WO2021140360A1 - Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés - Google Patents

Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés Download PDF

Info

Publication number
WO2021140360A1
WO2021140360A1 PCT/IB2020/050188 IB2020050188W WO2021140360A1 WO 2021140360 A1 WO2021140360 A1 WO 2021140360A1 IB 2020050188 W IB2020050188 W IB 2020050188W WO 2021140360 A1 WO2021140360 A1 WO 2021140360A1
Authority
WO
WIPO (PCT)
Prior art keywords
struts
nodes
central
base
roof
Prior art date
Application number
PCT/IB2020/050188
Other languages
English (en)
French (fr)
Inventor
Daniel Enrique GOMEZ LIZCANO
Original Assignee
Gomez Lizcano Daniel Enrique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gomez Lizcano Daniel Enrique filed Critical Gomez Lizcano Daniel Enrique
Priority to PCT/IB2020/050188 priority Critical patent/WO2021140360A1/es
Publication of WO2021140360A1 publication Critical patent/WO2021140360A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/344Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/32Parts, components, construction details, accessories, interior equipment, specially adapted for tents, e.g. guy-line equipment, skirts, thresholds
    • E04H15/34Supporting means, e.g. frames
    • E04H15/44Supporting means, e.g. frames collapsible, e.g. breakdown type
    • E04H15/48Supporting means, e.g. frames collapsible, e.g. breakdown type foldable, i.e. having pivoted or hinged means
    • E04H15/50Supporting means, e.g. frames collapsible, e.g. breakdown type foldable, i.e. having pivoted or hinged means lazy-tongs type

