WO2021140534A1 - Dc circuit breaker - Google Patents

Dc circuit breaker Download PDF

Info

Publication number
WO2021140534A1
WO2021140534A1 PCT/JP2020/000019 JP2020000019W WO2021140534A1 WO 2021140534 A1 WO2021140534 A1 WO 2021140534A1 JP 2020000019 W JP2020000019 W JP 2020000019W WO 2021140534 A1 WO2021140534 A1 WO 2021140534A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
circuit breaker
current
mechanical contact
power transmission
Prior art date
Application number
PCT/JP2020/000019
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 児山
崇裕 石黒
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to JP2021569606A priority Critical patent/JP7318010B2/en
Priority to PCT/JP2020/000019 priority patent/WO2021140534A1/en
Publication of WO2021140534A1 publication Critical patent/WO2021140534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • An embodiment of the present invention relates to a DC circuit breaker.
  • An object to be solved by the present invention is to provide a DC current cutoff device capable of cutting off bidirectional current at a coupling point of a plurality of DC power transmission lines.
  • the DC current breaker of the embodiment has a plurality of first mechanical contacts, a plurality of second mechanical contacts, a plurality of commutation circuits, a first semiconductor breaker, and a second semiconductor breaker.
  • the first mechanical contact is provided on each of a plurality of DC transmission lines constituting the DC system.
  • the second mechanical contact is provided between the plurality of first mechanical contacts and a common power transmission line commonly connected to the plurality of DC power transmission lines.
  • each commutation circuit has a capacitor, and the current flowing in the first direction from any one of the plurality of DC transmission lines to the common transmission line, or the common It commutates the current flowing in the second direction from the transmission line to the DC transmission line.
  • the first end is connected to the common power transmission line
  • the second end is connected to the plurality of DC power transmission lines, and the current flowing in the first direction to which the commutation circuit is commuted is cut off. It is possible.
  • the first end is connected to each of the plurality of DC power transmission lines
  • the second end is connected to the common power transmission line, and the current flowing in the second direction to which the commutation circuit is commuted is transmitted. It can be blocked.
  • FIG. 1 is a diagram showing an example of the configuration of the DC current cutoff device 1 of the first embodiment.
  • the DC current cutoff device 1 is, for example, a device that electrically conducts or cuts off a plurality of DC power transmission lines constituting a DC system and a common power transmission line LNc connecting these DC power transmission lines.
  • the DC current cutoff device 1 electrically conducts the three DC transmission lines of the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3 with the common transmission line LNc, respectively. , Or a device that shuts off.
  • the configuration related to the first DC power transmission line LN1 is given a "-1" at the end of the code
  • the configuration related to the second DC power transmission line LN2 is given a "-2" at the end of the code.
  • the configuration related to the third DC power transmission line LN3 will be described by adding "-3" to the end of the reference numerals. When it is not distinguished which DC transmission line configuration is used, the description will be given without adding numbers below the hyphen.
  • the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3 are not distinguished, they are described as DC transmission line LN.
  • the DC current circuit breaker 1 includes a plurality of first mechanical contacts 10, a plurality of second mechanical contacts 20, a plurality of commutation circuits 30, a first semiconductor circuit breaker 40-R, and a second semiconductor circuit breaker. It includes 40-L, a plurality of arresters 50, a plurality of first diodes 60, a plurality of second diodes 70, a plurality of reactors 80, and a control unit 100.
  • the numbers of the first mechanical contact 10, the second mechanical contact 20, the commutation circuit 30, the first diode 60, the second diode 70, and the reactor 80 included in the DC current cutoff device 1 are different. The number corresponds to the number of DC transmission line LNs (three in this case) connected to the DC current cutoff device 1. Further, the number of arresters 50 included in the DC current breaker 1 is a number corresponding to the number of semiconductor breakers (in this case, two) included in the DC current breaker 1.
  • the first semiconductor circuit breaker 40-R and the second semiconductor circuit breaker 40-L are not distinguished, they are described as the semiconductor circuit breaker 40. Further, it is assumed that the DC current cutoff device 1 includes two arresters, an arrester 50-R and an arrester 50-L. When the arrester 50-R and the arrester 50-L are not distinguished, it is described as the arrester 50.
  • the first mechanical contact 10-1 is provided on the first DC transmission line LN1
  • the first mechanical contact 10-2 is provided on the second DC transmission line LN2
  • the first mechanical contact is provided.
  • the contacts 10-3 are provided on the third DC transmission line LN3.
  • the second mechanical contact 20-1 is provided between the common transmission line LNc and the first mechanical contact 10-1
  • the second mechanical contact 20-2 is the common transmission line LNc and the first machine.
  • the second mechanical contact 20-3 is provided between the common transmission line LNc and the first mechanical contact 10-3.
  • An auxiliary disconnector MS may be further provided between each DC transmission line LN and the first mechanical contact 10.
  • an auxiliary disconnector MS is provided between each DC transmission line LN and the first mechanical contact 10.
  • an auxiliary disconnector MS-1 is provided between the first DC transmission line LN1 and the first mechanical contact 10-1, and the second DC transmission line LN2 and the first mechanical contact 10-
  • An auxiliary disconnector MS-2 is provided between the two, and an auxiliary disconnector MS-3 is provided between the third DC transmission line LN3 and the first mechanical contact 10-3.
  • the first mechanical contact 10 includes a first terminal 10a and a second terminal 10b
  • the second mechanical contact 20 includes a first terminal 20a and a second terminal 20b
  • the auxiliary disconnector MS includes an auxiliary disconnector MS. It includes a first terminal MSa and a second terminal MSb.
  • the second terminal MSb of the auxiliary disconnector MS-1 is connected to the first DC transmission line LN1.
  • the first terminal MSa of the auxiliary disconnector MS-1 and the second terminal 10b of the first mechanical contact 10-1 are connected to each other.
  • the first terminal 10a of the first mechanical contact 10-1 and the second terminal 20b of the second mechanical contact 20-1 are connected to each other.
  • the first terminal 20a of the second mechanical contact 20-1 is connected to the common power transmission line LNc.
  • the second terminal MSb of the auxiliary disconnector MS-2 is connected to the second DC transmission line LN2.
  • the first terminal MSa of the auxiliary disconnector MS-2 and the second terminal 10b of the first mechanical contact 10-2 are connected to each other.
  • the first terminal 10a of the first mechanical contact 10-2 and the second terminal 20b of the second mechanical contact 20-2 are connected to each other.
  • the first terminal 20a of the second mechanical contact 20-2 is connected to the common power transmission line LNc.
  • the second terminal MSb of the auxiliary disconnector MS-3 is connected to the third DC transmission line LN3.
  • the first terminal MSa of the auxiliary disconnector MS-3 and the second terminal 10b of the first mechanical contact 10-3 are connected to each other.
  • the first terminal 10a of the first mechanical contact 10-3 and the second terminal 20b of the second mechanical contact 20-3 are connected to each other.
  • the first terminal 20a of the second mechanical contact 20-3 is connected to the common power transmission line LNc.
  • the semiconductor circuit breaker 40 includes, for example, a plurality of (four in the figure) switching units connected in series with each other.
  • Each of the switching units includes a switching element and a diode connected in parallel with each other. Specifically, the cathode of the diode and the collector of the switching element are connected to each other, and the anode of the diode and the emitter of the switching element are connected to each other.
  • the switching element is, for example, a semiconductor switching element such as an insulated gate bipolar transistor (hereinafter, IGBT: Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the switching element is not limited to the IGBT.
  • the switching element may be any element as long as it can realize self-extinguishing.
  • the switching element is an IGBT
  • the emitter of the switching element of the switching unit is also referred to as “emitter of the switching unit”
  • the collector of the switching element of the switching unit is also described as “collector of the switching unit”.
  • the semiconductor circuit breaker 40 In the semiconductor circuit breaker 40, the emitter of the switching unit and the collector of the switching unit adjacent to the switching unit are connected.
  • the semiconductor circuit breaker 40 includes a first terminal 40a and a second terminal 40b. Of the plurality of switching portions included in the semiconductor circuit breaker 40, the collector of the switching portion at the end and the cathode of the diode connected in parallel to the switching portion at the end are connected to the first terminal 40a.
  • the second terminal 40b has an emitter of a switching portion at another end and an anode of a diode connected in parallel to the switching portion at the other end among a plurality of switching portions included in the semiconductor circuit breaker 40. Be connected.
  • the fact that the switching element included in the semiconductor circuit breaker 40 is in the ON state is also described as “the semiconductor circuit breaker 40 is in the closed state”, and the switching element included in the semiconductor circuit breaker 40 is in the OFF state. Is also described as “the semiconductor circuit breaker 40 is in the open state”.
  • the second terminal 40b of the first semiconductor circuit breaker 40-R is connected to the common power transmission line LNc. Further, the first terminal 40a of the first semiconductor circuit breaker 40-R is connected to the DC power transmission line LN via the second diode 70. Specifically, the first terminal 40a is connected to the cathodes of the second diodes 70-1 to 70-3. The anode of the second diode 70-1 and the other end of the reactor 80-1, the second terminal 10b of the first mechanical contact 10-1, and the first terminal MSa of the auxiliary disconnector MS-1 are connected to each other. Be connected.
  • the anode of the second diode 70-2, the other end of the reactor 80-2, the second terminal 10b of the first mechanical contact 10-2, and the first terminal MSa of the auxiliary disconnector MS-2 are connected to each other. Be connected.
  • the anode of the second diode 70-3, the other end of the reactor 80-3, the second terminal 10b of the first mechanical contact 10-3, and the first terminal MSa of the auxiliary disconnector MS-3 are connected to each other. Be connected.
  • the second diodes 70-1 to 70-3 allow the current flowing from the DC transmission line LN to the first direction of the common transmission line LNc, and allow the current flowing from the common transmission line LNc to the second DC transmission line LN. Block the current flowing in the direction.
  • the direction from the DC transmission line LN to the common transmission line LNc is also described as “first direction” or “inward”
  • the direction from the common transmission line LNc to the DC transmission line LN is "second direction” or "outside”. Also described as "direction”.
  • the first terminal 40a of the second semiconductor circuit breaker 40-L is connected to the common power transmission line LNc. Further, the second terminal 40b of the second semiconductor circuit breaker 40-L is connected to the DC power transmission line LN via the first diode 60 and the reactor 80. Specifically, the second terminal 40b is connected to the anodes of the first diodes 60-1 to 60-3. The cathode of the first diode 60-1 and the second terminal 30b of the commutation circuit 30-1 and one end of the reactor 80-1 are connected to each other, and the other end of the reactor 80-1 and the first mechanical type are connected to each other. The second terminal 10b of the contact 10-1 and the first terminal MSa of the auxiliary disconnector MS-1 are connected to each other.
  • the cathode of the first diode 60-2, the second terminal 30b of the commutation circuit 30-2, and one end of the reactor 80-2 are connected to each other, and the other end of the reactor 80-2 and the first mechanical type.
  • the second terminal 10b of the contact 10-2 and the first terminal MSa of the auxiliary disconnector MS-2 are connected to each other.
  • the cathode of the first diode 60-3, the second terminal 30b of the commutation circuit 30-3, and one end of the reactor 80-3 are connected to each other, and the other end of the disconnector 80-3 and the first mechanical type.
  • the second terminal 10b of the contact 10-3 and the first terminal MSa of the auxiliary disconnector MS-3 are connected to each other.
  • the first diodes 60-1 to 60-3 allow the current flowing from the common transmission line LNc to the DC transmission line LN, and the current flowing from the DC transmission line LN to the common transmission line LNc. To prevent.
  • the arrester 50-R is connected in parallel with the first semiconductor circuit breaker 40-R between the common power transmission line LNc and the second diode 70. Further, the arrester 50-L is connected in parallel with the second semiconductor circuit breaker 40-L between the common power transmission line LNc and the first diode 60. The arrester 50 absorbs surge energy generated by controlling the semiconductor circuit breaker 40 to be in the open state.
  • the first semiconductor circuit breaker 40-R is used to extinguish the DC system current in the first direction flowing from the DC transmission line LN to the common transmission line LNc to the arrester 50-R.
  • the semiconductor circuit breaker 40-L is used to extinguish the DC system current in the second direction flowing from the common transmission line LNc to the DC transmission line LN to the arrester 50-L.
  • the commutation circuit 30 includes, for example, a plurality of switching units (switching units 310a to 310d in the figure) and a capacitor C.
  • Each of the switching units includes a switching element and a diode connected in parallel with each other.
  • the switching unit 310c and the switching unit 310a are connected in series between the positive electrode and the negative electrode of the commutation circuit 30 in the order described, and the switching unit 310b and the switching unit 310d are rotated in the order described. It is connected in series between the positive electrode and the negative electrode of the flow circuit 30.
  • the emitter of the switching unit 310c and the collector of the switching unit 310a are connected to each other.
  • the emitter of the switching unit 310b and the collector of the switching unit 310d are connected to each other.
  • the collector of the switching unit 310c, the collector of the switching unit 310b, and the positive electrode of the capacitor C are connected to each other.
  • the emitter of the switching unit 310a, the emitter of the switching unit 310d, and the negative electrode of the capacitor C are connected to each other.
  • the first terminal 30a of the commutation circuit 30 is provided at the connection point between the collector of the switching unit 310a and the emitter of the switching unit 310c.
  • a second terminal 30b of the commutation circuit 30 is provided at a connection point between the emitter of the switching unit 310b and the collector of the switching unit 310d.
  • the first terminal 30a of the commutation circuit 30-1, the second terminal 20b of the second mechanical contact 20-1, and the first terminal 10a of the first mechanical contact 10-1 are connected to each other.
  • the first terminal 30a of the commutation circuit 30-2, the second terminal 20b of the second mechanical contact 20-2, and the first terminal 10a of the first mechanical contact 10-2 are connected to each other.
  • the first terminal 30a of the commutation circuit 30-3, the second terminal 20b of the second mechanical contact 20-3, and the first terminal 10a of the first mechanical contact 10-3 are connected to each other.
  • the second terminal 30b of the commutation circuit 30-1 and the cathode of the first diode 60-1 are connected to each other, and the second terminal 30b of the commutation circuit 30-2 and the cathode of the first diode 60-2 are connected to each other. They are connected to each other, and the second terminal 30b of the commutation circuit 30-3 and the cathode of the first diode 60-3 are connected to each other.
  • the reactor 80 is provided between the second terminal 30b and the second terminal 20b.
  • the control unit 100 controls the opening / closing of the auxiliary disconnector MS, the first mechanical contact 10, the second mechanical contact 20, the semiconductor circuit breaker 40, and the operation of the commutation circuit 30 (that is, the opening / closing of the switching units 310a to 310d). Control) etc.
  • each part is in the following state. It has become.
  • ⁇ Auxiliary disconnector MS closed state
  • ⁇ 1st mechanical contact 10 closed state
  • ⁇ 2nd mechanical contact 20 closed state
  • ⁇ commutation circuit 30 off state
  • Capacitor C provided in commutation circuit 30 charged state -Semiconductor breaker 40: Open state
  • a DC system current in the second direction is flowing through the first DC transmission line LN1 and the second DC transmission line LN2. Further, a DC system current in the first direction flows through the third DC transmission line LN3.
  • the DC current cutoff device 1 performs various cutoff controls according to the direction of the DC system current flowing through the DC power transmission line LN to be cut off, and cuts off the common power transmission line LNc and the DC power transmission line LN.
  • the details of the control of the DC current cutoff device 1 will be described.
  • FIG. 2 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where the first DC power transmission line LN1 in which the DC system current flows in the second direction is individually cut off in the first embodiment.
  • an abnormality has occurred in the first DC power transmission line LN1.
  • the abnormality that occurs in the DC transmission line LN is, for example, an abnormality that occurs due to an accident such as a ground fault or a short circuit.
  • the control unit 100 receives a cutoff instruction signal from the control system (not shown).
  • the control system is, for example, a system that controls the supply (accommodation) of electric power between each power system, and when an abnormality occurs in the DC system, a cutoff instruction signal is sent to the target DC current cutoff device 1 (control unit 100).
  • the cutoff instruction signal is, for example, a signal instructing a DC power transmission line LN that electrically cuts off the common power transmission line LNc.
  • the control unit 100 receives a cutoff instruction signal from the control system, the control unit 100 controls the first mechanical contact 10 and the second mechanical contact 20 provided on the target DC transmission line LN in an open state, and controls the target DC in an open state.
  • the switching unit 310 according to the direction of the DC system current flowing through the target DC transmission line LN is controlled to be in the ON state.
  • the cutoff instruction signal electrically cuts off the first DC power transmission line LN1 and the common power transmission line LNc.
  • the control unit 100 includes the following parts of the DC current cutoff device 1. Control to state. The operation of the commutation circuit 30 when the DC system current is in the first direction will be described later.
  • Auxiliary disconnector MS-1 Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Switching units 310a and 310b of commutation circuit 30-1: ON state -Switching units 310c, 310d of the commutation circuit 30-1: Off state-Semiconductor disconnector 40: Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 are described above. Normally remains in a conductive state.)
  • the first mechanical contact 10-1 and the second mechanical contact 20-1 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off.
  • the control unit 100 operates the commutation circuit 30-1, the switching units 310a and 310b included in the commutation circuit 30-1 are controlled to be on. Then, the commutation circuit 30-1 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C via the switching unit 310b, the reactor 80-1, the first mechanical contact 10-1, and the switching unit 310a.
  • a circuit is formed in which the current returns through the path rt1 to the negative electrode of the capacitor C.
  • This circuit is formed by connecting the first diode 60-1 to the reactor 80-1 in the direction described above, so that the common power transmission line LNc is formed via the second semiconductor circuit breaker 40-L. This is to block the current flowing in the direction, and the diode of the first semiconductor circuit breaker 40-R blocks the current flowing in the direction of the common power transmission line LNc. Since the current flowing back through this circuit is the current flowing in the second direction from the common transmission line LNc to the first DC transmission line LN1 in the first mechanical contact 10-1, the first mechanical contact 10 It acts to cancel the arc generated at -1. As a result, the current flowing through the first mechanical contact 10-1 becomes zero, and the first mechanical contact 10-1 is in an electrically cut-off state.
  • FIG. 3 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment.
  • the control unit 100 charges the capacitor C of the commutation circuit 30-1 in preparation for the next reclosing circuit when the first mechanical contact 10-1 is mechanically and electrically cut off.
  • each part included in the DC current cutoff device 1 is controlled to the following state.
  • Auxiliary disconnector MS-1 Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Switching parts 310a and 310b of commutation circuit 30-1: Off state -Switching units 310c, 310d of the commutation circuit 30-1: Off state-First semiconductor circuit breaker 40-R: Open state-Second semiconductor circuit breaker 40-L: Closed state (configuration related to the second DC transmission line LN2) And the configuration related to the third DC transmission line LN3 remains in the normal conduction state described above.)
  • the DC system current flowing from the common transmission line LNc to the first DC transmission line LN1 is the second mechanical contact 20-1, the switching unit 310c, the capacitor C, the switching unit 310d, and the reactor 80. It flows via the route rt2 via -1.
  • the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30-1 and sufficiently output the current flowing back through the path rt1 after the next reclosing.
  • the DC system current flowing from the common transmission line LNc to the DC transmission line LN is transferred to the switching element of the second semiconductor circuit breaker 40-L and the DC transmission line LN. It joins the path rt2 via the path rt3 via the first diode 60-1.
  • the DC current cutoff device 1 gradually transfers the DC system current flowing from the common transmission line LNc to the path via the second mechanical contact 20-1, the commutation circuit 30, and the auxiliary disconnector MS-1. It can be commutated to the second semiconductor circuit breaker 40-L.
  • FIG. 4 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40.
  • the DC system current does not flow through the commutation circuit 30-1, but flows through the second mechanical contact 20-1 and the commutation circuit 30-1 to the first DC transmission line LN1.
  • the DC system current is transferred to the path rt4 via the second semiconductor circuit breaker 40-L and the first diode 60-1.
  • the arc of the second mechanical contact 20-1 is extinguished by the zero point of the current, and the second mechanical contact 20-1 is mechanically and electrically controlled to be in an open state.
  • the control unit 100 sets each part of the DC current cutoff device 1. Control to the following states.
  • Auxiliary disconnector MS-1 Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Commuting circuit 30-1: Off state-First semiconductor circuit breaker 40-R: Open state / Second semiconductor circuit breaker 40-L: Closed state ⁇ Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 are the above-mentioned normal conduction states. as it is.)
  • the surge energy generated when the second semiconductor circuit breaker 40-L is controlled to the open state is absorbed by the arrester 50-L.
  • the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the first DC power transmission line LN1.
  • the control unit 100 finally opens the auxiliary disconnector MS-1 after the current flowing through the arrester 50-L becomes zero.
  • the auxiliary disconnector MS-1 is controlled to the open state, no current is already flowing, so no arc is generated.
  • the control unit 100 determines the timing at which the DC system current is transferred to the second semiconductor circuit breaker 40-L, such as the capacitor voltage of the capacitor C of the commutation circuit 30-1 and the first mechanical contact 10-1. It may be determined (determined) based on the current, or it may be determined (determined) based on the elapse of a predetermined time after the cutoff operation of the first DC transmission line LN1 is started.
  • FIG. 5 is a diagram showing an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the first embodiment.
  • the common transmission line LNc and the first DC transmission line It is electrically cut off from LN1.
  • the DC current cutoff device 1 suppresses the influence of the second DC transmission line LN2 and the third DC transmission line LN3 by the abnormality occurring in the first DC transmission line LN1, and suppresses the influence on the first DC transmission line LN1 other than the first DC transmission line LN1. It is possible to continue the supply of power by the DC system by the DC transmission line LN of.
  • FIG. 6 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where the third DC transmission line LN3 through which the DC system current flows in the first direction is individually cut off in the first embodiment. In the scene shown in FIG. 6, an abnormality has occurred in the first DC power transmission line LN1.
  • the control unit 100 receives a cutoff instruction signal from the control system.
  • the cutoff instruction signal electrically cuts off the third DC power transmission line LN3 and the common power transmission line LNc.
  • the control unit 100 describes each part included in the DC current cutoff device 1 as follows. Control to the state.
  • -Auxiliary disconnector MS-3 Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-Switching parts 310a and 310b of commutation circuit 30-3: Off state
  • the first mechanical contact 10-3 and the second mechanical contact 20-3 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off.
  • the control unit 100 operates the commutation circuit 30-3, the switching units 310c and 310d included in the commutation circuit 30-3 are controlled to be on. Then, the commutation circuit 30-3 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C via the switching unit 310c, the first mechanical contact 10-3, the reactor 80-3, and the switching unit 310d.
  • a circuit is formed in which a current returns through the path rt5 to the negative electrode of the capacitor C. Since the current flowing back through this circuit is the current flowing in the first direction of the common power transmission line LNc from the third DC power transmission line LN3 at the first mechanical contact 10-3, the current flows in the direction opposite to the current flowing in the first direction of the common power transmission line LNc. It acts to cancel the arc generated at -3. As a result, the current flowing through the first mechanical contact 10-3 becomes zero, and the first mechanical contact 10-3 is in an electrically cutoff state.
  • FIG. 7 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment.
  • the control unit 100 charges the capacitor C of the commutation circuit 30-3 in preparation for the next reclosing circuit when the first mechanical contact 10-3 is mechanically and electrically cut off.
  • each part included in the DC current cutoff device 1 is controlled to the following state.
  • -Auxiliary disconnector MS-3 Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-Switching parts 310a and 310b of commutation circuit 30-3: Off state -Switching units 310c and 310d of the commutation circuit 30-3: Off state-First semiconductor circuit breaker 40-R: Closed state-Second semiconductor circuit breaker 40-L: Open state (configuration related to the first DC transmission line LN1) And the configuration related to the second DC transmission line LN2 remains in the normal conduction state described above.)
  • the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the auxiliary disconnector MS-3, the reactor 80-3, the switching unit 310b, the capacitor C, the switching unit 310a, And flows via the path rt6 via the second mechanical contact 20-3.
  • the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30-3 and sufficiently output the current flowing back through the path rt5 after the next reclosing.
  • the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the second diode 70-3 and the first semiconductor. It flows through the path rt7 via the switching element of the circuit breaker 40-R.
  • the DC current cutoff device 1 transfers the DC system current flowing from the third DC transmission line LN3 to the path via the auxiliary disconnector MS-3, the commutation circuit 30-3, and the second mechanical contact 20-3. It can be gradually commutated to the first semiconductor circuit breaker 40-R.
  • FIG. 8 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40.
  • the direct current system current stopped flowing in the commutation circuit 30-3, and the direct current flowing in the common transmission line LNc via the commutation circuit 30-3 and the second mechanical contact 20-3.
  • the system current is transferred to the path rt7 via the second diode 70-3 and the first semiconductor circuit breaker 40-R.
  • the arc of the second mechanical contact 20-3 is extinguished by the zero point of the current, and the second mechanical contact 20-3 is mechanically and electrically controlled to be in an open state.
  • the control unit 100 transfers each part of the DC current circuit breaker 1 after the DC system current in the first direction flowing from the third DC power transmission line LN3 to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R.
  • the surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R.
  • the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the third DC power transmission line LN3.
  • the control unit 100 finally opens the auxiliary disconnector MS-3 after the current flowing through the arrester 50-R becomes zero.
  • the auxiliary disconnector MS-3 is controlled to the open state, no current is already flowing, so no arc is generated.
  • FIG. 9 is a diagram showing an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off in the first embodiment.
  • the common transmission line LNc and the third DC transmission line It is electrically cut off from LN3.
  • the DC current cutoff device 1 suppresses the influence of the third DC transmission line LN3 by the abnormality occurring in the first DC transmission line LN1, and cuts off the DC current at the end of the third DC transmission line LN3. It is possible to continue supplying the power of the DC system existing on the end side other than the device 1 side.
  • FIG. 10 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where an abnormality occurs in the common power transmission line LNc.
  • an abnormality has occurred in the common power transmission line LNc.
  • a DC system current in the first direction flows through the first DC power transmission line LN1, the second DC power transmission line LN2, and the third DC power transmission line LN3.
  • the control unit 100 controls each unit of the DC current cutoff device 1 so as to cut off the common power transmission line LNc and the DC power transmission line LN.
  • FIG. 11 is a diagram showing an example of a state of the DC current cutoff device 1 in a situation where the DC transmission line LN through which the DC system current flows in the first direction is completely cut off in the first embodiment.
  • the control unit 100 receives a cutoff instruction signal from the control system due to an abnormality in the common power transmission line LNc.
  • the cutoff instruction signal electrically cuts off the DC power transmission line LN (in this case, all three lines) through which the DC system current in the first direction flows and the common power transmission line LNc.
  • the control unit 100 controls each unit included in the DC current cutoff device 1 in the following states.
  • Auxiliary disconnector MS closed state ⁇ 1st mechanical contact 10: open state ⁇ 2nd mechanical contact 20: open state ⁇ Switching parts 310a and 310b of commutation circuit 30: off state ⁇ Switching part of commutation circuit 30 310c, 310d: On state / Semiconductor disconnector 40: Open state
  • the first mechanical contact 10 and the second mechanical contact 20 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but even if the contacts are simply separated, they are between the contacts. Since an arc is generated in, it cannot be electrically shut off.
  • the control unit 100 operates the commutation circuit 30, the switching units 310c and 310d included in the commutation circuit 30 are controlled to be on. Then, the commutation circuit 30 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C to the negative electrode of the capacitor C via the switching unit 310c, the first mechanical contact 10, the reactor 80, and the switching unit 310d.
  • a circuit is formed in which a current flows back through the paths (paths rt5 and rt8-rt9 shown in the figure). As a result, the current flowing through the first mechanical contact 10 becomes zero, and the first mechanical contact 10 is in an electrically cutoff state.
  • FIG. 12 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment.
  • the control unit 100 charges the capacitor C of the commutation circuit 30 in preparation for the next reclosing as the first mechanical contact 10 is mechanically and electrically cut off.
  • each part included in the DC current cutoff device 1 is controlled to the following state.
  • Auxiliary disconnector MS closed state ⁇ 1st mechanical contact 10: open state ⁇ 2nd mechanical contact 20: open state ⁇ Switching parts 310a and 310b of commutation circuit 30: off state ⁇ Switching part of commutation circuit 30 310c, 310d: Off state, 1st semiconductor circuit breaker 40-R: Closed state, 2nd semiconductor circuit breaker 40-L: Open state
  • the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the auxiliary disconnector MS, the reactor 80, the switching unit 310b, the capacitor C, the switching unit 310a, and the second mechanical contact. It flows via a path via 20 (path rt6, path rt10-rt11 in the figure).
  • the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30 and sufficiently output the current flowing back through the path rt5 and the path rt8-rt9 after the next reclosing.
  • the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the second diode 70 and the first semiconductor circuit breaker 40-. It flows via a path (path rt7, path rt12-rt13 in the figure) via the switching element of R.
  • the DC current circuit breaker 1 gradually transfers the DC system current flowing from the DC transmission line LN to the path via the auxiliary disconnector MS, the commutation circuit 30, and the second mechanical contact 20 to the first semiconductor circuit breaker 40. It can be commutated to -R.
  • FIG. 13 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40.
  • the DC system current does not flow in the commutation circuit 30, and the DC system current flowing through the commutation circuit 30 and the second mechanical contact 20 in the common transmission line LNc is the second diode 70.
