a gas-liquid two-phase state, and reaches the third branch portion BP3.
  • Most of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 passes through the second bypass pipe 271 and the third valve 270 and reaches the fourth branch BP4.
  • the rest of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 reaches the fourth branch BP4 via the internal heat exchanger 260.
  • the refrigerants in the two flow paths merged in the fourth branch BP4 flow into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
  • the gas-state refrigerant reaches the first branch BP1.
  • the refrigerant in the gas state passes from the first branch portion BP1 through the first flow path 11 and the second flow path 12, and is the first, as in the first embodiment. 2 Reach the branch BP2.
  • the flow path resistance of the first flow path 11 is smaller than the flow path resistance of the second flow path 12
  • most of the refrigerant in the gas state flows through the first flow path 11.
  • the second branch portion BP2 the refrigerant flowing through the first flow path 11 and the refrigerant flowing through the second flow path 12 merge and are sucked into the compressor 230.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 reaches the first branch portion BP1 via the flow path switch 240.
  • the refrigerant does not flow into the first flow path 11, but flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the liquid refrigerant radiated in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 does not flow through the second bypass pipe 271 and the third valve 270, and the internal heat exchanger 260 is the same as in the first embodiment. Inflow to.
  • the refrigerant is further cooled in the internal heat exchanger 260.
  • the refrigerant is depressurized in the first valve 250, becomes a gas-liquid two-phase state, and flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212.
  • the refrigerant absorbed in the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 passes through the flow path switch 240 and flows into the internal heat exchanger 260.
  • the refrigerant is heated in the internal heat exchanger 260 to become a gas refrigerant. After that, the refrigerant is sucked into the compressor 230 via the second branch portion BP2.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
  • the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
  • the refrigerant is depressurized at the first valve 250, becomes a gas-liquid two-phase state, and reaches the third branch portion BP3.
  • Most of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 passes through the second bypass pipe 271 and the third valve 270 and reaches the fourth branch BP4.
  • the rest of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 reaches the fourth branch BP4 via the internal heat exchanger 260.
  • the refrigerants in the two flow paths merged in the fourth branch BP4 flow into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
  • the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
  • the gas-state refrigerant reaches the first branch BP1.
  • the second valve 280 since the second valve 280 is closed, the refrigerant flows from the first branch portion BP1 to the second branch portion BP2 via the second flow path 12.
  • the refrigerant flowing through the second branch BP2 is sucked into the compressor 230.
  • the opening degree of the first valve 250 is controlled in the opening direction.
  • the temperature of the refrigerant discharged from the second heat exchange unit 110 cannot be lowered.
  • most of the refrigerant discharged from the first valve 250 flows into the second heat exchanger 110 without passing through the internal heat exchanger 260, so that the opening degree of the first valve 250 is increased. Even when the full throttle is reached, it is possible to prevent the discharge temperature of the compressor 230 from exceeding the limit value and the protection operation being executed.
  • FIG. 6 is a diagram showing the configuration of the air conditioner 1002 of the third embodiment.
  • the difference between the air conditioner 1002 of FIG. 6 and the air conditioner 1000 of the embodiment of FIG. 1 is as follows.
  • the refrigerant circuit RC3 of the air conditioner 1002 of the third embodiment has a fourth valve 251 arranged in a pipe 316M which is a part of the main pipe PM between the internal heat exchanger 260 and the second heat exchanger 110. Be prepared.
  • the fourth valve 251 is composed of an electronic expansion valve. When the operation modes of the air conditioner 1002 are the first mode and the second mode, the fourth valve 251 is fully opened. As a result, the air conditioner 1002 of the third embodiment operates in the same manner as that of the first embodiment.
  • the operation mode of the air conditioner 1002 is the third mode
  • the first valve 250 is fully opened, and the fourth valve 251 depressurizes the refrigerant flowing through the pipe 316M.
  • the operation mode of the air conditioner 1002 is the first mode (cooling operation mode) and the outside air temperature exceeds the specified value
  • the operation mode of the air conditioner 1002 is switched to the third mode (high load cooling operation mode).
  • the liquid refrigerant can be accumulated in the internal heat exchanger 260 by setting the air conditioner 1002 to the high load cooling operation mode.
  • the high-pressure pressure discharged by the compressor 230 can be reduced, so that it is possible to avoid executing the protection operation due to the high discharge pressure of the compressor 230.
  • first heat exchange unit 210 and the second heat exchange unit 110 each include two heat exchangers, but the present invention is not limited thereto.
  • the first heat exchange unit 210 and the second heat exchange unit 110 may each include one heat exchanger.
  • the first bypass pipe PB1 may be arranged between the compressor 230 and the first outdoor heat exchanger 211.

Abstract

A flow path switch (240) is provided with a first opening (P1) to a fourth opening (P4). An internal heat exchanger (260) is provided with a first internal flow path (261a) and a second internal flow path (261b). The discharge side of a compressor (230) is connected to the first opening (P1). One end of a first heat exchange unit (210) is connected to the fourth opening (P4). One end of the second internal flow path (261b) is connected to a second opening (P2). A first branch (BP1) is connected to one end of a second valve (280) and a third opening (P3). The other end of the second valve (280) is connected to a second branch (BP2). The second branch (BP2) is connected to the suction side of the compressor (230) and the other end of the second internal flow path (261b). When the operation mode of an air conditioning apparatus (1000) is a first mode, the second valve (280) opens and the first opening (P1) is connected to the fourth opening (P4), and the second opening (P2) is connected to the third opening (P3). When the operation mode of the air conditioning apparatus (1000) is the second mode, the second valve (280) is closed, the first opening (P1) is connected to the third opening (P3), and the second opening (P2) is connected to the fourth opening (P4).

Description

空気調和装置Air conditioner
 本開示は、空気調和装置に関する。 This disclosure relates to an air conditioner.
 欧州の冷媒規制等によって、空気調和装置の冷凍サイクルに使用される冷媒も自然冷媒である二酸化炭素(CO2)が用いることが求められている。CO2冷媒を使用する場合、一般的な冷媒であるR407c等の冷媒に比べて、理論効率が低く性能が低下する。性能低下を抑制するために、内部熱交換器を使用して、蒸発器エンタルピー差を拡大し性能向上させる技術が知られている。 European refrigerant regulations require that carbon dioxide (CO 2 ), which is a natural refrigerant, be used as the refrigerant used in the refrigeration cycle of air conditioners. When a CO 2 refrigerant is used, the theoretical efficiency is low and the performance is lowered as compared with a refrigerant such as R407c, which is a general refrigerant. In order to suppress the deterioration of performance, a technique is known in which an internal heat exchanger is used to widen the enthalpy difference of the evaporator and improve the performance.
 例えば、特開2003-194432号公報(特許文献1)の冷凍サイクル装置は、次のように動作する。冷房運転モードでは、圧縮機から吐出された高温高圧の冷媒が、熱源側熱交換器で冷却され、さらに内部熱交換器で冷却される。一方、暖房運転モードでは、圧縮機から吐出された高温高圧の冷媒が、利用側熱交換器で冷却され、さらに減圧器で減圧された後に、内部熱交換器に流入される。暖房運転モードでは、低圧側の流路を流れる冷媒の温度と高圧側の流路を流れる冷媒の温度との差がわずかなため、内部熱交換器は、ほとんど利用されない。このような構成によって、新たに四方弁を設けなくても、冷房運転モードと暖房運転モードの両方において、冷媒を循環させることができる。 For example, the refrigeration cycle apparatus of JP-A-2003-194432 (Patent Document 1) operates as follows. In the cooling operation mode, the high-temperature and high-pressure refrigerant discharged from the compressor is cooled by the heat source side heat exchanger and further cooled by the internal heat exchanger. On the other hand, in the heating operation mode, the high-temperature and high-pressure refrigerant discharged from the compressor is cooled by the user-side heat exchanger, further decompressed by the decompressor, and then flows into the internal heat exchanger. In the heating operation mode, the internal heat exchanger is rarely used because the difference between the temperature of the refrigerant flowing through the low-pressure side flow path and the temperature of the refrigerant flowing through the high-pressure side flow path is small. With such a configuration, the refrigerant can be circulated in both the cooling operation mode and the heating operation mode without newly providing a four-way valve.
特開2003-194432号公報Japanese Unexamined Patent Publication No. 2003-194432
 しかしながら、特許文献1に記載の装置には、以下のような課題がある。
 冷房運転モードでは、室外熱交換器においてCO2冷媒と熱交換器する外部流体は夏季の外気(約30~40℃)であるため、圧縮機から吐出される冷媒の温度が非常に高くなる。冷房運転モードで内部熱交換器を利用すると、圧縮機の吐出温度がさらに高くなり、圧縮機が正常に運転できる制限値を超えることがある。このような場合には、圧縮機モータの損傷および冷凍機油の劣化が発生するため、圧縮機の周波数を下げるなどの保護制御が実行される。その結果、空気調和装置の運転性能が低下する。
However, the apparatus described in Patent Document 1 has the following problems.
In the cooling operation mode, since the external fluid that heat exchangers with the CO 2 refrigerant in the outdoor heat exchanger is the outside air (about 30 to 40 ° C.) in summer, the temperature of the refrigerant discharged from the compressor becomes very high. When the internal heat exchanger is used in the cooling operation mode, the discharge temperature of the compressor becomes higher, which may exceed the limit value at which the compressor can operate normally. In such a case, the compressor motor is damaged and the refrigerating machine oil is deteriorated. Therefore, protection control such as lowering the frequency of the compressor is executed. As a result, the operating performance of the air conditioner deteriorates.
 さらに、冷房運転モードでは、室外熱交換器内でCO2冷媒が超臨界となる。その結果、CO2冷媒が二相領域で使用される場合に比べて、空気調和装置の運転性能が低下する。これをカバーするために、室外熱交換器の伝熱面積を室内熱交換器の伝熱面積よりも大きくする必要があるが、これによって次のような問題が生じる。冷房運転モードで内部熱交換器を利用すると、必要な冷媒量が増加するため、コストも増加するともに、CO2冷媒が漏洩したときの危険性も高まる。暖房運転モードでは、内部熱交換器を使用しないため、室内熱交換器内の冷媒の量が多くなるため、空気調和装置内において高圧が上がり、空気調和装置の性能が低下する。 Further, in the cooling operation mode, the CO 2 refrigerant becomes supercritical in the outdoor heat exchanger. As a result, the operating performance of the air conditioner is lower than when the CO 2 refrigerant is used in the two-phase region. In order to cover this, it is necessary to make the heat transfer area of the outdoor heat exchanger larger than the heat transfer area of the indoor heat exchanger, which causes the following problems. Using the internal heat exchanger in the cooling operation mode increases the amount of refrigerant required, which increases the cost and the risk of leakage of CO 2 refrigerant. In the heating operation mode, since the internal heat exchanger is not used, the amount of the refrigerant in the indoor heat exchanger is large, so that the high pressure in the air conditioner rises and the performance of the air conditioner deteriorates.