Definitions

  • the object of the present invention is modules based on joint mechanisms and articulated straight bars that generate triangulated frames with stress-free scissors, in order to form large-scale deployable shelters.
  • it refers to the option of combining the curved modules stiffened in any direction that are specific to the invention, in order to thus achieve three-dimensional geometries with multiple surface shapes.
  • the novelty of the present invention lies in creating deployable modules that facilitate the obtaining of diagonalized structures with scales greater than 10 meters of light, based on stress-free scissors mechanisms, thus allowing to generate surfaces of simple curvature and in some cases double curvature (synclastic or anticlastic).
  • the deployable modules based on straight scissors of the present invention it is possible to form shelters and large deployable roofs with triangulated frames and stress-free mechanisms, compared to the prior art whose solution to lateral instabilities foresees the use of bars that are installed post-deployment to triangulate modules, cables, or elements with limited flexibility to take on certain incompatible transitions of motion.
  • bistable structures [bi-stable] stress-free positions are generated in a stage prior to and after deployment; However, during movements, some bars go through a non-geometrically compatible state, producing stresses and controlled deformations [snap-through effect] until reaching a stable structural state in the final position. In this sense, analytical computer models are necessary to guarantee that the elements only have elastic deformations, since plastic deformations can generate permanent failures or even reach the breaking point.
  • UNE EN 13782 Technical Committee AEN / CTN 305 Tents and Mobile Structures, 2016
  • UNE EN 13782 Technical Committee AEN / CTN 305 Tents and Mobile Structures, 2016
  • the present invention addresses these needs and provides other related advantages.
  • the present invention refers to structural systems with triangulated frames, based on stress-free modules and scissors mechanisms.
  • a “stress-free” stress-free scissors structure is defined as geometrically compatible before, during and after deployment, except for its own dead weight, where the bars maintain their straightness, length and position of the connection nodes, even in stages. middle of the movement. Since they behave like pure mechanisms, evaluating the linear structural response in the deployed position can simplify the design process and reduce the stresses involved during on-site lifting and closing maneuvers.
  • the field of the invention is the conformation of deployable shelters that meet the needs of large scales, as a reference of different modulations and their stress-free stiffening alternatives.
  • the present invention is based on a correct assembly between components and the provision of folding principles, allowing a certain spatial configuration to maintain compatible theoretical positions from a compact state, throughout the deployment and until reaching the final position, moment in which it is necessary to block and anchor it to the ground or other fixed surface in order to become a structure resistant to external loads.
  • constructions with larger dimensions increase the degree of complexity, requiring anticipation of possible difficulties during movements and, if necessary, a detailed structural analysis in both intermediate and final positions.
  • they slow down handling during the installation process, require skilled labor, and can occasionally present a low tension in the cables or reduce the bearing capacity compared to the use of other resistant materials such as steel as the case may be.
  • it is convenient to estimate the reliability that they can offer in the face of unexpected stresses such as knocks or failures in any of their components, which would increase costs and maintenance time.
  • the concept of temporary covering under construction indicates protection against certain climatic conditions of temperature, winds and solar irradiation, it is also directly related to the loads of rain or snow.
  • Luis Sánchez Cuenca proposed a series of square-based extensible geometries, which are the result of a design methodology based on straight translational scissors.
  • the publication “Geometric models for expandable structures”, WIT Transactions on the Built Environment, vol 21, Girona Spain, 1996, by Sanchez-Cuenca L. it is evident that the different non-triangulated modulations must be complemented and reinforced.
  • Figure 1 illustrates the principle of maximum folding of a two-dimensional scissor structure.
  • Figures 2a, 2b and 2c illustrate different two-dimensional straight scissors configurations.
  • Figures 3a and 3b illustrate the basic configuration of a scissors structure with flat and curved translation movements.
  • Figure 4 illustrates a perspective view of the scissors module with flat and curved translation movements, which is triangulated by means of a stress-free mechanism in a first embodiment, according to the present invention.
  • Figure 5a and 5b illustrate pin configurations according to the first embodiment of the present invention.
  • Figure 6 illustrates a perspective view of the scissors module with flat and curved translation movements, which is triangulated by means of a stress-free mechanism in a second embodiment, according to the present invention.
  • Figures 7a and 7b illustrate the basic configuration of a scissors structure with plane and polar translational movements.
  • Figure 8 illustrates a perspective view of the scissors module with plane and polar translation movements, which is triangulated by means of a stress-free mechanism in a third embodiment, according to the present invention.
  • Figure 9 illustrates a perspective view of an arc generated from the combination of triangulated scissors modules by means of stress-free mechanisms, according to the first and second embodiments of the present invention.
  • Figure 10 illustrates a perspective view of an arc generated from only the triangulated scissors module by means of a stress-free mechanism, according to the third embodiment of the present invention.
  • Figures 11a, 11b and 11c illustrate generic examples that include different geometric shapes from triangulated scissors modules by means of stress-free mechanisms, according to the first and second embodiments of the present invention.
  • the object of the present invention is modules based on joint mechanisms and articulated straight bars that generate triangulated frames with stress-free scissors to form large-scale deployable shelters.
  • it refers to the option of combining the curved modules stiffened in any direction that are specific to the invention, in order to thus achieve three-dimensional geometries with multiple surface shapes.
  • Figure 2a illustrates a straight scissors configuration with plane translation movements
  • Figure 2b illustrates a straight scissors configuration with curved translation movements
  • Figure 2c illustrates a straight scissors configuration with polar movements. From these basic notions it is possible to shape different three-dimensional geometries.
  • the invention starts from an oblique prism with a square base to provide a first alternative stiffening that includes pivots in the end and central joints that vary the angle of the diagonal scissors according to the movements, and can also be a unique solution that is adaptable to multiple designs.
  • a scissors configuration can be identified where the intermediate planes between axes 1-4 and 2-3 are plane translation scissors, in combination with the intermediate planes between axes 1-2 and 3- 4 of curved translation scissors, so that the basic perimeter frame illustrated in figure 4 is generated.
  • the module 100 object of the present invention, of an oblique prism with a quadrangular base, which is triangulated by means of mechanisms of stress-free scissors in a first mode.
  • Said module 100 is then formed from a structure of joints and articulated straight bars.
  • a peripheral assembly that includes a base assembly with two front base nodes 5 and two rear base nodes 6, in combination with a roof assembly with two front ceiling nodes 7 and two rear ceiling nodes 8.
  • the base assembly is each made up of three struts, where the front base node 5 originally receives side struts 9 and end struts 10, and the rear base 6 receives side struts 11 and end struts 12. Between the front base nodes 5 and from the rear base 6 a quadrangular base is formed.
  • the front roof node 7 receives the side struts 11 as well as the end struts 10.
  • the end struts receives the lateral struts 9 and the end struts 12.
  • a quadrangular roof is formed between the nodes of the front roof 7 and the rear roof 8.
  • the peripheral base and ceiling assembly is combined with a central assembly.
  • the upper center assembly comprises two front center base struts 13 projecting from a top center node 14 towards the two front base nodes 5 respectively and two rear center base struts 15 projecting from the top center node 14 towards the two posterior base nodes 6 respectively.
  • the lower center assembly comprises two roof front center struts 16 projecting from a lower center node 17 towards the two front roof nodes 7 respectively and two roof rear center struts 18 projecting from the lower center 17 toward the two rear roof nodes 8 respectively.
  • the upper central pivot 14 and lower central pivot 17 elements comprise a quadruple pivot 19 as illustrated in Figure 5a.
  • Said quadruple central pivot 19 comprises a pair of plates 20 arranged in X, which form a central axis of rotation 21 and include end pivots 22.
  • This quadruple pivot receives the two front central base struts 13 and the two rear central base struts 15 to form the upper central node 14 and receives the two front central roof struts 16 and two struts Ceiling rear centers 18 to form the lower central node 17.
  • the front 5 and rear 6 base nodes, as well as the front 7 and rear roof nodes 8, comprise a triple pivot 23 as illustrated in Figure 5b.
  • the triple pivot 23 is made up of two fins 24 arranged in an L on a plate 25, in which each end of each fin 24 is optionally complemented with a middle support 26 and an end support 27 respectively.
  • the crossing of fins 24 thus forms a central axis 29 that refers to an angle of 90 ° between the L-shaped fins.
  • Each triple pivot 23 receives the lateral, end and central struts respectively of the base or roof.
  • Each pair of end and side struts are connected to each other maintaining a fixed angle of 90 ° between their pivots, while the central struts form diagonals with a hinge-like behavior during movements.
  • the triple base pivots 23 remain parallel with respect to the triple roof pivots 23, and the same occurs with respect to the quadruple pivots 19.
  • the invention represents In this first modality, an oblique prism with a square base, which contains scissors of regular plane translation and scissors of regular curved translation on the main faces, where the diagonal scissors are of irregular curved translation and are coupled to the external joints located at the vertices. of the prism, given the possibility of an additional degree of freedom that adjusts to the different positions with varying angles.
  • a second modality on the modulation solution is the one illustrated in figure 6, where the diagonal scissors are of flat-irregular translation that differently pivot on the curved translation scissors located on the sides. of the prism, by means of special rigid joints that maintain the positions and angles between the connecting nodes.
  • module 200 object of the present invention in a second embodiment, of an oblique prism with a quadrangular base.
  • Said module under this second modality is formed from a structure of joints and articulated bars, which is triangulated by means of stress-free scissors mechanisms.
  • Module 200 as in the first embodiment of module 100, comprises a peripheral assembly that shares the base assembly with two front base nodes 5, two rear base nodes 6 in combination with a roof assembly with two front base nodes. front roof 7 and two rear roof nodes 8.
  • the base assembly is also each made up of struts, where the front base node 5 receives side struts 9 and end struts 10 and the rear base 6 receives side struts 11 and end struts 12. Between the knots with the anterior base 5 and the posterior base 6, a quadrangular base is formed.
  • the front roof node 7 receives the side struts 11 and the end struts 10 and the rear ceiling 8 receives the side struts 9 and the end struts 12.
  • the base and roof peripheral assembly is combined with a central assembly that includes an upper center assembly and a lower center assembly.
  • the upper center assembly for this second modality comprises two front central base struts 30, which project from an upper center node 31 to a position close to the two previous base nodes 5 respectively, forming alternative anterior nodes 36 and the two Rear central base struts 32 project from the upper center node 31 to connect with the two rear base nodes 6 respectively.
  • the lower center assembly comprises two roof front central struts 33 projecting from a lower center node 34 towards the two front roof nodes 7 respectively and two roof rear central struts 35 projecting from said lower center 34 to a position close to the two rear roof nodes 8 respectively forming alternative rear nodes 37.
  • the reference to the front roof pivots 7 and the rear base pivots 6 refer to pivots positioned with fixed angles at 90 ° for the perimeter faces of the prism, in conjunction with special rigid joints that pivot differently on the curved translation scissors to hold the diagonal scissors, where the fixed angle of the joint with which the diagonal scissors connect and of the quadruple pivot 31 and the quadruple pivot 34 depends on the length of the curved translation scissors, which in turn define the inclination in the final position of the module.
  • the front base nodes 5 remain parallel to the front roof nodes 7 and together the rear base nodes 6 remain parallel to the rear ceiling nodes 8.
  • FIG. 7a and 7b Another important development of the present invention is evidenced based on Figures 7a and 7b, where a structure of scissors with plane and polar translation movements is defined, which refers to a prism with a trapezoidal section known in the state of the art.
  • said prism with trapezoidal section is triangulated with stress-free scissors mechanisms in a third mode as illustrated in figure 8.
  • a configuration can be identified of scissors where the intermediate planes between the axes 1'-2 ', 3'-4', are scissors with polar movements and the intermediate planes between the axes 1'-4 ', and 2'-3' are scissors with movements of plane translation, so that the basic perimeter frame illustrated in figure 8 is generated.
  • module 300 object of the present invention, with a prism with a trapezoidal section.
  • Said module is formed from a structure of joints and articulated bars the which is triangulated by means of stress-free scissors mechanisms, where the diagonal scissors are of flat - irregular translation that differently pivot on the pole scissors located on the sides of the prism, through special rigid joints that maintain the positions and angles between the connecting nodes .
  • This third embodiment according to figure 8 comprises a peripheral assembly that includes a base assembly and a roof assembly.
  • the base assembly comprises two front base nodes 38 and two rear base nodes 39, in combination with a roof assembly made up of two front roof nodes 40 and two rear roof nodes 41.
  • the base assembly is each shaped one per struts, where the anterior base node 38 receives lateral struts 42 and end struts 43 and the posterior base 39 receives lateral struts 44 and end struts 45. Between the anterior base 38 and posterior base 39 nodes a quadrangular base is formed .
  • the front roof nodes 40 receive the side struts 44 and the end struts 43 and the rear roof nodes 41 receive the side struts 42 and end struts 45.
  • Said peripheral base and ceiling assembly is combined with a central assembly that includes an upper center assembly and a lower center assembly, where the upper center assembly under this third embodiment comprises two front central base struts 46 that project from a upper center node 47 until connecting with the two front base nodes 38 respectively and the two rear central base struts 48, project from the upper center node 47 until connecting with the two rear base nodes 39 respectively.
  • the lower center assembly of the module 300 comprises two central roof struts 49 that project from a lower center node 50 to a position close to the two anterior roof nodes 40 respectively, forming alternative anterior nodes 51 and where the two rear central roof struts 52 project from said lower center 50 to a position close to the two rear roof nodes 41 respectively, forming alternative rear nodes 53.
  • the two nodes of the front roof 40 and rear roof 41 are each shaped from the extension of the lateral and end struts and are combined with projections close to the central struts that form alternative anterior nodes 51 close to the front roof nodes 40 and alternate rear nodes 53 next to rear roof nodes 41.
  • the front base nodes 38 remain parallel to the front roof nodes 40, and together, the rear base nodes 39 remain parallel to the rear ceiling nodes 41, although, given the Characteristics of this third modality are described polar movements that incline the base nodes and the ceiling nodes towards a certain radius according to the movements. Additionally, a central extension axis is projected formed between the upper central quadruple pivot 47 and the lower central quadruple pivot 50, while the anterior alternative nodes 51 and the posterior alternative nodes 53 adopt the movements with respect to this new central extension axis.
  • the angle of the joints with which the diagonal scissors, the lower center pivot 50 and the upper center pivot connect 47 depends on the eccentric position of the intermediate node on the pole scissors, which in turn define the opening angle in the final position of the module.
  • the struts that make up the roof assembly according to the third embodiment of the present invention are pivotally connected by means of a double pivot with a fixed angle of 90 °, and that allow relative rotation between struts.
  • FIG 9 an example configuration of an arch 400 formed by means of an arch base from module 200 in extended connection with module 100 is illustrated, which once extended, various triangulated surfaces are obtained according to figures 11a, 11b, and 11c.
  • Figure 11a for example can be formed from the connection between modules 100 and 200 and form arcs 400 to configure a single curvature surface 600.
  • Figure 11b for example can incorporate an extension to form a double positive curvature surface 700.
  • Figure 11c can also incorporate an extension to form a double negative curvature surface 800.
  • the use of modules 100, 200 or their combinations is indistinct.
  • the previous designs can be solved by means of a pair of scissors that configure a simple diagonal or by simplifying the approach of diagonal scissors by four pyramid bars that make up a basic mechanism.
  • the approach with all the diagonalized modules configures the most robust option and can be required under the most demanding conditions of use.
  • the anchoring to the ground secures the whole and offers a complementary structural capacity, so it can also be considered as non-deformable or rigid by conveniently transferring the loads on the diagonals to the supports.
  • the resulting shape can dispense with one of the front central base struts 30, one of the front central ceiling struts 33, one of the rear central base struts 32 and one of the rear central ceiling struts 35 that are understood to be interconnected in line, in addition to the respective alternative anterior nodes 36 and the alternative posterior nodes 37, while the upper center node 31 and the node lower center 34 comprise simple pivots.
  • the resulting shape can dispense with the two front central roof struts 33 and the two rear central ceiling struts 35, in addition to the respective alternative nodes anterior 36, posterior alternative knots 37 and lower center knot 34.
  • the resulting shape can dispense with one of the front central base struts 46, one of the front central ceiling struts 49, one of the rear central struts base 48 and one of the rear central roof struts 52 that are understood to be interconnected in line, in addition to the respective alternative anterior nodes 51 and the alternative posterior nodes 53, while the upper center node 47 and the lower center node 50 comprise simple pivots.
  • the resulting shape can dispense with the two front central roof struts 49 and the two rear central ceiling struts 52, in addition to the respective alternative anterior nodes 51, the alternate posterior knots 53 and lower center knot 50.
  • the present invention therefore incorporates the structural principles of straight scissors, which are essentially made up of pairs of bars with the same or different lengths articulated to each other, at an intermediate point that can either be centered or off-center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Prostheses (AREA)

