WO2021139789A1 - 一种麻醉气体浓度测量系统及方法 - Google Patents

一种麻醉气体浓度测量系统及方法 Download PDF

Info

Publication number
WO2021139789A1
WO2021139789A1 PCT/CN2021/070930 CN2021070930W WO2021139789A1 WO 2021139789 A1 WO2021139789 A1 WO 2021139789A1 CN 2021070930 W CN2021070930 W CN 2021070930W WO 2021139789 A1 WO2021139789 A1 WO 2021139789A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed gas
concentration
gas
measurement
anesthetic
Prior art date
Application number
PCT/CN2021/070930
Other languages
English (en)
French (fr)
Inventor
熊友辉
吴俊�
李重洋
Original Assignee
四方光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四方光电股份有限公司 filed Critical 四方光电股份有限公司
Publication of WO2021139789A1 publication Critical patent/WO2021139789A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases

Definitions

  • the invention relates to the technical field of gas detection, in particular to an anesthetic gas concentration measurement system.
  • Anesthesia machine or other medical equipment with anesthesia function needs to monitor the concentration of anesthetic agent in the mixed gas delivered to control the concentration of the anesthetic agent delivered within a certain range, and when the anesthesia machine fails, stop delivering the anesthetic to the patient and use fresh Gas flushing system. Since the anesthetic is a volatile liquid, it needs to be vaporized by a vaporization chamber and mixed with the first mixed gas containing oxygen to form a second mixed gas. The concentration of the anesthetic agent is usually obtained by comparing the measurement results of the first mixed gas and the second mixed gas.
  • the first mixed gas is usually a mixed gas of oxygen and nitrous oxide and/or air.
  • concentration of the anesthetic exceeds a preset range, the flow of the first mixed gas upstream of the vaporization chamber is usually adjusted to adjust the second mixed gas.
  • concentration of the anesthetic exceeds a preset range.
  • patent document CN101153840B discloses an infrared gas analyzer, which selects a specific wavelength band of infrared light to pass through the gas according to the absorption characteristics of a certain band of infrared light by the measured gas Sample, use the relationship between the attenuation of infrared light and the concentration of the measured gas sample to detect the concentration of anesthetic gas, but the infrared gas analyzer introduces a reference gas chamber, resulting in a large volume and expensive infrared gas analyzer. Need to find a solution that is small in size and low in cost.
  • Patent document CN102811757B discloses an ultrasonic anesthesia measurement system, which sets an ultrasonic wave before and after the vaporization chamber.
  • the concentration sensor determines the volume concentration of anesthetic gas in the gas mixture according to the measurement results of the two ultrasonic concentration sensors.
  • This solution can reduce the volume and cost of the anesthesia measurement system, but the consistency of the two sensors is different. The consistency difference of the two sensors will bring errors to the anesthesia concentration measurement, and it cannot visually display the first mixed gas.
  • the flow rate is inconvenient for the technical defect of adjusting the flow rate of the first mixed gas.
  • an embodiment of the present invention provides an anesthetic gas concentration measurement system.
  • the first aspect of the embodiments of the present invention provides an anesthetic gas concentration measurement system, including:
  • a conveying device for conveying the first mixed gas includes a plurality of intake branches, each of the intake branches is provided with a solenoid valve, and at least two flow rates are set at different positions of the conveying device
  • the sensor continuously obtains the flow rate of each mixed gas in the first mixed gas in real time
  • a vaporization chamber where the vaporization chamber is connected to the delivery device, and the vaporization chamber is used to vaporize and mix the anesthetic with the first mixed gas to obtain a second mixed gas;
  • An ultrasonic concentration sensor and an air flow path switching device which can be connected to different measurement circuits through the control of the air flow path switching device;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the first mixed gas measuring circuit, it can measure the sound velocity of the first mixed gas and provide the first measurement result;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the second mixed gas measuring circuit, it can measure the sound velocity of the second mixed gas and provide a second measurement result;
  • a control unit connected to the ultrasonic concentration sensor and all flow sensors, and the control unit is used to calculate the concentration of anesthetic gas in the second mixed gas according to the flow rate of each mixed gas in the first mixed gas and the second measurement result.