 それゆえに、本開示の目的は、2つの運転モードを備えるとともに、CO2冷媒を用いた場合でも、高い性能を実現できる空気調和装置を提供することである。 Therefore, an object of the present disclosure is to provide an air conditioner that has two operating modes and can achieve high performance even when a CO 2 refrigerant is used.
 本開示の空気調和装置は、圧縮機、流路切替器、第1熱交換部、第2熱交換部、内部熱交換器、第1弁、および第2弁を含み、冷媒が流れる冷媒回路を備える。流路切替器は、第1開口部、第2開口部、第3開口部、および第4開口部を備える。内部熱交換器は、第1内部流路と第2内部流路とを備える。圧縮機の吐出側と、流路切替器の第1開口部とが接続される。第1熱交換部の一端と、流路切替器の第4開口部とが接続される。第1熱交換部の他端と、第1弁の一端とが接続される。第1弁の他端と、内部熱交換器の第1内部流路の一端とが接続される。内部熱交換器の第1内部流路の他端と、第2熱交換部の一端とが接続される。内部熱交換器の第2内部流路の一端と、流路切替器の第2開口部とが接続される。第2熱交換部の他端と、第1分岐部とが接続される。第1分岐部と、第2弁の一端および流路切替器の第3開口部とが接続される。第2弁の他端と、第2分岐部とが接続される。第2分岐部と、圧縮機の吸入側および内部熱交換器の第2内部流路の他端とが接続される。空気調和装置の運転モードが第1モードにおいて、第2弁は開き、第1開口部と第4開口部とが接続し、かつ第2開口部と第3開口部とが接続する。空気調和装置の運転モードが第2モードにおいて、第2弁は閉じ、第1開口部と第3開口部とが接続し、かつ第2開口部と第4開口部とが接続する。 The air conditioner of the present disclosure includes a compressor, a flow path switch, a first heat exchange unit, a second heat exchange unit, an internal heat exchanger, a first valve, and a second valve, and includes a refrigerant circuit through which a refrigerant flows. Be prepared. The flow path switch includes a first opening, a second opening, a third opening, and a fourth opening. The internal heat exchanger includes a first internal flow path and a second internal flow path. The discharge side of the compressor and the first opening of the flow path switch are connected. One end of the first heat exchange section and the fourth opening of the flow path switch are connected. The other end of the first heat exchange portion and one end of the first valve are connected. The other end of the first valve and one end of the first internal flow path of the internal heat exchanger are connected. The other end of the first internal flow path of the internal heat exchanger and one end of the second heat exchange portion are connected. One end of the second internal flow path of the internal heat exchanger and the second opening of the flow path switch are connected. The other end of the second heat exchange portion and the first branch portion are connected. The first branch portion, one end of the second valve, and the third opening of the flow path switch are connected. The other end of the second valve and the second branch portion are connected. The second branch is connected to the suction side of the compressor and the other end of the second internal flow path of the internal heat exchanger. When the operation mode of the air conditioner is the first mode, the second valve is opened, the first opening and the fourth opening are connected, and the second opening and the third opening are connected. When the operation mode of the air conditioner is the second mode, the second valve is closed, the first opening and the third opening are connected, and the second opening and the fourth opening are connected.
 本開示の空気調和装置では、空気調和装置の運転モードが第1モードにおいて、第2弁は開き、第1開口部と第4開口部とが接続し、かつ第2開口部と第3開口部とが接続する。空気調和装置の運転モードが第2モードにおいて、第2弁は閉じ、第1開口部と第3開口部とが接続し、かつ第2開口部と第4開口部とが接続する。 In the air conditioner of the present disclosure, when the operation mode of the air conditioner is the first mode, the second valve is opened, the first opening and the fourth opening are connected, and the second opening and the third opening are connected. And connect. When the operation mode of the air conditioner is the second mode, the second valve is closed, the first opening and the third opening are connected, and the second opening and the fourth opening are connected.
 したがって、本開示の空気調和装置によれば、2つの運転モードを備えるとともに、CO2冷媒を用いた場合でも、高い性能を実現できる。 Therefore, according to the air conditioner of the present disclosure, it is possible to provide two operation modes and realize high performance even when a CO 2 refrigerant is used.
実施の形態1の空気調和装置1000の構成を表わす図である。It is a figure which shows the structure of the air conditioner 1000 of Embodiment 1. FIG. 参考例の空気調和装置1100の構成を表わす図である。It is a figure which shows the structure of the air conditioner 1100 of a reference example. 室外機200の側面図である。It is a side view of the outdoor unit 200. 室外機200の側面図である。It is a side view of the outdoor unit 200. 実施の形態2の空気調和装置1001の構成を表わす図である。It is a figure which shows the structure of the air conditioner 1001 of Embodiment 2. 実施の形態3の空気調和装置1002の構成を表わす図である。It is a figure which shows the structure of the air conditioner 1002 of Embodiment 3.
 以下、実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1の空気調和装置1000の構成を表わす図である。
Hereinafter, embodiments will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing the configuration of the air conditioner 1000 of the first embodiment.
 空気調和装置1000は、室外機200と、室内機100とを備える。
 室外機200は、圧縮機230、第1熱交換部210、流路切替器240、第1弁250、第2弁280、内部熱交換器260、および室外送風機220を備える。第1熱交換部210は、第1室外熱交換器211、および第2室外熱交換器212を備える。
The air conditioner 1000 includes an outdoor unit 200 and an indoor unit 100.
The outdoor unit 200 includes a compressor 230, a first heat exchange unit 210, a flow path switch 240, a first valve 250, a second valve 280, an internal heat exchanger 260, and an outdoor blower 220. The first heat exchanger 210 includes a first outdoor heat exchanger 211 and a second outdoor heat exchanger 212.
 室内機100は、第2熱交換部110、および室内送風機120を備える。第2熱交換部110は、第1室内熱交換器111、および第2室内熱交換器112を備える。 The indoor unit 100 includes a second heat exchange unit 110 and an indoor blower 120. The second heat exchanger 110 includes a first chamber heat exchanger 111 and a second chamber heat exchanger 112.
 冷媒回路RC1は、圧縮機230、流路切替器240、第1熱交換部210、第2熱交換部110、内部熱交換器260、第1弁250、および第2弁280を備える。冷媒回路RC1に封入される冷媒は、CO2冷媒である。 The refrigerant circuit RC1 includes a compressor 230, a flow path switch 240, a first heat exchange unit 210, a second heat exchange unit 110, an internal heat exchanger 260, a first valve 250, and a second valve 280. The refrigerant sealed in the refrigerant circuit RC1 is a CO 2 refrigerant.
 流路切替器240は、四方弁によって構成されている。流路切替器240は、第1開口部P1、第2開口部P2、第3開口部P3、および第4開口部P4を備える。第1開口部P1と第3開口部P3または第4開口部P4とを接続する第1流路と、第2開口部P2と第4開口部P4または第3開口部P3とを接続する第2流路とが配置される。 The flow path switch 240 is composed of a four-way valve. The flow path switch 240 includes a first opening P1, a second opening P2, a third opening P3, and a fourth opening P4. A second flow path connecting the first opening P1 and the third opening P3 or the fourth opening P4, and a second connecting the second opening P2 and the fourth opening P4 or the third opening P3. A flow path is arranged.
 内部熱交換器260は、第1内部流路261aと第2内部流路261bとを備える。第1内部流路261aを流れる冷媒と、第2内部流路261bを流れる冷媒とが熱交換する。第1内部流路261aと第2内部流路261bとは平行である。第1内部流路261aの一端と第2内部流路261bの一端とが近傍に配置され、第1内部流路261aの他端と第2内部流路261bの他端とが近傍に配置される。 The internal heat exchanger 260 includes a first internal flow path 261a and a second internal flow path 261b. The refrigerant flowing through the first internal flow path 261a and the refrigerant flowing through the second internal flow path 261b exchange heat. The first internal flow path 261a and the second internal flow path 261b are parallel. One end of the first internal flow path 261a and one end of the second internal flow path 261b are arranged in the vicinity, and the other end of the first internal flow path 261a and the other end of the second internal flow path 261b are arranged in the vicinity. ..
 圧縮機230の吐出側と流路切替器240の第1開口部P1とが配管315Mによって接続される。第1熱交換部210の一端と、流路切替器240の第4開口部P4とが配管318Mによって接続される。第1熱交換部210の他端と、第1弁250の一端とが配管317Mによって接続される。第1弁250の他端と、内部熱交換器260の第1内部流路261aの一端とが配管317Mによって接続される。内部熱交換器260の第1内部流路261aの他端と、第2熱交換部110の一端とが配管316Mによって接続される。内部熱交換器260の第2内部流路261bの一端と、流路切替器240の第2開口部P2とが配管312Mによって接続される。第2熱交換部110の他端と、第1分岐部BP1とが配管310Mによって接続される。第1分岐部BP1と、第2弁280の一端とが第1バイパス配管PB1によって接続される。第1分岐部BP1と、流路切替器240の第3開口部P3とが配管311Mによって接続される。第2弁280の他端と、第2分岐部BP2とが第1バイパス配管PB1によって接続される。第2分岐部BP2と、圧縮機230の吸入側とが配管314Mによって接続される。第2分岐部BP2と、内部熱交換器260の第2内部流路261bの他端とが配管313Mによって接続される。 The discharge side of the compressor 230 and the first opening P1 of the flow path switch 240 are connected by a pipe 315M. One end of the first heat exchange section 210 and the fourth opening P4 of the flow path switch 240 are connected by a pipe 318M. The other end of the first heat exchange section 210 and one end of the first valve 250 are connected by a pipe 317M. The other end of the first valve 250 and one end of the first internal flow path 261a of the internal heat exchanger 260 are connected by a pipe 317M. The other end of the first internal flow path 261a of the internal heat exchanger 260 and one end of the second heat exchange portion 110 are connected by a pipe 316M. One end of the second internal flow path 261b of the internal heat exchanger 260 and the second opening P2 of the flow path switch 240 are connected by a pipe 312M. The other end of the second heat exchange portion 110 and the first branch portion BP1 are connected by a pipe 310M. The first branch portion BP1 and one end of the second valve 280 are connected by the first bypass pipe PB1. The first branch portion BP1 and the third opening portion P3 of the flow path switch 240 are connected by a pipe 311M. The other end of the second valve 280 and the second branch portion BP2 are connected by the first bypass pipe PB1. The second branch portion BP2 and the suction side of the compressor 230 are connected by a pipe 314M. The second branch portion BP2 and the other end of the second internal flow path 261b of the internal heat exchanger 260 are connected by the pipe 313M.