Abstract

La presente invención tiene por objeto módulos a partir de mecanismos de uniones y barras rectas articuladas que generan marcos triangulados con tijeras libres de estrés, para conformar así refugios desplegables de gran escala. Particularmente, se refiere a la opción de combinación entre los módulos curvos rigidizados en cualquier dirección que son propios de la invención, para lograr así conformar geometrías tridimensionales con múltiples formas de superficie, basándose en mecanismos de tijeras rectas compatibles con los movimientos desde un estado compacto, intermedio y hasta la posición final. De este modo se posibilita generar techos inclinados, arcos simples o variadas geometrías tridimensionales de simple curvatura y en algunos casos doble curvatura (sinclástica o anticlástica), partiendo de modulaciones que describen movimientos polares o de traslación.

Description

REFUGIOS DESPLEGABLES DE GRAN ESCALA CON MARCOS TRIANGULADOS Y MECANISMOS DE TIJERAS LIBRES DE ESTRÉS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN.
La presente invención tiene por objeto módulos a partir de mecanismos de uniones y barras rectas articuladas que generan marcos triangulados con tijeras libres de estrés, para conformar así refugios desplegables de gran escala. Particularmente, se refiere a la opción de combinación entre los módulos curvos rigidizados en cualquier dirección que son propios de la invención, para lograr así conformar geometrías tridimensionales con múltiples formas de superficie.
La novedad de la presente invención radica en crear módulos desplegables que faciliten la obtención de estructuras diagonalizadas con escalas mayores a 10 metros de luz, basado en mecanismos de tijeras libres de estrés, permitiendo de este modo generar superficies de simple curvatura y en algunos casos doble curvatura (sinclástica o anticlástica). Mediante los módulos desplegables basados en tijeras rectas de la presente invención, es posible conformar refugios y techos desplegables de gran tamaño con marcos triangulados y mecanismos libres de estrés, frente al arte anterior cuya solución ante las inestabilidades laterales prevé el uso de barras que se instalan posteriormente al despliegue para triangular los módulos, cables, o elementos con flexibilidad limitada para asumir ciertas transiciones incompatibles de movimiento.
Ejemplos del último caso son las estructuras auto bloqueables o auto estabilizares [self-locking o self-stiffening], en donde las barras permanecen retorcidas incluso en la posición final, haciéndolas más susceptibles al pandeo bajo cargas de servicio. Adicionalmente, en las estructuras biestables [bi-stable] se generan posiciones libres de estreses en una etapa previa y posterior al despliegue; sin embargo, durante los movimientos algunas barras pasan por un estado no compatible geométricamente, produciendo estreses y deformaciones controlados [snap-through effect] hasta alcanzar un estado estructural estable en la posición final. En este sentido, modelos analíticos por computadora son necesarios para garantizar que los elementos únicamente tienen deformaciones elásticas, dado que las deformaciones plásticas pueden generar fallas permanentes o incluso alcanzar el punto de rotura.
Dado que estas deformaciones y sobreesfuerzos pueden ocurrir tanto en el despliegue como en el plegado, calcular el comportamiento estructural durante las diferentes posiciones es un proceso analítico de gran complejidad, en tanto existen comportamientos contradictorios entre la flexibilidad deseada durante los movimientos y una balanceada rigidez para la vida útil de la construcción. Por lo tanto, con base en las modulaciones de la presente invención es posible generar marcos triangulados con mecanismos de tijeras libre de estrés, para conformar refugios desplegables de gran escala que brinden alternativas estructurales que acompañen la rigidización diagonal automáticamente, garanticen una interacción controlada y homogénea entre las partes y satisfagan las necesidades del uso frecuente. De este modo se logra reducir la logística del trabajo y el tiempo requerido para instalar barras adicionales que triangulen la estructura, evitar cables que pueden enredarse y perder tensión con el tiempo, y simplificar la alta complejidad que surge durante el diseño estructural y los riesgos que se pueden producir durante las maniobras de apertura y cierre de las estructuras que incorporan capacidad de deformación elástica en sus componentes, puesto que a mayores dimensiones estos procedimientos son proporcionalmente más comprometedores.
A pesar de existir múltiples códigos de construcción conforme las diferentes condiciones geográficas internacionales, un referente afín al objeto de la invención entre otros, es la normativa UNE EN 13782 (Comité técnico AEN/CTN 305 Carpas y Estructuras Móviles, 2016), la cual especifica los requerimientos de seguridad durante el diseño, calculo, instalación, mantenimiento y operación de construcciones temporales que de modo independiente o agrupado superen 50 m2 de área superficial.
La presente invención aborda estas necesidades y proporciona otras ventajas relacionadas.
CAMPO DE LA INVENCIÓN.
La presente invención hace referencia a sistemas estructurales con marcos triangulados, basados en módulos y mecanismos de tijeras libres de estrés. Una estructura de tijeras libre de estrés “stress-free” se define como geométricamente compatible antes, durante y después del despliegue, exceptuando su propio peso muerto, donde las barras mantienen su rectitud, longitud y posición de los nodos de conexión, aún en etapas intermedias del movimiento. Ya que se comportan como mecanismos puros, evaluar la respuesta estructural lineal en la posición desplegada puede simplificar el proceso de diseño y reducir los esfuerzos involucrados durante las maniobras de izaje y cierre en sitio. El campo de la invención es la conformación de refugios desplegables que suplan las necesidades de grandes escalas, como referencia de distintas modulaciones y sus alternativas de rigidización libres de estrés. De igual forma, la presente invención se fundamenta en un correcto ensamble entre componentes y la previsión de los principios de plegabilidad, permitiendo que determinada configuración espacial mantenga posiciones teóricas compatibles desde un estado compacto, durante todo el despliegue y hasta alcanzar la posición final, momento en que es necesario su bloqueo y anclaje al terreno u otra superficie fija para así convertirse en una estructura resistente a cargas externas.
Como resultado, es factible obtener múltiples estilos de techos y recintos formados por arcos que combinan superficies inclinadas o curvaturas asociadas a secciones cónicas: circunferencia, elipse, parábola. Asimismo, con base en la invención se posibilitan geometrías de simple curvatura: “superficies clásticas” y eventualmente de doble curvatura positiva o negativa: “superficies sinclásticas” o “superficies anticlásticas”. Dadas las características estructurales, las superficies de simple curvatura descritas a continuación garantizan plena compatibilidad del textil de cubrimiento con el mecanismo conjuntamente, mientras en otras, esta ventaja sólo se cumple con determinadas inclinaciones o pendientes de la cubierta.
ANTECEDENTES DE LA INVENCIÓN.
Con base en la técnica anterior, las estructuras desplegables compuestas por conjuntos de uniones y barras rectas articuladas que conforman geometrías de tipo tijera (también llamadas aspas) con base cuadrangular, pueden presentar inestabilidades angulares ante esfuerzos. La técnica incorpora varios principios estructurales tales como el de tijeras rectas. Las tijeras rectas están constituidas esencialmente por pares de barras con igual o diferente longitud articuladas entre sí, en un punto intermedio que bien puede estar centrado o descentrado; de este modo se pueden constituir tijeras rectas de traslación plana, traslación curva o polares, aunque también se delimita el objeto de la técnica al exceptuar las tijeras anguladas. Conforme la literatura, solamente algunas configuraciones tridimensionales pueden resolverse directamente con un comportamiento libre de estreses, a pesar de que en esencia una sucesión de tijeras bidimensionales cumple con este principio.
En escalas pequeñas y medianas, el problema de pandeo lateral ha sido frecuentemente resuelto con la incorporación de cables postensados [tirantes] sobre las diagonales, por la fijación de barras que se instalan después del despliegue de la estructura, o por triangulación mediante el uso de elementos con flexibilidad limitada, los cuales requieren ser deformados debido a ciertas incompatibilidades que condicionan parcialmente los movimientos.
Dadas estas particularidades descritas, las construcciones con mayores dimensiones incrementan el grado de complejidad, requiriendo prever las posibles dificultades durante los desplazamientos y si fuese necesario un detallado análisis estructural tanto en las posiciones intermedias como en la final. De igual manera, ralentizan la manipulación durante el proceso de instalación, requieren mano de obra capacitada, y ocasionalmente pueden presentar una baja tensión de los cables o reducir la capacidad portante respecto al uso de otros materiales resistentes como el acero según sea el caso. Como complemento, es conveniente estimar la confiabilidad que pueden ofrecer ante esfuerzos inesperados tales como los golpes o las fallas en alguno de sus componentes, lo que incrementaría los costos y el tiempo de mantenimiento. Si bien el concepto de cubrición temporal en construcción indica una protección ante determinadas condiciones climáticas de temperatura, vientos e irradiación solar, también se relaciona directamente con las cargas de lluvia o de nieve. Por este motivo es propicio el desarrollo de mecanismos de fácil y rápido montaje o desmontaje a partir de módulos curvos rígidos en cualquier dirección, que además permitan cierta libertad en el diseño para así suministrar estéticas diferenciadas, adaptarse a múltiples escenarios conforme el uso y lograr las pendientes o elevaciones que deben alcanzar este tipo de estructuras conforme las legislaciones internacionales.