  • control unit is configured to connect the ultrasonic concentration sensor to the first mixed gas measurement circuit by controlling the air flow path switching device before or at intervals of a preset time T before providing the second mixed gas to the patient, and use the ultrasonic concentration sensor to measure The obtained first measurement result calibrates the concentration data calculated from the flow data measured by the flow sensor.
  • the ultrasonic concentration sensor is connected to the second mixed gas measurement circuit, the ultrasonic concentration sensor continuously outputs the second measurement result in real time, and the control unit according to The concentration data of the first mixed gas after the calibration obtained continuously in real time and the second measurement result obtained by continuous real-time measurement are calculated to obtain the concentration of the anesthetic gas in the second mixed gas.
  • a gas flow control component is provided between the upstream of the vaporization chamber and the inlet of the first mixed gas measurement circuit to encourage the first mixed gas to enter the first mixed gas measurement circuit, and the second mixed gas is measured downstream of the vaporization chamber.
  • a gas flow control component is arranged between the inlets of the circuit to encourage the second mixed gas to enter the second mixed gas measuring circuit.
  • the air flow path switching device is a plurality of control valves.
  • first mixed gas measuring circuit and the second mixed gas measuring circuit are separated from each other, and there is no common pipeline.
  • the ultrasonic concentration sensor has an alarm function, which is used to issue an alarm when the measured oxygen concentration reaches a certain threshold.
  • the second aspect of the embodiment of the present invention provides an anesthetic gas concentration measurement method, which is applied to the anesthetic gas concentration measurement system according to any one of the first aspect of the embodiment, and includes the following steps:
  • S2 Use a vaporization chamber to vaporize the anesthetic and mix it with the first mixed gas to obtain a second mixed gas, and the vaporization chamber is connected to the delivery device;
  • S3 controlling the ultrasonic concentration sensor to be connected to different measurement circuits through the air flow path switching device;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the first mixed gas measuring circuit, it can measure the sound velocity of the first mixed gas and provide the first measurement result;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the second mixed gas measuring circuit, it can measure the sound velocity of the second mixed gas and provide a second measurement result;
  • the control unit calculates the concentration of the anesthetic gas in the second mixed gas according to the flow rate of each mixed gas in the first mixed gas and the second measurement result, the control unit is connected to the flow sensor and the ultrasonic concentration sensor, and the control unit The concentration data calculated from the flow data measured by the flow sensor is calibrated according to the first measurement result measured by the ultrasonic concentration sensor.
  • the ultrasonic concentration sensor is connected to the first mixed gas measuring circuit by controlling the air flow path switching device, and the first measurement result measured by the ultrasonic concentration sensor is used to compare the flow rate
  • the concentration data calculated from the flow data measured by the sensor is calibrated.
  • the ultrasonic concentration sensor is connected to the second mixed gas measurement circuit.
  • the ultrasonic concentration sensor continuously outputs the second measurement result in real time.
  • the concentration data of a mixed gas and the second measurement result obtained by continuous real-time measurement are calculated to obtain the concentration of the anesthetic gas in the second mixed gas.
  • the ultrasonic concentration sensor has an alarm function, which is used to issue an alarm when the measured oxygen concentration reaches a certain threshold.
  • the third aspect of the embodiments of the present invention provides another anesthetic gas concentration measurement system, including:
  • a conveying device for conveying the first mixed gas includes a plurality of intake branches, and each of the intake branches is provided with a solenoid valve;
  • An ultrasonic concentration sensor and an air flow path conversion device through the control of the air flow path conversion device, the ultrasonic concentration sensor can be connected to different measurement circuits in a time-sharing manner;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the first mixed gas measuring circuit, it can measure the sound velocity of the first mixed gas and provide the first measurement result;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the second mixed gas measuring circuit, it can measure the sound velocity of the second mixed gas and provide a second measurement result;
  • a control unit connected to the ultrasonic concentration sensor, and the control unit is configured to calculate the concentration of the anesthetic gas in the second mixed gas according to the first measurement result and the second measurement result.