 配管318M、配管317M、配管313M、配管314M、配管315M、配管316M、配管310M、配管311M、配管312Mは、メイン配管PMを構成する。 The main piping PM is composed of the piping 318M, the piping 317M, the piping 313M, the piping 314M, the piping 315M, the piping 316M, the piping 310M, the piping 311M, and the piping 312M.
 空気調和装置1000の運転モードは、第1モードと、第2モードと、第3モードとを含む。第1モードは、たとえば、冷房運転モードである。第2モードは、たとえば、暖房運転モードである。第3モードは、たとえば、高負荷冷房運転モードである。 The operation mode of the air conditioner 1000 includes a first mode, a second mode, and a third mode. The first mode is, for example, a cooling operation mode. The second mode is, for example, a heating operation mode. The third mode is, for example, a high load cooling operation mode.
 空気調和装置1000の運転モードが第1モードのときに、外気温度が規定値を超えたときに、空気調和装置1000の運転モードは、第3モードに変化する。この際に、圧縮機230の周波数は変化しない。本実施の形態では、圧縮機230の周波数を変化させずに、高負荷冷房運転が可能である。 When the operation mode of the air conditioner 1000 is the first mode and the outside air temperature exceeds the specified value, the operation mode of the air conditioner 1000 changes to the third mode. At this time, the frequency of the compressor 230 does not change. In the present embodiment, high load cooling operation is possible without changing the frequency of the compressor 230.
 圧縮機230は、吸入した冷媒を圧縮して、吐出する。
 流路切替器240は、空気調和装置1000の運転モードに応じて、冷媒の流路を切り替える。
The compressor 230 compresses the sucked refrigerant and discharges it.
The flow path switcher 240 switches the flow path of the refrigerant according to the operation mode of the air conditioner 1000.
 空気調和装置1000の運転モードが第1モードおよび第3モードのときは、第1開口部P1と第4開口部P4とが接続し、かつ第2開口部P2と第3開口部P3とが接続する。したがって、空気調和装置1000の運転モードが第1モードおよび第3モードのときは、圧縮機230と、第1熱交換部210とが接続し、かつ内部熱交換器260と、第2熱交換部110および第2弁280とが接続する。 When the operation modes of the air conditioner 1000 are the first mode and the third mode, the first opening P1 and the fourth opening P4 are connected, and the second opening P2 and the third opening P3 are connected. To do. Therefore, when the operation modes of the air conditioner 1000 are the first mode and the third mode, the compressor 230 and the first heat exchange unit 210 are connected, and the internal heat exchanger 260 and the second heat exchange unit are connected. The 110 and the second valve 280 are connected.
 空気調和装置1000の運転モードが第2モードのときは、第1開口部P1と第3開口部P3とが接続し、かつ第2開口部P2と第4開口部P4とが接続する。したがって、空気調和装置1000の運転モードが第2モードのときは、圧縮機230と、第2熱交換部110および第2弁280とが接続し、かつ内部熱交換器260と第1熱交換部210とが接続する。 When the operation mode of the air conditioner 1000 is the second mode, the first opening P1 and the third opening P3 are connected, and the second opening P2 and the fourth opening P4 are connected. Therefore, when the operation mode of the air conditioner 1000 is the second mode, the compressor 230 is connected to the second heat exchange unit 110 and the second valve 280, and the internal heat exchanger 260 and the first heat exchange unit are connected. Connects to 210.
 第1熱交換部210は、第1モードおよび第3モードにおいて凝縮器として動作する。第1熱交換部210は、第2モードにおいて蒸発器として動作する。 The first heat exchange unit 210 operates as a condenser in the first mode and the third mode. The first heat exchange unit 210 operates as an evaporator in the second mode.
 第2熱交換部110は、第1モードおよび第3モードにおいて蒸発器として動作する。第2熱交換部110は、第2モードにおいて凝縮器として動作する。 The second heat exchange unit 110 operates as an evaporator in the first mode and the third mode. The second heat exchange unit 110 operates as a condenser in the second mode.
 内部熱交換器260は、第1モードおよび第3モードにおいて、流路切替器240から圧縮機230へ流れる冷媒と、第1弁250から第2熱交換部110へ流れる冷媒とを熱交換させる。内部熱交換器260は、第2モードにおいて、流路切替器240から圧縮機230へ流れる冷媒と、第2熱交換部110から第1弁250へ流れる冷媒と、第1弁250からの冷媒とを熱交換させる。 The internal heat exchanger 260 exchanges heat between the refrigerant flowing from the flow path switch 240 to the compressor 230 and the refrigerant flowing from the first valve 250 to the second heat exchange unit 110 in the first mode and the third mode. In the second mode, the internal heat exchanger 260 includes the refrigerant flowing from the flow path switch 240 to the compressor 230, the refrigerant flowing from the second heat exchanger 110 to the first valve 250, and the refrigerant flowing from the first valve 250. To exchange heat.
 第1弁250は、電子膨張弁である。
 第2弁280は、電磁弁である。第2弁280は、第1モードにおいて、開く。第2弁280は、第2モードおよび第3モードにおいて、閉じる。
The first valve 250 is an electronic expansion valve.
The second valve 280 is a solenoid valve. The second valve 280 opens in the first mode. The second valve 280 closes in the second and third modes.
 室外送風機220は、第1室外熱交換器211および第2室外熱交換器212へ室外の空気を送る。室内送風機120は、第1室内熱交換器111および第2室内熱交換器112へ室内の空気を送る。 The outdoor blower 220 sends outdoor air to the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212. The indoor blower 120 sends indoor air to the first indoor heat exchanger 111 and the second indoor heat exchanger 112.
 空気調和装置の運転モードが第1モードにおける冷媒の流れについて説明する。図1の破線に示すように、圧縮機230、流路切替器240、第1熱交換部210、第1弁250、内部熱交換器260、第2熱交換部110、第1分岐部BP1の順に冷媒が流れる。 The flow of the refrigerant in the first mode in which the operation mode of the air conditioner is the first mode will be described. As shown by the broken line in FIG. 1, the compressor 230, the flow path switch 240, the first heat exchange section 210, the first valve 250, the internal heat exchanger 260, the second heat exchange section 110, and the first branch section BP1. Refrigerant flows in order.
 第1分岐部BP1の後、冷媒の一部は、第2弁280、第2分岐部BP2、圧縮機230の順に流れる。冷媒の残りは、流路切替器240、内部熱交換器260、第2分岐部BP2、圧縮機230の順に流れる。 After the first branch portion BP1, a part of the refrigerant flows in the order of the second valve 280, the second branch portion BP2, and the compressor 230. The rest of the refrigerant flows in the order of the flow path switch 240, the internal heat exchanger 260, the second branch BP2, and the compressor 230.
 空気調和装置の運転モードが第2モードにおける冷媒の流れについて説明する。図1の実線に示すように、圧縮機230、流路切替器240、第2熱交換部110、内部熱交換器260、第1弁250、第1熱交換部210、流路切替器240、内部熱交換器260、第2分岐部BP2、圧縮機230の順に冷媒が流れる。 Explain the flow of the refrigerant in the second mode in which the operation mode of the air conditioner is the second mode. As shown by the solid line in FIG. 1, the compressor 230, the flow path switch 240, the second heat exchanger 110, the internal heat exchanger 260, the first valve 250, the first heat exchange section 210, the flow path switch 240, Refrigerant flows in the order of the internal heat exchanger 260, the second branch BP2, and the compressor 230.
 空気調和装置の運転モードが第3モードにおける冷媒の流れについて説明する。図1の点線に示すように、圧縮機230、流路切替器240、第1熱交換部210、第1弁250、内部熱交換器260、第2熱交換部110、第1分岐部BP1、流路切替器240、内部熱交換器260、第2分岐部BP2、圧縮機230の順に全冷媒が流れる。 The flow of the refrigerant in the third mode in which the operation mode of the air conditioner is set will be described. As shown by the dotted line in FIG. 1, the compressor 230, the flow path switch 240, the first heat exchange section 210, the first valve 250, the internal heat exchanger 260, the second heat exchange section 110, the first branch section BP1, All the refrigerant flows in the order of the flow path switch 240, the internal heat exchanger 260, the second branch BP2, and the compressor 230.
 図2は、参考例の空気調和装置1100の構成を表わす図である。
 参考例の空気調和装置1100が、実施の形態1の空気調和装置1000と相違する点は、参考例の空気調和装置1100が、2つの圧縮機230A,230B、2つの流路切替器240A,240Bと、2つの第1弁250A,250Bを備える点である。
FIG. 2 is a diagram showing the configuration of the air conditioner 1100 of the reference example.
The difference between the air conditioner 1100 of the reference example and the air conditioner 1000 of the first embodiment is that the air conditioner 1100 of the reference example has two compressors 230A and 230B and two flow path switches 240A and 240B. The point is that two first valves 250A and 250B are provided.
 参考例の空気調和装置1100は、たとえば電車において使用される。参考例の空気調和装置1100は、一般的な冷媒であるR407cを用いる。参考例の空気調和装置1100は、要求される性能を実現するために、2つの圧縮機230A,230Bを用いる。 The air conditioner 1100 of the reference example is used in, for example, a train. The air conditioner 1100 of the reference example uses R407c, which is a general refrigerant. The air conditioner 1100 of the reference example uses two compressors 230A and 230B in order to realize the required performance.
 参考例の空気調和装置1100の筐体を変更せずに、冷媒をR407cからCO2冷媒に変更する場合に、空気調和装置の理論効率が低下するため、空気調和装置は、内部熱交換器を備える必要がある。 When the refrigerant is changed from R407c to CO 2 refrigerant without changing the housing of the air conditioner 1100 in the reference example, the theoretical efficiency of the air conditioner decreases. Therefore, the air conditioner uses an internal heat exchanger. You need to be prepared.
 CO2冷媒を用いた空気調和装置が、参考例のように2つの圧縮機を備える場合には、2つの圧縮機に対応して2つの内部熱交換器を備えるか、あるいは、1つの内部熱交換器と、複雑な制御の仕組みを備えることが必要となる。その結果、CO2冷媒を用いた空気調和装置のコストが増加する。 When an air conditioner using a CO 2 refrigerant is provided with two compressors as in the reference example, it is provided with two internal heat exchangers corresponding to the two compressors, or one internal heat. It is necessary to have a exchanger and a complicated control mechanism. As a result, the cost of air conditioners using CO 2 refrigerant increases.