La técnica revela varias publicaciones como referencia, como por ejemplo las patentes de Estados Unidos de América US4437275 y US4689932, de Zeigler, comparten conceptos estructurales con el fin de configurar diferentes tipos de espacios cubiertos que a su vez son auto soportados en la posición final. Esta característica resulta de restricciones inducidas por la tipología del diseño ya que algunas barras se desvían o doblan aún en la posición final, requiriendo una cantidad de esfuerzo adicional suficiente para lograr las deformaciones tanto en el despliegue, como en el pliegue. Anandasivam Kñshnapillai en la patente de Estados Unidos de América US5167100, describe en contraste las particularidades de algunas geometrías con comportamiento Bi-estable.
Otras divulgaciones con características técnicas equivalentes a las definidas por Zeigler anteriormente se pueden identificar con base en la solicitud de patente de Estados Unidos de América US2007/0084493A1 de Prusmack J., que revela productos conocidos bajo la marca comercial de “DRASH®: Deployable Rapid Assembly Shelter en la práctica, son construcciones que deben ser fijadas al terreno y usualmente aseguradas con cables que contrarresten el efecto del viento. En contraste, en la patente US6141934 de Zeigler se incorporan cables en las diagonales y se requiere fijación manual para estabilizar el conjunto. Dicha patente originó el sistema estructural conocido actualmente bajo la marca comercial de “Base-X® Shelters”.
F. Escrig fue uno de los más prominentes exponentes de los sistemas de tijeras y sus exploraciones fueron orientadas a simplificar las uniones, el número de barras y alcanzar la mayor compactación posible del conjunto en posición plegada; por esto, para abordar el problema asociado a las deformaciones angulares en módulos con base cuadrada, comúnmente se incluyó rigidización por cables o mediante barras adicionales que se instalan una vez la estructura esta fija en la posición abierta. Sin embargo, en la publicación “Deployable structures squared in plan design and construction" Structures: Heritage, Present and Future, vol. I, 1995, [Fig.3, pg, 484], de Escrig F. et al., llama la atención que también se ¡lustra un módulo plano con diagonalización interna mediante tijeras compatibles.
Por otro lado, en “Arco desplegable de grandes dimensiones”, Escrig F., de la patente Española ES2268963 del 2007, para rigidizar el conjunto se emplean opcionalmente pirámides plegables sobre las diagonales de cada módulo. A pesar de mantener la posición de los cuadros, este tipo de soluciones genera deformaciones sobre las diagonales, representa una desventaja en la altura durante la posición plegada, y no ofrece una distribución de cargas significativa respecto a un modelo en el que idealmente se conecten puntos superiores e inferiores mediante tijeras.
Alternativamente, Luis Sánchez Cuenca propuso una serie de geometrías extensibles de base cuadrada, que son el resultado de una metodología de diseño a partir de tijeras rectas de traslación. En la publicación “Geometric models for expandable structures”, WIT Transactions on the Built Environment, vol 21, Girona Spain, 1996, de Sanchez-Cuenca L., es evidente que se deben complementar y reforzar las distintas modulaciones no trianguladas.
Uno de los más recientes desarrollos que abordan el problema de las distorsiones angulares, fue presentado en la patente Española ES2523425 de Ramos Jiménez, que ¡lustra una superficie que busca estabilizar la estructura sin necesidad de cables o barras adicionales una vez se encuentra abierta. El comportamiento cinemático de esta propuesta presenta incompatibilidades que deforman controladamente los componentes principales, mientras que la fijación de un material textil rígido permanente puede ocurrir solamente en una parte de la invención. De este modo, se pueden requerir materiales de cerramiento flexibles que afectan la adecuada tensión de este.
Por tanto, se hace necesaria la creación de módulos curvos diagonalizados y libres de estrés que ofrezcan la posibilidad de generación de refugios desplegables de gran escala, con ventajas asociadas a la facilidad de simplificar la construcción en sitio, junto con la factibilidad de incorporación de procesos de diseño y calculo estructural paramétrico, para asegurar variabilidad según los requerimientos normativos, uso, dimensión, material, forma, capacidades estructurales y demás características técnicas.
DESCRIPCIÓN DE LAS FIGURAS.
Para aclarar más la invención y sus ventajas comparadas con el arte conocido, se describen a continuación con la ayuda de los dibujos anexos, las posibles formas de realizaciones ilustrativas y no limitativas de la aplicación de dichos principios. La Figura 1 ¡lustra el principio de plegabilidad máxima de una estructura de tijeras en dos dimensiones.
Las Figuras 2a, 2b y 2c ¡lustran diferentes configuraciones bidimensionales de tijeras rectas.
Las Figuras 3a y 3b, ¡lustran la configuración básica de una estructura de tijeras con movimientos de traslación plana y curva.
La Figura 4 ¡lustra una vista en perspectiva del módulo de tijeras con movimientos de traslación plana y curva, el cual es triangulado mediante un mecanismo libre de estrés en una primera modalidad, según la presente invención.
La Figura 5a y 5b ¡lustra configuraciones de pivotes según la primera modalidad de la presente invención.
La Figura 6 ¡lustra una vista en perspectiva del módulo de tijeras con movimientos de traslación plana y curva, el cual es triangulado mediante un mecanismo de libre estrés en una segunda modalidad, según la presente invención.
Las figuras 7a y 7b ¡lustran la configuración básica de una estructura de tijeras con movimientos de traslación plana y polar.
La Figura 8 ¡lustra una vista en perspectiva del módulo de tijeras con movimientos de traslación plana y polar, el cual es triangulado mediante un mecanismo de libre estrés en una tercera modalidad, según la presente invención. La Figura 9 ¡lustra una vista en perspectiva de un arco generado a partir de la combinación de los módulos de tijeras triangulados mediante mecanismos libres de estrés, según la primera y segunda modalidad de la presente invención.
La Figura 10 ¡lustra una vista en perspectiva de un arco generado a partir sólo del módulo de tijeras triangulado mediante un mecanismo de libre estrés, según la tercera modalidad de la presente invención.
Las figuras 11a, 11b y 11c, ¡lustran ejemplos genéricos que incluyen diferentes formas geométricas a partir de los módulos de tijeras triangulados mediante mecanismos libres de estrés, según la primera y segunda modalidad de la presente invención.
DESCRIPCIÓN DE LA INVENCIÓN.
La presente invención tiene por objeto módulos a partir de mecanismos de uniones y barras rectas articuladas que generan marcos triangulados con tijeras libres de estrés para conformar así refugios desplegables de gran escala. Particularmente, se refiere a la opción de combinación entre los módulos curvos rigidizados en cualquier dirección que son propios de la invención, para lograr así conformar geometrías tridimensionales con múltiples formas de superficie.
Por su parte, el principio de plegabilidad de una estructura de tijeras en dos dimensiones fue desarrollado por Escrig mediante la fórmula:
// + / 7 = ki+1 + k’i+1 Para dicha estructura de tijeras, la suma de las sem ¡-longitudes en un lado debe ser igual a las unidades contiguas. Este método se puede usar al conectar cualquier tipo de tijera tal y como se ¡lustra en la figura 1 , donde se evidencia mediante una representación gráfica, la condición de plegabilidad máxima en componentes de los tipos de tijeras recta de traslación plana y polar.
A partir de ello, al vahar la forma, la longitud y el posicionamiento del nodo intermedio dentro de las barras, se pueden producir diferentes configuraciones bidimensionales tal y como se ¡lustra en las figuras 2a, 2b y 2c. La figura 2a ¡lustra una configuración de tijeras rectas con movimientos de traslación plana, la figura 2b ¡lustra una configuración de tijeras rectas con movimientos de traslación curva y la figura 2c ¡lustra una configuración de tijeras rectas con movimientos polares. A partir de estas nociones básicas es posible la conformación de diferentes geometrías tridimensionales.
Las incompatibilidades geométricas de la triangulación que el estado de la técnica no ha podido resolver en algunas estructuras con mecanismos de tijeras libres de estrés y movimientos curvos, son resueltas en primer lugar a partir de las configuraciones propuestas por la presente invención con base en las figuras 3a y 3b del estado del arte, donde la solución proviene de un módulo principal denominado prisma oblicuo de base cuadrada. El prisma oblicuo de base cuadrangular según estas figuras 3a y 3b ya existía previamente y lo que se busca con la presente invención es triangularlo con mecanismos de tijeras libres de estrés.