  • the path rt7 and the path rt12-rt13 via the first semiconductor circuit breaker 40-R.
  • the arc of the second mechanical contact 20 is extinguished by the zero point of the current, and the second mechanical contact 20 is mechanically and electrically controlled to be in an open state.
  • the control unit 100 transfers each part of the DC current circuit breaker 1 after all of the DC system current in the first direction flowing from the DC power transmission line LN to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states. ⁇ Auxiliary disconnector MS: closed state ⁇ 1st mechanical contact 10: open state ⁇ 2nd mechanical contact 20: open state ⁇ commutation circuit 30: off state ⁇ 1st semiconductor circuit breaker 40-R: closed state ⁇ open state State-Second semiconductor circuit breaker 40-L: Open state
  • the surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R.
  • the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the DC power transmission line LN.
  • the control unit 100 finally opens the auxiliary disconnector MS after the current flowing through the arrester 50-R becomes zero.
  • the auxiliary disconnector MS is controlled to the open state, no current is already flowing, so no arc is generated.
  • FIG. 14 is a diagram showing an example of the state of the DC current cutoff device 1 in a scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off.
  • the DC current cutoff device 1 suppresses the influence of the DC transmission line LN due to an abnormality occurring in the common transmission line LNc, and is not the DC current cutoff device 1 side of the ends of each DC transmission line LN. The adverse effect on the DC system existing on the end side can be eliminated.
  • FIG. 15 is a flowchart showing an example of processing of the DC current cutoff device 1.
  • the control unit 100 receives a cutoff instruction signal from the control system (step S100).
  • the control unit 100 waits until the cutoff instruction signal is received.
  • the control unit 100 determines whether or not the cutoff instruction signal indicates an instruction to cut off a plurality of DC transmission line LNs (that is, whether or not it is an individual cutoff) (step S102).
  • the control unit 100 determines that the cutoff instruction signal is a signal instructing to cut off the plurality of DC power transmission line LNs, the control unit 100 is provided on the plurality of DC power transmission line LNs to be cut off instructed by the cutoff instruction signal.
  • Each of the 1 mechanical contact 10 and the 2nd mechanical contact 20 is controlled to be in an open state (step S104).
  • the control unit 100 operates each of the commutation circuits 30 corresponding to the plurality of DC transmission line LNs to be cut off so as to cancel the current flowing through the DC transmission line LN to be cut off (step S106).
  • the control unit 100 controls the semiconductor circuit breaker 40 corresponding to the direction of the DC system current flowing through the target DC transmission line LN (that is, the transmission direction) in the closed state (step S108).
  • the direction of the DC system current flowing through the target DC transmission line LN is the first direction or the second direction
  • the semiconductor circuit breaker 40 corresponding to the first direction is the first semiconductor circuit breaker 40-R.
  • the semiconductor circuit breaker 40 corresponding to the second direction is the second semiconductor circuit breaker 40-L.
  • the DC power transmission line LNs that are cut off by the instruction indicated by the cutoff instruction signal are all DC power transmission line LNs in which the DC system current flows in the same direction.
  • the control unit 100 determines whether or not all of the DC system current flowing through the target DC transmission line LN has been transferred to the corresponding semiconductor circuit breaker 40 (step S110). The control unit 100 stands by until all of the DC system current flowing through the target DC transmission line LN is transferred to the corresponding semiconductor circuit breaker 40.
  • the control unit 100 determines the timing at which the DC system current is transferred to the semiconductor circuit breaker 40 based on the capacitor voltage of the capacitor C of the commutation circuit 30-1 and the current of the auxiliary circuit breaker MS-1. Alternatively, the determination may be made based on the elapse of a predetermined time after the cutoff operation of the target DC transmission line LN is started. In this way, when the semiconductor circuit breaker 40 is controlled to the closed state without performing the determination process, the control unit 100 does not have to perform the process of step S110.
  • step S108 When the control unit 100 determines that all of the DC system current flowing through the target DC transmission line LN has been transferred to the corresponding semiconductor circuit breaker 40 (if step S108 is not performed, the timing is predetermined. Or, when a predetermined time has elapsed), the corresponding semiconductor circuit breaker 40 is controlled to be in the open state (step S112). Next, the control unit 100 controls each of the auxiliary disconnector MSs provided in the plurality of DC transmission line LNs to be cut off in an open state (step S114). As a result, the DC current cutoff device 1 can cut off the plurality of target DC power transmission lines LN and the common power transmission line LNc.
  • the control unit 100 determines that the cutoff instruction signal is a signal instructing individual cutoff, the control unit 100 has a first mechanical contact 10 provided on the DC transmission line LN to be cut off indicated by the cutoff instruction signal, and a first 2 The mechanical contact 20 is controlled to be in the open state (step S116).
  • the control unit 100 operates the commutation circuit 30 corresponding to the DC transmission line LN to be cut off so as to cancel the current flowing through the DC transmission line LN to be cut off (step S118).
  • the control unit 100 controls the semiconductor circuit breaker 40 corresponding to the direction of the DC system current flowing through the target DC transmission line LN (that is, the transmission direction) in the closed state (step S120).
  • the control unit 100 controls the corresponding semiconductor circuit breaker 40 to be in an open state (step S122).
  • the control unit 100 controls the auxiliary disconnector MS provided in the DC transmission line LN to be cut off in an open state (step S124).
  • the DC current cutoff device 1 can cut off one DC power transmission line LN to be cut off and the common power transmission line LNc.
  • the DC current circuit breaker 1 of the present embodiment includes a plurality of first mechanical contacts 10 (in this example, first mechanical contacts 10-1 to 10-3) and a plurality of second machines.
  • Formula contacts 20 in this example, second mechanical contacts 20-1 to 20-3
  • a plurality of commutation circuits 30 in this example, commutation circuits 30-1 to 30-3)
  • a first semiconductor It has a circuit breaker 40-R and a second semiconductor circuit breaker 40-L.
  • the first mechanical contact 10 is provided on each of a plurality of DC transmission line LNs (in this example, the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3) constituting the DC system. ..
  • the second mechanical contact 20 is provided between the plurality of first mechanical contacts 10 and the common power transmission line LNc commonly connected to the plurality of DC power transmission lines LN.
  • each commutation circuit 30 has a capacitor C, and one of the plurality of DC transmission line LNs is transferred from the DC transmission line LN to the common transmission line LNc.
  • the current flowing in the first direction or the current flowing in the second direction from the common transmission line LNc to the DC transmission line LN is commutated.
  • the first end is connected to the common power transmission line LNc
  • the second end is connected to a plurality of DC power transmission lines LN
  • the current flowing in the first direction in which the commutation circuit 30 is commutated. Can be blocked.
  • the first end of the second semiconductor circuit breaker 40-L is connected to a plurality of DC power transmission lines LN
  • the second end is connected to the common power transmission line LNc
  • the commutation circuit 30 flows in the second direction in which the commutation circuit 30 is commutated. The current can be cut off.
  • the DC current in the first direction can be transferred to the first semiconductor circuit breaker 40-R by the commutation circuit 30 of the full bridge circuit, and the DC in the second direction is DC.
  • the system current can be transferred to the second semiconductor circuit breaker 40-L.
  • the first semiconductor breaker 40-R can cut off the DC system current in the first direction
  • the second semiconductor breaker 40-L can cut off the DC system in the second direction.
  • the current can be cut off. Therefore, the DC current cutoff device 1 of the present embodiment can cut off the DC system current in both directions of the first direction and the second direction at the common transmission line LNc which is a coupling point of the plurality of DC transmission line LNs. ..
  • the second embodiment will be described with reference to the drawings.
  • the commutation circuit 30 is composed of a first commutation circuit 31 that commutates the DC system current in the first direction and a second commutation circuit 32 that commutates the DC system current in the second direction.
  • the same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 16 is a diagram showing an example of the configuration of the DC current cutoff device 1a of the second embodiment.
  • the commutation circuit 30 of the DC current cutoff device 1a is, for example, a first commutation circuit 31 that commutates a DC system current in the first direction and a second commutation circuit 32 that commutates a DC system current in the second direction.
  • the DC current cutoff device 1a includes first reactors 81-1 to 81-3 and second reactors 82-1 to 82-3 in place of the reactors 80-1 to 80-3.
  • the first commutation circuit 31 is an example of the "first commutator circuit”
  • the second commutation circuit 32 is an example of the "second commutator circuit”.
  • the first commutation circuit 31 includes, for example, a plurality of switching units (switching units 310c and 310d shown), a plurality of diodes (diodes 320a and 320b shown), and a capacitor C.
  • the second commutation circuit 32 includes, for example, a plurality of switching units (switching units 310a and 310b shown), a plurality of diodes (diodes 320c and 320d shown), and a capacitor C.
  • the switching unit 310c and the diode 320a are connected in series between the positive electrode and the negative electrode of the first commutation circuit 31 in the order described, and the diode 320b and the switching unit 310d are connected. Are connected in series between the positive electrode and the negative electrode of the first commutation circuit 31 in the order described.
  • the emitter of the switching unit 310c and the cathode of the diode 320a are connected to each other.
  • the anode of the diode 320b and the collector of the switching unit 310d are connected to each other.
  • the collector of the switching unit 310c, the cathode of the diode 320b, and the positive electrode of the capacitor C are connected to each other.
  • the anode of the diode 320a, the emitter of the switching unit 310d, and the negative electrode of the capacitor C are connected to each other.
  • a first terminal 31a of the first commutation circuit 31 is provided at a connection point between the emitter of the switching unit 310c and the cathode of the diode 320a.
  • a second terminal 31b of the first commutation circuit 31 is provided at a connection point between the anode of the diode 320b and the collector of the switching unit 310d.
  • the diode 320c and the switching unit 310a are connected in series between the positive electrode and the negative electrode of the commutation circuit 30 in the order described, and the switching unit 310b and the diode 320d are connected to each other.
  • the commutation circuit 30 is connected in series between the positive electrode and the negative electrode.
  • the anode of the diode 320c and the collector of the switching unit 310a are connected to each other.
  • the emitter of the switching unit 310b and the cathode of the diode 320d are connected to each other.
  • the cathode of the diode 320c, the collector of the switching unit 310b, and the positive electrode of the capacitor C are connected to each other.
  • the emitter of the switching unit 310a, the anode of the diode 320d, and the negative electrode of the capacitor C are connected to each other.
  • the first terminal 32a of the second commutation circuit 32 is provided at the connection point between the collector of the switching unit 310a and the anode of the diode 320c.
  • a second terminal 32b of the second commutation circuit 32 is provided at a connection point between the emitter of the switching unit 310b and the cathode of the diode 320d.
  • the first terminal 31a of the first commutation circuit 31 and the first terminal 32a of the second commutation circuit 32 are connected to the same locations as the first terminal 30a described above.
  • the second terminal 31b of the first commutation circuit 31, the anode of the second diode 70, and one end of the second reactor 82 are connected to each other. Further, the other end of the second reactor 82, the second terminal 10b of the first mechanical contact 10, and the first terminal MSa of the auxiliary disconnector MS are connected to each other.
  • the second terminal 32b of the second commutation circuit 32, the cathode of the first diode 60, and one end of the first reactor 81 are connected to each other. Further, the other end of the first reactor 81, the second terminal 10b of the first mechanical contact 10, and the first terminal MSa of the auxiliary disconnector MS are connected to each other.
  • each part is in the following state.
  • ⁇ Auxiliary circuit breaker MS closed state ⁇ 1st mechanical contact 10: closed state ⁇ 2nd mechanical contact 20: closed state ⁇ 1st commutation circuit 31: off state ⁇ 2nd commutation circuit 32: off state ⁇ No. 1 Capacitor C included in commutation circuit 31: charged state ⁇ Capacitor C included in second commutation circuit 32: charged state ⁇
  • Semiconductor circuit breaker 40 open state The following is the details of control of the DC current circuit breaker 1a. explain.
  • the cutoff instruction signal electrically cuts off the first DC power transmission line LN1 and the common power transmission line LNc.
  • the control unit 100 includes the following parts of the DC current cutoff device 1a as follows. Control to state. The operation of the first commutation circuit 31 and the second commutation circuit 32 when the DC system current is in the first direction will be described later.
  • Auxiliary disconnector MS-1 Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-First commutation circuit 31-1: Off state-Second roll Flow circuit 32-1: On state / Semiconductor disconnector 40: Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 remain in the above-mentioned normal conduction state).
  • the first mechanical contact 10-1 and the second mechanical contact 20-1 of the DC current cutoff device 1a are mechanically controlled to be in the open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off.
  • the control unit 100 operates the second commutation circuit 32-1
  • the switching units 310a and 310b included in the second commutation circuit 32-1 are controlled to be in the ON state. Then, the second commutation circuit 32-1 discharges the electric charge stored in the capacitor C, and the switching unit 310b, the first reactor 81-1, the first mechanical contact 10-1, and the switching from the positive electrode of the capacitor C.
  • a circuit is formed in which a current returns through the path rt14 to the negative electrode of the capacitor C via the portion 310a. As a result, the current flowing through the first mechanical contact 10-1 becomes zero, and the first mechanical contact 10-1 is in an electrically cut-off state.
  • FIG. 17 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the capacitor C is charged in the second embodiment.
  • the control unit 100 sets the capacitor C of the second commutation circuit 32-1 in preparation for the next reclosing circuit as the first mechanical contact 10-1 is mechanically and electrically cut off.
  • each part of the DC current cutoff device 1a is controlled to the following state.
  • the DC system current flowing from the common transmission line LNc to the first DC transmission line LN1 is the second mechanical contact 20-1, the diode 320c of the second commutation circuit 32-1, and the capacitor C. , The diode 320d, and the path rt15 via the first reactor 81-1.
  • the DC current cutoff device 1a can charge the capacitor C included in the second commutation circuit 32-1 and sufficiently output the current flowing back through the path rt14 after the next reclosing.
  • the DC system current flowing from the common power transmission line LNc to the first DC power transmission line LN1 becomes the second semiconductor circuit breaker 40-L and the second semiconductor circuit breaker 40-L. 1 It joins the path rt15 via the path rt16 via the diode 60-1. As a result, the DC current cutoff device 1a flows from the common transmission line LNc to the path via the second mechanical contact 20-1, the second commutation circuit 32-1, and the auxiliary disconnector MS-1. Can be gradually commutated to the second semiconductor circuit breaker 40-L.
  • FIG. 18 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40.
  • the DC system current stopped flowing through the second commutation circuit 32-1, and the DC system was flowing through the first DC transmission line LN1 via the second mechanical contact 20-1 and the second commutation circuit 32-1.
  • the current is transferred to the path rt16 via the second semiconductor circuit breaker 40-L and the first diode 60-1.
  • the arc of the second mechanical contact 20-1 is extinguished by the zero point of the current, and the second mechanical contact 20-1 is mechanically and electrically controlled to be in an open state.
  • control unit 100 sets each part of the DC current cutoff device 1a. Control to the following states.
  • the surge energy generated when the second semiconductor circuit breaker 40-L is controlled to the open state is absorbed by the arrester 50-L.
  • the DC current cutoff device 1a can electrically cut off the common power transmission line LNc and the first DC power transmission line LN1.
  • the control unit 100 finally opens the auxiliary disconnector MS-1 after the current flowing through the arrester 50-L becomes zero.
  • the auxiliary disconnector MS-1 is controlled to the open state, no current is already flowing, so no arc is generated.
  • FIG. 19 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the second embodiment.
  • FIG. 20 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene in which the third DC transmission line LN3 through which the DC system current flows in the first direction is individually cut off in the second embodiment.
  • an abnormality has occurred in the first DC power transmission line LN1.
  • the control unit 100 receives a cutoff instruction signal from the control system.
  • the cutoff instruction signal electrically cuts off the third DC power transmission line LN3 and the common power transmission line LNc.
  • the control unit 100 includes the following parts of the DC current cutoff device 1a as follows. Control to state.
  • the first mechanical contact 10-3 and the second mechanical contact 20-3 of the DC current cutoff device 1a are mechanically controlled to be in the open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off.
  • the control unit 100 operates the first commutation circuit 31-3
  • the switching units 310c and 310d included in the first commutation circuit 31-3 are controlled to be in the ON state. Then, the first commutation circuit 31-3 discharges the electric charge stored in the capacitor C, and the switching unit 310c, the first mechanical contact 10-3, the second reactor 82-3, and the switching from the positive electrode of the capacitor C.
  • a circuit is formed in which a current returns through the path rt17 to the negative electrode of the capacitor C via the unit 310d. As a result, the current flowing through the first mechanical contact 10-3 becomes zero, and the first mechanical contact 10-3 is in an electrically cutoff state.
  • FIG. 21 is a diagram showing an example of the state of the DC current cutoff device 1a in the scene where the capacitor C is charged in the second embodiment.
  • the control unit 100 sets the capacitor C of the first commutation circuit 31-3 in preparation for the next reclosing as the first mechanical contact 10-3 is mechanically and electrically cut off.
  • each part of the DC current cutoff device 1a is controlled to the following state.
  • the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the auxiliary circuit breaker MS-3, the second reactor 82-3, the diode 320b, the capacitor C, and the diode 320a. And flows via the path rt18 via the second mechanical contact 20-3.
  • the DC current cutoff device 1a can charge the capacitor C included in the first commutation circuit 31-3 and sufficiently output the current flowing back through the path rt17 after the next reclosing.
  • the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the second diode 70-3 and the first semiconductor. It flows through the path rt19 via the switching element of the circuit breaker 40-R.
  • the DC current cutoff device 1a causes the DC current to flow from the third DC transmission line LN3 to the path via the auxiliary disconnector MS-3, the first commutation circuit 31-3, and the second mechanical contact 20-3. Can be gradually commutated to the first semiconductor circuit breaker 40-R.
  • FIG. 22 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40.
  • the DC system current does not flow through the first commutation circuit 31-3, and the DC system current flowing through the common transmission line LNc via the first commutation circuit 31-3 and the second mechanical contact 20-3 flows.
  • the second diode 70-3, and the first semiconductor circuit breaker 40-R are commutated to the path rt19.
  • the arc of the second mechanical contact 20-3 is extinguished by the zero point of the current, and the second mechanical contact 20-3 is mechanically and electrically controlled to be in an open state.
  • the control unit 100 transfers each part of the DC current circuit breaker 1a after the DC system current in the first direction flowing from the third DC power transmission line LN3 to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states.
  • the surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R.
  • the DC current cutoff device 1a can electrically cut off the common power transmission line LNc and the third DC power transmission line LN3.
  • the control unit 100 finally opens the auxiliary disconnector MS-3 after the current flowing through the arrester 50-R becomes zero.
  • the auxiliary disconnector MS-3 is controlled to the open state, no current is already flowing, so no arc is generated.
  • FIG. 23 is a diagram showing an example of the state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off.
  • FIG. 24 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where an abnormality occurs in the common power transmission line LNc.
  • an abnormality has occurred in the common power transmission line LNc.
  • a DC system current in the first direction flows through the first DC power transmission line LN1, the second DC power transmission line LN2, and the third DC power transmission line LN3.
  • the control unit 100 controls each unit of the DC current cutoff device 1a so as to cut off the common power transmission line LNc and the DC power transmission line LN.
  • FIG. 25 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the DC transmission line LN through which the DC system current flows in the first direction is completely cut off in the second embodiment.
  • the control unit 100 receives a cutoff instruction signal from the control system due to an abnormality in the common power transmission line LNc.
  • the cutoff instruction signal electrically cuts off the DC power transmission line LN (in this case, all three lines) through which the DC system current in the first direction flows and the common power transmission line LNc.
  • the control unit 100 controls each unit included in the DC current cutoff device 1a in the following states.
  • the first mechanical contact 10 and the second mechanical contact 20 of the DC current cutoff device 1a are mechanically controlled to be in an open state, but even if the contacts are simply separated, the contacts are separated from each other. Since an arc is generated in, it cannot be electrically shut off.
  • the control unit 100 operates the first commutation circuit 31, the switching units 310c and 310d included in the first commutation circuit 31 are controlled to be on. Then, the first commutation circuit 31 discharges the electric charge stored in the capacitor C, and from the positive electrode of the capacitor C, the capacitor is passed through the switching section 310c, the first mechanical contact 10, the second reactor 82, and the switching section 310d.
  • a circuit is formed in which a current flows back through the path to the negative electrode of C (path rt17, path rt20-rt21 in the figure). As a result, the current flowing through the first mechanical contact 10 becomes zero, and the first mechanical contact 10 is in an electrically cutoff state.
  • FIG. 26 is a diagram showing an example of the state of the DC current cutoff device 1a in the scene where the capacitor C is charged in the second embodiment.
  • the control unit 100 charges the capacitor C of the first commutation circuit 31 in preparation for the next reclosing as the first mechanical contact 10 is mechanically and electrically cut off.
  • each part of the DC current cutoff device 1a is controlled to the following state.
  • ⁇ Auxiliary disconnector MS closed state
  • ⁇ 1st mechanical contact 10 open state
  • 2nd mechanical contact 20 open state
  • 1st commutation circuit 31 off state
  • 2nd commutation circuit 32 off state
  • No. 1 Semiconductor disconnector 40-R Closed state
  • 2nd semiconductor circuit breaker 40-L Open state
  • the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the auxiliary disconnector MS, the second reactor 82, the diode 320b, the capacitor C, the diode 320a, and the second mechanical contact. It flows via a path via 20 (path rt18, path rt22-rt23 in the figure).
  • the DC current cutoff device 1a can charge the capacitor C included in the first commutation circuit 31 and sufficiently output the current flowing back through the path rt17 and the path rt20-rt21 after the next reclosing.
  • the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the second diode 70 and the first semiconductor circuit breaker 40-. It flows via a path (path rt19, path rt24-rt25 in the figure) via the switching element of R.
  • the DC current cutoff device 1a gradually cuts off the DC system current flowing from the DC transmission line LN to the path via the auxiliary disconnector MS, the first commutation circuit 31, and the second mechanical contact 20. It can be commutated to the vessel 40-R.
  • FIG. 27 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40.
  • the direct current system current does not flow in the first commutation circuit 31, and the direct current system current flowing in the common transmission line LNc via the first commutation circuit 31 and the second mechanical contact 20 is transferred to the second diode 70. And, it is commutated to the path rt19 and the path rt24-rt25 via the first semiconductor circuit breaker 40-R. Along with this, the arc of the second mechanical contact 20 is extinguished by the zero point of the current, and the second mechanical contact 20 is mechanically and electrically controlled to be in an open state.
  • the control unit 100 transfers each part of the DC current circuit breaker 1a after all of the DC system current in the first direction flowing from the DC power transmission line LN to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states. ⁇ Auxiliary disconnector MS: closed state ⁇ 1st mechanical contact 10: open state ⁇ 2nd mechanical contact 20: open state ⁇ 1st commutation circuit 31: off state ⁇ 2nd commutation circuit 32: off state ⁇ No. 1 Semiconductor disconnector 40-R: Closed state ⁇ Open state ⁇ Second semiconductor circuit breaker 40-L: Open state
  • the surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R.
  • the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the DC power transmission line LN.
  • the control unit 100 finally opens the auxiliary disconnector MS after the current flowing through the arrester 50-R becomes zero.
  • the auxiliary disconnector MS is controlled to the open state, no current is already flowing, so no arc is generated.
  • FIG. 28 is a diagram showing an example of the state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off. As shown in FIG. 28, since the first mechanical contact 10, the second mechanical contact 20, and the auxiliary disconnector MS are controlled in the open state, the common transmission line LNc and the DC transmission line LN are electrically cut off. Will be done.
  • the DC current cutoff device 1 and the DC current cutoff device 1a are any one of the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3.
  • the case where the LN and the common transmission line LNc are cut off (that is, individual cutoff) or all the DC power transmission line LN and the common power transmission line LNc are cut off (that is, all cutoff) has been described, but the present invention is not limited to this. ..
  • the DC current cutoff device 1 and the DC current cutoff device 1a cut off, for example, two or more DC transmission line LNs in which a DC system current flows in the same direction and a common transmission line LNc among the DC transmission line LNs. It may be.
  • a DC system current flows in the second direction between the first DC power transmission line LN1 and the second DC power transmission line LN2.
  • the DC current cutoff device 1 and the DC current cutoff device 1a may cut off the first DC power transmission line LN1 and the second DC power transmission line LN2 and the common power transmission line LNc.
  • the process of shutting off the second DC power transmission line LN2 in the scenes of FIGS. 2 and 16 is the same as the process of shutting off the first DC power transmission line LN1 in the scenes of FIGS. 2 and 16.
  • the control unit 100 transfers both the DC system current flowing through the first DC transmission line LN1 and the DC system current flowing through the second DC transmission line LN2 to the second semiconductor circuit breaker 40-L.
  • the second semiconductor circuit breaker 40-L is controlled to be in the open state.
  • the DC current cutoff device 1 and the DC current cutoff device 1a have two or more DC transmission line LNs (in this case, the first DC transmission line) in which the DC system current flows in the same direction (in this case, the second direction).
  • the LN1 and the second DC transmission line LN2) and the common transmission line LNc can be cut off.
  • the DC current cutoff device 1 and the DC current cutoff device 1a are the first DC transmission line LN1 in the scene where the same second-direction DC system current flows through the first DC transmission line LN1 and the third DC transmission line LN3.
  • the third DC transmission line LN3 and the common transmission line LNc may be cut off.
  • the current cutoff device 1 and the DC current cutoff device 1a may cut off the second DC transmission line LN2, the third DC transmission line LN3, and the common transmission line LNc.
  • the third DC transmission line LN3 has a DC system current flowing in the first direction
  • the first DC transmission line LN1 and the second DC transmission line LN2 have a second DC transmission line.
  • the second DC transmission line LN2 and the third DC transmission line LN3 are in the first direction.
  • the process of shutting off the second DC power transmission line LN2 in the scenes of FIGS. 6 and 20 is the same as the process of shutting off the third DC power transmission line LN3 in the scene of FIGS. 6 and 20.
  • both the DC system current flowing through the third DC transmission line LN3 and the DC system current flowing through the second DC transmission line LN2 are transferred to the first semiconductor circuit breaker 40-R.
  • the first semiconductor circuit breaker 40-R is controlled to be in the open state.
  • the DC current cutoff device 1 has two or more DC transmission line LNs (in this case, the third DC transmission line LN3 and the second DC transmission) in which the DC system current flows in the same direction (in this case, the first direction).
  • the line LN2) and the common transmission line LNc can be cut off.
  • the DC current cutoff device 1 and the DC current cutoff device 1a may cut off the first DC transmission line LN1 and the third DC transmission line LN3 and the common transmission line LNc.
  • the process of interrupting the DC transmission line LN through which the DC system current in the first direction flows and the common transmission line LNc by these combinations is the same as the above-mentioned process, and the hyphen and the following at the end of the code may be replaced. Therefore, the description thereof will be omitted.
  • the reactor component of the reactor 80 is the commutation operation of the commutation circuit 30, the first semiconductor circuit breaker 40-R, and the second semiconductor circuit breaker 40-. It may be provided at a position that acts on the blocking operation of L.
  • FIG. 29 is a diagram showing another example of the position of the reactor 80 in the DC current cutoff device 1.
  • one end of the reactor 80, the second terminal 30b of the commutation circuit 30, the cathode of the first diode 60, and the anode of the second diode 70 are connected to each other, and the other end of the reactor 80 and the first The two terminals 20b are connected to each other.
  • the reactor component of the reactor 80 causes recirculation associated with the operation of the commutation circuit 30 in the path rt26, and is commutated to the first semiconductor circuit breaker 40-R in the first direction.
  • the inductance of the DC system current path rt27 and the second direction DC system current path rt28 commutated to the second semiconductor circuit breaker 40-L can be unified.
  • FIG. 30 is a diagram showing another example of the position of the reactor in the DC current cutoff device 1a.
  • the DC current cutoff device 1a includes third reactors 83-1 to 83-3 in place of the first reactors 81-1 to 81-3 and the second reactors 82-1 to 82-3. ..
  • One end of the third reactor 83, the second terminal 31b of the first commutation circuit 31, the anode of the second diode 70, the second terminal 32b of the second commutation circuit 32, and the cathode of the first diode 60 They are connected to each other, and the other end of the third reactor 83 and the second terminal 20b are connected to each other.
  • the reactor component of the third reactor 83 causes the recirculation associated with the operation of the first commutation circuit 31 to occur in the path rt29, or to the operation of the second commutation circuit 32.
  • the inductance of the DC system current with the path rt32 can be unified.
  • the reactor component of the reactor 80 acts on the commutation circuit 30 and the DC system current in the second direction commutated to the second semiconductor circuit breaker 40-L.
  • it did not act on the DC system current in the first direction commutated to the first semiconductor circuit breaker 40-R.
  • the DC current breaker 1 uses the DC current cutoff speed of the first semiconductor circuit breaker 40-R and the second semiconductor. It was not possible to unify or adjust the DC system current cutoff speed of the circuit breaker 40-L.
  • the DC current breaker 1 has the DC current cutoff speed of the first semiconductor circuit breaker 40-R and the DC current cutoff speed of the second semiconductor circuit breaker 40-L.
  • the DC system current cutoff speed can be unified or adjusted.
  • the DC current circuit breaker 1a has the first commutation circuit 31 and the second commutation circuit 31 while reducing the number of parts.
  • the third reactor 83 is made to act on the commutation operation of the flow circuit 32 to unify the DC system current cutoff speed of the first semiconductor circuit breaker 40-R and the DC system current cutoff speed of the second semiconductor circuit breaker 40-L, or Can be adjusted.