 CO2冷媒を用いた空気調和装置は、動作圧力が高くなるため、熱交換器および配管の肉厚を増加させる必要がある。その結果、CO2冷媒を用いた空気調和装置の重量は、参考例の空気調和装置1100の重量よりも大きくなる。 Since the operating pressure of an air conditioner using a CO 2 refrigerant is high, it is necessary to increase the wall thickness of the heat exchanger and the piping. As a result, the weight of the air conditioner using the CO 2 refrigerant becomes larger than the weight of the air conditioner 1100 of the reference example.
 一方、CO2の体積容積(=蒸発潜熱×気体密度)は、一般的な冷媒であるR407cに比べて4~5倍に達するので、圧縮機のストロークボリューム(圧縮室の内容積)を大きく減らすことができる。よって、CO2冷媒を用いた空気調和装置の圧縮機は、一般的な冷媒用の圧縮機より大幅に小型化が可能である。したがって、CO2冷媒を用いた空気調和装置内の圧縮機の個数を1個にすることが可能である。 On the other hand, the volume volume of CO 2 (= latent heat of vaporization x gas density) reaches 4 to 5 times that of R407c, which is a general refrigerant, so the stroke volume of the compressor (internal volume of the compressor chamber) is greatly reduced. be able to. Therefore, the compressor of the air conditioner using the CO 2 refrigerant can be significantly downsized as compared with the compressor for a general refrigerant. Therefore, it is possible to reduce the number of compressors in the air conditioner using the CO 2 refrigerant to one.
 従って、性能、コスト、重量の観点から、本実施の形態のCO2冷媒を用いた空気調和装置は、図1に示すように、1つの圧縮機と、1つの内部熱交換器とを備える。 Therefore, from the viewpoint of performance, cost, and weight, the air conditioner using the CO 2 refrigerant of the present embodiment includes one compressor and one internal heat exchanger as shown in FIG.
 図3および図4は、室外機200の側面図である。
 図3に示されるように、室外機200の上面USは、X軸方向に沿って円弧状である。室外機200は、X軸方向において中央部が最も高くなる。空気調和装置1000の性能を向上させるために、第1室外熱交換器211および第2室外熱交換器212を可能な限り大きくする必要がある。一方、室外送風機220によって第1室外熱交換器211および第2室外熱交換器212に送風して、熱交換の効率を向上させるためには、第1室外熱交換器211および第2室外熱交換器212の間に室外送風機220を配置する必要がある。
3 and 4 are side views of the outdoor unit 200.
As shown in FIG. 3, the upper surface US of the outdoor unit 200 has an arc shape along the X-axis direction. The outdoor unit 200 has the highest central portion in the X-axis direction. In order to improve the performance of the air conditioner 1000, it is necessary to make the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 as large as possible. On the other hand, in order to improve the efficiency of heat exchange by blowing air to the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 by the outdoor blower 220, the first outdoor heat exchanger 211 and the second outdoor heat exchange are performed. It is necessary to arrange the outdoor blower 220 between the vessels 212.
 X軸方向の室外機200の中央に室外送風機220が配置される。X軸方向において室外送風機220の一方側に第1室外熱交換器211が配置され、室外送風機220の他方側に第2室外熱交換器212が配置される。X軸方向において室外機200の一端E1と第1室外熱交換器211との間に圧縮機230が配置される。X軸方向において室外機200の他端E2と第2室外熱交換器212との間に内部熱交換器260が配置される。その結果、圧縮機230と内部熱交換器260とはX軸方向において離れた位置に配置される。 The outdoor blower 220 is arranged in the center of the outdoor unit 200 in the X-axis direction. The first outdoor heat exchanger 211 is arranged on one side of the outdoor blower 220 in the X-axis direction, and the second outdoor heat exchanger 212 is arranged on the other side of the outdoor blower 220. The compressor 230 is arranged between one end E1 of the outdoor unit 200 and the first outdoor heat exchanger 211 in the X-axis direction. The internal heat exchanger 260 is arranged between the other end E2 of the outdoor unit 200 and the second outdoor heat exchanger 212 in the X-axis direction. As a result, the compressor 230 and the internal heat exchanger 260 are arranged at positions separated from each other in the X-axis direction.
 図4に示すように、配管310Mにおいて、室内機100の出口と第1分岐部BP1との間の部分は、Y軸方向に沿って配置される。第1バイパス配管PB1は、X軸方向に沿って配置される。配管310Mと圧縮機230との距離が可能な限り小さくなるように圧縮機230と配管310Mとを配置することによって、第1バイパス配管PB1の長さを配管312Mの長さ、および配管313Mの長さよりも小さくすることができる。たとえば、図4に示すように、X軸方向において、圧縮機230と室外機の一端E1との間に第1バイパス配管PB1が配置される。ここでは、第1バイパス配管PB1の太さ、配管312Mの太さ、および配管313Mの太さは、すべて同じであることを前提としている。 As shown in FIG. 4, in the pipe 310M, the portion between the outlet of the indoor unit 100 and the first branch portion BP1 is arranged along the Y-axis direction. The first bypass pipe PB1 is arranged along the X-axis direction. By arranging the compressor 230 and the pipe 310M so that the distance between the pipe 310M and the compressor 230 is as small as possible, the length of the first bypass pipe PB1 can be changed to the length of the pipe 312M and the length of the pipe 313M. It can be smaller than that. For example, as shown in FIG. 4, the first bypass pipe PB1 is arranged between the compressor 230 and one end E1 of the outdoor unit in the X-axis direction. Here, it is assumed that the thickness of the first bypass pipe PB1, the thickness of the pipe 312M, and the thickness of the pipe 313M are all the same.
 空気調和装置1000の運転モードが第1モードのときの空気調和装置1000の動作を説明する。 The operation of the air conditioner 1000 when the operation mode of the air conditioner 1000 is the first mode will be described.
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1室外熱交換器211、および第2室外熱交換器212に流入する。 The high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
 第1室外熱交換器211、および第2室外熱交換器212において、冷媒は、室外送風機220によって送風された室外の空気と熱交換することによって、放熱する。 In the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212, the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となる。気液二相状態の冷媒は、内部熱交換器260を通過し、第1室内熱交換器111および第2室内熱交換器112に流入する。 After that, the refrigerant is depressurized at the first valve 250 and becomes a gas-liquid two-phase state. The gas-liquid two-phase refrigerant passes through the internal heat exchanger 260 and flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
 第1室内熱交換器111および第2室内熱交換器112において、冷媒は、室内送風機120で送風された外部の空気と熱交換することによって、吸熱して、ガス状態となる。 In the first indoor heat exchanger 111 and the second indoor heat exchanger 112, the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
 ガス状態の冷媒は、第1分岐部BP1に至る。第1モードでは、第2弁280が開いているので、第1分岐部BP1から圧縮機230の吸入側の第2分岐部BP2に至る流路には、第1流路11と、第2流路12とがある。 The gas-state refrigerant reaches the first branch BP1. In the first mode, since the second valve 280 is open, the flow paths from the first branch BP1 to the second branch BP2 on the suction side of the compressor 230 include the first flow path 11 and the second flow. There is a road 12.
 第1流路11は、第1バイパス配管PB1と、第2弁280とを経由する流路である。第2流路12は、配管311Mと、流路切替器240と、配管312Mと、内部熱交換器260と、配管313Mとを経由する流路である。 The first flow path 11 is a flow path that passes through the first bypass pipe PB1 and the second valve 280. The second flow path 12 is a flow path that passes through the pipe 311M, the flow path switch 240, the pipe 312M, the internal heat exchanger 260, and the pipe 313M.
 図4に示すように、第1バイパス配管PB1の長さを配管312Mの長さ、および配管313Mの長さよりも小さくすることによって、第2流路12の流路抵抗LR2が、第1流路11の流路抵抗LR1よりも大きくなる。 As shown in FIG. 4, by making the length of the first bypass pipe PB1 smaller than the length of the pipe 312M and the length of the pipe 313M, the flow path resistance LR2 of the second flow path 12 becomes the first flow path. It becomes larger than the flow path resistance LR1 of 11.
 したがって、したがって、第1分岐部BP1に達したガス状態の冷媒の流量をF1としたときに、第1流路11に流れる冷媒の流量は、F1×a1であり、第2流路12に流れる冷媒の流量は、F1×a2である。a1>a2である。 Therefore, therefore, when the flow rate of the refrigerant in the gas state reaching the first branch portion BP1 is F1, the flow rate of the refrigerant flowing in the first flow path 11 is F1 × a1 and flows in the second flow path 12. The flow rate of the refrigerant is F1 × a2. a1> a2.
 a1=LR2/(LR1+LR2)・・・(1)
 a2=LR1/(LR1+LR2)・・・(2)
 第2分岐部BP2において、第1流路11を流れた冷媒と、第2流路12を流れた冷媒とが合流して、圧縮機230に吸入される。流路抵抗が小さい第1流路11に多くの冷媒が流れるため、第1分岐部BP1の圧力からの第2分岐部BP2の圧力の低下量を小さくすることができる。その結果、空気調和装置1000の性能向上が図れる。
a1 = LR2 / (LR1 + LR2) ... (1)
a2 = LR1 / (LR1 + LR2) ... (2)
In the second branch portion BP2, the refrigerant flowing through the first flow path 11 and the refrigerant flowing through the second flow path 12 merge and are sucked into the compressor 230. Since a large amount of refrigerant flows through the first flow path 11 having a small flow path resistance, the amount of decrease in the pressure of the second branch portion BP2 from the pressure of the first branch portion BP1 can be reduced. As a result, the performance of the air conditioner 1000 can be improved.
 第1モードでは、内部熱交換器260には、第1弁250からの気液二相状態の冷媒(冷媒A)と、第2熱交換部110から第2流路12へ流れた冷媒(冷媒B)とが流入される。冷媒Bの流量が少ないとともに、冷媒Aと冷媒Bは、いずれも減圧された冷媒である。よって、内部熱交換器260において、冷媒Aと冷媒Bとは、ほとんど熱交換しない。したがって、第1モードでは、内部熱交換器260が利用されない。 In the first mode, the internal heat exchanger 260 contains a gas-liquid two-phase refrigerant (refrigerant A) from the first valve 250 and a refrigerant (refrigerant) flowing from the second heat exchange unit 110 to the second flow path 12. B) and are inflowed. The flow rate of the refrigerant B is small, and both the refrigerant A and the refrigerant B are decompressed refrigerants. Therefore, in the internal heat exchanger 260, the refrigerant A and the refrigerant B hardly exchange heat. Therefore, in the first mode, the internal heat exchanger 260 is not used.