En efecto, con el fin de generar curvaturas o superficies inclinadas para conformar refugios desplegables de gran tamaño, la invención parte de un prisma oblicuo de base cuadrada para brindar una primera alternativa de rigidización que incluyen pivotes en las uniones extremas y centrales que varían el ángulo de las tijeras diagonales conforme los movimientos, pudiendo además ser una solución única que es adaptable a múltiples diseños. Conforme dichas figura 3a y 3b, se puede identificar una configuración de tijeras en donde los planos intermedios entre los ejes 1-4 y 2-3 son tijeras de traslación plana, en combinación con los planos intermedios entre los ejes 1-2 y 3-4 de tijeras de traslación curva, de manera que se genera el marco perimetral básico ¡lustrado en la figura 4.
Con base en dicha figura 4, a partir de la configuración de la invención según las figuras 3a y 3b, es posible conformar entonces el módulo 100 objeto de la presente invención, de un prisma oblicuo con base cuadrangular, el cual es triangulado mediante mecanismos de tijeras libres de estrés en una primera modalidad.
Dicho módulo 100 entonces está conformado a partir de una estructura de uniones y barras rectas articuladas. Particularmente, comprende un conjunto periférico que incluye un conjunto de base con dos nudos de base anterior 5 y dos nudos de base posterior 6, en combinación con un conjunto de techo con dos nudos de techo anterior 7 y dos nudos de techo posterior 8.
El conjunto de base está conformado cada uno por tres puntales, donde el nudo de base anterior 5 recibe originalmente puntales laterales 9 y puntales extremos 10, y la base posterior 6 recibe puntales laterales 11 y puntales extremos 12. Entre los nudos de base anterior 5 y de base posterior 6 se conforma una base cuadrangular.
En el conjunto de techo, el nudo de techo anterior 7 recibe los puntales laterales 11 así como los puntales extremos 10. Los puntales de techo posterior 8 reciben los puntales laterales 9 y los puntales extremos 12. Entre los nudos de techo anterior 7 y de techo posterior 8 se conforma un techo cuadrangular.
Como complemento del módulo 100 según la primera modalidad de la presente invención, el conjunto periférico de base y techo se combina con un conjunto central.
El conjunto de centro superior comprende dos puntales centrales anteriores de base 13 que se proyectan desde un nudo de centro superior 14 hacia los dos nudos de base anterior 5 respectivamente y dos puntales centrales posteriores de base 15 que se proyectan desde el nudo de centro superior 14 hacia los dos nudos de base posterior 6 respectivamente.
El conjunto de centro inferior comprende dos puntales centrales anteriores de techo 16 que se proyectan desde un nudo de centro inferior 17 hacia los dos nudos de techo anterior 7 respectivamente y dos puntales centrales posteriores de techo 18 que se proyectan desde el centro inferior 17 hacia los dos nudos de techo posterior 8 respectivamente.
Ahora bien, para que la estructura tenga el movimiento de expansión necesario, los elementos de pivote central superior 14 y de pivote central inferior 17 comprende un pivote cuádruple 19 tal y como se ¡lustra en la figura 5a. Dicho pivote central cuádruple 19 comprende un par de platinas 20 dispuestas en X, que forman un eje de rotación central 21 e incluyen pivotes extremos 22. Este pivote cuádruple recibe los dos puntales centrales anteriores de base 13 y los dos puntales centrales posteriores de base 15 para conformar el nudo central superior 14 y recibe los dos puntales centrales anteriores de techo 16 y dos puntales centrales posteriores de techo 18 para conformar el nudo central inferior 17.
Asimismo, los nudos de base anterior 5 y posterior 6, así como los nudos de techo anterior 7 y posterior 8, comprenden un pivote triple 23 conforme se ¡lustra en la figura 5b. El pivote triple 23 está conformado por dos aletas 24 dispuestas en L sobre una placa 25, en cuyo cada extremo de cada aleta 24 se complementan opcionalmente con un apoyo medio 26 y un apoyo extremo 27 respectivamente. El cruce de aletas 24 conforma así un eje central 29 que referencia un ángulo de 90° entre las aletas en L. En el vértice medio y opuesto al cruce de aletas 24, se dispone una aleta diagonal 28 que pivota respecto al eje complementario 29’. Cada pivote triple 23 recibe los puntales laterales, extremos y centrales respectivamente de base o techo.
Cada par de puntales extremos y laterales están conectados entre sí manteniendo un ángulo fijo de 90° entre sus pivotes, mientras los puntales centrales forman diagonales con un comportamiento a modo de bisagra durante los movimientos.
Conforme la invención, durante el despliegue del módulo 100 los pivotes 23 de base triple se mantienen paralelos respecto a los pivotes 23 triples de techo, e igualmente ocurre respecto a los pivotes cuádruples 19. Como se ¡lustra en la figura 4, la invención representa en esta primera modalidad un prisma oblicuo de base cuadrada, que contiene tijeras de traslación plana regular y tijeras de traslación curva regular sobre las caras principales, en donde las tijeras diagonales son de traslación curva irregular y se acoplan a las uniones externas ubicadas en los vértices del prisma, dada la posibilidad de un grado de libertad adicional que se ajuste a las diferentes posiciones con ángulos variantes. Sobre el mismo prisma oblicuo de base cuadrada, una segunda modalidad sobre la solución de modulación es la ¡lustrada en la figura 6, en donde las tijeras diagonales son de traslación plana - irregular que pivotan diferenciadamente sobre las tijeras de traslación curva ubicadas en los laterales del prisma, mediante uniones rígidas especiales que mantienen las posiciones y ángulos entre los nodos conectantes.
Con base en la figura 6, a partir de la configuración de la invención, es posible conformar el módulo 200 objeto de la presente invención en una segunda modalidad, de un prisma oblicuo con base cuadrangular.
Dicho módulo bajo esta segunda modalidad está conformado a partir de una estructura de uniones y barras articuladas, el cual es triangulado mediante mecanismos de tijeras libres de estrés.
El módulo 200, al igual que en la primera modalidad del módulo 100, comprende un conjunto periférico que comparten el conjunto de base con dos nudos de base anterior 5, dos nudos de base posterior 6 en combinación con un conjunto de techo con dos nudos de techo anterior 7 y dos nudos de techo posterior 8. El conjunto de base también está conformado cada uno por puntales, donde el nudo de base anterior 5 recibe puntales laterales 9 y puntales extremos 10 y la base posterior 6 recibe puntales laterales 11 y puntales extremos 12. Entre los nudos de base anterior 5 y de base posterior 6 se conforma una base cuadrangular. Asimismo, para el conjunto de techo en este módulo 200 con base en la segunda modalidad, el nudo de techo anterior 7 recibe los puntales laterales 11 y los puntales extremos 10 y el techo posterior 8 recibe puntales laterales 9 y puntales extremos 12.
Ahora bien, para esta segunda modalidad, como complemento del módulo 200, el conjunto periférico de base y techo se combina con un conjunto central que incluye un conjunto de centro superior y un conjunto de centro inferior. El conjunto de centro superior para esta segunda modalidad comprende dos puntales centrales anteriores de base 30, que se proyectan desde un nudo de centro superior 31 hasta una posición próxima a los dos nudos de base anterior 5 respectivamente, conformando nudos alternativos anteriores 36 y los dos puntales centrales posteriores de base 32, se proyectan desde el nudo de centro superior 31 hasta conectarse con los dos nudos de base posterior 6 respectivamente.
Bajo esta segunda modalidad, el conjunto de centro inferior comprende dos puntales centrales anteriores de techo 33 que se proyectan desde un nudo de centro inferior 34 hacia los dos nudos de techo anterior 7 respectivamente y dos puntales centrales posteriores de techo 35 que se proyectan desde dicho centro inferior 34 hasta una posición próxima a los dos nudos de techo posterior 8 respectivamente conformando nudos alternativos posteriores 37.
Es de aclarar, que para la correcta expansión de la estructura, la referencia a los pivotes de techo anterior 7 y los pivotes de base posterior 6 se refieren a pivotes posicionados con ángulos fijos a 90° para las caras perimetrales del prisma, en conjugación con uniones especiales rígidas que pivotan de manera diferenciada sobre las tijeras de traslación curva para sujetar las tijeras diagonales, donde el ángulo fijo de la unión con el que se conectan las tijeras diagonales y del pivote cuádruple 31 y el pivote cuádruple 34 depende de la longitud de las tijeras de traslación curva, que a su vez definen la inclinación en posición final del módulo. Durante el despliegue del módulo 200, los nudos de base anterior 5 se mantienen paralelos a los nudos de techo anterior 7 y conjuntamente los nudos de base posterior 6 se mantienen paralelos a los nudos de techo posterior 8. Adicionalmente, se proyecta un eje central de extensión conformado entre el nudo de centro superior 31 y el nudo de centro inferior 34, mientras los nudos alternativos de base anterior 36 y los nudos alternativos de techo posterior 37 adoptan los movimientos respecto a este nuevo eje de extensión central.