Abstract

Provided is a DC breaking device having a plurality of first mechanical contact points, a plurality of second mechanical contact points, a plurality of commutation circuits, a first semiconductor circuit breaker, and a second semiconductor circuit breaker. The first mechanical contact points are respectively provided in a plurality of DC power transmission lines constituting a DC system. The second mechanical contact points are respectively provided between the plurality of first mechanical contact points and a common power transmission line to which the plurality of DC power transmission lines are commonly connected. The plurality of commutation circuits each have a capacitor and commutate the current flowing in a first direction toward the common power transmission line from any one of the plurality of DC power transmission lines or the current flowing in a second direction toward the DC power transmission lines from the common power transmission line. The first semiconductor circuit breaker can interrupt the current commutated by the commutation circuits and flowing in the first direction. The second semiconductor circuit breaker has a second end connected to the common power transmission line and can interrupt the current commutated by the commutation circuits and flowing in the second direction.

Description

直流遮断器DC circuit breaker
 本発明の実施形態は、直流遮断器に関する。 An embodiment of the present invention relates to a DC circuit breaker.
 近年、複数の直流送電線で構成された直流送電網による電力の送電が行われている。直流送電網においては事故が発生した場合、特定の送電線のみを遮断し、残りの送電線によって電力の送電を継続する場合がある。これに関して、複数の直流送電線路の結合点において用いられ、複数の直流送電線路のうち一部、又は全部に流れる電流を遮断する直流電流遮断装置に関する技術が知られている。 In recent years, electric power has been transmitted by a DC transmission network composed of multiple DC transmission lines. In the case of an accident in the DC power grid, only a specific power line may be cut off and the remaining power lines may continue to transmit power. In this regard, there is known a technique relating to a DC current cutoff device that is used at a coupling point of a plurality of DC power transmission lines and cuts off a current flowing through a part or all of the plurality of DC power transmission lines.
 しかしながら、従来の直流電流遮断装置では、各直流送電線路から結合点に流れる電流を遮断できても、結合点から各直流送電線路に流れる電流を遮断することが困難である場合があった。 However, with the conventional DC current cutoff device, even if the current flowing from each DC transmission line to the coupling point can be cut off, it may be difficult to cut off the current flowing from the coupling point to each DC transmission line.
国際公開第2019/035180号International Publication No. 2019/035180
 本発明が解決しようとする課題は、複数の直流送電線路の結合点において双方向の電流を遮断することができる直流電流遮断装置を提供することである。 An object to be solved by the present invention is to provide a DC current cutoff device capable of cutting off bidirectional current at a coupling point of a plurality of DC power transmission lines.
 実施形態の直流電流遮断装置は、複数の第1機械式接点と、複数の第2機械式接点と、複数の転流回路と、第1半導体遮断器と、第2半導体遮断器を持つ。第1機械式接点は、直流系統を構成する複数の直流送電線路にそれぞれ設けられる。第2機械式接点は、前記複数の第1機械式接点と、前記複数の直流送電線路に共通して接続される共通送電線路との間にそれぞれ設けられる。複数の転流回路は、それぞれの転流回路が、コンデンサを有し、前記複数の直流送電線路のうちいずれかの直流送電線路から前記共通送電線路への第1方向に流れる電流、又は前記共通送電線路から前記直流送電線路への第2方向に流れる電流を転流するものである。第1半導体遮断器は、第1端が前記共通送電線路に接続され、第2端が前記複数の直流送電線路に接続され、前記転流回路が転流した前記第1方向に流れる電流を遮断可能である。第2半導体遮断器は、第1端が前記複数の直流送電線路にそれぞれ接続され、第2端が前記共通送電線路に接続され、前記転流回路が転流した前記第2方向に流れる電流を遮断可能である。 The DC current breaker of the embodiment has a plurality of first mechanical contacts, a plurality of second mechanical contacts, a plurality of commutation circuits, a first semiconductor breaker, and a second semiconductor breaker. The first mechanical contact is provided on each of a plurality of DC transmission lines constituting the DC system. The second mechanical contact is provided between the plurality of first mechanical contacts and a common power transmission line commonly connected to the plurality of DC power transmission lines. In the plurality of commutation circuits, each commutation circuit has a capacitor, and the current flowing in the first direction from any one of the plurality of DC transmission lines to the common transmission line, or the common It commutates the current flowing in the second direction from the transmission line to the DC transmission line. In the first semiconductor circuit breaker, the first end is connected to the common power transmission line, the second end is connected to the plurality of DC power transmission lines, and the current flowing in the first direction to which the commutation circuit is commuted is cut off. It is possible. In the second semiconductor circuit breaker, the first end is connected to each of the plurality of DC power transmission lines, the second end is connected to the common power transmission line, and the current flowing in the second direction to which the commutation circuit is commuted is transmitted. It can be blocked.
第1の実施形態の直流電流遮断装置1の構成の一例を示す図である。It is a figure which shows an example of the structure of the direct current cutoff device 1 of 1st Embodiment. 第1の実施形態において第2方向に直流系統電流が流れる第1直流送電線路LN1を個別に遮断する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the 1st DC power transmission line LN1 in which a DC system current flows in a 2nd direction is cut off individually in 1st Embodiment. 第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene which charges a capacitor C in 1st Embodiment. 第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1 in the scene where the DC system current which concerns on 1st Embodiment is commutated to the semiconductor circuit breaker 40. 第1の実施形態において共通送電線路LNcと第1直流送電線路LN1とが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the 1st Embodiment. 第1の実施形態において第1方向に直流系統電流が流れる第3直流送電線路LN3を個別に遮断する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the 3rd DC power transmission line LN3 in which the DC system current flows in the 1st direction is cut off individually in 1st Embodiment. 第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene which charges a capacitor C in 1st Embodiment. 第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1 in the scene where the DC system current which concerns on 1st Embodiment is commutated to the semiconductor circuit breaker 40. 第1の実施形態において共通送電線路LNcと第3直流送電線路LN3とが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off in the 1st Embodiment. 共通送電線路LNcに事故が生じている場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where an accident occurs in a common power transmission line LNc. 第1の実施形態において第1方向に直流系統電流が流れる直流送電線路LNを全遮断する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the DC transmission line LN through which the DC system current flows in the 1st direction is completely cut off in the 1st Embodiment. 第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene which charges a capacitor C in 1st Embodiment. 第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1 in the scene where the DC system current which concerns on 1st Embodiment is commutated to the semiconductor circuit breaker 40. 共通送電線路LNcと直流送電線路LNとが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off. 直流電流遮断装置1の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of a direct current cutoff device 1. 第2の実施形態の直流電流遮断装置1aの構成の一例を示す図である。It is a figure which shows an example of the structure of the direct current cutoff device 1a of 2nd Embodiment. 第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene which charges a capacitor C in 2nd Embodiment. 第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1a in the scene where the DC system current which concerns on 2nd Embodiment is transferred to the semiconductor circuit breaker 40. 第2の実施形態において共通送電線路LNcと第1直流送電線路LN1とが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the 2nd Embodiment. 第2の実施形態において第1方向に直流系統電流が流れる第3直流送電線路LN3を個別に遮断する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene where the 3rd DC power transmission line LN3 in which the DC system current flows in the 1st direction is cut off individually in 2nd Embodiment. 第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene which charges a capacitor C in 2nd Embodiment. 第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1a in the scene where the DC system current which concerns on 2nd Embodiment is transferred to the semiconductor circuit breaker 40. 第2の実施形態において共通送電線路LNcと第3直流送電線路LN3とが電気的に遮断された場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off in the 2nd Embodiment. 共通送電線路LNcに異常が生じている場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene where the common power transmission line LNc has an abnormality. 第2の実施形態において第1方向に直流系統電流が流れる直流送電線路LNを全遮断する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene which cuts off the DC transmission line LN through which the DC system current flows in the 1st direction in the 2nd Embodiment. 第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene which charges a capacitor C in 2nd Embodiment. 第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current circuit breaker 1a in the scene where the DC system current which concerns on 2nd Embodiment is transferred to the semiconductor circuit breaker 40. 共通送電線路LNcと直流送電線路LNとが電気的に遮断された場面の直流電流遮断装置1aの状態の一例を示す図である。It is a figure which shows an example of the state of the DC current cutoff device 1a in the scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off. 直流電流遮断装置1におけるリアクトル80の位置の他の例を示す図である。It is a figure which shows another example of the position of the reactor 80 in the DC current cutoff device 1. 直流電流遮断装置1aにおけるリアクトルの位置の他の例を示す図である。It is a figure which shows another example of the position of the reactor in the DC current cutoff device 1a.
 以下、実施形態の直流遮断器を、図面を参照して説明する。 Hereinafter, the DC circuit breaker of the embodiment will be described with reference to the drawings.
(第1の実施形態)
[直流電流遮断装置1の構成]
 図1は、第1の実施形態の直流電流遮断装置1の構成の一例を示す図である。直流電流遮断装置1は、例えば、直流系統を構成する複数の直流送電線路とこれらの直流送電線路を結合する共通送電線路LNcとを電気的に導通させ、又は遮断する装置である。以下、直流電流遮断装置1が、第1直流送電線路LN1と第2直流送電線路LN2と第3直流送電線路LN3との3つの直流送電線路を、それぞれ、共通送電線路LNcと電気的に導通させ、又は遮断する装置であるものとする。
(First Embodiment)
[Configuration of DC current cutoff device 1]
FIG. 1 is a diagram showing an example of the configuration of the DC current cutoff device 1 of the first embodiment. The DC current cutoff device 1 is, for example, a device that electrically conducts or cuts off a plurality of DC power transmission lines constituting a DC system and a common power transmission line LNc connecting these DC power transmission lines. Hereinafter, the DC current cutoff device 1 electrically conducts the three DC transmission lines of the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3 with the common transmission line LNc, respectively. , Or a device that shuts off.
 以下、第1直流送電線路LN1に係る構成には、符号の末尾に「-1」を付し、第2直流送電線路LN2に係る構成には、符号の末尾に「-2」を付し、第3直流送電線路LN3に係る構成には、符号の末尾に「-3」を付して説明する。いずれの直流送電線路の構成であるかを区別しない場合には、ハイフン以下数字を付さずに説明する。また、第1直流送電線路LN1、第2直流送電線路LN2、及び第3直流送電線路LN3を区別しない場合には、直流送電線路LNと記載する。 Hereinafter, the configuration related to the first DC power transmission line LN1 is given a "-1" at the end of the code, and the configuration related to the second DC power transmission line LN2 is given a "-2" at the end of the code. The configuration related to the third DC power transmission line LN3 will be described by adding "-3" to the end of the reference numerals. When it is not distinguished which DC transmission line configuration is used, the description will be given without adding numbers below the hyphen. When the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3 are not distinguished, they are described as DC transmission line LN.
 直流電流遮断装置1は、複数の第1機械式接点10と、複数の第2機械式接点20と、複数の転流回路30と、第1半導体遮断器40-Rと、第2半導体遮断器40-Lと、複数のアレスタ50と、複数の第1ダイオード60と、複数の第2ダイオード70と、複数のリアクトル80と、制御部100とを備える。直流電流遮断装置1が備える第1機械式接点10と、第2機械式接点20と、転流回路30と、第1ダイオード60と、第2ダイオード70と、リアクトル80とのそれぞれの数は、直流電流遮断装置1に接続される直流送電線路LNの数(この場合、三つ)に応じた数である。また、直流電流遮断装置1が備えるアレスタ50の数は、直流電流遮断装置1が備える半導体遮断器の数(この場合、二つ)に応じた数である。 The DC current circuit breaker 1 includes a plurality of first mechanical contacts 10, a plurality of second mechanical contacts 20, a plurality of commutation circuits 30, a first semiconductor circuit breaker 40-R, and a second semiconductor circuit breaker. It includes 40-L, a plurality of arresters 50, a plurality of first diodes 60, a plurality of second diodes 70, a plurality of reactors 80, and a control unit 100. The numbers of the first mechanical contact 10, the second mechanical contact 20, the commutation circuit 30, the first diode 60, the second diode 70, and the reactor 80 included in the DC current cutoff device 1 are different. The number corresponds to the number of DC transmission line LNs (three in this case) connected to the DC current cutoff device 1. Further, the number of arresters 50 included in the DC current breaker 1 is a number corresponding to the number of semiconductor breakers (in this case, two) included in the DC current breaker 1.
 以下、第1半導体遮断器40-Rと、第2半導体遮断器40-Lと区別しない場合には、半導体遮断器40と記載する。また、直流電流遮断装置1がアレスタ50-Rと、アレスタ50-Lとの二つのアレスタを備えるものとする。アレスタ50-Rと、アレスタ50-Lとを区別しない場合には、アレスタ50と記載する。 Hereinafter, when the first semiconductor circuit breaker 40-R and the second semiconductor circuit breaker 40-L are not distinguished, they are described as the semiconductor circuit breaker 40. Further, it is assumed that the DC current cutoff device 1 includes two arresters, an arrester 50-R and an arrester 50-L. When the arrester 50-R and the arrester 50-L are not distinguished, it is described as the arrester 50.
 図1に示す通り、第1機械式接点10-1は、第1直流送電線路LN1に設けられ、第1機械式接点10-2は、第2直流送電線路LN2に設けられ、第1機械式接点10-3は、第3直流送電線路LN3に設けられる。また、第2機械式接点20-1は、共通送電線路LNcと第1機械式接点10-1との間に設けられ、第2機械式接点20-2は、共通送電線路LNcと第1機械式接点10-2との間に設けられ、第2機械式接点20-3は、共通送電線路LNcと第1機械式接点10-3との間に設けられる。 As shown in FIG. 1, the first mechanical contact 10-1 is provided on the first DC transmission line LN1, the first mechanical contact 10-2 is provided on the second DC transmission line LN2, and the first mechanical contact is provided. The contacts 10-3 are provided on the third DC transmission line LN3. Further, the second mechanical contact 20-1 is provided between the common transmission line LNc and the first mechanical contact 10-1, and the second mechanical contact 20-2 is the common transmission line LNc and the first machine. The second mechanical contact 20-3 is provided between the common transmission line LNc and the first mechanical contact 10-3.
 なお、各直流送電線路LNと第1機械式接点10との間には、更に補助断路器MSが更に設けられていてもよい。以下、各直流送電線路LNと第1機械式接点10との間には、補助断路器MSが設けられるものとする。具体的には、第1直流送電線路LN1と第1機械式接点10-1との間には、補助断路器MS-1が設けられ、第2直流送電線路LN2と第1機械式接点10-2との間には、補助断路器MS-2が設けられ、第3直流送電線路LN3と第1機械式接点10-3との間には、補助断路器MS-3が設けられる。 An auxiliary disconnector MS may be further provided between each DC transmission line LN and the first mechanical contact 10. Hereinafter, it is assumed that an auxiliary disconnector MS is provided between each DC transmission line LN and the first mechanical contact 10. Specifically, an auxiliary disconnector MS-1 is provided between the first DC transmission line LN1 and the first mechanical contact 10-1, and the second DC transmission line LN2 and the first mechanical contact 10- An auxiliary disconnector MS-2 is provided between the two, and an auxiliary disconnector MS-3 is provided between the third DC transmission line LN3 and the first mechanical contact 10-3.
 第1機械式接点10は、第1端子10aと、第2端子10bとを備え、第2機械式接点20は、第1端子20aと、第2端子20bとを備え、補助断路器MSは、第1端子MSaと、第2端子MSbとを備える。補助断路器MS-1の第2端子MSbは、第1直流送電線路LN1に接続される。補助断路器MS-1の第1端子MSaと、第1機械式接点10-1の第2端子10bとは、互いに接続される。第1機械式接点10-1の第1端子10aと、第2機械式接点20-1の第2端子20bとは、互いに接続される。第2機械式接点20-1の第1端子20aは、共通送電線路LNcに接続される。補助断路器MS-2の第2端子MSbは、第2直流送電線路LN2に接続される。補助断路器MS-2の第1端子MSaと、第1機械式接点10-2の第2端子10bとは、互いに接続される。第1機械式接点10-2の第1端子10aと、第2機械式接点20-2の第2端子20bとは、互いに接続される。第2機械式接点20-2の第1端子20aは、共通送電線路LNcに接続される。補助断路器MS-3の第2端子MSbは、第3直流送電線路LN3に接続される。補助断路器MS-3の第1端子MSaと、第1機械式接点10-3の第2端子10bとは、互いに接続される。第1機械式接点10-3の第1端子10aと、第2機械式接点20-3の第2端子20bとは、互いに接続される。第2機械式接点20-3の第1端子20aは、共通送電線路LNcに接続される。 The first mechanical contact 10 includes a first terminal 10a and a second terminal 10b, the second mechanical contact 20 includes a first terminal 20a and a second terminal 20b, and the auxiliary disconnector MS includes an auxiliary disconnector MS. It includes a first terminal MSa and a second terminal MSb. The second terminal MSb of the auxiliary disconnector MS-1 is connected to the first DC transmission line LN1. The first terminal MSa of the auxiliary disconnector MS-1 and the second terminal 10b of the first mechanical contact 10-1 are connected to each other. The first terminal 10a of the first mechanical contact 10-1 and the second terminal 20b of the second mechanical contact 20-1 are connected to each other. The first terminal 20a of the second mechanical contact 20-1 is connected to the common power transmission line LNc. The second terminal MSb of the auxiliary disconnector MS-2 is connected to the second DC transmission line LN2. The first terminal MSa of the auxiliary disconnector MS-2 and the second terminal 10b of the first mechanical contact 10-2 are connected to each other. The first terminal 10a of the first mechanical contact 10-2 and the second terminal 20b of the second mechanical contact 20-2 are connected to each other. The first terminal 20a of the second mechanical contact 20-2 is connected to the common power transmission line LNc. The second terminal MSb of the auxiliary disconnector MS-3 is connected to the third DC transmission line LN3. The first terminal MSa of the auxiliary disconnector MS-3 and the second terminal 10b of the first mechanical contact 10-3 are connected to each other. The first terminal 10a of the first mechanical contact 10-3 and the second terminal 20b of the second mechanical contact 20-3 are connected to each other. The first terminal 20a of the second mechanical contact 20-3 is connected to the common power transmission line LNc.
 半導体遮断器40は、例えば、互いに直列に接続された複数(図では4つ)のスイッチング部を備える。スイッチング部は、それぞれ、互いに並列に接続されたスイッチング素子とダイオードとを備える。具体的には、ダイオードのカソードと、スイッチング素子のコレクタとが互いに接続され、ダイオードのアノードと、スイッチング素子のエミッタとが接続されている。スイッチング素子は、例えば、絶縁ゲートバイポーラトランジスタ(以下、IGBT:Insulated Gate Bipolar Transistor)等の半導体スイッチング素子である。ただし、スイッチング素子は、IGBTに限定されない。スイッチング素子は、自己消弧を実現可能なスイッチング素子であれば、いかなる素子でもよい。以降の説明では、スイッチング素子がIGBTである場合について説明する。また、以降の説明において、スイッチング部のスイッチング素子のエミッタを、「スイッチング部のエミッタ」とも記載し、スイッチング部のスイッチング素子のコレクタを、「スイッチング部のコレクタ」とも記載する。 The semiconductor circuit breaker 40 includes, for example, a plurality of (four in the figure) switching units connected in series with each other. Each of the switching units includes a switching element and a diode connected in parallel with each other. Specifically, the cathode of the diode and the collector of the switching element are connected to each other, and the anode of the diode and the emitter of the switching element are connected to each other. The switching element is, for example, a semiconductor switching element such as an insulated gate bipolar transistor (hereinafter, IGBT: Insulated Gate Bipolar Transistor). However, the switching element is not limited to the IGBT. The switching element may be any element as long as it can realize self-extinguishing. In the following description, a case where the switching element is an IGBT will be described. Further, in the following description, the emitter of the switching element of the switching unit is also referred to as "emitter of the switching unit", and the collector of the switching element of the switching unit is also described as "collector of the switching unit".
 半導体遮断器40において、スイッチング部のエミッタと、当該スイッチング部に隣り合うスイッチング部のコレクタとが接続されている。半導体遮断器40は、第1端子40aと、第2端子40bとを備える。第1端子40aには、半導体遮断器40が備える複数のスイッチング部のうち、端部のスイッチング部のコレクタと、当該端部のスイッチング部に並列に接続されるダイオードのカソードとが接続される。第2端子40bには、半導体遮断器40が備える複数のスイッチング部のうち、他の端部のスイッチング部のエミッタと、当該他の端部のスイッチング部に並列に接続されるダイオードのアノードとが接続される。 In the semiconductor circuit breaker 40, the emitter of the switching unit and the collector of the switching unit adjacent to the switching unit are connected. The semiconductor circuit breaker 40 includes a first terminal 40a and a second terminal 40b. Of the plurality of switching portions included in the semiconductor circuit breaker 40, the collector of the switching portion at the end and the cathode of the diode connected in parallel to the switching portion at the end are connected to the first terminal 40a. The second terminal 40b has an emitter of a switching portion at another end and an anode of a diode connected in parallel to the switching portion at the other end among a plurality of switching portions included in the semiconductor circuit breaker 40. Be connected.
 以降の説明において、半導体遮断器40が備えるスイッチング素子がオン状態であることを、「半導体遮断器40が閉状態」であるとも記載し、半導体遮断器40が備えるスイッチング素子がオフ状態であることを、「半導体遮断器40が開状態」であるとも記載する。 In the following description, the fact that the switching element included in the semiconductor circuit breaker 40 is in the ON state is also described as “the semiconductor circuit breaker 40 is in the closed state”, and the switching element included in the semiconductor circuit breaker 40 is in the OFF state. Is also described as "the semiconductor circuit breaker 40 is in the open state".
 第1半導体遮断器40-Rの第2端子40bは、共通送電線路LNcに接続される。また、第1半導体遮断器40-Rの第1端子40aは、第2ダイオード70を介して、直流送電線路LNに接続される。具体的には、第1端子40aは、第2ダイオード70-1~70-3のカソードと接続される。第2ダイオード70-1のアノードと、リアクトル80-1の他の一端と、第1機械式接点10-1の第2端子10bと、補助断路器MS-1の第1端子MSaとは、互いに接続される。第2ダイオード70-2のアノードと、リアクトル80-2の他の一端と、第1機械式接点10-2の第2端子10bと、補助断路器MS-2の第1端子MSaとは、互いに接続される。第2ダイオード70-3のアノードと、リアクトル80-3の他の一端と、第1機械式接点10-3の第2端子10bと、補助断路器MS-3の第1端子MSaとは、互いに接続される。 The second terminal 40b of the first semiconductor circuit breaker 40-R is connected to the common power transmission line LNc. Further, the first terminal 40a of the first semiconductor circuit breaker 40-R is connected to the DC power transmission line LN via the second diode 70. Specifically, the first terminal 40a is connected to the cathodes of the second diodes 70-1 to 70-3. The anode of the second diode 70-1 and the other end of the reactor 80-1, the second terminal 10b of the first mechanical contact 10-1, and the first terminal MSa of the auxiliary disconnector MS-1 are connected to each other. Be connected. The anode of the second diode 70-2, the other end of the reactor 80-2, the second terminal 10b of the first mechanical contact 10-2, and the first terminal MSa of the auxiliary disconnector MS-2 are connected to each other. Be connected. The anode of the second diode 70-3, the other end of the reactor 80-3, the second terminal 10b of the first mechanical contact 10-3, and the first terminal MSa of the auxiliary disconnector MS-3 are connected to each other. Be connected.
 上述した接続関係により、第2ダイオード70-1~70-3は、直流送電線路LNから共通送電線路LNcの第1方向に流れる電流を許容し、共通送電線路LNcから直流送電線路LNの第2方向に流れる電流を阻止する。以下、直流送電線路LNから共通送電線路LNcの方向を「第1方向」、或いは「内向き」とも記載し、共通送電線路LNcから直流送電線路LNの方向を「第2方向」、或いは「外向き」とも記載する。 Due to the connection relationship described above, the second diodes 70-1 to 70-3 allow the current flowing from the DC transmission line LN to the first direction of the common transmission line LNc, and allow the current flowing from the common transmission line LNc to the second DC transmission line LN. Block the current flowing in the direction. Hereinafter, the direction from the DC transmission line LN to the common transmission line LNc is also described as "first direction" or "inward", and the direction from the common transmission line LNc to the DC transmission line LN is "second direction" or "outside". Also described as "direction".
 第2半導体遮断器40-Lの第1端子40aは、共通送電線路LNcに接続される。また、第2半導体遮断器40-Lの第2端子40bは、第1ダイオード60とリアクトル80とを介して、直流送電線路LNに接続される。具体的には、第2端子40bは、第1ダイオード60-1~60-3のアノードと接続される。第1ダイオード60-1のカソードと、転流回路30-1の第2端子30bと、リアクトル80-1の一端とは、互いに接続され、リアクトル80-1の他の一端と、第1機械式接点10-1の第2端子10bと、補助断路器MS-1の第1端子MSaとは、互いに接続される。第1ダイオード60-2のカソードと、転流回路30-2の第2端子30bと、リアクトル80-2の一端とは、互いに接続され、リアクトル80-2の他の一端と、第1機械式接点10-2の第2端子10bと、補助断路器MS-2の第1端子MSaとは、互いに接続される。第1ダイオード60-3のカソードと、転流回路30-3の第2端子30bと、リアクトル80-3の一端とは、互いに接続され、リアクトル80-3の他の一端と、第1機械式接点10-3の第2端子10bと、補助断路器MS-3の第1端子MSaとは、互いに接続される。 The first terminal 40a of the second semiconductor circuit breaker 40-L is connected to the common power transmission line LNc. Further, the second terminal 40b of the second semiconductor circuit breaker 40-L is connected to the DC power transmission line LN via the first diode 60 and the reactor 80. Specifically, the second terminal 40b is connected to the anodes of the first diodes 60-1 to 60-3. The cathode of the first diode 60-1 and the second terminal 30b of the commutation circuit 30-1 and one end of the reactor 80-1 are connected to each other, and the other end of the reactor 80-1 and the first mechanical type are connected to each other. The second terminal 10b of the contact 10-1 and the first terminal MSa of the auxiliary disconnector MS-1 are connected to each other. The cathode of the first diode 60-2, the second terminal 30b of the commutation circuit 30-2, and one end of the reactor 80-2 are connected to each other, and the other end of the reactor 80-2 and the first mechanical type. The second terminal 10b of the contact 10-2 and the first terminal MSa of the auxiliary disconnector MS-2 are connected to each other. The cathode of the first diode 60-3, the second terminal 30b of the commutation circuit 30-3, and one end of the reactor 80-3 are connected to each other, and the other end of the disconnector 80-3 and the first mechanical type. The second terminal 10b of the contact 10-3 and the first terminal MSa of the auxiliary disconnector MS-3 are connected to each other.
 上述した接続関係により、第1ダイオード60-1~60-3は、共通送電線路LNcから直流送電線路LNの方向に流れる電流を許容し、直流送電線路LNから共通送電線路LNcの方向に流れる電流を阻止する。 Due to the connection relationship described above, the first diodes 60-1 to 60-3 allow the current flowing from the common transmission line LNc to the DC transmission line LN, and the current flowing from the DC transmission line LN to the common transmission line LNc. To prevent.
 アレスタ50-Rは、共通送電線路LNcと第2ダイオード70との間に、第1半導体遮断器40-Rと互いに並列に接続される。また、アレスタ50-Lは、共通送電線路LNcと第1ダイオード60との間に、第2半導体遮断器40-Lと互いに並列に接続される。アレスタ50は、半導体遮断器40が開状態に制御されることにより発生するサージエネルギーを吸収する。 The arrester 50-R is connected in parallel with the first semiconductor circuit breaker 40-R between the common power transmission line LNc and the second diode 70. Further, the arrester 50-L is connected in parallel with the second semiconductor circuit breaker 40-L between the common power transmission line LNc and the first diode 60. The arrester 50 absorbs surge energy generated by controlling the semiconductor circuit breaker 40 to be in the open state.
 上述した接続関係により、第1半導体遮断器40-Rは、直流送電線路LNから共通送電線路LNcに流れる第1方向の直流系統電流をアレスタ50-Rに消弧させる際に用いられ、第2半導体遮断器40-Lは、共通送電線路LNcから直流送電線路LNに流れる第2方向の直流系統電流をアレスタ50-Lに消弧させる際に用いられる。 Due to the connection relationship described above, the first semiconductor circuit breaker 40-R is used to extinguish the DC system current in the first direction flowing from the DC transmission line LN to the common transmission line LNc to the arrester 50-R. The semiconductor circuit breaker 40-L is used to extinguish the DC system current in the second direction flowing from the common transmission line LNc to the DC transmission line LN to the arrester 50-L.
 転流回路30は、例えば、複数のスイッチング部(図示するスイッチング部310a~310d)と、コンデンサCとを備える。スイッチング部は、それぞれ、互いに並列に接続されたスイッチング素子とダイオードとを備える。スイッチング部310cと、スイッチング部310aとは、記載の順序によって、転流回路30の正極と負極との間に直列に接続され、スイッチング部310bと、スイッチング部310dとは、記載の順序によって、転流回路30の正極と負極との間に直列に接続される。スイッチング部310cのエミッタと、スイッチング部310aのコレクタとが互いに接続されている。スイッチング部310bのエミッタと、スイッチング部310dのコレクタとが互いに接続されている。スイッチング部310cのコレクタと、スイッチング部310bのコレクタと、コンデンサCの正極とが互いに接続されている。スイッチング部310aのエミッタと、スイッチング部310dのエミッタと、コンデンサCの負極とが互いに接続されている。 The commutation circuit 30 includes, for example, a plurality of switching units (switching units 310a to 310d in the figure) and a capacitor C. Each of the switching units includes a switching element and a diode connected in parallel with each other. The switching unit 310c and the switching unit 310a are connected in series between the positive electrode and the negative electrode of the commutation circuit 30 in the order described, and the switching unit 310b and the switching unit 310d are rotated in the order described. It is connected in series between the positive electrode and the negative electrode of the flow circuit 30. The emitter of the switching unit 310c and the collector of the switching unit 310a are connected to each other. The emitter of the switching unit 310b and the collector of the switching unit 310d are connected to each other. The collector of the switching unit 310c, the collector of the switching unit 310b, and the positive electrode of the capacitor C are connected to each other. The emitter of the switching unit 310a, the emitter of the switching unit 310d, and the negative electrode of the capacitor C are connected to each other.
 スイッチング部310aのコレクタと、スイッチング部310cのエミッタとの接続点には、転流回路30の第1端子30aが設けられる。スイッチング部310bのエミッタと、スイッチング部310dのコレクタとの接続点には、転流回路30の第2端子30bが設けられる。 The first terminal 30a of the commutation circuit 30 is provided at the connection point between the collector of the switching unit 310a and the emitter of the switching unit 310c. A second terminal 30b of the commutation circuit 30 is provided at a connection point between the emitter of the switching unit 310b and the collector of the switching unit 310d.
 転流回路30-1の第1端子30aと、第2機械式接点20-1の第2端子20bと、第1機械式接点10-1の第1端子10aとが互いに接続される。転流回路30-2の第1端子30aと、第2機械式接点20-2の第2端子20bと、第1機械式接点10-2の第1端子10aとが互いに接続される。転流回路30-3の第1端子30aと、第2機械式接点20-3の第2端子20bと、第1機械式接点10-3の第1端子10aとが互いに接続される。 The first terminal 30a of the commutation circuit 30-1, the second terminal 20b of the second mechanical contact 20-1, and the first terminal 10a of the first mechanical contact 10-1 are connected to each other. The first terminal 30a of the commutation circuit 30-2, the second terminal 20b of the second mechanical contact 20-2, and the first terminal 10a of the first mechanical contact 10-2 are connected to each other. The first terminal 30a of the commutation circuit 30-3, the second terminal 20b of the second mechanical contact 20-3, and the first terminal 10a of the first mechanical contact 10-3 are connected to each other.
 転流回路30-1の第2端子30bと、第1ダイオード60-1のカソードとが互いに接続され、転流回路30-2の第2端子30bと、第1ダイオード60-2のカソードとが互いに接続され、転流回路30-3の第2端子30bと、第1ダイオード60-3のカソードとが互いに接続される。これにより、第2端子30bと、第2端子20bとの間には、リアクトル80が設けられる。 The second terminal 30b of the commutation circuit 30-1 and the cathode of the first diode 60-1 are connected to each other, and the second terminal 30b of the commutation circuit 30-2 and the cathode of the first diode 60-2 are connected to each other. They are connected to each other, and the second terminal 30b of the commutation circuit 30-3 and the cathode of the first diode 60-3 are connected to each other. As a result, the reactor 80 is provided between the second terminal 30b and the second terminal 20b.
 制御部100は、補助断路器MS、第1機械式接点10、第2機械式接点20、半導体遮断器40の開閉制御、転流回路30の動作の制御(つまり、スイッチング部310a~310dの開閉制御)等を行う。 The control unit 100 controls the opening / closing of the auxiliary disconnector MS, the first mechanical contact 10, the second mechanical contact 20, the semiconductor circuit breaker 40, and the operation of the commutation circuit 30 (that is, the opening / closing of the switching units 310a to 310d). Control) etc.
 図1に示すように、直流電流遮断装置1によって共通送電線路LNcと、直流送電線路LNとが電気的に導通されている状態(以下、通常導通状態)において、各部は以下のような状態となっている。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:閉状態
・ 第2機械式接点20:閉状態
・ 転流回路30:オフ状態
・ 転流回路30が備えるコンデンサC:充電された状態
・ 半導体遮断器40:開状態
As shown in FIG. 1, in a state where the common power transmission line LNc and the DC power transmission line LN are electrically conducted by the DC current cutoff device 1 (hereinafter, normal conduction state), each part is in the following state. It has become.
・ Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: closed state ・ 2nd mechanical contact 20: closed state ・ commutation circuit 30: off state ・ Capacitor C provided in commutation circuit 30: charged state -Semiconductor breaker 40: Open state