  • the ultrasonic concentration sensor is connected to the first mixed gas measurement circuit by controlling the air flow path switching device, and the first measurement result obtained by the ultrasonic concentration sensor is used. And the first measurement result is stored, the ultrasonic concentration sensor is connected to the second mixed gas measurement circuit, the ultrasonic concentration sensor continuously outputs the second measurement result in real time, and the control unit is based on the stored first measurement result and the second measurement obtained by continuous real-time measurement As a result, the concentration of the anesthetic gas in the second mixed gas is calculated.
  • the air flow path switching device is a plurality of control valves.
  • a gas flow control component is provided between the upstream of the vaporization chamber and the inlet of the first mixed gas measurement circuit to encourage the first mixed gas to enter the first mixed gas measurement circuit, and the second mixed gas is measured downstream of the vaporization chamber.
  • a gas flow control component is arranged between the inlets of the circuit to encourage the second mixed gas to enter the second mixed gas measuring circuit.
  • first mixed gas and the second mixed gas measured by the ultrasonic concentration sensor are discharged through the same pipeline.
  • first mixed gas measuring circuit and the second mixed gas measuring circuit are two relatively independent pipelines.
  • the fourth aspect of the embodiment of the present invention provides an anesthetic gas concentration measurement method, which is applied to the anesthetic gas concentration measurement system according to any one of the third aspect of the embodiment, and includes the following steps:
  • the vaporization chamber receives the first mixed gas, and vaporizes and mixes the anesthetic with the first mixed gas to obtain a second mixed gas;
  • S3 controlling the ultrasonic concentration sensor to be connected to different measurement circuits through the air flow path switching device;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the first mixed gas measuring circuit, measure the sound velocity of the first mixed gas and provide the first measurement result;
  • the ultrasonic concentration sensor When the ultrasonic concentration sensor is connected to the second mixed gas measuring circuit, measure the sound velocity of the second mixed gas and provide a second measurement result;
  • the control unit calculates the concentration of the anesthetic gas in the second mixed gas according to the first measurement result and the second measurement result.
  • the steps S3 and S4 are specifically: keeping the flow rate of each component in the first mixed gas unchanged, the control unit controls the air flow path switching device to connect the ultrasonic concentration sensor to the first mixed gas measuring circuit, and uses the ultrasonic concentration
  • the first measurement result measured by the sensor is stored and the first measurement result is stored, and then the control unit controls the airflow path conversion device to connect the ultrasonic concentration sensor to the second mixed gas measurement circuit, and the ultrasonic concentration sensor continuously outputs the second measurement result in real time
  • the control unit calculates the concentration of the anesthetic gas in the second mixed gas according to the stored first measurement result and the second measurement result obtained by continuous real-time measurement.
  • the present invention provides an anesthetic gas concentration measurement system.
  • an anesthetic gas concentration measurement system By switching a three-way valve, only one ultrasonic concentration sensor can be used to measure the concentration of anesthetic agent in the mixed gas. ;
  • Reduce the volume and cost of the anesthetic gas concentration measurement system eliminate the error caused by the sensor difference in the anesthetic gas detection, and, on the one hand, the flow of each component in the first mixed gas measured by the flow sensor in real time can be calculated
  • the concentration of the first mixed gas, and the concentration sensor can be used to calibrate the concentration data calculated based on the flow data measured by the flow sensor before each anesthetic is administered to the patient or at intervals. After calibration, the concentration sensor continuously measures the first in real time.
  • the concentration of the second mixed gas takes into account the real-time and accuracy of the anesthetic gas concentration measurement. At the same time, it reduces the risk of crossover and mixing between the first mixed gas and the second mixed gas caused by frequent switching of the solenoid valve, and also improves the measurement system reliability.
  • the concentration sensor first measures the concentration of the first mixed gas. When the flow rate data of the flow sensor remains unchanged, it can be considered that the concentration of the first mixed gas remains unchanged, and then the first mixed gas measured at this time is retained.
  • the concentration of the gas is switched, the solenoid valve is switched so that the concentration sensor continuously measures the concentration of the second mixed gas in real time, and the concentration of the anesthetic in the mixed gas is calculated according to the concentration of the second mixed gas and the concentration of the first mixed gas.