Otro desarrollo importante de la presente invención se evidencia con base en las figuras 7a y 7b, donde se define una estructura de tijeras con movimientos de traslación plana y polar, que referencia un prisma con sección trapezoidal conocido en el estado del arte. La incompatibilidad geométrica que impide mantener tijeras libres de estrés directamente sobre los vértices que componen las diagonales de la figura 7a, se evidencia gráficamente ya que los planos intermedios entre los ejes 1’-3’ ó 4’-2’ no son coplanares y por tanto generarían torsiones en las barras en cualquier posición. Por su parte, en la presente invención dicho prisma con sección trapezoidal es triangulado con mecanismos de tijeras libres de estrés en una tercera modalidad conforme se ¡lustra en la figura 8. Dadas las características de dichas figuras 7a y 7b, se puede identificar una configuración de tijeras en donde los planos intermedios entre los ejes 1’-2’, 3’-4’, son tijeras con movimientos polares y los planos intermedios entre los ejes 1’-4’, y 2’-3’ son tijeras con movimientos de traslación plana, de manera que se genera el marco perimetral básico ¡lustrado en la figura 8.
A partir de la configuración de dicha figura 8 bajo esta tercera modalidad, es posible conformar el módulo 300 objeto de la presente invención, de prisma con sección trapezoidal. Dicho módulo está conformado a partir de una estructura de uniones y barras articuladas el cual es triangulado mediante mecanismos de tijeras libres de estrés, en donde las tijeras diagonales son de traslación plana - irregular que pivotan diferenciadamente sobre las tijeras polares ubicadas en los laterales del prisma, mediante uniones rígidas especiales que mantienen las posiciones y ángulos entre los nodos conectantes.
Esta tercera modalidad conforme la figura 8, comprende un conjunto periférico que incluye un conjunto de base y un conjunto de techo. El conjunto de base comprende con dos nudos de base anterior 38 y dos nudos de base posterior 39, en combinación con un conjunto de techo formado por dos nudos de techo anterior 40 y dos nudos de techo posterior 41. El conjunto de base está conformado cada uno por puntales, donde el nudo de base anterior 38 recibe puntales laterales 42 y puntales extremos 43 y la base posterior 39 recibe puntales laterales 44 y puntales extremos 45. Entre los nudos de base anterior 38 y de base posterior 39 se conforma una base cuadrangular.
En esta tercera modalidad en el conjunto de techo del módulo 300, los nudos de techo anterior 40 recibe los puntales laterales 44 y los puntales extremos 43 y los nudos de techo posterior 41 reciben los puntales laterales 42 y puntales extremos 45.
Dicho conjunto periférico de base y techo se combina con un conjunto central que incluye un conjunto de centro superior y un conjunto de centro inferior, donde el conjunto de centro superior bajo esta tercera modalidad comprende dos puntales centrales anteriores de base 46 que se proyectan desde un nudo de centro superior 47 hasta conectarse con los dos nudos de base anterior 38 respectivamente y los dos puntales centrales posteriores de base 48, se proyectan desde el nudo de centro superior 47 hasta conectarse con los dos nudos de base posterior 39 respectivamente. Bajo esta tercera modalidad, el conjunto de centro inferior del módulo 300 comprende dos puntales centrales anteriores de techo 49 que se proyectan desde un nudo de centro inferior 50 hasta una posición próxima a los dos nudos de techo anterior 40 respectivamente, conformando nudos alternativos anteriores 51 y donde los dos puntales centrales posteriores de techo 52, se proyectan desde dicho centro inferior 50 hasta una posición próxima a los dos nudos de techo posterior 41 respectivamente, conformando nudos alternativos posteriores 53.
Los dos nudos de techo anterior 40 y techo posterior 41 están conformados cada uno a partir de la prolongación de los puntales laterales y extremos y se combinan con proyecciones próximas de los puntales centrales que forman nudos alternativos anteriores 51 próximos a los nudos de techo anterior 40 y nudos alternativos posteriores 53 próximos a los nudos de techo posterior 41.
Durante el despliegue del módulo 300, los nudos de base anterior 38 se mantienen paralelos respecto a los nudos de techo anterior 40, y conjuntamente, los nudos de base posterior 39 se mantienen paralelos respecto a los nudos de techo posterior 41, aunque, dadas las características de esta tercera modalidad se describen movimientos polares que inclinan los nudos de base y los nudos de techo hacia un radio determinado acorde con los movimientos. Adicionalmente, se proyecta un eje central de extensión conformado entre el pivote cuádruple central superior 47 y el pivote cuádruple central inferior 50, mientras los nudos alternativos anteriores 51 y los nudos alternativos posteriores 53 adoptan los movimientos respecto a este nuevo eje de extensión central.
En adición, el ángulo de las uniones con el que se conectan las tijeras diagonales, el pivote central inferior 50 y el pivote central superior 47, depende de la posición excéntrica del nodo intermedio sobre las tijeras polares, que a su vez definen el ángulo de apertura en posición final del módulo.
Los puntales que conforman el conjunto de techo según la tercera modalidad de la presente invención están unidos de forma pivotante mediante un pivote doble con ángulo fijo a 90°, y que permiten el giro relativo entre puntales.
Así, con base en la invención se posibilitan geometrías de simple curvatura: “superficies clásticas” y eventualmente de doble curvatura positiva o negativa: “superficies sinclásticas” o “superficies anticlásticas”. Dadas las características estructurales, las superficies de simple curvatura descritas garantizan plena compatibilidad del textil de cubrimiento con el mecanismo conjuntamente mientras en otras, esta ventaja sólo se cumple con determinadas inclinaciones o pendientes de la cubierta.
Con relación a la figura 9, se ¡lustra una configuración de ejemplo de arco 400 conformado mediante una base de arco a partir del módulo 200 en conexión extendida con el módulo 100, que una vez extendidos se obtienen diversas superficies trianguladas conforme las figuras 11a, 11b, y 11c. La figura 11a por ejemplo puede conformarse a partir de la conexión entre módulos 100 y 200 y conformar arcos 400 para configurar una superficie de simple curvatura 600. La figura 11b por ejemplo puede incorporar una extensión para conformar una superficie de doble curvatura positiva 700. La figura 11c también puede incorporar una extensión para conformar una superficie de doble curvatura negativa 800. Para cualquier configuración es indistinto el uso de módulos 100, 200 o sus combinaciones. Por su parte, con base en el módulo 300 es posible conformar un arco 500 del tipo ¡lustrado en la figura 10 que incluye tijeras de traslación plana regular y tijeras polares regulares en las caras principales, mientras que se utilizan tijeras de traslación plana irregular sobre las diagonales; de este modo se obtiene una unión central con ángulo determinado fijo y una unión diagonal especial con ángulo determinado fijo.
Conforme criterios específicos, los diseños anteriores pueden ser resueltos mediante un par de tijeras que configuran una diagonal simple o por la simplificación del planteamiento de tijeras diagonales por cuatro barras en pirámide que conforman un mecanismo básico. Evidentemente el planteamiento con todos los módulos diagonalizados configura la opción más robusta y puede ser requerida bajo las condiciones de uso más exigentes. El anclaje al suelo asegura el conjunto y ofrece una capacidad estructural complementaria, por lo que también puede ser considerado como indeformable o rígido al transferir convenientemente las cargas sobre las diagonales hacia los apoyos.
Así, para la constitución de una diagonal simple con base en el módulo 200 según la segunda modalidad de la invención, la forma resultante puede prescindir de uno de los puntales centrales anteriores de base 30, uno de los puntales centrales anteriores de techo 33, uno de los puntales centrales posteriores de base 32 y uno de los puntales centrales posteriores de techo 35 que se entiendan interconectados en línea, además de los respectivos nudos alternativos anteriores 36 y los nudos alternativos posteriores 37, mientras el nudo de centro superior 31 y el nudo de centro inferior 34 comprenden pivotes simples. Para la constitución de una diagonalización mediante un mecanismo básico de cuatro barras en pirámide, la forma resultante puede prescindir de los dos puntales centrales anteriores de techo 33 y los dos puntales centrales posteriores de techo 35, además de los respectivos nudos alternativos anteriores 36, nudos alternativos posteriores 37 y del nudo de centro inferior 34.
Para la constitución de una diagonal simple con base en el módulo 300 de la tercera modalidad, la forma resultante puede prescindir de uno de los puntales centrales anteriores de base 46, uno de los puntales centrales anteriores de techo 49, uno de los puntales centrales posteriores de base 48 y uno de los puntales centrales posteriores de techo 52 que se entiendan interconectados en línea, además de los respectivos nudos alternativos anteriores 51 y los nudos alternativos posteriores 53, mientras el nudo de centro superior 47 y el nudo de centro inferior 50 comprenden pivotes simples. Para la constitución de una diagonalización mediante un mecanismo básico de cuatro barras en pirámide, la forma resultante puede prescindir de los dos puntales centrales anteriores de techo 49 y los dos puntales centrales posteriores de techo 52, además de los respectivos nudos alternativos anteriores 51 , los nudos alternativos posteriores 53 y del nudo de centro inferior 50.
La presente invención por tanto, incorpora los principios estructurales de las tijeras rectas, las cuales están constituidas esencialmente por pares de barras con igual o diferente longitud articuladas entre sí, en un punto intermedio que bien puede estar centrado o descentrado.