 図1に示す通常導通状態において第1直流送電線路LN1、及び第2直流送電線路LN2には、第2方向の直流系統電流が流れている。また、第3直流送電線路LN3には、第1方向の直流系統電流が流れている。 In the normal conduction state shown in FIG. 1, a DC system current in the second direction is flowing through the first DC transmission line LN1 and the second DC transmission line LN2. Further, a DC system current in the first direction flows through the third DC transmission line LN3.
 直流電流遮断装置1は、遮断対象の直流送電線路LNに流れる直流系統電流の方向に応じて、各種遮断制御を行い、共通送電線路LNcと直流送電線路LNとを遮断させる。以下、直流電流遮断装置1の制御の詳細について説明する。 The DC current cutoff device 1 performs various cutoff controls according to the direction of the DC system current flowing through the DC power transmission line LN to be cut off, and cuts off the common power transmission line LNc and the DC power transmission line LN. Hereinafter, the details of the control of the DC current cutoff device 1 will be described.
[第2方向の個別遮断について]
 図2は、第1の実施形態において第2方向に直流系統電流が流れる第1直流送電線路LN1を個別に遮断する場面の直流電流遮断装置1の状態の一例を示す図である。図2に示す場面において、第1直流送電線路LN1には、異常が生じている。直流送電線路LNに生じる異常とは、例えば、地絡や短絡等の事故によって生じる異常である。制御部100は、制御システム(不図示)から遮断指示信号を受信する。制御システムは、例えば、各電力系統間の電力の供給(融通)を制御するシステムであり、直流系統に異常等が生じた場合、対象の直流電流遮断装置1(制御部100)に遮断指示信号を送信する。遮断指示信号は、例えば、共通送電線路LNcと電気的に遮断する直流送電線路LNを指示する信号である。制御部100は、制御システムから遮断指示信号を受信した場合、対象の直流送電線路LNに設けられた第1機械式接点10、及び第2機械式接点20を開状態に制御し、対象の直流送電線路LNに係る転流回路30が備える複数のスイッチング部310のうち、対象の直流送電線路LNに流れる直流系統電流の方向に応じたスイッチング部310をオン状態に制御する。
[Individual cutoff in the second direction]
FIG. 2 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where the first DC power transmission line LN1 in which the DC system current flows in the second direction is individually cut off in the first embodiment. In the scene shown in FIG. 2, an abnormality has occurred in the first DC power transmission line LN1. The abnormality that occurs in the DC transmission line LN is, for example, an abnormality that occurs due to an accident such as a ground fault or a short circuit. The control unit 100 receives a cutoff instruction signal from the control system (not shown). The control system is, for example, a system that controls the supply (accommodation) of electric power between each power system, and when an abnormality occurs in the DC system, a cutoff instruction signal is sent to the target DC current cutoff device 1 (control unit 100). To send. The cutoff instruction signal is, for example, a signal instructing a DC power transmission line LN that electrically cuts off the common power transmission line LNc. When the control unit 100 receives a cutoff instruction signal from the control system, the control unit 100 controls the first mechanical contact 10 and the second mechanical contact 20 provided on the target DC transmission line LN in an open state, and controls the target DC in an open state. Of the plurality of switching units 310 included in the commutation circuit 30 related to the transmission line LN, the switching unit 310 according to the direction of the DC system current flowing through the target DC transmission line LN is controlled to be in the ON state.
 図2に示す場面では、遮断指示信号が第1直流送電線路LN1と共通送電線路LNcとを電気的に遮断することを示す。遮断対象の直流送電線路LN(この場合、第1直流送電線路LN1)に流れる直流系統電流が、第2方向である場合、制御部100は、直流電流遮断装置1が備える各部を以下のような状態に制御する。直流系統電流が第1方向である場合の転流回路30の動作については、後述する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 転流回路30-1のスイッチング部310a,310b:オン状態
・ 転流回路30-1のスイッチング部310c,310d:オフ状態
・ 半導体遮断器40:開状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
In the scene shown in FIG. 2, it is shown that the cutoff instruction signal electrically cuts off the first DC power transmission line LN1 and the common power transmission line LNc. When the DC system current flowing through the DC transmission line LN to be cut off (in this case, the first DC transmission line LN1) is in the second direction, the control unit 100 includes the following parts of the DC current cutoff device 1. Control to state. The operation of the commutation circuit 30 when the DC system current is in the first direction will be described later.
Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Switching units 310a and 310b of commutation circuit 30-1: ON state -Switching units 310c, 310d of the commutation circuit 30-1: Off state-Semiconductor disconnector 40: Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 are described above. Normally remains in a conductive state.)
 上述した制御部100の制御によって、直流電流遮断装置1の第1機械式接点10-1、及び第2機械式接点20-1は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が転流回路30-1を動作させることにより、転流回路30-1が備えるスイッチング部310a,310bは、オンの状態に制御される。すると、転流回路30-1は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310b、リアクトル80-1、第1機械式接点10-1、およびスイッチング部310aを介してコンデンサCの負極までの経路rt1を電流が還流する回路を形成する。この回路が形成されるのは、リアクトル80-1に対して上述した向きによって第1ダイオード60-1が接続されていることにより、第2半導体遮断器40-Lを介して共通送電線路LNcの方向に流れる電流を阻止するためであり、第1半導体遮断器40-Rのダイオードが共通送電線路LNcの方向に流れる電流を阻止するためである。この回路を還流する電流は、第1機械式接点10-1において共通送電線路LNcから第1直流送電線路LN1の第2方向に流れる電流と逆方向の電流であるため、第1機械式接点10-1に生じたアークを打ち消すように作用する。この結果、第1機械式接点10-1に流れる電流がゼロになり、第1機械式接点10-1が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10-1 and the second mechanical contact 20-1 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off. In this state, when the control unit 100 operates the commutation circuit 30-1, the switching units 310a and 310b included in the commutation circuit 30-1 are controlled to be on. Then, the commutation circuit 30-1 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C via the switching unit 310b, the reactor 80-1, the first mechanical contact 10-1, and the switching unit 310a. A circuit is formed in which the current returns through the path rt1 to the negative electrode of the capacitor C. This circuit is formed by connecting the first diode 60-1 to the reactor 80-1 in the direction described above, so that the common power transmission line LNc is formed via the second semiconductor circuit breaker 40-L. This is to block the current flowing in the direction, and the diode of the first semiconductor circuit breaker 40-R blocks the current flowing in the direction of the common power transmission line LNc. Since the current flowing back through this circuit is the current flowing in the second direction from the common transmission line LNc to the first DC transmission line LN1 in the first mechanical contact 10-1, the first mechanical contact 10 It acts to cancel the arc generated at -1. As a result, the current flowing through the first mechanical contact 10-1 becomes zero, and the first mechanical contact 10-1 is in an electrically cut-off state.
 図3は、第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。制御部100は、第1機械式接点10-1が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて転流回路30-1のコンデンサCを充電させつつ、第2方向の直流系統電流を遮断する第2半導体遮断器40-Lに直流系統電流を転流させるため、直流電流遮断装置1が備える各部を以下のような状態に制御する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 転流回路30-1のスイッチング部310a,310b:オフ状態
・ 転流回路30-1のスイッチング部310c,310d:オフ状態
・ 第1半導体遮断器40-R:開状態
・ 第2半導体遮断器40-L:閉状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
FIG. 3 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment. The control unit 100 charges the capacitor C of the commutation circuit 30-1 in preparation for the next reclosing circuit when the first mechanical contact 10-1 is mechanically and electrically cut off. At the same time, in order to transfer the DC system current to the second semiconductor circuit breaker 40-L that cuts off the DC system current in the second direction, each part included in the DC current cutoff device 1 is controlled to the following state.
Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Switching parts 310a and 310b of commutation circuit 30-1: Off state -Switching units 310c, 310d of the commutation circuit 30-1: Off state-First semiconductor circuit breaker 40-R: Open state-Second semiconductor circuit breaker 40-L: Closed state (configuration related to the second DC transmission line LN2) And the configuration related to the third DC transmission line LN3 remains in the normal conduction state described above.)
 上述した制御部100の制御によって、共通送電線路LNcから第1直流送電線路LN1に流れる直流系統電流は、第2機械式接点20-1、スイッチング部310c、コンデンサC、スイッチング部310d、及びリアクトル80-1を介した経路rt2を経由して流れる。これにより、直流電流遮断装置1は、転流回路30-1が備えるコンデンサCを充電し、次の再閉路後に経路rt1を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the common transmission line LNc to the first DC transmission line LN1 is the second mechanical contact 20-1, the switching unit 310c, the capacitor C, the switching unit 310d, and the reactor 80. It flows via the route rt2 via -1. As a result, the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30-1 and sufficiently output the current flowing back through the path rt1 after the next reclosing.
 また、第2半導体遮断器40-Lが閉状態に制御されることに伴い、共通送電線路LNcから直流送電線路LNに流れる直流系統電流は、第2半導体遮断器40-Lのスイッチング素子、及び第1ダイオード60-1を介した経路rt3を経由して経路rt2に合流する。これにより、直流電流遮断装置1は、共通送電線路LNcから、第2機械式接点20-1、転流回路30、及び補助断路器MS-1を介した経路に流れる直流系統電流を、徐々に第2半導体遮断器40-Lに転流させることができる。 Further, as the second semiconductor circuit breaker 40-L is controlled to the closed state, the DC system current flowing from the common transmission line LNc to the DC transmission line LN is transferred to the switching element of the second semiconductor circuit breaker 40-L and the DC transmission line LN. It joins the path rt2 via the path rt3 via the first diode 60-1. As a result, the DC current cutoff device 1 gradually transfers the DC system current flowing from the common transmission line LNc to the path via the second mechanical contact 20-1, the commutation circuit 30, and the auxiliary disconnector MS-1. It can be commutated to the second semiconductor circuit breaker 40-L.
 図4は、第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。図4の場面において、転流回路30-1には、直流系統電流が流れなくなり、第2機械式接点20-1、及び転流回路30-1を介して第1直流送電線路LN1に流れていた直流系統電流が、第2半導体遮断器40-L、及び第1ダイオード60-1を介した経路rt4に転流される。これに伴い、第2機械式接点20-1は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 4 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40. In the scene of FIG. 4, the DC system current does not flow through the commutation circuit 30-1, but flows through the second mechanical contact 20-1 and the commutation circuit 30-1 to the first DC transmission line LN1. The DC system current is transferred to the path rt4 via the second semiconductor circuit breaker 40-L and the first diode 60-1. Along with this, the arc of the second mechanical contact 20-1 is extinguished by the zero point of the current, and the second mechanical contact 20-1 is mechanically and electrically controlled to be in an open state.
 制御部100は、共通送電線路LNcから第1直流送電線路LN1に流れる第2方向の直流系統電流が第2半導体遮断器40-Lに転流された後、直流電流遮断装置1の各部を、以下のような状態に制御する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 転流回路30-1:オフ状態
・ 第1半導体遮断器40-R:開状態
・ 第2半導体遮断器40-L:閉状態→開状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
After the DC system current in the second direction flowing from the common power transmission line LNc to the first DC power transmission line LN1 is transferred to the second semiconductor circuit breaker 40-L, the control unit 100 sets each part of the DC current cutoff device 1. Control to the following states.
Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-Commuting circuit 30-1: Off state-First semiconductor circuit breaker 40-R: Open state / Second semiconductor circuit breaker 40-L: Closed state → Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 are the above-mentioned normal conduction states. as it is.)
 第2半導体遮断器40-Lが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Lによって吸収される。これにより、直流電流遮断装置1は、共通送電線路LNcと、第1直流送電線路LN1とを電気的に遮断することができる。そして、制御部100は、アレスタ50-Lに流れる電流がゼロになった後に、最後に補助断路器MS-1を開く。補助断路器MS-1が開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the second semiconductor circuit breaker 40-L is controlled to the open state is absorbed by the arrester 50-L. As a result, the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the first DC power transmission line LN1. Then, the control unit 100 finally opens the auxiliary disconnector MS-1 after the current flowing through the arrester 50-L becomes zero. When the auxiliary disconnector MS-1 is controlled to the open state, no current is already flowing, so no arc is generated.
 なお、制御部100は、第2半導体遮断器40-Lに直流系統電流が転流されたタイミングを、転流回路30-1のコンデンサCのコンデンサ電圧や、第1機械式接点10-1の電流に基づいて判定(決定)してもよく、第1直流送電線路LN1の遮断動作が開始されてから、予め定められた時間が経過したことに基づいて判定(決定)してもよい。 The control unit 100 determines the timing at which the DC system current is transferred to the second semiconductor circuit breaker 40-L, such as the capacitor voltage of the capacitor C of the commutation circuit 30-1 and the first mechanical contact 10-1. It may be determined (determined) based on the current, or it may be determined (determined) based on the elapse of a predetermined time after the cutoff operation of the first DC transmission line LN1 is started.
 図5は、第1の実施形態において共通送電線路LNcと第1直流送電線路LN1とが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。図5に示す通り、第1機械式接点10-1、第2機械式接点20-1、及び補助断路器MS-1が開状態に制御されるため、共通送電線路LNcと第1直流送電線路LN1とは、電気的に遮断される。これにより、直流電流遮断装置1は、第1直流送電線路LN1に生じる異常によって第2直流送電線路LN2や、第3直流送電線路LN3が影響を受けることを抑制し、第1直流送電線路LN1以外の直流送電線路LNによって直流系統による電力の供給を継続することができる。 FIG. 5 is a diagram showing an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the first embodiment. As shown in FIG. 5, since the first mechanical contact 10-1, the second mechanical contact 20-1, and the auxiliary disconnector MS-1 are controlled in the open state, the common transmission line LNc and the first DC transmission line It is electrically cut off from LN1. As a result, the DC current cutoff device 1 suppresses the influence of the second DC transmission line LN2 and the third DC transmission line LN3 by the abnormality occurring in the first DC transmission line LN1, and suppresses the influence on the first DC transmission line LN1 other than the first DC transmission line LN1. It is possible to continue the supply of power by the DC system by the DC transmission line LN of.
[第1方向の個別遮断について]
 図6は、第1の実施形態において第1方向に直流系統電流が流れる第3直流送電線路LN3を個別に遮断する場面の直流電流遮断装置1の状態の一例を示す図である。図6に示す場面において、第1直流送電線路LN1には、異常が生じている。制御部100は、制御システムから遮断指示信号を受信する。
[Individual cutoff in the first direction]
FIG. 6 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where the third DC transmission line LN3 through which the DC system current flows in the first direction is individually cut off in the first embodiment. In the scene shown in FIG. 6, an abnormality has occurred in the first DC power transmission line LN1. The control unit 100 receives a cutoff instruction signal from the control system.
 図6に示す場面では、遮断指示信号が第3直流送電線路LN3と共通送電線路LNcとを電気的に遮断することを示す。遮断対象の直流送電線路LN(この一例では、第3直流送電線路LN3)に流れる直流系統電流が、第1方向である場合、制御部100は、直流電流遮断装置1が備える各部を以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 転流回路30-3のスイッチング部310a,310b:オフ状態
・ 転流回路30-3のスイッチング部310c,310d:オン状態
・ 半導体遮断器40:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
In the scene shown in FIG. 6, it is shown that the cutoff instruction signal electrically cuts off the third DC power transmission line LN3 and the common power transmission line LNc. When the DC system current flowing through the DC transmission line LN to be cut off (in this example, the third DC transmission line LN3) is in the first direction, the control unit 100 describes each part included in the DC current cutoff device 1 as follows. Control to the state.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-Switching parts 310a and 310b of commutation circuit 30-3: Off state The switching units 310c and 310d of the commutation circuit 30-3: on state and the semiconductor circuit breaker 40: open state (the configuration related to the first DC transmission line LN1 and the configuration related to the second DC transmission line LN2 are described above. Normally remains in a conductive state.)
 上述した制御部100の制御によって、直流電流遮断装置1の第1機械式接点10-3、及び第2機械式接点20-3は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が転流回路30-3を動作させることにより、転流回路30-3が備えるスイッチング部310c,310dは、オンの状態に制御される。すると、転流回路30-3は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310c、第1機械式接点10-3、リアクトル80-3、およびスイッチング部310dを介してコンデンサCの負極までの経路rt5を電流が還流する回路を形成する。この回路を還流する電流は、第1機械式接点10-3において第3直流送電線路LN3から共通送電線路LNcの第1方向に流れる電流と逆方向の電流であるため、第1機械式接点10-3に生じたアークを打ち消すように作用する。この結果、第1機械式接点10-3に流れる電流がゼロになり、第1機械式接点10-3が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10-3 and the second mechanical contact 20-3 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off. In this state, when the control unit 100 operates the commutation circuit 30-3, the switching units 310c and 310d included in the commutation circuit 30-3 are controlled to be on. Then, the commutation circuit 30-3 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C via the switching unit 310c, the first mechanical contact 10-3, the reactor 80-3, and the switching unit 310d. A circuit is formed in which a current returns through the path rt5 to the negative electrode of the capacitor C. Since the current flowing back through this circuit is the current flowing in the first direction of the common power transmission line LNc from the third DC power transmission line LN3 at the first mechanical contact 10-3, the current flows in the direction opposite to the current flowing in the first direction of the common power transmission line LNc. It acts to cancel the arc generated at -3. As a result, the current flowing through the first mechanical contact 10-3 becomes zero, and the first mechanical contact 10-3 is in an electrically cutoff state.
 図7は、第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。制御部100は、第1機械式接点10-3が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて転流回路30-3のコンデンサCを充電させつつ、第1方向の直流系統電流を遮断する第1半導体遮断器40-Rに直流系統電流を転流させるため、直流電流遮断装置1が備える各部を以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 転流回路30-3のスイッチング部310a,310b:オフ状態
・ 転流回路30-3のスイッチング部310c,310d:オフ状態
・ 第1半導体遮断器40-R:閉状態
・ 第2半導体遮断器40-L:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
FIG. 7 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment. The control unit 100 charges the capacitor C of the commutation circuit 30-3 in preparation for the next reclosing circuit when the first mechanical contact 10-3 is mechanically and electrically cut off. At the same time, in order to transfer the DC system current to the first semiconductor circuit breaker 40-R that cuts off the DC system current in the first direction, each part included in the DC current cutoff device 1 is controlled to the following state.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-Switching parts 310a and 310b of commutation circuit 30-3: Off state -Switching units 310c and 310d of the commutation circuit 30-3: Off state-First semiconductor circuit breaker 40-R: Closed state-Second semiconductor circuit breaker 40-L: Open state (configuration related to the first DC transmission line LN1) And the configuration related to the second DC transmission line LN2 remains in the normal conduction state described above.)
 上述した制御部100の制御によって、第3直流送電線路LN3から共通送電線路LNcに流れる直流系統電流は、補助断路器MS-3、リアクトル80-3、スイッチング部310b、コンデンサC、スイッチング部310a、及び第2機械式接点20-3を介した経路rt6を経由して流れる。これにより、直流電流遮断装置1は、転流回路30-3が備えるコンデンサCを充電し、次の再閉路後に経路rt5を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the auxiliary disconnector MS-3, the reactor 80-3, the switching unit 310b, the capacitor C, the switching unit 310a, And flows via the path rt6 via the second mechanical contact 20-3. As a result, the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30-3 and sufficiently output the current flowing back through the path rt5 after the next reclosing.
 また、第1半導体遮断器40-Rが閉状態に制御されることに伴い、第3直流送電線路LN3から共通送電線路LNcに流れる直流系統電流は、第2ダイオード70-3、及び第1半導体遮断器40-Rのスイッチング素子を介した経路rt7を経由して流れる。これにより、直流電流遮断装置1は、第3直流送電線路LN3から補助断路器MS-3、転流回路30-3、第2機械式接点20-3を介した経路に流れる直流系統電流を、徐々に第1半導体遮断器40-Rに転流させることができる。 Further, as the first semiconductor circuit breaker 40-R is controlled to the closed state, the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the second diode 70-3 and the first semiconductor. It flows through the path rt7 via the switching element of the circuit breaker 40-R. As a result, the DC current cutoff device 1 transfers the DC system current flowing from the third DC transmission line LN3 to the path via the auxiliary disconnector MS-3, the commutation circuit 30-3, and the second mechanical contact 20-3. It can be gradually commutated to the first semiconductor circuit breaker 40-R.
 図8は、第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。図8の場面において、転流回路30-3には、直流系統電流が流れなくなり、転流回路30-3、及び第2機械式接点20-3を介して共通送電線路LNcに流れていた直流系統電流が、第2ダイオード70-3、及び第1半導体遮断器40-R、を介した経路rt7に転流される。これに伴い、第2機械式接点20-3は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 8 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40. In the scene of FIG. 8, the direct current system current stopped flowing in the commutation circuit 30-3, and the direct current flowing in the common transmission line LNc via the commutation circuit 30-3 and the second mechanical contact 20-3. The system current is transferred to the path rt7 via the second diode 70-3 and the first semiconductor circuit breaker 40-R. Along with this, the arc of the second mechanical contact 20-3 is extinguished by the zero point of the current, and the second mechanical contact 20-3 is mechanically and electrically controlled to be in an open state.
 制御部100は、第3直流送電線路LN3から共通送電線路LNcに流れる第1方向の直流系統電流が第1半導体遮断器40-Rに転流された後、直流電流遮断装置1の各部を、以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 転流回路30-3:オフ状態
・ 第1半導体遮断器40-R:閉状態→開状態
・ 第2半導体遮断器40-L:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
The control unit 100 transfers each part of the DC current circuit breaker 1 after the DC system current in the first direction flowing from the third DC power transmission line LN3 to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-Commuting circuit 30-3: Off state-First semiconductor circuit breaker 40-R: Closed state → Open state ・ Second semiconductor circuit breaker 40-L: Open state (The configuration related to the first DC transmission line LN1 and the configuration related to the second DC transmission line LN2 are in the above-mentioned normal conduction state. as it is.)
 第1半導体遮断器40-Rが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Rによって吸収される。これにより、直流電流遮断装置1は、共通送電線路LNcと、第3直流送電線路LN3とを電気的に遮断することができる。そして、制御部100は、アレスタ50-Rに流れる電流がゼロになった後に、最後に補助断路器MS-3を開く。補助断路器MS-3が開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R. As a result, the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the third DC power transmission line LN3. Then, the control unit 100 finally opens the auxiliary disconnector MS-3 after the current flowing through the arrester 50-R becomes zero. When the auxiliary disconnector MS-3 is controlled to the open state, no current is already flowing, so no arc is generated.
 図9は、第1の実施形態において共通送電線路LNcと第3直流送電線路LN3とが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。図9に示す通り、第1機械式接点10-3、第2機械式接点20-3、及び補助断路器MS-3が開状態に制御されるため、共通送電線路LNcと第3直流送電線路LN3とは、電気的に遮断される。これにより、直流電流遮断装置1は、第1直流送電線路LN1に生じる異常によって第3直流送電線路LN3が影響を受けることを抑制し、第3直流送電線路LN3の端部のうち、直流電流遮断装置1側ではない端部側に存在する直流系統の電力の供給を継続することができる。 FIG. 9 is a diagram showing an example of the state of the DC current cutoff device 1 in the scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off in the first embodiment. As shown in FIG. 9, since the first mechanical contact 10-3, the second mechanical contact 20-3, and the auxiliary disconnector MS-3 are controlled in the open state, the common transmission line LNc and the third DC transmission line It is electrically cut off from LN3. As a result, the DC current cutoff device 1 suppresses the influence of the third DC transmission line LN3 by the abnormality occurring in the first DC transmission line LN1, and cuts off the DC current at the end of the third DC transmission line LN3. It is possible to continue supplying the power of the DC system existing on the end side other than the device 1 side.
[第1方向の直流送電線路LNの全遮断について]
 図10は、共通送電線路LNcに異常が生じている場面の直流電流遮断装置1の状態の一例を示す図である。図10に示す場面において、共通送電線路LNcには、異常が生じている。また、図10に示す場面において、第1直流送電線路LN1、第2直流送電線路LN2、及び第3直流送電線路LN3には、いずれも第1方向の直流系統電流が流れる。制御部100は、共通送電線路LNcと、直流送電線路LNとを遮断するように、直流電流遮断装置1の各部を制御する。
[About total interruption of DC transmission line LN in the first direction]
FIG. 10 is a diagram showing an example of a state of the DC current cutoff device 1 in a scene where an abnormality occurs in the common power transmission line LNc. In the scene shown in FIG. 10, an abnormality has occurred in the common power transmission line LNc. Further, in the scene shown in FIG. 10, a DC system current in the first direction flows through the first DC power transmission line LN1, the second DC power transmission line LN2, and the third DC power transmission line LN3. The control unit 100 controls each unit of the DC current cutoff device 1 so as to cut off the common power transmission line LNc and the DC power transmission line LN.
 図11は、第1の実施形態において第1方向に直流系統電流が流れる直流送電線路LNを全遮断する場面の直流電流遮断装置1の状態の一例を示す図である。制御部100は、共通送電線路LNcに異常が生じていることに伴い、制御システムから遮断指示信号を受信する。図11に示す場面では、遮断指示信号が第1方向の直流系統電流が流れる直流送電線路LN(この場合、3回線全て)と共通送電線路LNcとを電気的に遮断することを示す。この場合、制御部100は、直流電流遮断装置1が備える各部を以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 転流回路30のスイッチング部310a,310b:オフ状態
・ 転流回路30のスイッチング部310c,310d:オン状態
・ 半導体遮断器40:開状態
FIG. 11 is a diagram showing an example of a state of the DC current cutoff device 1 in a situation where the DC transmission line LN through which the DC system current flows in the first direction is completely cut off in the first embodiment. The control unit 100 receives a cutoff instruction signal from the control system due to an abnormality in the common power transmission line LNc. In the scene shown in FIG. 11, the cutoff instruction signal electrically cuts off the DC power transmission line LN (in this case, all three lines) through which the DC system current in the first direction flows and the common power transmission line LNc. In this case, the control unit 100 controls each unit included in the DC current cutoff device 1 in the following states.
Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: open state ・ 2nd mechanical contact 20: open state ・ Switching parts 310a and 310b of commutation circuit 30: off state ・ Switching part of commutation circuit 30 310c, 310d: On state / Semiconductor disconnector 40: Open state
 上述した制御部100の制御によって、直流電流遮断装置1の第1機械式接点10、及び第2機械式接点20は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が転流回路30を動作させることにより、転流回路30が備えるスイッチング部310c,310dは、オンの状態に制御される。すると、転流回路30は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310c、第1機械式接点10、リアクトル80、およびスイッチング部310dを介してコンデンサCの負極までの経路(図示する経路rt5,経路rt8-rt9)を電流が還流する回路を形成する。この結果、第1機械式接点10に流れる電流がゼロになり、第1機械式接点10が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10 and the second mechanical contact 20 of the DC current cutoff device 1 are mechanically controlled to be in an open state, but even if the contacts are simply separated, they are between the contacts. Since an arc is generated in, it cannot be electrically shut off. In this state, when the control unit 100 operates the commutation circuit 30, the switching units 310c and 310d included in the commutation circuit 30 are controlled to be on. Then, the commutation circuit 30 discharges the electric charge stored in the capacitor C from the positive electrode of the capacitor C to the negative electrode of the capacitor C via the switching unit 310c, the first mechanical contact 10, the reactor 80, and the switching unit 310d. A circuit is formed in which a current flows back through the paths (paths rt5 and rt8-rt9 shown in the figure). As a result, the current flowing through the first mechanical contact 10 becomes zero, and the first mechanical contact 10 is in an electrically cutoff state.
 図12は、第1の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1の状態の一例を示す図である。制御部100は、第1機械式接点10が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて転流回路30のコンデンサCを充電させつつ、第1方向の直流系統電流を遮断する第1半導体遮断器40-Rに直流系統電流を転流させるため、直流電流遮断装置1が備える各部を以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 転流回路30のスイッチング部310a,310b:オフ状態
・ 転流回路30のスイッチング部310c,310d:オフ状態
・ 第1半導体遮断器40-R:閉状態
・ 第2半導体遮断器40-L:開状態
FIG. 12 is a diagram showing an example of a state of the DC current cutoff device 1 in the scene where the capacitor C is charged in the first embodiment. The control unit 100 charges the capacitor C of the commutation circuit 30 in preparation for the next reclosing as the first mechanical contact 10 is mechanically and electrically cut off. In order to transfer the DC system current to the first semiconductor circuit breaker 40-R that cuts off the DC system current in the direction, each part included in the DC current cutoff device 1 is controlled to the following state.
Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: open state ・ 2nd mechanical contact 20: open state ・ Switching parts 310a and 310b of commutation circuit 30: off state ・ Switching part of commutation circuit 30 310c, 310d: Off state, 1st semiconductor circuit breaker 40-R: Closed state, 2nd semiconductor circuit breaker 40-L: Open state
 上述した制御部100の制御によって、直流送電線路LNから共通送電線路LNcに流れる直流系統電流は、補助断路器MS、リアクトル80、スイッチング部310b、コンデンサC、スイッチング部310a、及び第2機械式接点20を介した経路(図示する経路rt6,経路rt10-rt11)を経由して流れる。これにより、直流電流遮断装置1は、転流回路30が備えるコンデンサCを充電し、次の再閉路後に経路rt5,経路rt8-rt9を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the auxiliary disconnector MS, the reactor 80, the switching unit 310b, the capacitor C, the switching unit 310a, and the second mechanical contact. It flows via a path via 20 (path rt6, path rt10-rt11 in the figure). As a result, the DC current cutoff device 1 can charge the capacitor C included in the commutation circuit 30 and sufficiently output the current flowing back through the path rt5 and the path rt8-rt9 after the next reclosing.
 また、第1半導体遮断器40-Rが閉状態に制御されることに伴い、直流送電線路LNから共通送電線路LNcに流れる直流系統電流は、第2ダイオード70、及び第1半導体遮断器40-Rのスイッチング素子を介した経路(図示する経路rt7、経路rt12-rt13)を経由して流れる。これにより、直流電流遮断装置1は、直流送電線路LNから補助断路器MS、転流回路30、第2機械式接点20を介した経路に流れる直流系統電流を、徐々に第1半導体遮断器40-Rに転流させることができる。 Further, as the first semiconductor circuit breaker 40-R is controlled to the closed state, the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the second diode 70 and the first semiconductor circuit breaker 40-. It flows via a path (path rt7, path rt12-rt13 in the figure) via the switching element of R. As a result, the DC current circuit breaker 1 gradually transfers the DC system current flowing from the DC transmission line LN to the path via the auxiliary disconnector MS, the commutation circuit 30, and the second mechanical contact 20 to the first semiconductor circuit breaker 40. It can be commutated to -R.
 図13は、第1の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1の状態の一例を示す図である。図13の場面において、転流回路30には直流系統電流が流れなくなり、転流回路30、及び第2機械式接点20を介して共通送電線路LNc流れていた直流系統電流が、第2ダイオード70、及び第1半導体遮断器40-R、を介した経路rt7、経路rt12-rt13に転流される。これに伴い、第2機械式接点20は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 13 is a diagram showing an example of a state of the DC current circuit breaker 1 in a scene where the DC system current according to the first embodiment is transferred to the semiconductor circuit breaker 40. In the scene of FIG. 13, the DC system current does not flow in the commutation circuit 30, and the DC system current flowing through the commutation circuit 30 and the second mechanical contact 20 in the common transmission line LNc is the second diode 70. , And the path rt7 and the path rt12-rt13 via the first semiconductor circuit breaker 40-R. Along with this, the arc of the second mechanical contact 20 is extinguished by the zero point of the current, and the second mechanical contact 20 is mechanically and electrically controlled to be in an open state.
 制御部100は、直流送電線路LNから共通送電線路LNcに流れる第1方向の直流系統電流の全てが第1半導体遮断器40-Rに転流された後、直流電流遮断装置1の各部を、以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 転流回路30:オフ状態
・ 第1半導体遮断器40-R:閉状態→開状態
・ 第2半導体遮断器40-L:開状態
The control unit 100 transfers each part of the DC current circuit breaker 1 after all of the DC system current in the first direction flowing from the DC power transmission line LN to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states.
・ Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: open state ・ 2nd mechanical contact 20: open state ・ commutation circuit 30: off state ・ 1st semiconductor circuit breaker 40-R: closed state → open state State-Second semiconductor circuit breaker 40-L: Open state
 第1半導体遮断器40-Rが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Rによって吸収される。これにより、直流電流遮断装置1は、共通送電線路LNcと、直流送電線路LNとを電気的に遮断することができる。そして、制御部100は、アレスタ50-Rに流れる電流がゼロになった後に、最後に補助断路器MSを開く。補助断路器MSが開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R. As a result, the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the DC power transmission line LN. Then, the control unit 100 finally opens the auxiliary disconnector MS after the current flowing through the arrester 50-R becomes zero. When the auxiliary disconnector MS is controlled to the open state, no current is already flowing, so no arc is generated.
 図14は、共通送電線路LNcと直流送電線路LNとが電気的に遮断された場面の直流電流遮断装置1の状態の一例を示す図である。図14に示す通り、第1機械式接点10、第2機械式接点20、及び補助断路器MSが開状態に制御されるため、共通送電線路LNcと直流送電線路LNとは、電気的に遮断される。これにより、直流電流遮断装置1は、共通送電線路LNcに生じる異常によって直流送電線路LNが影響を受けることを抑制し、各直流送電線路LNの端部のうち、直流電流遮断装置1側ではない端部側に存在する直流系統への悪影響を排除することができる。 FIG. 14 is a diagram showing an example of the state of the DC current cutoff device 1 in a scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off. As shown in FIG. 14, since the first mechanical contact 10, the second mechanical contact 20, and the auxiliary disconnector MS are controlled in the open state, the common transmission line LNc and the DC transmission line LN are electrically cut off. Will be done. As a result, the DC current cutoff device 1 suppresses the influence of the DC transmission line LN due to an abnormality occurring in the common transmission line LNc, and is not the DC current cutoff device 1 side of the ends of each DC transmission line LN. The adverse effect on the DC system existing on the end side can be eliminated.
[動作フロー]
 図15は、直流電流遮断装置1の処理の一例を示すフローチャートである。まず、制御部100は、制御システムから遮断指示信号を受信する(ステップS100)。制御部100は、遮断指示信号を受信するまでの間、待機する。制御部100は、遮断指示信号を受信した場合、遮断指示信号が複数の直流送電線路LNを遮断する指示を示すか否か(つまり、個別遮断か否か)を判定する(ステップS102)。
[Operation flow]
FIG. 15 is a flowchart showing an example of processing of the DC current cutoff device 1. First, the control unit 100 receives a cutoff instruction signal from the control system (step S100). The control unit 100 waits until the cutoff instruction signal is received. When the cutoff instruction signal is received, the control unit 100 determines whether or not the cutoff instruction signal indicates an instruction to cut off a plurality of DC transmission line LNs (that is, whether or not it is an individual cutoff) (step S102).
 制御部100は、遮断指示信号が複数の直流送電線路LNを遮断する指示する信号であると判定した場合、遮断指示信号によって指示された遮断の対象の複数の直流送電線路LNに設けられた第1機械式接点10と、第2機械式接点20のそれぞれを開状態に制御する(ステップS104)。次に、制御部100は、遮断する直流送電線路LNに流れる電流を打ち消すように、遮断の対象の複数の直流送電線路LNに対応する転流回路30のそれぞれを動作させる(ステップS106)。次に、制御部100は、対象の直流送電線路LNを流れる直流系統電流の方向(つまり、送電方向)に対応する半導体遮断器40を閉状態に制御する(ステップS108)。対象の直流送電線路LNを流れる直流系統電流の方向とは、第1方向、又は第2方向であって、第1方向に対応する半導体遮断器40は、第1半導体遮断器40-Rであり、第2方向に対応する半導体遮断器40は、第2半導体遮断器40-Lである。この時、遮断指示信号が示す指示によって遮断される直流送電線路LNは、いずれも同一方向に直流系統電流が流れている直流送電線路LNである。 When the control unit 100 determines that the cutoff instruction signal is a signal instructing to cut off the plurality of DC power transmission line LNs, the control unit 100 is provided on the plurality of DC power transmission line LNs to be cut off instructed by the cutoff instruction signal. Each of the 1 mechanical contact 10 and the 2nd mechanical contact 20 is controlled to be in an open state (step S104). Next, the control unit 100 operates each of the commutation circuits 30 corresponding to the plurality of DC transmission line LNs to be cut off so as to cancel the current flowing through the DC transmission line LN to be cut off (step S106). Next, the control unit 100 controls the semiconductor circuit breaker 40 corresponding to the direction of the DC system current flowing through the target DC transmission line LN (that is, the transmission direction) in the closed state (step S108). The direction of the DC system current flowing through the target DC transmission line LN is the first direction or the second direction, and the semiconductor circuit breaker 40 corresponding to the first direction is the first semiconductor circuit breaker 40-R. The semiconductor circuit breaker 40 corresponding to the second direction is the second semiconductor circuit breaker 40-L. At this time, the DC power transmission line LNs that are cut off by the instruction indicated by the cutoff instruction signal are all DC power transmission line LNs in which the DC system current flows in the same direction.
 制御部100は、対象の直流送電線路LNを流れる直流系統電流の全てが、対応する半導体遮断器40に転流されたか否かを判定する(ステップS110)。制御部100は、対象の直流送電線路LNを流れる直流系統電流の全てが、対応する半導体遮断器40に転流されるまでの間、待機する。 The control unit 100 determines whether or not all of the DC system current flowing through the target DC transmission line LN has been transferred to the corresponding semiconductor circuit breaker 40 (step S110). The control unit 100 stands by until all of the DC system current flowing through the target DC transmission line LN is transferred to the corresponding semiconductor circuit breaker 40.
 なお、制御部100は、半導体遮断器40に直流系統電流が転流されたタイミングを、転流回路30-1のコンデンサCのコンデンサ電圧や、補助断路器MS-1の電流に基づいて決定してもよく、対象の直流送電線路LNの遮断動作が開始されてから、予め定められた時間が経過したことに基づいて決定してもよい。このように、判定処理を行わずに半導体遮断器40が閉状態に制御される場合には、制御部100は、ステップS110の処理を行わなくてもよい。 The control unit 100 determines the timing at which the DC system current is transferred to the semiconductor circuit breaker 40 based on the capacitor voltage of the capacitor C of the commutation circuit 30-1 and the current of the auxiliary circuit breaker MS-1. Alternatively, the determination may be made based on the elapse of a predetermined time after the cutoff operation of the target DC transmission line LN is started. In this way, when the semiconductor circuit breaker 40 is controlled to the closed state without performing the determination process, the control unit 100 does not have to perform the process of step S110.
 制御部100は、対象の直流送電線路LNを流れる直流系統電流の全てが、対応する半導体遮断器40に転流されたと判定した場合(ステップS108が行われない場合には、所定のタイミングであったり、所定の時間が経過したりした場合)、対応する半導体遮断器40を開状態に制御する(ステップS112)。次に、制御部100は、遮断の対象の複数の直流送電線路LNに設けられた補助断路器MSのそれぞれを開状態に制御する(ステップS114)。これにより、直流電流遮断装置1は、複数の対象の直流送電線路LNと、共通送電線路LNcとを遮断することができる。 When the control unit 100 determines that all of the DC system current flowing through the target DC transmission line LN has been transferred to the corresponding semiconductor circuit breaker 40 (if step S108 is not performed, the timing is predetermined. Or, when a predetermined time has elapsed), the corresponding semiconductor circuit breaker 40 is controlled to be in the open state (step S112). Next, the control unit 100 controls each of the auxiliary disconnector MSs provided in the plurality of DC transmission line LNs to be cut off in an open state (step S114). As a result, the DC current cutoff device 1 can cut off the plurality of target DC power transmission lines LN and the common power transmission line LNc.
 制御部100は、遮断指示信号が個別遮断を指示する信号であると判定した場合、遮断指示信号によって指示された遮断の対象の直流送電線路LNに設けられた第1機械式接点10と、第2機械式接点20を開状態に制御する(ステップS116)。次に、制御部100は、遮断する直流送電線路LNに流れる電流を打ち消すように、遮断の対象の直流送電線路LNに対応する転流回路30を動作させる(ステップS118)。次に、制御部100は、対象の直流送電線路LNを流れる直流系統電流の方向(つまり、送電方向)に対応する半導体遮断器40を閉状態に制御する(ステップS120)。制御部100は、対象の直流送電線路LNを流れる直流系統電流が、対応する半導体遮断器40に転流された場合、対応する半導体遮断器40を開状態に制御する(ステップS122)。次に、制御部100は、遮断の対象の直流送電線路LNに設けられた補助断路器MSを開状態に制御する(ステップS124)。これにより、直流電流遮断装置1は、遮断対象のある一つの直流送電線路LNと、共通送電線路LNcとを遮断することができる。 When the control unit 100 determines that the cutoff instruction signal is a signal instructing individual cutoff, the control unit 100 has a first mechanical contact 10 provided on the DC transmission line LN to be cut off indicated by the cutoff instruction signal, and a first 2 The mechanical contact 20 is controlled to be in the open state (step S116). Next, the control unit 100 operates the commutation circuit 30 corresponding to the DC transmission line LN to be cut off so as to cancel the current flowing through the DC transmission line LN to be cut off (step S118). Next, the control unit 100 controls the semiconductor circuit breaker 40 corresponding to the direction of the DC system current flowing through the target DC transmission line LN (that is, the transmission direction) in the closed state (step S120). When the DC system current flowing through the target DC transmission line LN is transferred to the corresponding semiconductor circuit breaker 40, the control unit 100 controls the corresponding semiconductor circuit breaker 40 to be in an open state (step S122). Next, the control unit 100 controls the auxiliary disconnector MS provided in the DC transmission line LN to be cut off in an open state (step S124). As a result, the DC current cutoff device 1 can cut off one DC power transmission line LN to be cut off and the common power transmission line LNc.
[第1の実施形態のまとめ]
 以上説明したように、本実施形態の直流電流遮断装置1は、複数の第1機械式接点10(この一例では、第1機械式接点10-1~10-3)と、複数の第2機械式接点20(この一例では、第2機械式接点20-1~20-3)と、複数の転流回路30(この一例では、転流回路30-1~30-3)と、第1半導体遮断器40-Rと、第2半導体遮断器40-Lを持つ。第1機械式接点10は、直流系統を構成する複数の直流送電線路LN(この一例では、第1直流送電線路LN1、第2直流送電線路LN2、及び第3直流送電線路LN3)にそれぞれ設けられる。第2機械式接点20は、複数の第1機械式接点10と、複数の直流送電線路LNに共通して接続される共通送電線路LNcとの間にそれぞれ設けられる。複数の転流回路30―1~30-3は、それぞれの転流回路30が、コンデンサCを有し、複数の直流送電線路LNのうちいずれかの直流送電線路LNから共通送電線路LNcへの第1方向に流れる電流、又は共通送電線路LNcから直流送電線路LNへの第2方向に流れる電流を転流するものである。第1半導体遮断器40-Rは、第1端が共通送電線路LNcに接続され、第2端が複数の直流送電線路LNに接続され、転流回路30が転流した第1方向に流れる電流を遮断可能である。第2半導体遮断器40-Lは、第1端が複数の直流送電線路LNにそれぞれ接続され、第2端が共通送電線路LNcに接続され、転流回路30が転流した第2方向に流れる電流を遮断可能である。
[Summary of the first embodiment]
As described above, the DC current circuit breaker 1 of the present embodiment includes a plurality of first mechanical contacts 10 (in this example, first mechanical contacts 10-1 to 10-3) and a plurality of second machines. Formula contacts 20 (in this example, second mechanical contacts 20-1 to 20-3), a plurality of commutation circuits 30 (in this example, commutation circuits 30-1 to 30-3), and a first semiconductor. It has a circuit breaker 40-R and a second semiconductor circuit breaker 40-L. The first mechanical contact 10 is provided on each of a plurality of DC transmission line LNs (in this example, the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3) constituting the DC system. .. The second mechanical contact 20 is provided between the plurality of first mechanical contacts 10 and the common power transmission line LNc commonly connected to the plurality of DC power transmission lines LN. In the plurality of commutation circuits 30-1 to 30-3, each commutation circuit 30 has a capacitor C, and one of the plurality of DC transmission line LNs is transferred from the DC transmission line LN to the common transmission line LNc. The current flowing in the first direction or the current flowing in the second direction from the common transmission line LNc to the DC transmission line LN is commutated. In the first semiconductor circuit breaker 40-R, the first end is connected to the common power transmission line LNc, the second end is connected to a plurality of DC power transmission lines LN, and the current flowing in the first direction in which the commutation circuit 30 is commutated. Can be blocked. The first end of the second semiconductor circuit breaker 40-L is connected to a plurality of DC power transmission lines LN, the second end is connected to the common power transmission line LNc, and the commutation circuit 30 flows in the second direction in which the commutation circuit 30 is commutated. The current can be cut off.
 従来の直流電流遮断装置において、転流回路は、直流送電線路に流れる第2方向の直流系統電流を転流できても、第1方向の直流系統電流を転流することまでは困難であった。また、従来の直流電流遮断装置において、半導体遮断器は、直流送電線路に流れる第2方向の直流系統電流を遮断できても、第1方向の直流系統電流を遮断することまでは困難であった。 In the conventional DC current cutoff device, even if the commutation circuit can commutate the DC system current in the second direction flowing through the DC transmission line, it is difficult to transfer the DC system current in the first direction. .. Further, in the conventional DC current breaker, even if the semiconductor circuit breaker can cut off the DC system current in the second direction flowing through the DC transmission line, it is difficult to cut off the DC system current in the first direction. ..
 本実施形態の直流電流遮断装置1によれば、フルブリッジ回路の転流回路30により、第1方向の直流系統電流を第1半導体遮断器40-Rに転流でき、且つ第2方向の直流系統電流を第2半導体遮断器40-Lに転流できる。また、本実施形態の直流電流遮断装置1によれば、第1半導体遮断器40-Rにより第1方向の直流系統電流を遮断でき、第2半導体遮断器40-Lにより第2方向の直流系統電流を遮断することができる。したがって、本実施形態の直流電流遮断装置1は、複数の直流送電線路LNの結合点である共通送電線路LNcにおいて、第1方向と第2方向の双方向の直流系統電流を遮断することができる。 According to the DC current breaker 1 of the present embodiment, the DC current in the first direction can be transferred to the first semiconductor circuit breaker 40-R by the commutation circuit 30 of the full bridge circuit, and the DC in the second direction is DC. The system current can be transferred to the second semiconductor circuit breaker 40-L. Further, according to the DC current cutoff device 1 of the present embodiment, the first semiconductor breaker 40-R can cut off the DC system current in the first direction, and the second semiconductor breaker 40-L can cut off the DC system in the second direction. The current can be cut off. Therefore, the DC current cutoff device 1 of the present embodiment can cut off the DC system current in both directions of the first direction and the second direction at the common transmission line LNc which is a coupling point of the plurality of DC transmission line LNs. ..
(第2の実施形態)
 以下、図面を参照して、第2の実施形態について説明する。第1の実施形態では、直流電流遮断装置1がフルブリッジ回路の転流回路30を備える場合について説明した。第2の実施形態では、転流回路30が第1方向の直流系統電流を転流する第1転流回路31と、第2方向の直流系統電流を転流する第2転流回路32とによって実現される場合について説明する。なお、上述した実施形態と同様の構成については、同一の符号を付して説明を省略する。
(Second embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings. In the first embodiment, the case where the DC current cutoff device 1 includes the commutation circuit 30 of the full bridge circuit has been described. In the second embodiment, the commutation circuit 30 is composed of a first commutation circuit 31 that commutates the DC system current in the first direction and a second commutation circuit 32 that commutates the DC system current in the second direction. The case where it is realized will be described. The same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
[直流電流遮断装置1aの構成]
 図16は、第2の実施形態の直流電流遮断装置1aの構成の一例を示す図である。直流電流遮断装置1aの転流回路30は、例えば、第1方向の直流系統電流を転流する第1転流回路31と、第2方向の直流系統電流を転流する第2転流回路32とを備える。また、直流電流遮断装置1aは、リアクトル80-1~80-3に代えて、第1リアクトル81-1~81-3と、第2リアクトル82-1~82-3とを備える。第1転流回路31は、「第1転流子回路」の一例であり、第2転流回路32は、「第2転流子回路」の一例である。
[Configuration of DC current cutoff device 1a]
FIG. 16 is a diagram showing an example of the configuration of the DC current cutoff device 1a of the second embodiment. The commutation circuit 30 of the DC current cutoff device 1a is, for example, a first commutation circuit 31 that commutates a DC system current in the first direction and a second commutation circuit 32 that commutates a DC system current in the second direction. And. Further, the DC current cutoff device 1a includes first reactors 81-1 to 81-3 and second reactors 82-1 to 82-3 in place of the reactors 80-1 to 80-3. The first commutation circuit 31 is an example of the "first commutator circuit", and the second commutation circuit 32 is an example of the "second commutator circuit".
 第1転流回路31は、例えば、複数のスイッチング部(図示するスイッチング部310c,310d)と、複数のダイオード(図示するダイオード320a,320b)と、コンデンサCとを備える。第2転流回路32は、例えば、複数のスイッチング部(図示するスイッチング部310a,310b)と、複数のダイオード(図示するダイオード320c,320d)と、コンデンサCとを備える。 The first commutation circuit 31 includes, for example, a plurality of switching units (switching units 310c and 310d shown), a plurality of diodes ( diodes 320a and 320b shown), and a capacitor C. The second commutation circuit 32 includes, for example, a plurality of switching units (switching units 310a and 310b shown), a plurality of diodes ( diodes 320c and 320d shown), and a capacitor C.
 第1転流回路31において、スイッチング部310cと、ダイオード320aとは、記載の順序によって、第1転流回路31の正極と負極との間に直列に接続され、ダイオード320bと、スイッチング部310dとは、記載の順序によって、第1転流回路31の正極と負極との間に直列に接続される。スイッチング部310cのエミッタと、ダイオード320aのカソードとが互いに接続されている。ダイオード320bのアノードと、スイッチング部310dのコレクタとが互いに接続されている。スイッチング部310cのコレクタと、ダイオード320bのカソードと、コンデンサCの正極とが互いに接続されている。ダイオード320aのアノードと、スイッチング部310dのエミッタと、コンデンサCの負極とが互いに接続されている。 In the first commutation circuit 31, the switching unit 310c and the diode 320a are connected in series between the positive electrode and the negative electrode of the first commutation circuit 31 in the order described, and the diode 320b and the switching unit 310d are connected. Are connected in series between the positive electrode and the negative electrode of the first commutation circuit 31 in the order described. The emitter of the switching unit 310c and the cathode of the diode 320a are connected to each other. The anode of the diode 320b and the collector of the switching unit 310d are connected to each other. The collector of the switching unit 310c, the cathode of the diode 320b, and the positive electrode of the capacitor C are connected to each other. The anode of the diode 320a, the emitter of the switching unit 310d, and the negative electrode of the capacitor C are connected to each other.
 スイッチング部310cのエミッタと、ダイオード320aのカソードとの接続点には、第1転流回路31の第1端子31aが設けられる。ダイオード320bのアノードと、スイッチング部310dのコレクタとの接続点には、第1転流回路31の第2端子31bが設けられる。 A first terminal 31a of the first commutation circuit 31 is provided at a connection point between the emitter of the switching unit 310c and the cathode of the diode 320a. A second terminal 31b of the first commutation circuit 31 is provided at a connection point between the anode of the diode 320b and the collector of the switching unit 310d.
 第2転流回路32において、ダイオード320cと、スイッチング部310aとは、記載の順序によって、転流回路30の正極と負極との間に直列に接続され、スイッチング部310bと、ダイオード320dとは、記載の順序によって、転流回路30の正極と負極との間に直列に接続される。ダイオード320cのアノードと、スイッチング部310aのコレクタとが互いに接続されている。スイッチング部310bのエミッタと、ダイオード320dのカソードとが互いに接続されている。ダイオード320cのカソードと、スイッチング部310bのコレクタと、コンデンサCの正極とが互いに接続されている。スイッチング部310aのエミッタと、ダイオード320dのアノードと、コンデンサCの負極とが互いに接続されている。 In the second commutation circuit 32, the diode 320c and the switching unit 310a are connected in series between the positive electrode and the negative electrode of the commutation circuit 30 in the order described, and the switching unit 310b and the diode 320d are connected to each other. In the order described, the commutation circuit 30 is connected in series between the positive electrode and the negative electrode. The anode of the diode 320c and the collector of the switching unit 310a are connected to each other. The emitter of the switching unit 310b and the cathode of the diode 320d are connected to each other. The cathode of the diode 320c, the collector of the switching unit 310b, and the positive electrode of the capacitor C are connected to each other. The emitter of the switching unit 310a, the anode of the diode 320d, and the negative electrode of the capacitor C are connected to each other.
 スイッチング部310aのコレクタと、ダイオード320cのアノードとの接続点には、第2転流回路32の第1端子32aが設けられる。スイッチング部310bのエミッタと、ダイオード320dのカソードとの接続点には、第2転流回路32の第2端子32bが設けられる。 The first terminal 32a of the second commutation circuit 32 is provided at the connection point between the collector of the switching unit 310a and the anode of the diode 320c. A second terminal 32b of the second commutation circuit 32 is provided at a connection point between the emitter of the switching unit 310b and the cathode of the diode 320d.
 第1転流回路31の第1端子31a、及び第2転流回路32の第1端子32aは、上述した第1端子30aと同様の場所に接続される。 The first terminal 31a of the first commutation circuit 31 and the first terminal 32a of the second commutation circuit 32 are connected to the same locations as the first terminal 30a described above.
 第1転流回路31の第2端子31bと、第2ダイオード70のアノードと、第2リアクトル82の一端とは、互いに接続される。また、第2リアクトル82の他の一端と、第1機械式接点10の第2端子10bと、補助断路器MSの第1端子MSaとは、互いに接続される。 The second terminal 31b of the first commutation circuit 31, the anode of the second diode 70, and one end of the second reactor 82 are connected to each other. Further, the other end of the second reactor 82, the second terminal 10b of the first mechanical contact 10, and the first terminal MSa of the auxiliary disconnector MS are connected to each other.
 第2転流回路32の第2端子32bと、第1ダイオード60のカソードと、第1リアクトル81の一端とは、互いに接続される。また、第1リアクトル81の他の一端と、第1機械式接点10の第2端子10bと、補助断路器MSの第1端子MSaとは、互いに接続される。 The second terminal 32b of the second commutation circuit 32, the cathode of the first diode 60, and one end of the first reactor 81 are connected to each other. Further, the other end of the first reactor 81, the second terminal 10b of the first mechanical contact 10, and the first terminal MSa of the auxiliary disconnector MS are connected to each other.
 直流電流遮断装置1aによって共通送電線路LNcと、直流送電線路LNとが電気的に導通されている状態(以下、通常導通状態)において、各部は以下のような状態となっている。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:閉状態
・ 第2機械式接点20:閉状態
・ 第1転流回路31:オフ状態
・ 第2転流回路32:オフ状態
・ 第1転流回路31が備えるコンデンサC:充電された状態
・ 第2転流回路32が備えるコンデンサC:充電された状態
・ 半導体遮断器40:開状態
 以下、直流電流遮断装置1aの制御の詳細について説明する。
In a state where the common power transmission line LNc and the DC power transmission line LN are electrically conducted by the DC current cutoff device 1a (hereinafter, a normal conduction state), each part is in the following state.
・ Auxiliary circuit breaker MS: closed state ・ 1st mechanical contact 10: closed state ・ 2nd mechanical contact 20: closed state ・ 1st commutation circuit 31: off state ・ 2nd commutation circuit 32: off state ・ No. 1 Capacitor C included in commutation circuit 31: charged state ・ Capacitor C included in second commutation circuit 32: charged state ・ Semiconductor circuit breaker 40: open state The following is the details of control of the DC current circuit breaker 1a. explain.
[第2方向の個別遮断について]
 図16に示す場面において、第1直流送電線路LN1には、異常が生じている。制御部100は、制御システムから遮断指示信号を受信した場合、対象の直流送電線路LNに設けられた第1機械式接点10、及び第2機械式接点20を開状態に制御し、対象の直流送電線路LNに流れる直流系統電流の方向に応じたスイッチング部であって、対象の直流送電線路LNに係る第1転流回路31が備えるスイッチング部310c,310d、又は第2転流回路32が備えるスイッチング部310a,310bの一方をオン状態に制御する。
[Individual cutoff in the second direction]
In the scene shown in FIG. 16, an abnormality has occurred in the first DC power transmission line LN1. When the control unit 100 receives a cutoff instruction signal from the control system, the control unit 100 controls the first mechanical contact 10 and the second mechanical contact 20 provided on the target DC transmission line LN in an open state, and controls the target DC in an open state. A switching unit according to the direction of the DC system current flowing through the transmission line LN, which is included in the switching units 310c, 310d, or the second commutation circuit 32 included in the first commutation circuit 31 related to the target DC transmission line LN. One of the switching units 310a and 310b is controlled to be in the ON state.
 図16に示す場面では、遮断指示信号が第1直流送電線路LN1と共通送電線路LNcとを電気的に遮断することを示す。遮断対象の直流送電線路LN(この場合、第1直流送電線路LN1)に流れる直流系統電流が、第2方向である場合、制御部100は、直流電流遮断装置1aが備える各部を以下のような状態に制御する。直流系統電流が第1方向である場合の第1転流回路31、及び第2転流回路32の動作については、後述する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 第1転流回路31-1:オフ状態
・ 第2転流回路32-1:オン状態
・ 半導体遮断器40:開状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
In the scene shown in FIG. 16, it is shown that the cutoff instruction signal electrically cuts off the first DC power transmission line LN1 and the common power transmission line LNc. When the DC system current flowing through the DC transmission line LN to be cut off (in this case, the first DC transmission line LN1) is in the second direction, the control unit 100 includes the following parts of the DC current cutoff device 1a as follows. Control to state. The operation of the first commutation circuit 31 and the second commutation circuit 32 when the DC system current is in the first direction will be described later.
Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-First commutation circuit 31-1: Off state-Second roll Flow circuit 32-1: On state / Semiconductor disconnector 40: Open state (The configuration related to the second DC transmission line LN2 and the configuration related to the third DC transmission line LN3 remain in the above-mentioned normal conduction state).
 上述した制御部100の制御によって、直流電流遮断装置1aの第1機械式接点10-1、及び第2機械式接点20-1は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が第2転流回路32-1を動作させることにより、第2転流回路32-1が備えるスイッチング部310a,310bは、オンの状態に制御される。すると、第2転流回路32-1は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310b、第1リアクトル81-1、第1機械式接点10-1、およびスイッチング部310aを介してコンデンサCの負極までの経路rt14を電流が還流する回路を形成する。この結果、第1機械式接点10-1に流れる電流がゼロになり、第1機械式接点10-1が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10-1 and the second mechanical contact 20-1 of the DC current cutoff device 1a are mechanically controlled to be in the open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off. In this state, when the control unit 100 operates the second commutation circuit 32-1, the switching units 310a and 310b included in the second commutation circuit 32-1 are controlled to be in the ON state. Then, the second commutation circuit 32-1 discharges the electric charge stored in the capacitor C, and the switching unit 310b, the first reactor 81-1, the first mechanical contact 10-1, and the switching from the positive electrode of the capacitor C. A circuit is formed in which a current returns through the path rt14 to the negative electrode of the capacitor C via the portion 310a. As a result, the current flowing through the first mechanical contact 10-1 becomes zero, and the first mechanical contact 10-1 is in an electrically cut-off state.
 図17は、第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。制御部100は、第1機械式接点10-1が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて第2転流回路32-1のコンデンサCを充電させつつ、第2方向の直流系統電流を遮断する第2半導体遮断器40-Lに直流系統電流を転流させるため、直流電流遮断装置1aが備える各部を以下のような状態に制御する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 第1転流回路31-1:オフ状態
・ 第2転流回路32-1:オフ状態
・ 第1半導体遮断器40-R:開状態
・ 第2半導体遮断器40-L:閉状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
FIG. 17 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the capacitor C is charged in the second embodiment. The control unit 100 sets the capacitor C of the second commutation circuit 32-1 in preparation for the next reclosing circuit as the first mechanical contact 10-1 is mechanically and electrically cut off. In order to transfer the DC system current to the second semiconductor circuit breaker 40-L that cuts off the DC system current in the second direction while charging, each part of the DC current cutoff device 1a is controlled to the following state.
-Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-First commutation circuit 31-1: Off state-Second roll Flow circuit 32-1: Off state ・ First semiconductor circuit breaker 40-R: Open state ・ Second semiconductor circuit breaker 40-L: Closed state (configuration related to the second DC transmission line LN2 and the third DC transmission line LN3) The configuration according to the above is the normal conduction state described above.)
 上述した制御部100の制御によって、共通送電線路LNcから第1直流送電線路LN1に流れる直流系統電流は、第2機械式接点20-1、第2転流回路32-1のダイオード320c、コンデンサC、ダイオード320d、及び第1リアクトル81-1を介した経路rt15を経由して流れる。これにより、直流電流遮断装置1aは、第2転流回路32-1が備えるコンデンサCを充電し、次の再閉路後に経路rt14を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the common transmission line LNc to the first DC transmission line LN1 is the second mechanical contact 20-1, the diode 320c of the second commutation circuit 32-1, and the capacitor C. , The diode 320d, and the path rt15 via the first reactor 81-1. As a result, the DC current cutoff device 1a can charge the capacitor C included in the second commutation circuit 32-1 and sufficiently output the current flowing back through the path rt14 after the next reclosing.
 また、第2半導体遮断器40-Lが閉状態に制御されることに伴い、共通送電線路LNcから第1直流送電線路LN1に流れる直流系統電流は、第2半導体遮断器40-L、及び第1ダイオード60-1を介した経路rt16を経由して経路rt15に合流する。これにより、直流電流遮断装置1aは、共通送電線路LNcから、第2機械式接点20-1、第2転流回路32-1、及び補助断路器MS-1を介した経路に流れる直流系統電流を、徐々に第2半導体遮断器40-Lに転流させることができる。 Further, as the second semiconductor circuit breaker 40-L is controlled to the closed state, the DC system current flowing from the common power transmission line LNc to the first DC power transmission line LN1 becomes the second semiconductor circuit breaker 40-L and the second semiconductor circuit breaker 40-L. 1 It joins the path rt15 via the path rt16 via the diode 60-1. As a result, the DC current cutoff device 1a flows from the common transmission line LNc to the path via the second mechanical contact 20-1, the second commutation circuit 32-1, and the auxiliary disconnector MS-1. Can be gradually commutated to the second semiconductor circuit breaker 40-L.
 図18は、第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。第2転流回路32-1には直流系統電流が流れなくなり、第2機械式接点20-1、及び第2転流回路32-1を介して第1直流送電線路LN1に流れていた直流系統電流が、第2半導体遮断器40-L、及び第1ダイオード60-1を介した経路rt16に転流される。これに伴い、第2機械式接点20-1は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 18 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40. The DC system current stopped flowing through the second commutation circuit 32-1, and the DC system was flowing through the first DC transmission line LN1 via the second mechanical contact 20-1 and the second commutation circuit 32-1. The current is transferred to the path rt16 via the second semiconductor circuit breaker 40-L and the first diode 60-1. Along with this, the arc of the second mechanical contact 20-1 is extinguished by the zero point of the current, and the second mechanical contact 20-1 is mechanically and electrically controlled to be in an open state.
 制御部100は、共通送電線路LNcから第1直流送電線路LN1に流れる第2方向の直流系統電流が第2半導体遮断器40-Lに転流された後、直流電流遮断装置1aの各部を、以下のような状態に制御する。
・ 補助断路器MS-1:閉状態
・ 第1機械式接点10-1:開状態
・ 第2機械式接点20-1:開状態
・ 第1転流回路31-1:オフ状態
・ 第2転流回路32-1:オフ状態
・ 第1半導体遮断器40-R:開状態
・ 第2半導体遮断器40-L:閉状態→開状態
(第2直流送電線路LN2に係る構成と、第3直流送電線路LN3に係る構成とは、上述した通常導通状態のまま。)
After the DC system current in the second direction flowing from the common power transmission line LNc to the first DC power transmission line LN1 is transferred to the second semiconductor circuit breaker 40-L, the control unit 100 sets each part of the DC current cutoff device 1a. Control to the following states.
-Auxiliary disconnector MS-1: Closed state-First mechanical contact 10-1: Open state-Second mechanical contact 20-1: Open state-First commutation circuit 31-1: Off state-Second roll Flow circuit 32-1: Off state ・ First semiconductor circuit breaker 40-R: Open state ・ Second semiconductor circuit breaker 40-L: Closed state → Open state (configuration related to the second DC transmission line LN2 and the third DC The configuration related to the transmission line LN3 remains in the normal conduction state described above.)
 第2半導体遮断器40-Lが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Lによって吸収される。これにより、直流電流遮断装置1aは、共通送電線路LNcと、第1直流送電線路LN1とを電気的に遮断することができる。そして、制御部100は、アレスタ50-Lに流れる電流がゼロになった後に、最後に補助断路器MS-1を開く。補助断路器MS-1が開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the second semiconductor circuit breaker 40-L is controlled to the open state is absorbed by the arrester 50-L. As a result, the DC current cutoff device 1a can electrically cut off the common power transmission line LNc and the first DC power transmission line LN1. Then, the control unit 100 finally opens the auxiliary disconnector MS-1 after the current flowing through the arrester 50-L becomes zero. When the auxiliary disconnector MS-1 is controlled to the open state, no current is already flowing, so no arc is generated.
 図19は、第2の実施形態において共通送電線路LNcと第1直流送電線路LN1とが電気的に遮断された場面の直流電流遮断装置1aの状態の一例を示す図である。 FIG. 19 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the first DC power transmission line LN1 are electrically cut off in the second embodiment.
[第1方向の個別遮断について]
 図20は、第2の実施形態において第1方向に直流系統電流が流れる第3直流送電線路LN3を個別に遮断する場面の直流電流遮断装置1aの状態の一例を示す図である。図20に示す場面において、第1直流送電線路LN1には、異常が生じている。制御部100は、制御システムから遮断指示信号を受信する。
[Individual cutoff in the first direction]
FIG. 20 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene in which the third DC transmission line LN3 through which the DC system current flows in the first direction is individually cut off in the second embodiment. In the scene shown in FIG. 20, an abnormality has occurred in the first DC power transmission line LN1. The control unit 100 receives a cutoff instruction signal from the control system.