  • the concentration data of the first mixed gas also changes.
  • switch the solenoid valve to re-measure the concentration data of the first mixed gas and store it.
  • the concentration of the anesthetic in the changed mixed gas is calculated according to the concentration of the second mixed gas and the stored concentration data of the changed first mixed gas.
  • the concentration sensor measures the concentration of the second mixed gas in real time most of the time, it takes into account the real-time and accuracy of the anesthetic gas concentration measurement, and at the same time reduces the crossover of the first mixed gas and the second mixed gas caused by frequent switching of the solenoid valve The risk of mixing also improves the reliability of the measurement system.
  • Figure 1 is a schematic diagram of an anesthetic gas concentration measurement system in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of an anesthetic gas concentration measurement system in Embodiment 2 of the present invention.
  • Fig. 3 is a schematic diagram of an anesthetic gas concentration measurement system in Embodiment 3 of the present invention.
  • 1-intake branch 2-intake main circuit
  • 3-first intake branch 4-second intake branch
  • 5-outlet branch 6-outlet main circuit
  • 7-electromagnetic Valve 8-flow sensor
  • 9-three-way valve 10-vaporization chamber
  • 11-ultrasonic concentration sensor 12-first gas flow control component, 13-second gas flow control component, 14-first gas outlet branch, 15-Second air outlet branch, 16-First control valve, 17-Second control valve, 18-Third control valve, 19-Fourth control valve.
  • the first mixed gas is only a mixed gas of oxygen and nitrous oxide, or a mixed gas composed of oxygen and air for illustration, but there is no limitation on this.
  • an embodiment of the present invention provides an anesthetic gas concentration measurement system, including a delivery device, a vaporization chamber 10, an ultrasonic concentration sensor 11, and a control unit.
  • the conveying device is used to convey a first mixed gas
  • the first mixed gas is a mixed gas of oxygen and nitrous oxide, or a mixed gas composed of oxygen and air
  • the conveying device includes three air inlet branches 1 .
  • the intake ends of the three intake branches 1 are used to input O 2 , AIR, and N 2 O respectively.
  • Each intake branch 1 is provided with a solenoid valve 7, which is controlled by controlling the solenoid valve 7 1.
  • the solenoid valve 7 on the intake branch 1 that controls the input of one of AIR and N 2 O is closed, and the other two intake branches 1 introduce gas to form a first mixed gas of AIR and O 2 Or N2O, O2 first mixed gas.
  • the outlet ends of the three air intake branches 1 merge and are connected to the air inlet of the vaporization chamber 10 through the air inlet main circuit 2, and the gas in the three air inlet branches 1 merge in the air inlet main circuit to form
  • the first mixed gas and the merged first mixed gas enter the vaporization chamber from the main intake path 2. After the first mixed gas enters the vaporization chamber 10, it mixes with the anesthetic gas in the vaporization chamber 10 to form a second mixed gas.
  • the gas outlet of the vaporization chamber 10 is connected to the gas outlet main circuit 6, and the gas outlet main circuit 6 is used to output the second mixed gas in the vaporization chamber 10 to an anesthesia machine or other equipment.
  • the ultrasonic concentration sensor 11 is also connected to the first mixed gas measuring circuit and the second mixed gas measuring circuit through a gas flow path switching device.
  • the air flow path switching device is a three-way valve 9.
  • the first mixed gas measurement circuit includes a first inlet branch 3 and the outlet branch 5.
  • the three-way valve 9 is arranged on the first inlet branch 3, and the first inlet branch One end of the path 3 is connected to the main intake path 2, and the other end of the first intake branch 3 is connected to the intake port of the ultrasonic concentration sensor 11.
  • the first intake branch 3 is used to connect the intake main A part of the first mixed gas in the path 2 is introduced into the ultrasonic concentration sensor 11.
  • One end of the air outlet branch 5 is connected to the air outlet of the ultrasonic concentration sensor 11, and the other end is connected to the air outlet main circuit 6.