 次に、空気調和装置1000の運転モードが第2モードの動作を説明する。
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1分岐部BP1に達する。第2モードでは、第2弁280は閉じているので、冷媒は、第1流路11には流れず、第1室内熱交換器111および第2室内熱交換器112へ流入する。第1室内熱交換器111および第2室内熱交換器112において放熱された液冷媒は、内部熱交換器260においてさらに冷却される。
Next, the operation of the second mode in which the operation mode of the air conditioner 1000 is set will be described.
The high-temperature and high-pressure refrigerant discharged from the compressor 230 reaches the first branch portion BP1 via the flow path switch 240. In the second mode, since the second valve 280 is closed, the refrigerant does not flow into the first flow path 11, but flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112. The liquid refrigerant radiated in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 is further cooled in the internal heat exchanger 260.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となって、第1室外熱交換器211および第2室外熱交換器212に流入する。第1室外熱交換器211および第2室外熱交換器212において吸熱された冷媒は、流路切替器240を通過して、内部熱交換器260に流入する。冷媒は、内部熱交換器260において加熱されてガス冷媒となる。その後、冷媒は、第2分岐部BP2を経て、圧縮機230に吸入される。 After that, the refrigerant is depressurized in the first valve 250, becomes a gas-liquid two-phase state, and flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212. The refrigerant absorbed in the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 passes through the flow path switch 240 and flows into the internal heat exchanger 260. The refrigerant is heated in the internal heat exchanger 260 to become a gas refrigerant. After that, the refrigerant is sucked into the compressor 230 via the second branch portion BP2.
 第2モードでは、内部熱交換器260において、第1室内熱交換器111および第2室内熱交換器112からの液冷媒(冷媒C)と、第1室外熱交換器211および第2室外熱交換器212からの冷媒(冷媒D)とが熱交換する。冷媒Cは、冷媒Dへ放熱することによって冷却される。冷媒Dは、冷媒Cから吸熱することによって加熱される。したがって、第2モードでは、内部熱交換器260が有効に利用されている。 In the second mode, in the internal heat exchanger 260, the liquid refrigerant (refrigerant C) from the first indoor heat exchanger 111 and the second indoor heat exchanger 112 and the first outdoor heat exchanger 211 and the second outdoor heat exchanger are exchanged. The refrigerant (refrigerant D) from the vessel 212 exchanges heat. The refrigerant C is cooled by dissipating heat to the refrigerant D. The refrigerant D is heated by absorbing heat from the refrigerant C. Therefore, in the second mode, the internal heat exchanger 260 is effectively used.
 次に、空気調和装置1000の運転モードが第3モードのときの空気調和装置1000の動作を説明する。 Next, the operation of the air conditioner 1000 when the operation mode of the air conditioner 1000 is the third mode will be described.
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1室外熱交換器211、および第2室外熱交換器212に流入する。 The high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
 第1室外熱交換器211、および第2室外熱交換器212において、冷媒は、室外送風機220によって送風された室外の空気と熱交換することによって、放熱する。 In the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212, the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となる。気液二相状態の冷媒は、内部熱交換器260を通過し、第1室内熱交換器111および第2室内熱交換器112に流入する。 After that, the refrigerant is depressurized at the first valve 250 and becomes a gas-liquid two-phase state. The gas-liquid two-phase refrigerant passes through the internal heat exchanger 260 and flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
 第1室内熱交換器111および第2室内熱交換器112において、冷媒は、室内送風機120で送風された外部の空気と熱交換することによって、吸熱して、ガス状態となる。 In the first indoor heat exchanger 111 and the second indoor heat exchanger 112, the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
 ガス状態の冷媒は、第1分岐部BP1に至る。第3モードでは、第2弁280が閉じているので、第1分岐部BP1から圧縮機230の吸入側の第2分岐部BP2に至る流路は、第2流路12のみである。第2流路12は、配管311Mと、流路切替器240と、配管312Mと、内部熱交換器260と、配管313Mとを経由する流路である。 The gas-state refrigerant reaches the first branch BP1. In the third mode, since the second valve 280 is closed, the only flow path from the first branch BP1 to the second branch BP2 on the suction side of the compressor 230 is the second flow path 12. The second flow path 12 is a flow path that passes through the pipe 311M, the flow path switch 240, the pipe 312M, the internal heat exchanger 260, and the pipe 313M.
 第2分岐部BP2に流れた冷媒は、圧縮機230に吸入される。
 第3モードでは、内部熱交換器260には、第1弁250からの気液二相状態の冷媒(冷媒A)と、第2熱交換部110から第2流路12へ流れた冷媒(冷媒B)とが流入される。冷媒Aと冷媒Bは、いずれも減圧された冷媒である。よって、内部熱交換器260において、冷媒Aと冷媒Bとは、ほとんど熱交換しない。したがって、第3モードでは、内部熱交換器260が利用されない。
The refrigerant flowing through the second branch BP2 is sucked into the compressor 230.
In the third mode, the internal heat exchanger 260 contains a gas-liquid two-phase refrigerant (refrigerant A) from the first valve 250 and a refrigerant (refrigerant) flowing from the second heat exchange unit 110 to the second flow path 12. B) and are inflowed. Both the refrigerant A and the refrigerant B are decompressed refrigerants. Therefore, in the internal heat exchanger 260, the refrigerant A and the refrigerant B hardly exchange heat. Therefore, in the third mode, the internal heat exchanger 260 is not used.
 第3モードでは、第1室内熱交換器111と第2室内熱交換器112において外部の空気から吸熱したガス状冷媒が、流路抵抗の大きい第2流路12を流れるため、圧縮機230の吸入側において大きな圧力低下が生じる。その結果、冷媒の循環流量が減少するので、空気調和装置1000の冷房能力が低下する。従って、外気温度が規定値を超えるときに、空気調和装置1000を第3モードに設定することによって、圧縮機230が吐出する高圧圧力を低下させることができるので、圧縮機230の吐出圧力が高いために、保護動作が実行されるのを回避することができる。 In the third mode, the gaseous refrigerant absorbed from the outside air in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 flows through the second flow path 12 having a large flow path resistance, so that the compressor 230 A large pressure drop occurs on the suction side. As a result, the circulating flow rate of the refrigerant is reduced, so that the cooling capacity of the air conditioner 1000 is reduced. Therefore, when the outside air temperature exceeds the specified value, the high pressure pressure discharged by the compressor 230 can be reduced by setting the air conditioner 1000 to the third mode, so that the discharge pressure of the compressor 230 is high. Therefore, it is possible to prevent the protection operation from being executed.
 本実施の形態によれば、コスト、および重量などの観点から、1台の圧縮機を備え、CO2冷媒を用いた空気調和装置において、暖房運転時には、内部熱交換器を使用する。これによって、空気調和装置の性能向上を図ることができる。この空気調和装置において、冷房運転時には、低圧冷媒が流れる部分に、電磁弁を備えたバイパス経路を設ける。これによって、低圧部における圧力損失を小さくすることができるので、空気調和装置の効率を高くすることができる。 According to the present embodiment, from the viewpoint of cost, weight, and the like, an internal heat exchanger is used at the time of heating operation in an air conditioner including one compressor and using a CO 2 refrigerant. Thereby, the performance of the air conditioner can be improved. In this air conditioner, a bypass path provided with a solenoid valve is provided in a portion where the low-pressure refrigerant flows during the cooling operation. As a result, the pressure loss in the low pressure portion can be reduced, so that the efficiency of the air conditioner can be increased.
 実施の形態2.
 図5は、実施の形態2の空気調和装置1001の構成を表わす図である。
Embodiment 2.
FIG. 5 is a diagram showing the configuration of the air conditioner 1001 of the second embodiment.
 図5の空気調和装置1001が、図1の実施の形態の空気調和装置1000と相違する点は、以下である。 The difference between the air conditioner 1001 of FIG. 5 and the air conditioner 1000 of the embodiment of FIG. 1 is as follows.
 図5の空気調和装置1001の冷媒回路RC2は、第2バイパス配管271と第3弁270とを備える。 The refrigerant circuit RC2 of the air conditioner 1001 of FIG. 5 includes a second bypass pipe 271 and a third valve 270.
 第1弁250と内部熱交換器260との間の第3分岐部BP3と、内部熱交換器260と第2熱交換部110との間の第4分岐部BP4との間は、第3弁270を介して、第2バイパス配管271で接続される。 The third valve is between the third branch BP3 between the first valve 250 and the internal heat exchanger 260 and the fourth branch BP4 between the internal heat exchanger 260 and the second heat exchanger 110. It is connected by the second bypass pipe 271 via 270.
 第3弁270は、たとえば、逆止弁によって構成される。逆止弁は、第3分岐部BP3から第4分岐部BP4への冷媒の流れを通過させ、第4分岐部BP4から第3分岐部BP3への冷媒の流れを遮断する。 The third valve 270 is composed of, for example, a check valve. The check valve allows the flow of the refrigerant from the third branch BP3 to the fourth branch BP4 to pass, and shuts off the flow of the refrigerant from the fourth branch BP4 to the third branch BP3.
 第3弁270によって、空気調和装置1001の運転モードが第1モードおよび第3モードのときに、第2バイパス配管271を冷媒が流れ、空気調和装置1001の運転モードが第2モードのときに、第2バイパス配管271を冷媒が流れない。 When the operation mode of the air conditioner 1001 is the first mode and the third mode, the refrigerant flows through the second bypass pipe 271 by the third valve 270, and when the operation mode of the air conditioner 1001 is the second mode, Refrigerant does not flow through the second bypass pipe 271.
 空気調和装置1001の運転モードが第1モードのときの空気調和装置1001の動作を説明する。 The operation of the air conditioner 1001 when the operation mode of the air conditioner 1001 is the first mode will be described.