 図20に示す場面では、遮断指示信号が第3直流送電線路LN3と共通送電線路LNcとを電気的に遮断することを示す。遮断対象の直流送電線路LN(この場合、第3直流送電線路LN3)に流れる直流系統電流が、第1方向である場合、制御部100は、直流電流遮断装置1aが備える各部を以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 第1転流回路31-3:オン状態
・ 第2転流回路32-3:オフ状態
・ 半導体遮断器40:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
In the scene shown in FIG. 20, it is shown that the cutoff instruction signal electrically cuts off the third DC power transmission line LN3 and the common power transmission line LNc. When the DC system current flowing through the DC transmission line LN to be cut off (in this case, the third DC transmission line LN3) is in the first direction, the control unit 100 includes the following parts of the DC current cutoff device 1a as follows. Control to state.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-First commutation circuit 31-3: On state-Second roll Flow circuit 32-3: Off state / Semiconductor disconnector 40: Open state (The configuration related to the first DC transmission line LN1 and the configuration related to the second DC transmission line LN2 remain in the above-mentioned normal conduction state).
 上述した制御部100の制御によって、直流電流遮断装置1aの第1機械式接点10-3、及び第2機械式接点20-3は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が第1転流回路31-3を動作させることにより、第1転流回路31-3が備えるスイッチング部310c,310dは、オンの状態に制御される。すると、第1転流回路31-3は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310c、第1機械式接点10-3、第2リアクトル82-3、およびスイッチング部310dを介してコンデンサCの負極までの経路rt17を電流が還流する回路を形成する。この結果、第1機械式接点10-3に流れる電流がゼロになり、第1機械式接点10-3が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10-3 and the second mechanical contact 20-3 of the DC current cutoff device 1a are mechanically controlled to be in the open state, but the contacts are simply separated. However, since an arc is generated between the contacts, it cannot be electrically cut off. In this state, when the control unit 100 operates the first commutation circuit 31-3, the switching units 310c and 310d included in the first commutation circuit 31-3 are controlled to be in the ON state. Then, the first commutation circuit 31-3 discharges the electric charge stored in the capacitor C, and the switching unit 310c, the first mechanical contact 10-3, the second reactor 82-3, and the switching from the positive electrode of the capacitor C. A circuit is formed in which a current returns through the path rt17 to the negative electrode of the capacitor C via the unit 310d. As a result, the current flowing through the first mechanical contact 10-3 becomes zero, and the first mechanical contact 10-3 is in an electrically cutoff state.
 図21は、第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。制御部100は、第1機械式接点10-3が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて第1転流回路31-3のコンデンサCを充電させつつ、第1方向の直流系統電流を遮断する第1半導体遮断器40-Rに直流系統電流を転流させるため、直流電流遮断装置1aが備える各部を以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 第1転流回路31-3:オフ状態
・ 第2転流回路32-3:オフ状態
・ 第1半導体遮断器40-R:閉状態
・ 第2半導体遮断器40-L:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
FIG. 21 is a diagram showing an example of the state of the DC current cutoff device 1a in the scene where the capacitor C is charged in the second embodiment. The control unit 100 sets the capacitor C of the first commutation circuit 31-3 in preparation for the next reclosing as the first mechanical contact 10-3 is mechanically and electrically cut off. In order to transfer the DC system current to the first semiconductor circuit breaker 40-R that cuts off the DC system current in the first direction while charging, each part of the DC current cutoff device 1a is controlled to the following state.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-First commutation circuit 31-3: Off state-Second roll Flow circuit 32-3: Off state-First semiconductor circuit breaker 40-R: Closed state-Second semiconductor circuit breaker 40-L: Open state (configuration related to the first DC transmission line LN1 and the second DC transmission line LN2 The configuration according to the above is the normal conduction state described above.)
 上述した制御部100の制御によって、第3直流送電線路LN3から共通送電線路LNcに流れる直流系統電流は、補助断路器MS-3、第2リアクトル82-3、ダイオード320b、コンデンサC、ダイオード320a、及び第2機械式接点20-3を介した経路rt18を経由して流れる。これにより、直流電流遮断装置1aは、第1転流回路31-3が備えるコンデンサCを充電し、次の再閉路後に経路rt17を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the auxiliary circuit breaker MS-3, the second reactor 82-3, the diode 320b, the capacitor C, and the diode 320a. And flows via the path rt18 via the second mechanical contact 20-3. As a result, the DC current cutoff device 1a can charge the capacitor C included in the first commutation circuit 31-3 and sufficiently output the current flowing back through the path rt17 after the next reclosing.
 また、第1半導体遮断器40-Rが閉状態に制御されることに伴い、第3直流送電線路LN3から共通送電線路LNcに流れる直流系統電流は、第2ダイオード70-3、及び第1半導体遮断器40-Rのスイッチング素子を介した経路rt19を経由して流れる。これにより、直流電流遮断装置1aは、第3直流送電線路LN3から補助断路器MS-3、第1転流回路31-3、第2機械式接点20-3を介した経路に流れる直流系統電流を、徐々に第1半導体遮断器40-Rに転流させることができる。 Further, as the first semiconductor circuit breaker 40-R is controlled to the closed state, the DC system current flowing from the third DC transmission line LN3 to the common transmission line LNc is the second diode 70-3 and the first semiconductor. It flows through the path rt19 via the switching element of the circuit breaker 40-R. As a result, the DC current cutoff device 1a causes the DC current to flow from the third DC transmission line LN3 to the path via the auxiliary disconnector MS-3, the first commutation circuit 31-3, and the second mechanical contact 20-3. Can be gradually commutated to the first semiconductor circuit breaker 40-R.
 図22は、第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。第1転流回路31-3には直流系統電流が流れなくなり、第1転流回路31-3、及び第2機械式接点20-3を介して共通送電線路LNcに流れていた直流系統電流が、第2ダイオード70-3、及び第1半導体遮断器40-R、を介した経路rt19に転流される。これに伴い、第2機械式接点20-3は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 22 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40. The DC system current does not flow through the first commutation circuit 31-3, and the DC system current flowing through the common transmission line LNc via the first commutation circuit 31-3 and the second mechanical contact 20-3 flows. , The second diode 70-3, and the first semiconductor circuit breaker 40-R, are commutated to the path rt19. Along with this, the arc of the second mechanical contact 20-3 is extinguished by the zero point of the current, and the second mechanical contact 20-3 is mechanically and electrically controlled to be in an open state.
 制御部100は、第3直流送電線路LN3から共通送電線路LNcに流れる第1方向の直流系統電流が第1半導体遮断器40-Rに転流された後、直流電流遮断装置1aの各部を、以下のような状態に制御する。
・ 補助断路器MS-3:閉状態
・ 第1機械式接点10-3:開状態
・ 第2機械式接点20-3:開状態
・ 第1転流回路31-3:オフ状態
・ 第2転流回路32-3:オフ状態
・ 第1半導体遮断器40-R:閉状態→開状態
・ 第2半導体遮断器40-L:開状態
(第1直流送電線路LN1に係る構成と、第2直流送電線路LN2に係る構成とは、上述した通常導通状態のまま。)
The control unit 100 transfers each part of the DC current circuit breaker 1a after the DC system current in the first direction flowing from the third DC power transmission line LN3 to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states.
-Auxiliary disconnector MS-3: Closed state-First mechanical contact 10-3: Open state-Second mechanical contact 20-3: Open state-First commutation circuit 31-3: Off state-Second roll Flow circuit 32-3: Off state-First semiconductor circuit breaker 40-R: Closed state-> Open state-Second semiconductor circuit breaker 40-L: Open state (configuration related to the first DC transmission line LN1 and the second DC The configuration related to the transmission line LN2 remains in the normal conduction state described above.)
 第1半導体遮断器40-Rが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Rによって吸収される。これにより、直流電流遮断装置1aは、共通送電線路LNcと、第3直流送電線路LN3とを電気的に遮断することができる。そして、制御部100は、アレスタ50-Rに流れる電流がゼロになった後に、最後に補助断路器MS-3を開く。補助断路器MS-3が開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R. As a result, the DC current cutoff device 1a can electrically cut off the common power transmission line LNc and the third DC power transmission line LN3. Then, the control unit 100 finally opens the auxiliary disconnector MS-3 after the current flowing through the arrester 50-R becomes zero. When the auxiliary disconnector MS-3 is controlled to the open state, no current is already flowing, so no arc is generated.
 図23は、共通送電線路LNcと第3直流送電線路LN3とが電気的に遮断された場面の直流電流遮断装置1aの状態の一例を示す図である。 FIG. 23 is a diagram showing an example of the state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the third DC power transmission line LN3 are electrically cut off.
[第1方向の直流送電線路LNの全遮断について]
 図24は、共通送電線路LNcに異常が生じている場面の直流電流遮断装置1aの状態の一例を示す図である。図24に示す場面において、共通送電線路LNcには、異常が生じている。また、図24に示す場面において、第1直流送電線路LN1、第2直流送電線路LN2、及び第3直流送電線路LN3には、いずれも第1方向の直流系統電流が流れる。制御部100は、共通送電線路LNcと、直流送電線路LNとを遮断するように、直流電流遮断装置1aの各部を制御する。
[About total interruption of DC transmission line LN in the first direction]
FIG. 24 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where an abnormality occurs in the common power transmission line LNc. In the scene shown in FIG. 24, an abnormality has occurred in the common power transmission line LNc. Further, in the scene shown in FIG. 24, a DC system current in the first direction flows through the first DC power transmission line LN1, the second DC power transmission line LN2, and the third DC power transmission line LN3. The control unit 100 controls each unit of the DC current cutoff device 1a so as to cut off the common power transmission line LNc and the DC power transmission line LN.
 図25は、第2の実施形態において第1方向に直流系統電流が流れる直流送電線路LNを全遮断する場面の直流電流遮断装置1aの状態の一例を示す図である。制御部100は、共通送電線路LNcに異常が生じていることに伴い、制御システムから遮断指示信号を受信する。図25に示す場面では、遮断指示信号が第1方向の直流系統電流が流れる直流送電線路LN(この場合、3回線全て)と共通送電線路LNcとを電気的に遮断することを示す。この場合、制御部100は、直流電流遮断装置1aが備える各部を以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 第1転流回路31:オン状態
・ 第2転流回路32:オフ状態
・ 半導体遮断器40:開状態
FIG. 25 is a diagram showing an example of a state of the DC current cutoff device 1a in a scene where the DC transmission line LN through which the DC system current flows in the first direction is completely cut off in the second embodiment. The control unit 100 receives a cutoff instruction signal from the control system due to an abnormality in the common power transmission line LNc. In the scene shown in FIG. 25, the cutoff instruction signal electrically cuts off the DC power transmission line LN (in this case, all three lines) through which the DC system current in the first direction flows and the common power transmission line LNc. In this case, the control unit 100 controls each unit included in the DC current cutoff device 1a in the following states.
-Auxiliary disconnector MS: Closed state-First mechanical contact 10: Open state-Second mechanical contact 20: Open state-First commutation circuit 31: On state-Second commutation circuit 32: Off state-Semiconductor Disconnector 40: Open state
 上述した制御部100の制御によって、直流電流遮断装置1aの第1機械式接点10、及び第2機械式接点20は、機械的に開状態に制御されるが、接点を単に切り離しても接点間にアークが生じるため、電気的に遮断することができない。この状態で、制御部100が第1転流回路31を動作させることにより、第1転流回路31が備えるスイッチング部310c,310dは、オンの状態に制御される。すると、第1転流回路31は、コンデンサCに蓄電された電荷を放電し、コンデンサCの正極からスイッチング部310c、第1機械式接点10、第2リアクトル82、およびスイッチング部310dを介してコンデンサCの負極までの経路(図示する経路rt17,経路rt20-rt21)を電流が還流する回路を形成する。この結果、第1機械式接点10に流れる電流がゼロになり、第1機械式接点10が電気的な遮断状態となる。 By the control of the control unit 100 described above, the first mechanical contact 10 and the second mechanical contact 20 of the DC current cutoff device 1a are mechanically controlled to be in an open state, but even if the contacts are simply separated, the contacts are separated from each other. Since an arc is generated in, it cannot be electrically shut off. In this state, when the control unit 100 operates the first commutation circuit 31, the switching units 310c and 310d included in the first commutation circuit 31 are controlled to be on. Then, the first commutation circuit 31 discharges the electric charge stored in the capacitor C, and from the positive electrode of the capacitor C, the capacitor is passed through the switching section 310c, the first mechanical contact 10, the second reactor 82, and the switching section 310d. A circuit is formed in which a current flows back through the path to the negative electrode of C (path rt17, path rt20-rt21 in the figure). As a result, the current flowing through the first mechanical contact 10 becomes zero, and the first mechanical contact 10 is in an electrically cutoff state.
 図26は、第2の実施形態においてコンデンサCを充電する場面の直流電流遮断装置1aの状態の一例を示す図である。制御部100は、第1機械式接点10が機械的にも電気的にも遮断状態になったことに伴い、次の再閉路に備えて第1転流回路31のコンデンサCを充電させつつ、第1方向の直流系統電流を遮断する第1半導体遮断器40-Rに直流系統電流を転流させるため、直流電流遮断装置1aが備える各部を以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 第1転流回路31:オフ状態
・ 第2転流回路32:オフ状態
・ 第1半導体遮断器40-R:閉状態
・ 第2半導体遮断器40-L:開状態
FIG. 26 is a diagram showing an example of the state of the DC current cutoff device 1a in the scene where the capacitor C is charged in the second embodiment. The control unit 100 charges the capacitor C of the first commutation circuit 31 in preparation for the next reclosing as the first mechanical contact 10 is mechanically and electrically cut off. In order to transfer the DC system current to the first semiconductor circuit breaker 40-R that cuts off the DC system current in the first direction, each part of the DC current cutoff device 1a is controlled to the following state.
・ Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: open state ・ 2nd mechanical contact 20: open state ・ 1st commutation circuit 31: off state ・ 2nd commutation circuit 32: off state ・ No. 1 Semiconductor disconnector 40-R: Closed state, 2nd semiconductor circuit breaker 40-L: Open state
 上述した制御部100の制御によって、直流送電線路LNから共通送電線路LNcに流れる直流系統電流は、補助断路器MS、第2リアクトル82、ダイオード320b、コンデンサC、ダイオード320a、及び第2機械式接点20を介した経路(図示する経路rt18,経路rt22-rt23)を経由して流れる。これにより、直流電流遮断装置1aは、第1転流回路31が備えるコンデンサCを充電し、次の再閉路後に経路rt17,経路rt20-rt21を還流する電流を十分に出力させることができる。 Under the control of the control unit 100 described above, the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the auxiliary disconnector MS, the second reactor 82, the diode 320b, the capacitor C, the diode 320a, and the second mechanical contact. It flows via a path via 20 (path rt18, path rt22-rt23 in the figure). As a result, the DC current cutoff device 1a can charge the capacitor C included in the first commutation circuit 31 and sufficiently output the current flowing back through the path rt17 and the path rt20-rt21 after the next reclosing.
 また、第1半導体遮断器40-Rが閉状態に制御されることに伴い、直流送電線路LNから共通送電線路LNcに流れる直流系統電流は、第2ダイオード70、及び第1半導体遮断器40-Rのスイッチング素子を介した経路(図示する経路rt19、経路rt24-rt25)を経由して流れる。これにより、直流電流遮断装置1aは、直流送電線路LNから補助断路器MS、第1転流回路31、第2機械式接点20を介した経路に流れる直流系統電流を、徐々に第1半導体遮断器40-Rに転流させることができる。 Further, as the first semiconductor circuit breaker 40-R is controlled to the closed state, the DC system current flowing from the DC transmission line LN to the common transmission line LNc is the second diode 70 and the first semiconductor circuit breaker 40-. It flows via a path (path rt19, path rt24-rt25 in the figure) via the switching element of R. As a result, the DC current cutoff device 1a gradually cuts off the DC system current flowing from the DC transmission line LN to the path via the auxiliary disconnector MS, the first commutation circuit 31, and the second mechanical contact 20. It can be commutated to the vessel 40-R.
 図27は、第2の実施形態に係る直流系統電流を半導体遮断器40に転流する場面の直流電流遮断装置1aの状態の一例を示す図である。第1転流回路31には直流系統電流が流れなくなり、第1転流回路31、及び第2機械式接点20を介して共通送電線路LNcに流れていた直流系統電流が、第2ダイオード70、及び第1半導体遮断器40-R、を介した経路rt19、経路rt24-rt25に転流される。これに伴い、第2機械式接点20は、電流のゼロ点によってアークが消弧し、機械的にも電気的にも開状態に制御される。 FIG. 27 is a diagram showing an example of a state of the DC current circuit breaker 1a in a scene where the DC system current according to the second embodiment is transferred to the semiconductor circuit breaker 40. The direct current system current does not flow in the first commutation circuit 31, and the direct current system current flowing in the common transmission line LNc via the first commutation circuit 31 and the second mechanical contact 20 is transferred to the second diode 70. And, it is commutated to the path rt19 and the path rt24-rt25 via the first semiconductor circuit breaker 40-R. Along with this, the arc of the second mechanical contact 20 is extinguished by the zero point of the current, and the second mechanical contact 20 is mechanically and electrically controlled to be in an open state.
 制御部100は、直流送電線路LNから共通送電線路LNcに流れる第1方向の直流系統電流の全てが第1半導体遮断器40-Rに転流された後、直流電流遮断装置1aの各部を、以下のような状態に制御する。
・ 補助断路器MS:閉状態
・ 第1機械式接点10:開状態
・ 第2機械式接点20:開状態
・ 第1転流回路31:オフ状態
・ 第2転流回路32:オフ状態
・ 第1半導体遮断器40-R:閉状態→開状態
・ 第2半導体遮断器40-L:開状態
The control unit 100 transfers each part of the DC current circuit breaker 1a after all of the DC system current in the first direction flowing from the DC power transmission line LN to the common power transmission line LNc is transferred to the first semiconductor circuit breaker 40-R. Control to the following states.
・ Auxiliary disconnector MS: closed state ・ 1st mechanical contact 10: open state ・ 2nd mechanical contact 20: open state ・ 1st commutation circuit 31: off state ・ 2nd commutation circuit 32: off state ・ No. 1 Semiconductor disconnector 40-R: Closed state → Open state ・ Second semiconductor circuit breaker 40-L: Open state
 第1半導体遮断器40-Rが開状態に制御されることに伴って発生するサージエネルギーは、アレスタ50-Rによって吸収される。これにより、直流電流遮断装置1は、共通送電線路LNcと、直流送電線路LNとを電気的に遮断することができる。そして、制御部100は、アレスタ50-Rに流れる電流がゼロになった後に、最後に補助断路器MSを開く。補助断路器MSが開状態に制御される際には、既に電流は流れていないので、アークが発生することはない。 The surge energy generated when the first semiconductor circuit breaker 40-R is controlled to the open state is absorbed by the arrester 50-R. As a result, the DC current cutoff device 1 can electrically cut off the common power transmission line LNc and the DC power transmission line LN. Then, the control unit 100 finally opens the auxiliary disconnector MS after the current flowing through the arrester 50-R becomes zero. When the auxiliary disconnector MS is controlled to the open state, no current is already flowing, so no arc is generated.
 図28は、共通送電線路LNcと直流送電線路LNとが電気的に遮断された場面の直流電流遮断装置1aの状態の一例を示す図である。図28に示す通り、第1機械式接点10、第2機械式接点20、及び補助断路器MSが開状態に制御されるため、共通送電線路LNcと直流送電線路LNとは、電気的に遮断される。 FIG. 28 is a diagram showing an example of the state of the DC current cutoff device 1a in a scene where the common power transmission line LNc and the DC power transmission line LN are electrically cut off. As shown in FIG. 28, since the first mechanical contact 10, the second mechanical contact 20, and the auxiliary disconnector MS are controlled in the open state, the common transmission line LNc and the DC transmission line LN are electrically cut off. Will be done.
[遮断する直流送電線路LNの組合せ]
 なお、上述では、直流電流遮断装置1、及び直流電流遮断装置1aが、第1直流送電線路LN1、第2直流送電線路LN2、及び第3直流送電線路LN3のうち、いずれか一つの直流送電線路LNと共通送電線路LNcとを遮断する(つまり、個別遮断)、又は直流送電線路LNの全てと共通送電線路LNcとを遮断する(つまり、全遮断)場合について説明したが、これに限られない。直流電流遮断装置1、及び直流電流遮断装置1aは、例えば、直流送電線路LNのうち、同一の方向に直流系統電流が流れる二以上の直流送電線路LNと、共通送電線路LNcとを遮断するものであってもよい。
[Combination of DC transmission line LN to be cut off]
In the above description, the DC current cutoff device 1 and the DC current cutoff device 1a are any one of the first DC transmission line LN1, the second DC transmission line LN2, and the third DC transmission line LN3. The case where the LN and the common transmission line LNc are cut off (that is, individual cutoff) or all the DC power transmission line LN and the common power transmission line LNc are cut off (that is, all cutoff) has been described, but the present invention is not limited to this. .. The DC current cutoff device 1 and the DC current cutoff device 1a cut off, for example, two or more DC transmission line LNs in which a DC system current flows in the same direction and a common transmission line LNc among the DC transmission line LNs. It may be.
 例えば、図2や図16に示す場面において、第1直流送電線路LN1と、第2直流送電線路LN2とには、第2方向に直流系統電流が流れている。この場合、直流電流遮断装置1、及び直流電流遮断装置1aは、第1直流送電線路LN1、及び第2直流送電線路LN2と、共通送電線路LNcとを遮断してもよい。図2や図16の場面において、第2直流送電線路LN2を遮断する処理は、図2や図16の場面において第1直流送電線路LN1を遮断する処理と同様である。この場合、制御部100は、第1直流送電線路LN1に流れる直流系統電流と、第2直流送電線路LN2に流れる直流系統電流との両方が第2半導体遮断器40-Lに転流された後、第2半導体遮断器40-Lを開状態に制御する。これにより、直流電流遮断装置1、及び直流電流遮断装置1aは、同一の方向(この場合、第2方向)に直流系統電流が流れる二以上の直流送電線路LN(この場合、第1直流送電線路LN1、及び第2直流送電線路LN2)と、共通送電線路LNcとを遮断することができる。 For example, in the scenes shown in FIGS. 2 and 16, a DC system current flows in the second direction between the first DC power transmission line LN1 and the second DC power transmission line LN2. In this case, the DC current cutoff device 1 and the DC current cutoff device 1a may cut off the first DC power transmission line LN1 and the second DC power transmission line LN2 and the common power transmission line LNc. The process of shutting off the second DC power transmission line LN2 in the scenes of FIGS. 2 and 16 is the same as the process of shutting off the first DC power transmission line LN1 in the scenes of FIGS. 2 and 16. In this case, the control unit 100 transfers both the DC system current flowing through the first DC transmission line LN1 and the DC system current flowing through the second DC transmission line LN2 to the second semiconductor circuit breaker 40-L. , The second semiconductor circuit breaker 40-L is controlled to be in the open state. As a result, the DC current cutoff device 1 and the DC current cutoff device 1a have two or more DC transmission line LNs (in this case, the first DC transmission line) in which the DC system current flows in the same direction (in this case, the second direction). The LN1 and the second DC transmission line LN2) and the common transmission line LNc can be cut off.
 なお、この一例では、第1直流送電線路LN1と、第2直流送電線路LN2とに同一の第2方向の直流系統電流が流れる場合について説明したが、これに限られない。直流電流遮断装置1、及び直流電流遮断装置1aは、第1直流送電線路LN1と、第3直流送電線路LN3とに同一の第2方向の直流系統電流が流れる場面では、第1直流送電線路LN1、及び第3直流送電線路LN3と、共通送電線路LNcとを遮断してもよい。また、第1直流送電線路LN1には、第1方向の直流系統電流が流れ、第2直流送電線路LN2及び第3直流送電線路LN3には、第2方向の直流系統電流が流れる場面では、直流電流遮断装置1、及び直流電流遮断装置1aは、第2直流送電線路LN2、及び第3直流送電線路LN3と、共通送電線路LNcとを遮断してもよい。 In this example, the case where the same DC system current in the second direction flows through the first DC transmission line LN1 and the second DC transmission line LN2 has been described, but the present invention is not limited to this. The DC current cutoff device 1 and the DC current cutoff device 1a are the first DC transmission line LN1 in the scene where the same second-direction DC system current flows through the first DC transmission line LN1 and the third DC transmission line LN3. , And the third DC transmission line LN3 and the common transmission line LNc may be cut off. Further, in the scene where the DC system current in the first direction flows through the first DC transmission line LN1 and the DC system current in the second direction flows through the second DC transmission line LN2 and the third DC transmission line LN3, DC is applied. The current cutoff device 1 and the DC current cutoff device 1a may cut off the second DC transmission line LN2, the third DC transmission line LN3, and the common transmission line LNc.
 また、図6や図20に示す場面では、第3直流送電線路LN3のみが第1方向に直流系統電流が流れており、第1直流送電線路LN1と第2直流送電線路LN2には、第2方向に直流系統電流が流れている場合について説明したが、これに限られず、図6や図20に示す場面において、第2直流送電線路LN2と、第3直流送電線路LN3とに第1方向の直流系統電流が流れており、第1直流送電線路LN1に第2方向の直流系統電流が流れている場合には、第3直流送電線路LN3、及び第2直流送電線路LN2と、共通送電線路LNcとを遮断してもよい。図6や図20の場面において、第2直流送電線路LN2を遮断する処理は、図6や図20の場面において第3直流送電線路LN3を遮断する処理と同様である。この場合、制御部100は、第3直流送電線路LN3に流れる直流系統電流と、第2直流送電線路LN2に流れる直流系統電流との両方が、第1半導体遮断器40-Rに転流された後、第1半導体遮断器40-Rを開状態に制御する。これにより、直流電流遮断装置1は、同一の方向(この場合、第1方向)に直流系統電流が流れる二以上の直流送電線路LN(この場合、第3直流送電線路LN3、及び第2直流送電線路LN2)と、共通送電線路LNcとを遮断することができる。 Further, in the scenes shown in FIGS. 6 and 20, only the third DC transmission line LN3 has a DC system current flowing in the first direction, and the first DC transmission line LN1 and the second DC transmission line LN2 have a second DC transmission line. The case where the DC system current is flowing in the direction has been described, but the present invention is not limited to this, and in the scenes shown in FIGS. 6 and 20, the second DC transmission line LN2 and the third DC transmission line LN3 are in the first direction. When the DC system current is flowing and the DC system current in the second direction is flowing through the first DC transmission line LN1, the third DC transmission line LN3, the second DC transmission line LN2, and the common transmission line LNc And may be blocked. The process of shutting off the second DC power transmission line LN2 in the scenes of FIGS. 6 and 20 is the same as the process of shutting off the third DC power transmission line LN3 in the scene of FIGS. 6 and 20. In this case, in the control unit 100, both the DC system current flowing through the third DC transmission line LN3 and the DC system current flowing through the second DC transmission line LN2 are transferred to the first semiconductor circuit breaker 40-R. After that, the first semiconductor circuit breaker 40-R is controlled to be in the open state. As a result, the DC current cutoff device 1 has two or more DC transmission line LNs (in this case, the third DC transmission line LN3 and the second DC transmission) in which the DC system current flows in the same direction (in this case, the first direction). The line LN2) and the common transmission line LNc can be cut off.
 また、第1直流送電線路LN1、及び第3直流送電線路LN3には、第1方向の直流系統電流が流れ、第2直流送電線路LN2には、第2方向の直流系統電流が流れる場面では、直流電流遮断装置1、及び直流電流遮断装置1aは、第1直流送電線路LN1、及び第3直流送電線路LN3と、共通送電線路LNcとを遮断してもよい。これらの組合せによって、第1方向の直流系統電流が流れる直流送電線路LNと、共通送電線路LNcとを遮断する処理は、上述した処理と同様であり、符号の末尾のハイフン以下を読み替えればよいため、説明を省略する。 Further, in the scene where the DC system current in the first direction flows through the first DC transmission line LN1 and the third DC transmission line LN3, and the DC system current in the second direction flows through the second DC transmission line LN2, The DC current cutoff device 1 and the DC current cutoff device 1a may cut off the first DC transmission line LN1 and the third DC transmission line LN3 and the common transmission line LNc. The process of interrupting the DC transmission line LN through which the DC system current in the first direction flows and the common transmission line LNc by these combinations is the same as the above-mentioned process, and the hyphen and the following at the end of the code may be replaced. Therefore, the description thereof will be omitted.
 [リアクトルが設けられる位置について]
 なお、直流電流遮断装置1や直流電流遮断装置1aにおいて、リアクトル80のリアクトル成分が、転流回路30の転流動作の他、第1半導体遮断器40-R、及び第2半導体遮断器40-Lの遮断動作に作用する位置に設けられてもよい。
[About the position where the reactor is installed]
In the DC current circuit breaker 1 and the DC current circuit breaker 1a, the reactor component of the reactor 80 is the commutation operation of the commutation circuit 30, the first semiconductor circuit breaker 40-R, and the second semiconductor circuit breaker 40-. It may be provided at a position that acts on the blocking operation of L.
 図29は、直流電流遮断装置1におけるリアクトル80の位置の他の例を示す図である。図29において、リアクトル80の一端と、転流回路30の第2端子30bと、第1ダイオード60のカソードと、第2ダイオード70のアノードとが互いに接続され、リアクトル80の他の一端と、第2端子20bとが互いに接続される。リアクトル80がこの位置に設けられることにより、リアクトル80のリアクトル成分によって転流回路30の動作に伴う還流を経路rt26に生じさせつつ、第1半導体遮断器40-Rに転流される第1方向の直流系統電流の経路rt27と、第2半導体遮断器40-Lに転流される第2方向の直流系統電流の経路rt28とのインダクタンスを統一することができる。 FIG. 29 is a diagram showing another example of the position of the reactor 80 in the DC current cutoff device 1. In FIG. 29, one end of the reactor 80, the second terminal 30b of the commutation circuit 30, the cathode of the first diode 60, and the anode of the second diode 70 are connected to each other, and the other end of the reactor 80 and the first The two terminals 20b are connected to each other. When the inductance 80 is provided at this position, the reactor component of the reactor 80 causes recirculation associated with the operation of the commutation circuit 30 in the path rt26, and is commutated to the first semiconductor circuit breaker 40-R in the first direction. The inductance of the DC system current path rt27 and the second direction DC system current path rt28 commutated to the second semiconductor circuit breaker 40-L can be unified.
 図30は、直流電流遮断装置1aにおけるリアクトルの位置の他の例を示す図である。図30において、直流電流遮断装置1aは、第1リアクトル81-1~81-3と、第2リアクトル82-1~82-3とに代えて、第3リアクトル83-1~83-3を備える。第3リアクトル83の一端と、第1転流回路31の第2端子31bと、第2ダイオード70のアノードと、第2転流回路32の第2端子32bと、第1ダイオード60のカソードとが互いに接続され、第3リアクトル83の他の一端と、第2端子20bとが互いに接続される。第3リアクトル83がこの位置に設けられることにより、第3リアクトル83のリアクトル成分によって第1転流回路31の動作に伴う還流を経路rt29に生じさせつつ、又は第2転流回路32の動作に伴う還流を経路rt30に生じさせつつ、第1半導体遮断器40-Rに転流される第1方向の直流系統電流の経路rt31と、第2半導体遮断器40-Lに転流される第2方向の直流系統電流の経路rt32とのインダクタンスを統一することができる。 FIG. 30 is a diagram showing another example of the position of the reactor in the DC current cutoff device 1a. In FIG. 30, the DC current cutoff device 1a includes third reactors 83-1 to 83-3 in place of the first reactors 81-1 to 81-3 and the second reactors 82-1 to 82-3. .. One end of the third reactor 83, the second terminal 31b of the first commutation circuit 31, the anode of the second diode 70, the second terminal 32b of the second commutation circuit 32, and the cathode of the first diode 60 They are connected to each other, and the other end of the third reactor 83 and the second terminal 20b are connected to each other. By providing the third reactor 83 at this position, the reactor component of the third reactor 83 causes the recirculation associated with the operation of the first commutation circuit 31 to occur in the path rt29, or to the operation of the second commutation circuit 32. The path rt31 of the DC system current in the first direction commutated to the first semiconductor circuit breaker 40-R and the second direction commutated to the second semiconductor circuit breaker 40-L while causing the accompanying reflux in the path rt30. The inductance of the DC system current with the path rt32 can be unified.
 ここで、リアクトル80が従来の位置に設けられている場合、リアクトル80のリアクトル成分は、転流回路30、及び第2半導体遮断器40-Lに転流される第2方向の直流系統電流に作用するものの、第1半導体遮断器40-Rに転流される第1方向の直流系統電流には作用しなかった。この場合、各直流送電線路LNのインダクタンスが各直流送電線路LNの寄生リアクトルに依存するため、直流電流遮断装置1は、第1半導体遮断器40-Rの直流系統電流遮断速度と、第2半導体遮断器40-Lの直流系統電流遮断速度とを統一、又は調整できなかった。これに対して、図29に示す位置にリアクトル80を設けることにより、直流電流遮断装置1は、第1半導体遮断器40-Rの直流系統電流遮断速度と、第2半導体遮断器40-Lの直流系統電流遮断速度とを統一、又は調整することができる。 Here, when the reactor 80 is provided at the conventional position, the reactor component of the reactor 80 acts on the commutation circuit 30 and the DC system current in the second direction commutated to the second semiconductor circuit breaker 40-L. However, it did not act on the DC system current in the first direction commutated to the first semiconductor circuit breaker 40-R. In this case, since the inductance of each DC transmission line LN depends on the parasitic reactor of each DC transmission line LN, the DC current breaker 1 uses the DC current cutoff speed of the first semiconductor circuit breaker 40-R and the second semiconductor. It was not possible to unify or adjust the DC system current cutoff speed of the circuit breaker 40-L. On the other hand, by providing the reactor 80 at the position shown in FIG. 29, the DC current breaker 1 has the DC current cutoff speed of the first semiconductor circuit breaker 40-R and the DC current cutoff speed of the second semiconductor circuit breaker 40-L. The DC system current cutoff speed can be unified or adjusted.
 また、第1リアクトル81、及び第2リアクトル82を、第3リアクトル83の位置に設けることにより、直流電流遮断装置1aは、部品点数を少なくしつつ、第1転流回路31、及び第2転流回路32の転流動作に第3リアクトル83を作用させ、第1半導体遮断器40-Rの直流系統電流遮断速度と第2半導体遮断器40-Lの直流系統電流遮断速度とを統一、又は調整することができる。 Further, by providing the first reactor 81 and the second reactor 82 at the positions of the third reactor 83, the DC current circuit breaker 1a has the first commutation circuit 31 and the second commutation circuit 31 while reducing the number of parts. The third reactor 83 is made to act on the commutation operation of the flow circuit 32 to unify the DC system current cutoff speed of the first semiconductor circuit breaker 40-R and the DC system current cutoff speed of the second semiconductor circuit breaker 40-L, or Can be adjusted.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (8)