Sólo se han ¡lustrado a manera de ejemplo algunas modalidades preferidas de la invención. En este respecto, se apreciará que la construcción de refugios desplegables basados en módulos conformados a partir de una estructura de uniones y barras articuladas, que a su vez es triangulada mediante mecanismos de tijeras libres de estrés, así como los arreglos configurativos, se pueden escoger de una pluralidad de alternativas sin apartarse del espíritu de la invención según las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Módulo (100, 200) para conformar refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés, donde el módulo (100, 200) está caracterizado porque comprende un conjunto periférico que incluye: un conjunto de base con dos nudos de base anterior (5) y dos nudos de base posterior (6) en combinación con un conjunto de techo con dos nudos de techo anterior (7) y dos nudos de techo posterior (8), donde el conjunto de base comprende un nudo de base anterior (5) que recibe puntales laterales (9) y puntales extremos
(10) y un nudo de base posterior (6) que recibe puntales laterales
(11 ) y puntales extremos (12); y, donde en el conjunto de techo comprende un nudo de techo anterior (7) que recibe los puntales laterales (11) y los puntales extremos (10) y un nudo de techo posterior (8) que recibe puntales laterales (9) en combinación con puntales extremos (12).
2. Módulo (100) para conformar refugios desplegables conforme la reivindicación 1 caracterizado porque adicionalmente comprende un conjunto central que incluye: un conjunto de centro superior que comprende dos puntales centrales anteriores de base (13) y que se proyectan desde un nudo de centro superior (14) hacia los dos nudos de base anterior (5) respectivamente y dos puntales centrales posteriores de base
(15) que se proyectan desde el nudo de centro superior (14) hacia los dos nudos de base posterior (6) respectivamente; y, un conjunto de centro inferior comprende dos puntales centrales anteriores de techo (16) que se proyectan desde un nudo de centro inferior (17) hacia los dos nudos de techo anterior (7) respectivamente y dos puntales centrales posteriores de techo (18) que se proyectan desde el centro inferior (17) hacia los dos nudos de techo posterior (8) respectivamente.
3. Módulo (100) para conformar refugios desplegables conforme la reivindicación 2 caracterizado porque el pivote central superior (14) y el pivote central inferior (17) comprenden un pivote cuádruple (19) que incluye un par de platinas (20) dispuestas en X, que forman un eje de rotación central (21) e incluyen pivotes extremos (22), donde este pivote cuádruple recibe los dos puntales centrales anteriores de base (13) y los dos puntales centrales posteriores de base (15) para conformar el nudo central superior (14) y recibe los dos puntales centrales anteriores de techo (16) y dos puntales centrales posteriores de techo (18) para conformar el nudo central inferior (17).
4. Módulo (100) para conformar refugios desplegables conforme las reivindicaciones 2 y 3 caracterizado porque los nudos de base anterior (5) y posterior (6), así como los nudos de techo anterior (7) y posterior (8) comprenden un pivote triple (23), donde el pivote triple (23) está conformado por dos aletas (24) dispuestas en L sobre una placa (25), en cuyo cada extremo de cada aleta (24) se complementan opcionalmente con un apoyo medio (26) y un apoyo extremo (27) respectivamente, donde el cruce de aletas (24) conforma un eje central (29) que referencia un ángulo de 90° entre las aletas en L, donde el vértice medio y opuesto al cruce de aletas (24), se dispone una aleta diagonal (28) que pivota respecto al eje complementario (29’) y donde cada pivote triple (23) recibe los puntales laterales, extremos y centrales respectivamente de base o techo.
5. Módulo (200) para conformar refugios desplegables conforme la reivindicación 1 caracterizado porque adicionalmente comprende: un conjunto de centro superior que comprende dos puntales centrales anteriores de base (30) que se proyectan desde un nudo de centro superior (31) hasta una posición próxima a los dos nudos de base anterior (5) respectivamente, conformando nudos alternativos anteriores (36) y los dos puntales centrales posteriores de base (32), se proyectan desde el nudo de centro superior (31) hasta conectarse con los dos nudos de base posterior (6) respectivamente; y, un conjunto de centro inferior que comprende dos puntales centrales anteriores de techo (33) que se proyectan desde un nudo de centro inferior (34) hacia los dos nudos de techo anterior (7) respectivamente y dos puntales centrales posteriores de techo (35) que se proyectan desde dicho centro inferior (34) hasta una posición próxima a los dos nudos de techo posterior (8) respectivamente, conformando nudos alternativos posteriores (37).
6. Módulo (200) para conformar refugios desplegables conforme la reivindicación 5 caracterizado porque los elementos de pivote central superior (31) y de pivote central inferior (34) comprende un pivote cuádruple.
7. Módulo (200) para conformar refugios desplegables conforme la reivindicación 6 caracterizado porque una diagonal simple del módulo (200) comprende prescindir de uno de los puntales centrales anteriores de base (30), uno de los puntales centrales anteriores de techo (33), uno de los puntales centrales posteriores de base (32) y uno de los puntales centrales posteriores de techo (35) que se entiendan interconectados en línea, además de los respectivos nudos alternativos anteriores (36) y los nudos alternativos posteriores (37), mientras el nudo de centro superior (31) y el nudo de centro inferior (34) comprenden pivotes simples.
8. Módulo (200) para conformar refugios desplegables conforme la reivindicación 6 caracterizado porque una diagonalización mediante un mecanismo básico de cuatro barras en pirámide del módulo (200) comprende prescindir de los dos puntales centrales anteriores de techo (33) y los dos puntales centrales posteriores de techo (35), además de los respectivos nudos alternativos anteriores (36), nudos alternativos posteriores (37) y del nudo de centro inferior (34).
9. Módulo (300) para conformar refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés, donde el módulo (300) está caracterizado porque comprende un conjunto periférico que incluye un conjunto de base y un conjunto de techo, donde el conjunto de base comprende con dos nudos de base anterior (38), dos nudos de base posterior (39) en combinación con un conjunto de techo con dos nudos de techo anterior (40) y dos nudos de techo posterior (41), donde el conjunto de base está conformado cada uno por puntales donde el nudo de base anterior (38) recibe puntales laterales (42) y puntales extremos (43) y la base posterior (39) recibe puntales laterales (44) y puntales extremos (45); y, un conjunto central que incluye un conjunto de centro superior y un conjunto de centro inferior, donde el conjunto de centro superior comprende dos puntales centrales anteriores de base (46) que se proyectan desde un nudo de centro superior (47) hasta conectarse con los dos nudos de base anterior (38) respectivamente y los dos puntales centrales posteriores de base (48), se proyectan desde el nudo de centro superior (47) hasta conectarse con los dos nudos de base posterior (39) respectivamente y donde el conjunto de centro inferior comprende dos puntales centrales anteriores de techo (49) que se proyectan desde un nudo de centro inferior (50) hasta una posición próxima a los dos nudos de techo anterior (40) respectivamente, conformando nudos alternativos anteriores (51) y donde los dos puntales centrales posteriores de techo (52), se proyectan desde dicho centro inferior (50) hasta una posición próxima a los dos nudos de techo posterior (41) respectivamente, conformando nudos alternativos posteriores (53).
10. Módulo (300) para conformar refugios desplegables conforme la reivindicación 9 caracterizado porque los elementos de pivote central superior (47) y de pivote central inferior (50) comprenden un pivote cuádruple.
11. Módulo (300) para conformar refugios desplegables conforme la reivindicación 10 caracterizado porque una diagonal simple del módulo (300) comprende prescindir de uno de los puntales centrales anteriores de base (46), uno de los puntales centrales anteriores de techo (49), uno de los puntales centrales posteriores de base (48) y uno de los puntales centrales posteriores de techo (52) que se entiendan interconectados en línea, además de los respectivos nudos alternativos anteriores (51) y los nudos alternativos posteriores (53), mientras el nudo de centro superior
(47) y el nudo de centro inferior (50) comprenden pivotes simples.
12. Módulo (300) para conformar refugios desplegables conforme la reivindicación 10 caracterizado porque una diagonalización mediante un mecanismo básico de cuatro barras en pirámide del módulo (300) comprende prescindir de los dos puntales centrales anteriores de techo (49) y los dos puntales centrales posteriores de techo (52), además de los respectivos nudos alternativos anteriores (51), los nudos alternativos posteriores (53) y del nudo de centro inferior (50).
PCT/IB2020/050188 2020-01-10 2020-01-10 Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés WO2021140360A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/050188 WO2021140360A1 (es) 2020-01-10 2020-01-10 Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/050188 WO2021140360A1 (es) 2020-01-10 2020-01-10 Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés

Publications (1)

Publication Number Publication Date
WO2021140360A1 true WO2021140360A1 (es) 2021-07-15

Family

ID=76788713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/050188 WO2021140360A1 (es) 2020-01-10 2020-01-10 Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés

Country Status (1)

Country Link
WO (1) WO2021140360A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968808A (en) * 1974-11-06 1976-07-13 Zeigler Theodore Richard Collapsible self-supporting structure
ES8505073A1 (es) * 1984-05-02 1985-04-16 Escrig Pallares Felix Sistema modular para la construccion de estructuras espaciales desplegables de barras
DE4101276A1 (de) * 1991-01-17 1992-08-13 Grimm Friedrich Bjoern Raumfachwerk
US7107733B1 (en) * 1999-08-25 2006-09-19 Gerhard Rueckert Deployable structure with modular configuration consisting of at least one collapsible module
US20110168220A1 (en) * 2005-10-14 2011-07-14 Prusmack A Jon Collapsible shelters with and without a floating hub
CN109119739A (zh) * 2018-07-20 2019-01-01 广西大学 一种基于剪叉单元三构态变换空间可展机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968808A (en) * 1974-11-06 1976-07-13 Zeigler Theodore Richard Collapsible self-supporting structure
ES8505073A1 (es) * 1984-05-02 1985-04-16 Escrig Pallares Felix Sistema modular para la construccion de estructuras espaciales desplegables de barras
DE4101276A1 (de) * 1991-01-17 1992-08-13 Grimm Friedrich Bjoern Raumfachwerk
US7107733B1 (en) * 1999-08-25 2006-09-19 Gerhard Rueckert Deployable structure with modular configuration consisting of at least one collapsible module
US20110168220A1 (en) * 2005-10-14 2011-07-14 Prusmack A Jon Collapsible shelters with and without a floating hub
CN109119739A (zh) * 2018-07-20 2019-01-01 广西大学 一种基于剪叉单元三构态变换空间可展机构

Similar Documents

Publication Publication Date Title
US8082938B2 (en) Collapsible shelters with and without a floating hub
ES2567264T3 (es) Módulo de edificación autoportante que es portátil y plegable y puede interconectarse para su expansión vertical y horizontal
US4393887A (en) Collapsible tent frame
US4074477A (en) Modular building structure
WO1995021350A1 (fr) Construction a cadre
US4012872A (en) Geodesic dome-like panels
CN104912245A (zh) 一种径向开合膜屋盖
WO2021140360A1 (es) Refugios desplegables de gran escala con marcos triangulados y mecanismos de tijeras libres de estrés
Akgün A novel transformation model for deployable scissor-hinge structures
US4794742A (en) Multi-conic shell and method of forming same
ES2268963A1 (es) Arco desplegable de grandes dimensiones.
JP5921985B2 (ja) 日除けの構築方法
CN202611067U (zh) 索杆式折叠网格结构
Pérez-Valcárcel et al. Estructuras desplegables para actividades lúdicas
RU2398084C1 (ru) Складной шарнирный металлический каркас для мобильных сооружений и укрытий
US3831337A (en) Method of erecting foldable building structures
CN210597598U (zh) 一种边界不规则的网架结构
CN102605862A (zh) 索杆式折叠网格结构
CN111021619A (zh) 一种柔性边界的张拉结构体系
CN102691353B (zh) 折叠杆互承式支撑的简易活动房支架结构
US2674252A (en) Collapsible arch support
Knebel et al. The structural making of the Eden Domes
ES2562152B1 (es) Estructura desplegable de barras articuladas
RU96157U1 (ru) Каркас складного тентового укрытия
RU2165506C2 (ru) Складное тентовое укрытие (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911802

Country of ref document: EP

Kind code of ref document: A1