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1室外熱交換器211、および第2室外熱交換器212に流入する。 The high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
 第1室外熱交換器211、および第2室外熱交換器212において、冷媒は、室外送風機220によって送風された室外の空気と熱交換することによって、放熱する。 In the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212, the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となって、第3分岐部BP3に達する。第3分岐部BP3に達した気液二相状態の冷媒の大部分は、第2バイパス配管271および第3弁270を通過して第4分岐部BP4に達する。第3分岐部BP3に達した気液二相状態の冷媒の残りは、内部熱交換器260を経由して第4分岐部BP4に達する。第4分岐部BP4において合流した2つの流路の冷媒は、第1室内熱交換器111および第2室内熱交換器112に流入する。 After that, the refrigerant is depressurized at the first valve 250, becomes a gas-liquid two-phase state, and reaches the third branch portion BP3. Most of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 passes through the second bypass pipe 271 and the third valve 270 and reaches the fourth branch BP4. The rest of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 reaches the fourth branch BP4 via the internal heat exchanger 260. The refrigerants in the two flow paths merged in the fourth branch BP4 flow into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
 その後、第1室内熱交換器111および第2室内熱交換器112において、冷媒は、室内送風機120で送風された外部の空気と熱交換することによって、吸熱して、ガス状態となる。 After that, in the first indoor heat exchanger 111 and the second indoor heat exchanger 112, the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
 ガス状態の冷媒は、第1分岐部BP1に至る。第1モードでは、第2弁280が開いているので、実施の形態1と同様に、ガス状態の冷媒は、第1分岐部BP1から第1流路11および第2流路12を経て、第2分岐部BP2に達する。ただし、第1流路11の流路抵抗は、第2流路12の流路抵抗よりも小さいので、ガス状態の冷媒の大部分は、第1流路11を流れる。第2分岐部BP2において、第1流路11を流れた冷媒と、第2流路12を流れた冷媒とが合流して、圧縮機230に吸入される。 The gas-state refrigerant reaches the first branch BP1. In the first mode, since the second valve 280 is open, the refrigerant in the gas state passes from the first branch portion BP1 through the first flow path 11 and the second flow path 12, and is the first, as in the first embodiment. 2 Reach the branch BP2. However, since the flow path resistance of the first flow path 11 is smaller than the flow path resistance of the second flow path 12, most of the refrigerant in the gas state flows through the first flow path 11. In the second branch portion BP2, the refrigerant flowing through the first flow path 11 and the refrigerant flowing through the second flow path 12 merge and are sucked into the compressor 230.
 次に、空気調和装置1001の運転モードが第2モードのときの空気調和装置1001動作を説明する。 Next, the operation of the air conditioner 1001 when the operation mode of the air conditioner 1001 is the second mode will be described.
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1分岐部BP1に達する。第2モードでは、第2弁280は閉じているので、冷媒は、第1流路11には流れず、第1室内熱交換器111および第2室内熱交換器112へ流入する。第1室内熱交換器111および第2室内熱交換器112において放熱された液冷媒は、第2バイパス配管271および第3弁270を流れず、実施の形態1と同様に、内部熱交換器260に流入する。冷媒は、内部熱交換器260においてさらに冷却される。 The high-temperature and high-pressure refrigerant discharged from the compressor 230 reaches the first branch portion BP1 via the flow path switch 240. In the second mode, since the second valve 280 is closed, the refrigerant does not flow into the first flow path 11, but flows into the first chamber heat exchanger 111 and the second chamber heat exchanger 112. The liquid refrigerant radiated in the first chamber heat exchanger 111 and the second chamber heat exchanger 112 does not flow through the second bypass pipe 271 and the third valve 270, and the internal heat exchanger 260 is the same as in the first embodiment. Inflow to. The refrigerant is further cooled in the internal heat exchanger 260.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となって、第1室外熱交換器211および第2室外熱交換器212に流入する。第1室外熱交換器211および第2室外熱交換器212において吸熱された冷媒は、流路切替器240を通過して、内部熱交換器260に流入する。冷媒は、内部熱交換器260において加熱されてガス冷媒となる。その後、冷媒は、第2分岐部BP2を経て、圧縮機230に吸入される。 After that, the refrigerant is depressurized in the first valve 250, becomes a gas-liquid two-phase state, and flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212. The refrigerant absorbed in the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 passes through the flow path switch 240 and flows into the internal heat exchanger 260. The refrigerant is heated in the internal heat exchanger 260 to become a gas refrigerant. After that, the refrigerant is sucked into the compressor 230 via the second branch portion BP2.
 次に、空気調和装置1001の運転モードが第3モードのときの空気調和装置1001の動作を説明する。 Next, the operation of the air conditioner 1001 when the operation mode of the air conditioner 1001 is the third mode will be described.
 圧縮機230から吐出された高温高圧の冷媒は、流路切替器240を経て、第1室外熱交換器211、および第2室外熱交換器212に流入する。 The high-temperature and high-pressure refrigerant discharged from the compressor 230 flows into the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212 via the flow path switch 240.
 第1室外熱交換器211、および第2室外熱交換器212において、冷媒は、室外送風機220によって送風された室外の空気と熱交換することによって、放熱する。 In the first outdoor heat exchanger 211 and the second outdoor heat exchanger 212, the refrigerant dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 220.
 その後、冷媒は、第1弁250において減圧されて、気液二相状態となって、第3分岐部BP3に達する。第3分岐部BP3に達した気液二相状態の冷媒の大部分は、第2バイパス配管271および第3弁270を通過して第4分岐部BP4に達する。第3分岐部BP3に達した気液二相状態の冷媒の残りは、内部熱交換器260を経由して第4分岐部BP4に達する。第4分岐部BP4において合流した2つの流路の冷媒は、第1室内熱交換器111および第2室内熱交換器112に流入する。 After that, the refrigerant is depressurized at the first valve 250, becomes a gas-liquid two-phase state, and reaches the third branch portion BP3. Most of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 passes through the second bypass pipe 271 and the third valve 270 and reaches the fourth branch BP4. The rest of the gas-liquid two-phase state refrigerant that has reached the third branch BP3 reaches the fourth branch BP4 via the internal heat exchanger 260. The refrigerants in the two flow paths merged in the fourth branch BP4 flow into the first chamber heat exchanger 111 and the second chamber heat exchanger 112.
 第1室内熱交換器111および第2室内熱交換器112において、冷媒は、室内送風機120で送風された外部の空気と熱交換することによって、吸熱して、ガス状態となる。 In the first indoor heat exchanger 111 and the second indoor heat exchanger 112, the refrigerant absorbs heat by exchanging heat with the external air blown by the indoor blower 120, and becomes a gas state.
 ガス状態の冷媒は、第1分岐部BP1に至る。第3モードでは、第2弁280が閉じているので、冷媒は、第1分岐部BP1から第2流路12を経由して、第2分岐部BP2に流れる。第2分岐部BP2に流れた冷媒は、圧縮機230に吸入される。 The gas-state refrigerant reaches the first branch BP1. In the third mode, since the second valve 280 is closed, the refrigerant flows from the first branch portion BP1 to the second branch portion BP2 via the second flow path 12. The refrigerant flowing through the second branch BP2 is sucked into the compressor 230.
 実施の形態2では、第1モードおよび第3モードにおいて、第1弁250から放出された冷媒の大部分が、内部熱交換器260を経由することなく第1室内熱交換器111および第2室内熱交換器112に流入する。これによって、内部熱交換器260を経由することによる圧力の低下を低減することができる。 In the second embodiment, in the first mode and the third mode, most of the refrigerant discharged from the first valve 250 does not go through the internal heat exchanger 260, but the first chamber heat exchanger 111 and the second chamber. It flows into the heat exchanger 112. This makes it possible to reduce the drop in pressure due to passing through the internal heat exchanger 260.
 冷房運転時に外気温度が非常に高いときに、冷媒の循環量が多いため、第2熱交換部110から放出される冷媒の温度が高くなりすぎる。これを回避するために、第1弁250の開度が開く方向に制御される。第1弁250の開度が全開に達した場合には、第2熱交換部110から放出される冷媒の温度を下げることができなくなる。実施の形態2では、第1弁250から放出された冷媒の大部分が、内部熱交換器260を経由することなく、第2熱交換部110に流入するので、第1弁250の開度を全開に達していても、圧縮機230の吐出温度が制限値を超えて、保護動作が実行されるのを回避することができる。 When the outside air temperature is very high during cooling operation, the temperature of the refrigerant discharged from the second heat exchange unit 110 becomes too high because the amount of refrigerant circulating is large. In order to avoid this, the opening degree of the first valve 250 is controlled in the opening direction. When the opening degree of the first valve 250 reaches the full opening, the temperature of the refrigerant discharged from the second heat exchange unit 110 cannot be lowered. In the second embodiment, most of the refrigerant discharged from the first valve 250 flows into the second heat exchanger 110 without passing through the internal heat exchanger 260, so that the opening degree of the first valve 250 is increased. Even when the full throttle is reached, it is possible to prevent the discharge temperature of the compressor 230 from exceeding the limit value and the protection operation being executed.
 なお、第3弁270として、逆止弁の代わりに電磁弁を用いてもよい。
 実施の形態3.
 図6は、実施の形態3の空気調和装置1002の構成を表わす図である。
As the third valve 270, a solenoid valve may be used instead of the check valve.
Embodiment 3.
FIG. 6 is a diagram showing the configuration of the air conditioner 1002 of the third embodiment.
 図6の空気調和装置1002が、図1の実施の形態の空気調和装置1000と相違する点は、以下である。 The difference between the air conditioner 1002 of FIG. 6 and the air conditioner 1000 of the embodiment of FIG. 1 is as follows.
 実施の形態3の空気調和装置1002の冷媒回路RC3は、内部熱交換器260と第2熱交換部110との間にメイン配管PMの一部である配管316Mに配置される第4弁251を備える。 The refrigerant circuit RC3 of the air conditioner 1002 of the third embodiment has a fourth valve 251 arranged in a pipe 316M which is a part of the main pipe PM between the internal heat exchanger 260 and the second heat exchanger 110. Be prepared.
 第4弁251は、電子膨張弁によって構成される。
 空気調和装置1002の運転モードが第1モードおよび第2モードにおいて、第4弁251は全開となる。これによって、実施の形態3の空気調和装置1002は、実施の形態1と同様に動作する。
The fourth valve 251 is composed of an electronic expansion valve.
When the operation modes of the air conditioner 1002 are the first mode and the second mode, the fourth valve 251 is fully opened. As a result, the air conditioner 1002 of the third embodiment operates in the same manner as that of the first embodiment.
 空気調和装置1002の運転モードが第3モードにおいて、第1弁250は全開となり、第4弁251は、配管316Mを流れる冷媒を減圧する。 When the operation mode of the air conditioner 1002 is the third mode, the first valve 250 is fully opened, and the fourth valve 251 depressurizes the refrigerant flowing through the pipe 316M.
 空気調和装置1002の運転モードが第1モード(冷房運転モード)において、外気温度が規定値を超えると、空気調和装置1002の運転モードが第3モード(高負荷冷房運転モード)に切り替わる。 When the operation mode of the air conditioner 1002 is the first mode (cooling operation mode) and the outside air temperature exceeds the specified value, the operation mode of the air conditioner 1002 is switched to the third mode (high load cooling operation mode).
 外気温度が非常に高いときに、空気調和装置1002を高負荷冷房運転モードにすることによって、内部熱交換器260に液冷媒を蓄積することができる。これによって、圧縮機230が吐出する高圧圧力を低下させることができるので、圧縮機230の吐出圧力が高いために、保護動作が実行されるのを回避することができる。 When the outside air temperature is very high, the liquid refrigerant can be accumulated in the internal heat exchanger 260 by setting the air conditioner 1002 to the high load cooling operation mode. As a result, the high-pressure pressure discharged by the compressor 230 can be reduced, so that it is possible to avoid executing the protection operation due to the high discharge pressure of the compressor 230.