  1.  直流系統を構成する複数の直流送電線路にそれぞれ設けられる複数の第1機械式接点と、
     前記複数の第1機械式接点と、前記複数の直流送電線路に共通して接続される共通送電線路との間にそれぞれ設けられる第2機械式接点と、
     複数の転流回路であって、それぞれの転流回路は、コンデンサを有し、前記複数の直流送電線路のうちいずれかの直流送電線路から前記共通送電線路への第1方向に流れる電流、又は前記共通送電線路から前記直流送電線路への第2方向に流れる電流を転流するものである、複数の転流回路と、
     第1端が前記共通送電線路に接続され、第2端が前記複数の直流送電線路に接続され、前記転流回路が転流した前記第1方向に流れる電流を遮断可能な第1半導体遮断器と、
     第1端が前記複数の直流送電線路にそれぞれ接続され、第2端が前記共通送電線路に接続され、前記転流回路が転流した前記第2方向に流れる電流を遮断可能な第2半導体遮断器と、
     を備える直流電流遮断装置。
    A plurality of first mechanical contacts provided on each of the plurality of DC transmission lines constituting the DC system, and
    A second mechanical contact provided between the plurality of first mechanical contacts and a common power transmission line commonly connected to the plurality of DC power transmission lines, and
    A plurality of commutation circuits, each commutation circuit having a capacitor, and a current flowing in a first direction from one of the plurality of DC transmission lines to the common transmission line, or A plurality of commutation circuits that commutate the current flowing in the second direction from the common transmission line to the DC transmission line.
    A first semiconductor circuit breaker whose first end is connected to the common power transmission line, whose second end is connected to the plurality of DC power transmission lines, and which can cut off the current flowing in the first direction to which the commutation circuit has commutated. When,
    A second semiconductor circuit breaker capable of interrupting the current flowing in the second direction to which the commutation circuit is commuted, the first end being connected to each of the plurality of DC transmission lines and the second end being connected to the common transmission line. With a vessel
    DC current breaker equipped with.
  2.  前記複数の転流回路のそれぞれは、複数のスイッチング素子を有し、
     前記複数の転流回路における前記複数のスイッチング素子の開閉状態を制御する制御部を更に備え、
     前記制御部は、前記複数の第1機械式接点のうち一部または全部をオフ状態にするとき、
      前記複数のスイッチング素子のうち一部のスイッチング素子をオン状態にして前記転流回路を動作状態にし、前記コンデンサに充電された電荷を用いて前記第1方向に流れる電流、又は前記第2方向に流れる電流の少なくとも一方を転流させた後、
      前記複数のスイッチング素子のいずれもオフ状態にして前記転流回路を停止状態にし、前記第1方向に流れる電流、及び前記第2方向に流れる電流を転流させない、
     請求項1に記載の直流電流遮断装置。
    Each of the plurality of commutation circuits has a plurality of switching elements.
    Further, a control unit for controlling the open / closed state of the plurality of switching elements in the plurality of commutation circuits is provided.
    When the control unit turns off a part or all of the plurality of first mechanical contacts,
    A part of the switching elements among the plurality of switching elements is turned on to put the commutation circuit into an operating state, and the electric charge charged in the capacitor is used to flow in the first direction or in the second direction. After commutating at least one of the flowing currents
    All of the plurality of switching elements are turned off to stop the commutation circuit, and the current flowing in the first direction and the current flowing in the second direction are not commutated.
    The DC current cutoff device according to claim 1.
  3.  前記複数の転流回路のそれぞれは、前記第1方向に流れる電流を転流する第1転流子回路と、前記第2方向に流れる電流を転流する第2転流子回路とを備える、
     請求項1に記載の直流電流遮断装置。
    Each of the plurality of commutation circuits includes a first commutator circuit that commutates a current flowing in the first direction and a second commutator circuit that commutates a current flowing in the second direction.
    The DC current cutoff device according to claim 1.
  4.  前記複数の転流回路のそれぞれは、複数のスイッチング素子と、複数のダイオードとを更に有し、
     前記スイッチング素子の開閉状態を制御する制御部を更に備え、
     前記制御部は、
      前記複数のスイッチング素子をオン状態にして前記転流回路を動作状態にし、前記コンデンサに充電された電荷を用いて前記第1方向に流れる電流、又は前記第2方向に流れる電流の少なくとも一方を転流させた後、
      前記複数のスイッチング素子のいずれもオフ状態に制御して前記転流回路を停止状態にし、前記第1方向に流れる電流、及び前記第2方向に流れる電流を転流させない、
     請求項3に記載の直流電流遮断装置。
    Each of the plurality of commutation circuits further includes a plurality of switching elements and a plurality of diodes.
    A control unit for controlling the open / closed state of the switching element is further provided.
    The control unit
    The plurality of switching elements are turned on to put the commutation circuit into an operating state, and the electric charge charged in the capacitor is used to rotate at least one of the current flowing in the first direction and the current flowing in the second direction. After letting it flow
    All of the plurality of switching elements are controlled to be in the off state to stop the commutation circuit, and the current flowing in the first direction and the current flowing in the second direction are not commutated.
    The direct current cutoff device according to claim 3.
  5.  前記第1半導体遮断器の前記第2端と前記複数の直流送電線路との間、及び前記第2半導体遮断器の前記第2端と前記複数の直流送電線路との間に、それぞれ設けられる複数のリアクトルを更に備え、
     前記転流回路は、前記リアクトルと前記コンデンサとにより閉回路を構成し、前記共通送電線路と前記直流送電線路との間の電流を転流する、
     請求項2から4のうちいずれか一項に記載の直流電流遮断装置。
    A plurality of DC transmission lines provided between the second end of the first semiconductor circuit breaker and the plurality of DC power transmission lines, and between the second end of the second semiconductor circuit breaker and the plurality of DC power transmission lines, respectively. With more reactors
    The commutation circuit constitutes a closed circuit by the reactor and the capacitor, and commutates a current between the common transmission line and the DC transmission line.
    The DC current cutoff device according to any one of claims 2 to 4.
  6.  前記転流回路は、前記直流送電線路のリアクトル成分と前記コンデンサとにより閉回路を構成し、前記共通送電線路と前記直流送電線路との間の電流を転流する、
     請求項2から4のうちいずれか一項に記載の直流電流遮断装置。
    The commutation circuit constitutes a closed circuit by the reactor component of the DC transmission line and the capacitor, and commutates a current between the common transmission line and the DC transmission line.
    The DC current cutoff device according to any one of claims 2 to 4.
  7.  前記第1機械式接点の開閉状態と、前記第2機械式接点の開閉状態と、前記転流回路の動作と、前記第1半導体遮断器の開閉状態と、前記第2半導体遮断器の開閉状態とを制御する制御部を更に備え、
     前記制御部は、
      前記複数の直流送電線路と、前記共通送電線路とを電気的に導通させる場合に、前記第1機械式接点と前記第2機械式接点とをいずれも閉状態に制御し、前記転流回路をいずれも停止状態にし、前記第1半導体遮断器と前記第2半導体遮断器とをいずれも開状態に制御し、
      前記複数の直流送電線路のうち、対象の直流送電線路と、前記共通送電線路とを電気的に遮断させる場合に、前記対象の直流送電線路に設けられた前記第1機械式接点と前記第2機械式接点とを開状態に制御し、前記対象の直流送電線路に対応する前記転流回路を動作状態にし、
      前記対象の直流送電線路に流れる電流が前記第1方向の電流である場合には、前記第1半導体遮断器を閉状態して前記転流回路によって前記第1半導体遮断器に前記対象の直流送電線路に流れる電流が転流された後に、前記第1半導体遮断器を開状態に制御して前記対象の直流送電線路と前記共通送電線路とを電気的に遮断し、
      前記対象の直流送電線路に流れる電流が前記第2方向の電流である場合には、前記第2半導体遮断器を閉状態して前記転流回路によって前記第2半導体遮断器に前記対象の直流送電線路に流れる電流が転流された後に、前記第2半導体遮断器を開状態に制御して前記対象の直流送電線路と前記共通送電線路とを電気的に遮断する、
     請求項1から6のうちいずれか一項に記載の直流電流遮断装置。
    The open / closed state of the first mechanical contact, the open / closed state of the second mechanical contact, the operation of the commutation circuit, the open / closed state of the first semiconductor circuit breaker, and the open / closed state of the second semiconductor circuit breaker. Further equipped with a control unit to control and
    The control unit
    When the plurality of DC power transmission lines and the common power transmission line are electrically conducted, both the first mechanical contact and the second mechanical contact are controlled to be in a closed state, and the commutation circuit is operated. Both are stopped, and both the first semiconductor circuit breaker and the second semiconductor circuit breaker are controlled to be in the open state.
    When the target DC transmission line and the common transmission line are electrically cut off from the plurality of DC transmission lines, the first mechanical contact and the second mechanical contact provided on the target DC transmission line are provided. The mechanical contact is controlled to be open, and the commutation circuit corresponding to the target DC transmission line is put into an operating state.
    When the current flowing through the target DC transmission line is the current in the first direction, the target DC transmission is performed to the first semiconductor breaker by the commutation circuit with the first semiconductor circuit breaker closed. After the current flowing through the line is commutated, the first semiconductor circuit breaker is controlled to be in an open state to electrically cut off the target DC transmission line and the common transmission line.
    When the current flowing through the target DC transmission line is the current in the second direction, the target DC power transmission is performed to the second semiconductor circuit breaker by the commutation circuit with the second semiconductor circuit breaker closed. After the current flowing through the line is commutated, the second semiconductor circuit breaker is controlled to be in an open state to electrically cut off the target DC transmission line and the common transmission line.
    The DC current cutoff device according to any one of claims 1 to 6.
  8.  前記第1機械式接点の開閉状態と、前記第2機械式接点の開閉状態と、前記転流回路の動作と、前記第1半導体遮断器の開閉状態と、前記第2半導体遮断器の開閉状態とを制御する制御部を更に備え、
     前記制御部は、
      前記複数の直流送電線路と、前記共通送電線路とを電気的に導通させる場合に、前記第1機械式接点と前記第2機械式接点とをいずれも閉状態に制御し、前記転流回路をいずれも停止状態にし、前記第1半導体遮断器と前記第2半導体遮断器とをいずれも開状態に制御し、
      前記複数の直流送電線路に流れる電流がいずれも同一の方向であって、前記複数の直流送電線路と前記共通送電線路とをいずれも電気的に遮断させる場合に、前記複数の第1機械式接点と前記第2機械式接点とをいずれも開状態に制御し、前記転流回路をいずれも動作状態にし、
      前記複数の直流送電線路に流れる電流のいずれもが前記第1方向の電流である場合には、前記第1半導体遮断器を閉状態して、前記複数の直流送電線路に流れる電流のいずれもが前記転流回路によって前記第1半導体遮断器に転流された後に、前記第1半導体遮断器を開状態に制御して、前記複数の直流送電線路と前記共通送電線路とを電気的に遮断し、
      前記複数の直流送電線路に流れる電流のいずれもが前記第2方向の電流である場合には、前記第2半導体遮断器を閉状態して、前記複数の直流送電線路に流れる電流のいずれもが前記転流回路によって前記第2半導体遮断器に転流された後に、前記第2半導体遮断器を開状態に制御して、前記複数の直流送電線路と前記共通送電線路とを電気的に遮断し、
     請求項1から7のうちいずれか一項に記載の直流電流遮断装置。
    The open / closed state of the first mechanical contact, the open / closed state of the second mechanical contact, the operation of the commutation circuit, the open / closed state of the first semiconductor circuit breaker, and the open / closed state of the second semiconductor circuit breaker. Further equipped with a control unit to control and
    The control unit
    When the plurality of DC power transmission lines and the common power transmission line are electrically conducted, both the first mechanical contact and the second mechanical contact are controlled to be in a closed state, and the commutation circuit is operated. Both are stopped, and both the first semiconductor circuit breaker and the second semiconductor circuit breaker are controlled to be in the open state.
    When the currents flowing through the plurality of DC power transmission lines are all in the same direction and both the plurality of DC power transmission lines and the common power transmission line are electrically cut off, the plurality of first mechanical contacts are used. And the second mechanical contact are both controlled to be in the open state, and the commutation circuit is put into the operating state.
    When all of the currents flowing through the plurality of DC transmission lines are currents in the first direction, the first semiconductor circuit breaker is closed and any of the currents flowing through the plurality of DC transmission lines is used. After being commutated to the first semiconductor circuit breaker by the commutation circuit, the first semiconductor circuit breaker is controlled to be in an open state to electrically cut off the plurality of DC transmission lines and the common transmission line. ,
    When all of the currents flowing through the plurality of DC transmission lines are currents in the second direction, the second semiconductor circuit breaker is closed and any of the currents flowing through the plurality of DC transmission lines is used. After being commutated to the second semiconductor circuit breaker by the commutation circuit, the second semiconductor circuit breaker is controlled to be in an open state to electrically cut off the plurality of DC transmission lines and the common transmission line. ,
    The DC current cutoff device according to any one of claims 1 to 7.
PCT/JP2020/000019 2020-01-06 2020-01-06 Dc circuit breaker WO2021140534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021569606A JP7318010B2 (en) 2020-01-06 2020-01-06 DC circuit breaker
PCT/JP2020/000019 WO2021140534A1 (en) 2020-01-06 2020-01-06 Dc circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000019 WO2021140534A1 (en) 2020-01-06 2020-01-06 Dc circuit breaker