 変形例.
 本開示は、上記の実施形態に限定されるものでなく、たとえば、以下のような変形例も含む。
Modification example.
The present disclosure is not limited to the above embodiment, and includes, for example, the following modifications.
 (1)上記の実施形態では、第1熱交換部210および第2熱交換部110は、それぞれ2つの熱交換器を備えるものとしたが、これに限定されるものではない。第1熱交換部210および第2熱交換部110は、それぞれ1つの熱交換器を備えるものとしてもよい。 (1) In the above embodiment, the first heat exchange unit 210 and the second heat exchange unit 110 each include two heat exchangers, but the present invention is not limited thereto. The first heat exchange unit 210 and the second heat exchange unit 110 may each include one heat exchanger.
 (2)X軸方向において、圧縮機230と室外機の一端E1との間に第1バイパス配管PB1が配置されるに代えて、以下のようであってもよい。X軸方向において、圧縮機230と第1室外熱交換器211と間に第1バイパス配管PB1が配置されてもよい。 (2) Instead of arranging the first bypass pipe PB1 between the compressor 230 and one end E1 of the outdoor unit in the X-axis direction, the following may be used. In the X-axis direction, the first bypass pipe PB1 may be arranged between the compressor 230 and the first outdoor heat exchanger 211.
 (3)空気調和装置1000、1001、1002の運転モードが、第1モードから第3モードに変化するときに、圧縮機の周波数が変化しないものとしたが、これに限定されるものではない。空気調和装置1000、1001、1002の運転モードが、第1モードから第3モードに変化するときに、圧縮機の周波数を変化させるとともに、実施の形態1~3に記載された制御を実行するものとしてもよい。 (3) It is assumed that the frequency of the compressor does not change when the operation modes of the air conditioners 1000, 1001 and 1002 change from the first mode to the third mode, but the present invention is not limited to this. When the operation modes of the air conditioners 1000, 1001 and 1002 change from the first mode to the third mode, the frequency of the compressor is changed and the control described in the first to third embodiments is executed. May be.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 11 第1流路、12 第2流路、100 室内機、110 第2熱交換部、111 第1室内熱交換器、112 第2室内熱交換器、120 室内送風機、200 室外機、210 第1熱交換部、211 第1室外熱交換器、212 第2室外熱交換器、220 室外送風機、230,230A,230B 圧縮機、240,240A,240B 流路切替器、250,250A,250B 第1弁、251 第4弁、260 内部熱交換器、261a 第1内部流路、261b 第2内部流路、270 第3弁、271 第2バイパス配管、280 第2弁、310M,311M,312M,313M,314M,315M,316M,317M,318M 配管、1000,1001,1002,1100 空気調和装置、BP1 第1分岐部、BP2 第2分岐部、BP3 第3分岐部、BP4 第4分岐部、E1 室外機の一端、E2 室外機の他端、P1 第1開口部、P2 第2開口部、P3 第3開口部、P4 第4開口部、PB1 第1バイパス配管、RC1,RC2 冷媒回路、US 上面。 11 1st flow path, 12 2nd flow path, 100 indoor unit, 110 2nd heat exchange unit, 111 1st indoor heat exchanger, 112 2nd indoor heat exchanger, 120 indoor blower, 200 outdoor unit, 210 1st Heat exchanger, 211 1st outdoor heat exchanger, 212 2nd outdoor heat exchanger, 220 outdoor blower, 230, 230A, 230B compressor, 240, 240A, 240B flow path switch, 250, 250A, 250B 1st valve , 251 4th valve, 260 internal heat exchanger, 261a 1st internal flow path, 261b 2nd internal flow path, 270 3rd valve, 271 2nd bypass piping, 280 2nd valve, 310M, 311M, 312M, 313M, 314M, 315M, 316M, 317M, 318M piping, 1000, 1001, 1002, 1100 air conditioner, BP1 1st branch, BP2 2nd branch, BP3 3rd branch, BP4 4th branch, E1 outdoor unit One end, the other end of the E2 outdoor unit, P1 first opening, P2 second opening, P3 third opening, P4 fourth opening, PB1 first bypass pipe, RC1, RC2 refrigerant circuit, US upper surface.

Claims (17)

  1.  空気調和装置であって、
     圧縮機、流路切替器、第1熱交換部、第2熱交換部、内部熱交換器、第1弁、および第2弁を含み、冷媒が流れる冷媒回路を備え、
     前記流路切替器は、第1開口部、第2開口部、第3開口部、および第4開口部を備え、
     前記内部熱交換器は、第1内部流路と第2内部流路とを備え、
     前記圧縮機の吐出側と、前記流路切替器の前記第1開口部とが接続され、
     前記第1熱交換部の一端と、前記流路切替器の前記第4開口部とが接続され、
     前記第1熱交換部の他端と、前記第1弁の一端とが接続され、
     前記第1弁の他端と、前記内部熱交換器の前記第1内部流路の一端とが接続され、
     前記内部熱交換器の前記第1内部流路の他端と、前記第2熱交換部の一端とが接続され、
     前記内部熱交換器の前記第2内部流路の一端と、前記流路切替器の前記第2開口部とが接続され、
     前記第2熱交換部の他端と、第1分岐部とが接続され、
     前記第1分岐部と、前記第2弁の一端および前記流路切替器の前記第3開口部とが接続され、
     前記第2弁の他端と、第2分岐部とが接続され、
     前記第2分岐部と、前記圧縮機の吸入側および前記内部熱交換器の第2内部流路の他端とが接続され、
     前記空気調和装置の運転モードが第1モードにおいて、前記第2弁は開き、前記第1開口部と前記第4開口部とが接続し、かつ前記第2開口部と前記第3開口部とが接続し、
     前記空気調和装置の運転モードが第2モードにおいて、前記第2弁は閉じ、前記第1開口部と前記第3開口部とが接続し、かつ前記第2開口部と前記第4開口部とが接続する、空気調和装置。
    It ’s an air conditioner,
    It includes a compressor, a flow path switch, a first heat exchanger, a second heat exchanger, an internal heat exchanger, a first valve, and a second valve, and includes a refrigerant circuit through which a refrigerant flows.
    The flow path switch includes a first opening, a second opening, a third opening, and a fourth opening.
    The internal heat exchanger includes a first internal flow path and a second internal flow path.
    The discharge side of the compressor and the first opening of the flow path switch are connected to each other.
    One end of the first heat exchange section and the fourth opening of the flow path switch are connected to each other.
    The other end of the first heat exchange portion and one end of the first valve are connected to each other.
    The other end of the first valve and one end of the first internal flow path of the internal heat exchanger are connected.
    The other end of the first internal flow path of the internal heat exchanger and one end of the second heat exchange portion are connected to each other.
    One end of the second internal flow path of the internal heat exchanger and the second opening of the flow path switch are connected to each other.
    The other end of the second heat exchange portion and the first branch portion are connected to each other.
    The first branch portion, one end of the second valve, and the third opening of the flow path switch are connected to each other.
    The other end of the second valve and the second branch portion are connected to each other.
    The second branch portion is connected to the suction side of the compressor and the other end of the second internal flow path of the internal heat exchanger.
    When the operation mode of the air conditioner is the first mode, the second valve is opened, the first opening is connected to the fourth opening, and the second opening and the third opening are connected to each other. connection,
    When the operation mode of the air conditioner is the second mode, the second valve is closed, the first opening is connected to the third opening, and the second opening and the fourth opening are connected to each other. An air conditioner to connect.
  2.  前記空気調和装置の運転モードが前記第1モードにおいて、前記圧縮機、前記流路切替器、前記第1熱交換部、前記第1弁、前記内部熱交換器、前記第2熱交換部、第1分岐部の順に冷媒が流れ、その後、前記冷媒の一部は、前記第1分岐部から前記第2弁を経て第2分岐部への第1流路を流れ、前記冷媒の残りは、前記第1分岐部から前記流路切替器、および前記内部熱交換器を経て前記第2分岐部への第2流路を流れ、その後、前記第2分岐部で前記第1流路の冷媒と前記第2流路の冷媒とが合流して、前記圧縮機へ流れ、
     前記空気調和装置の運転モードが前記第2モードにおいて、前記圧縮機、前記流路切替器、前記第2熱交換部、前記内部熱交換器、前記第1弁、前記第1熱交換部、前記流路切替器、前記内部熱交換器、前記第2分岐部、前記圧縮機の順に冷媒が流れる、請求項1記載の空気調和装置。
    When the operation mode of the air conditioner is the first mode, the compressor, the flow path switch, the first heat exchange unit, the first valve, the internal heat exchanger, the second heat exchange unit, and the first mode. The refrigerant flows in the order of one branch, then a part of the refrigerant flows through the first flow path from the first branch to the second branch via the second valve, and the rest of the refrigerant flows. It flows from the first branch portion through the flow path switcher and the internal heat exchanger to the second branch portion, and then at the second branch portion, the refrigerant of the first flow path and the refrigerant of the first flow path are described. The refrigerant in the second flow path merges and flows to the compressor.
    When the operation mode of the air conditioner is the second mode, the compressor, the flow path switch, the second heat exchange unit, the internal heat exchanger, the first valve, the first heat exchange unit, and the above. The air conditioner according to claim 1, wherein the refrigerant flows in the order of the flow path switch, the internal heat exchanger, the second branch portion, and the compressor.
  3.  前記第1流路の流路抵抗は、前記第2流路の流路抵抗よりも小さい、請求項2記載の空気調和装置。 The air conditioner according to claim 2, wherein the flow path resistance of the first flow path is smaller than the flow path resistance of the second flow path.
  4.  前記冷媒回路は、メイン配管と第1バイパス配管とを備え、
     前記圧縮機と前記流路切替器との間、前記流路切替器と前記第1熱交換部との間、前記第1熱交換部と前記第1弁を介して前記内部熱交換器との間、前記内部熱交換器と前記第2分岐部との間、前記第2分岐部と前記圧縮機との間、前記内部熱交換器と前記第2熱交換部との間、前記第2熱交換部と前記第1分岐部との間、前記第1分岐部と前記流路切替器との間、前記流路切替器と前記内部熱交換器との間は、メイン配管が接続され、前記第1分岐部と前記第2弁を介して前記第2分岐部との間は、第1バイパス配管が接続される、請求項3記載の空気調和装置。
    The refrigerant circuit includes a main pipe and a first bypass pipe.
    Between the compressor and the flow path switch, between the flow path switch and the first heat exchange section, and between the first heat exchange section and the internal heat exchanger via the first valve. Between the internal heat exchanger and the second branch, between the second branch and the compressor, between the internal heat exchanger and the second heat exchanger, the second heat. A main pipe is connected between the switching section and the first branch section, between the first branch section and the flow path switch, and between the flow path switch and the internal heat exchanger. The air exchanger according to claim 3, wherein a first bypass pipe is connected between the first branch portion and the second branch portion via the second valve.
  5.  前記第1バイパス配管の長さは、前記流路切替器と前記内部熱交換器との間の配管の長さよりも短く、かつ前記内部熱交換器と前記第2分岐部との間の配管の長さよりも短い、請求項4記載の空気調和装置。 The length of the first bypass pipe is shorter than the length of the pipe between the flow path switch and the internal heat exchanger, and the length of the pipe between the internal heat exchanger and the second branch portion is short. The air conditioner according to claim 4, which is shorter than the length.
  6.  前記第1熱交換部は、第1室外熱交換器と、第2室外熱交換器を含み、請求項5記載の空気調和装置。 The air conditioner according to claim 5, wherein the first heat exchange unit includes a first outdoor heat exchanger and a second outdoor heat exchanger.
  7.  前記圧縮機、前記第1室外熱交換器、前記第2室外熱交換器、室外送風機、前記内部熱交換器、前記第1弁は、室外機に収容され、
     前記室外機の上面は、第1軸方向に沿って、円弧状であり、
     前記第1軸方向の前記室外機の中央に前記室外送風機が配置され、
     前記第1軸方向において前記室外送風機の一方側に前記第1室外熱交換器が配置され、前記室外送風機の他方側に前記第2室外熱交換器が配置され、
     前記第1軸方向において前記室外機の一端と前記第1室外熱交換器との間に前記圧縮機が配置され、
     前記第1軸方向において前記室外機の他端と前記第2室外熱交換器との間に前記内部熱交換器が配置される、請求項6に記載の空気調和装置。
    The compressor, the first outdoor heat exchanger, the second outdoor heat exchanger, the outdoor blower, the internal heat exchanger, and the first valve are housed in the outdoor unit.
    The upper surface of the outdoor unit has an arc shape along the first axial direction.
    The outdoor blower is arranged in the center of the outdoor unit in the first axial direction.
    The first outdoor heat exchanger is arranged on one side of the outdoor blower in the first axial direction, and the second outdoor heat exchanger is arranged on the other side of the outdoor blower.
    The compressor is arranged between one end of the outdoor unit and the first outdoor heat exchanger in the first axial direction.
    The air conditioner according to claim 6, wherein the internal heat exchanger is arranged between the other end of the outdoor unit and the second outdoor heat exchanger in the first axial direction.
  8.  前記第1バイパス配管は、第1軸と平行に配置され、
     前記第1軸方向において、前記圧縮機と前記室外機の前記一端との間に前記第1バイパス配管が配置される、請求項7記載の空気調和装置。
    The first bypass pipe is arranged parallel to the first axis.
    The air conditioner according to claim 7, wherein the first bypass pipe is arranged between the compressor and the one end of the outdoor unit in the first axial direction.
  9.  前記第1軸と垂直な方向である第2軸に平行に、前記第1分岐部と接続されるメイン配管の一部が配置される、請求項8記載の空気調和装置。 The air conditioner according to claim 8, wherein a part of the main pipe connected to the first branch portion is arranged in parallel with the second axis in the direction perpendicular to the first axis.
  10.  前記第2熱交換部は、第1室内熱交換器と、第2室内熱交換器を含む、請求項1~9のいずれか1項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 9, wherein the second heat exchanger includes a first chamber heat exchanger and a second chamber heat exchanger.
  11.  前記冷媒回路は、第2バイパス配管と、第3弁とを備え、
     前記第1弁と前記内部熱交換器との間の第3分岐部と、前記内部熱交換器と前記第2熱交換部との間の第4分岐部との間は、前記第3弁を介して、前記第2バイパス配管で接続され、
     前記第3弁によって、前記空気調和装置の運転モードが前記第1モードのときに、前記第2バイパス配管を冷媒が流れ、前記空気調和装置の運転モードが前記第2モードのときに、前記第2バイパス配管を冷媒が流れない、請求項4~10のいずれか1項に記載の空気調和装置。
    The refrigerant circuit includes a second bypass pipe and a third valve.
    A third valve is provided between the third branch between the first valve and the internal heat exchanger and the fourth branch between the internal heat exchanger and the second heat exchanger. It is connected by the second bypass pipe via the above-mentioned second bypass pipe.
    By the third valve, when the operation mode of the air conditioner is the first mode, the refrigerant flows through the second bypass pipe, and when the operation mode of the air conditioner is the second mode, the third valve. 2. The air conditioner according to any one of claims 4 to 10, wherein the refrigerant does not flow through the bypass pipe.
  12.  前記空気調和装置の運転モードが第3モードにおいて、前記第2弁は閉じ、前記第1開口部と前記第4開口部とが接続し、かつ前記第2開口部と前記第3開口部とが接続する、請求項1~11のいずれか1項に記載の空気調和装置。 When the operation mode of the air conditioner is the third mode, the second valve is closed, the first opening and the fourth opening are connected, and the second opening and the third opening are connected to each other. The air conditioner according to any one of claims 1 to 11, which is connected.
  13.  前記空気調和装置の運転モードが前記第3モードにおいて、前記圧縮機、前記流路切替器、前記第1熱交換部、前記第1弁、前記内部熱交換器、前記第2熱交換部、前記第1分岐部、前記流路切替器、前記内部熱交換器、前記第2分岐部、前記圧縮機の順に全冷媒が流れる、請求項12記載の空気調和装置。 When the operation mode of the air conditioner is the third mode, the compressor, the flow path switch, the first heat exchange unit, the first valve, the internal heat exchanger, the second heat exchange unit, and the above. The air conditioner according to claim 12, wherein all the refrigerant flows in the order of the first branch portion, the flow path switch, the internal heat exchanger, the second branch portion, and the compressor.
  14.  前記内部熱交換器と前記第2熱交換部との間の前記メイン配管に配置される第4弁を備え、
     前記空気調和装置の運転モードが前記第1モードおよび前記第2モードにおいて、前記第4弁は全開となり、
     前記空気調和装置の運転モードが第3モードにおいて、前記第1弁は全開となり、前記第4弁は、冷媒を減圧する、請求項4~9のいずれか1項に記載の空気調和装置。
    A fourth valve arranged in the main pipe between the internal heat exchanger and the second heat exchanger is provided.
    When the operation modes of the air conditioner are the first mode and the second mode, the fourth valve is fully opened.
    The air conditioner according to any one of claims 4 to 9, wherein the operation mode of the air conditioner is the third mode, the first valve is fully opened, and the fourth valve depressurizes the refrigerant.
  15.  外気温度が規定値を超えたときに、前記空気調和装置の運転モードが、前記第1モードから前記第3モードに変化する、請求項12~14のいずれか1項に記載の空気調和装置。 The air conditioner according to any one of claims 12 to 14, wherein the operation mode of the air conditioner changes from the first mode to the third mode when the outside air temperature exceeds a specified value.
  16.  前記外気温度が前記規定値を超えたときに、前記圧縮機の周波数が変化しない、請求項15記載の空気調和装置。 The air conditioner according to claim 15, wherein the frequency of the compressor does not change when the outside air temperature exceeds the specified value.
  17.  前記冷媒は、CO2冷媒である、請求項1~16のいずれか1項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 16, wherein the refrigerant is a CO 2 refrigerant.
PCT/JP2020/000494 2020-01-09 2020-01-09 Air conditioning apparatus WO2021140622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/000494 WO2021140622A1 (en) 2020-01-09 2020-01-09 Air conditioning apparatus
US17/777,143 US20220397318A1 (en) 2020-01-09 2020-01-09 Air Conditioning Apparatus
EP20912685.3A EP4089344A4 (en) 2020-01-09 2020-01-09 Air conditioning apparatus
JP2021569672A JP7350892B2 (en) 2020-01-09 2020-01-09 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000494 WO2021140622A1 (en) 2020-01-09 2020-01-09 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2021140622A1 true WO2021140622A1 (en) 2021-07-15

Family

ID=76787803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000494 WO2021140622A1 (en) 2020-01-09 2020-01-09 Air conditioning apparatus

Country Status (4)

Country Link
US (1) US20220397318A1 (en)
EP (1) EP4089344A4 (en)
JP (1) JP7350892B2 (en)
WO (1) WO2021140622A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194432A (en) 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
WO2013038439A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065112A1 (en) * 2000-12-28 2002-07-11 Bosch Gmbh Robert Arrangement and method for cooling or heating
US9441862B2 (en) * 2011-03-28 2016-09-13 Mitsubishi Electric Corporation Air-conditioning apparatus including intermediate heat exchangers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194432A (en) 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
WO2013038439A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device

Also Published As

Publication number Publication date
JPWO2021140622A1 (en) 2021-07-15
EP4089344A1 (en) 2022-11-16
US20220397318A1 (en) 2022-12-15
JP7350892B2 (en) 2023-09-26
EP4089344A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
EP1703230B1 (en) Multi type air-conditioner and control method thereof
KR100748525B1 (en) Multi air conditioner heating and cooling simultaneously and indoor fan control method thereof
KR100504498B1 (en) Air conditioner
KR101176482B1 (en) Multi-air conditioner for heating and cooling operations at the same time
KR100688171B1 (en) Multiple air conditioner and refrigerant withdrawing method
JP2017075777A5 (en)
WO2020202763A1 (en) Refrigeration device unit, heat source unit, and refrigeration device
KR100511286B1 (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
KR20070004340A (en) Pipe insert type filter and air conditioner having the same
WO2018008139A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
KR100511287B1 (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
KR20040091774A (en) Heat source unit of air conditioner and air conditioner
CN109386985B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
JP2003139429A (en) Refrigeration unit
CN114270111A (en) Heat source unit and refrigeration device
WO2021140622A1 (en) Air conditioning apparatus
JP2003185286A (en) Air conditioner
US20220214082A1 (en) Refrigeration cycle apparatus
KR20110055798A (en) Refrigerant system
JP2003050061A (en) Air conditioner
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
KR100504880B1 (en) Multi-air conditioner capable of heating and cooling simultaneously with supercooling- accumulator
KR100626756B1 (en) Heat pump air-conditioner
JP7445140B2 (en) Air conditioner, installation method of air conditioner, and outdoor unit
JPWO2020148826A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020912685

Country of ref document: EP

Effective date: 20220809