Publications (1)

Publication Number Publication Date
WO2021140534A1 true WO2021140534A1 (en) 2021-07-15

Family

ID=76787878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000019 WO2021140534A1 (en) 2020-01-06 2020-01-06 Dc circuit breaker

Country Status (2)

Country Link
JP (1) JP7318010B2 (en)
WO (1) WO2021140534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458283B2 (en) 2020-10-01 2024-03-29 株式会社東芝 DC current interrupter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136229A1 (en) * 2013-03-06 2014-09-12 三菱電機株式会社 Electric power conversion device
JP2017004869A (en) * 2015-06-12 2017-01-05 株式会社東芝 Dc current cutoff apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136229A1 (en) * 2013-03-06 2014-09-12 三菱電機株式会社 Electric power conversion device
JP2017004869A (en) * 2015-06-12 2017-01-05 株式会社東芝 Dc current cutoff apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458283B2 (en) 2020-10-01 2024-03-29 株式会社東芝 DC current interrupter

Also Published As

Publication number Publication date
JP7318010B2 (en) 2023-07-31
JPWO2021140534A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
AU2009268165B2 (en) High-speed circuit breaker for a high-performance battery in an isolated direct current network
US6075684A (en) Method and arrangement for direct current circuit interruption
CN112543986A (en) Switching device and method
US10483072B2 (en) Interrupter device for interrupting a direct current
JP2020013656A (en) Dc current cut-off device
JP2020013657A (en) Dc current cut-off device
EP3522194B1 (en) Switching apparatus
US20220006286A1 (en) Ring-connected bridge-type multi-port hybrid DC circuit breaker
WO2021140534A1 (en) Dc circuit breaker
US20180166994A1 (en) Voltage-Regulated Power Converter Module
EP3540750B1 (en) Hvdc circuit breaker, hvdc switchyard, hvdc switchyard system, and hvdc grid
US20210012981A1 (en) Disconnecting device for interrupting a direct current of a current path, and on-board electrical system of a motor vehicle
DK2885801T3 (en) Separation device for a High Voltage Direct Current
KR102605473B1 (en) Solid State Switch
JP7242575B2 (en) DC current interrupter
EP3084908B1 (en) Circuit breaking arrangement
JP2019145456A (en) Power switchgear, power transmission/distribution system, power generation system, load system, mechanical switch, and power switchgear control method
US20220149727A1 (en) Switching device for a dc voltage circuit
CN110518845B (en) On-load voltage regulating switch of transformer
JP7279155B2 (en) DC current interrupter
WO2024084643A1 (en) Dc current breaker
JP2000260271A (en) Hybrid switch
WO2021006340A1 (en) Dc power supply device
JP2024053325A (en) DC current interrupter
JP2021111451A (en) Dc current cut-off device, dc current cut-off method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912333

Country of ref document: EP

Kind code of ref document: A1