  • the air outlet branch 5 is used to guide the measured airflow entering the ultrasonic concentration sensor 11 to the air outlet.
  • the main air outlet is connected to the patient's air supply pipeline through the main air outlet 6.
  • the second mixed gas measurement circuit includes a second intake branch 4, one end of the second intake branch 4 is connected to the intake port connected to the ultrasonic concentration sensor 11, and the other end is connected to the gas outlet of the vaporization chamber 10 At the end, the first intake branch 3 and the second intake branch 4 are both controlled by the three-way valve 9.
  • the second intake branch 4 passes the second mixed gas at the outlet end of the vaporization chamber 10 through all
  • the three-way valve 9 is guided into the ultrasonic concentration sensor 11, and the ultrasonic concentration sensor outlet branch 5 is used to guide the measured airflow entering the ultrasonic concentration sensor 11 to the outlet main path 6.
  • the control unit may store the first measurement result received from the ultrasonic concentration sensor 11.
  • the sound velocity of the second mixed gas can be measured and the second measurement result can be provided.
  • the control unit is connected to the ultrasonic concentration sensor 11, and the control unit can calculate the concentration of the anesthetic gas in the second mixed gas in real time according to the stored first measurement result and the real-time collected second measurement result.
  • the ultrasonic concentration sensor 11 is measuring the sound velocity of the second mixed gas almost 95% of the time, but only 5% of the time is measuring the sound velocity of the first mixed gas, almost always using the stored first measurement result. It is calculated that only an ultrasonic concentration sensor 11 cooperates with the control of the solenoid valve to achieve real-time measurement of the anesthetic gas concentration.
  • the sound velocity of the first mixed gas can be measured every time before the second mixed gas is provided to the patient or every preset time T, and the first measurement result can be stored, and then the second measurement result can be continuously collected in real time and based on
  • the first measurement result stored and the second measurement result collected in real time can be calculated in real time to obtain the concentration of the anesthetic gas in the second mixed gas.
  • a gas flow control component may also be provided to increase the flow rate of the airflow entering the first intake branch 3 and the flow rate of the airflow in the second intake branch 4, specifically in the main intake path.
  • 2 is provided with a first gas flow control component 12, the first gas flow control component 12 is installed between the first intake branch 3 and the gas inlet of the vaporization chamber 10; in the main gas outlet A second gas flow control component 13 is arranged on the road 6, and the second gas flow control component 13 is arranged between the second intake branch 4 and the outlet branch 5.
  • the gas flow control component may be a flow adjustment component such as a baffle or a control valve.
  • the ultrasonic concentration sensor 11 may have a specific implementation form, and specifically may be an X-type, W-type, V-type, N-type, ⁇ -type or through-beam ultrasonic concentration sensor.
  • the ultrasonic concentration sensor 11 is an alarm-type ultrasonic concentration sensor gas concentration sensor, which has gas concentration detection and alarm functions, and can also be used as a concentration flow alarm.
  • the first mixed gas measuring circuit and the second mixed gas measuring circuit share the three-way valve 9 and the gas outlet branch 5.
  • an embodiment of the present invention provides an anesthetic gas concentration measurement system, including a delivery device, a vaporization chamber 10, an ultrasonic concentration sensor 11, and a control unit.
  • the difference between this embodiment and the first embodiment is that the inlet branches 3 and 4 and the outlet branch 5 of the first mixed gas measurement circuit and the second mixed gas measurement circuit are separated from each other.
  • the advantage of this embodiment over the first embodiment is It can avoid the residual gas in the shared pipeline during the process of switching between the control ultrasonic concentration sensor connected to the first mixed gas measurement circuit and the second mixed gas measurement circuit, which will easily cause the measurement gas to mix and cause measurement errors. Therefore, the second embodiment further improves the accuracy of the anesthetic gas measurement.
  • the airflow path switching device includes four control valves, specifically the first control valve 16, the second control valve 17, the third control valve 18, and the fourth control valve 19.
  • the first mixed gas measurement circuit includes a first inlet branch 3 and a first outlet branch 14.
  • One end of the first inlet branch 3 is connected to the upstream of the main inlet path 2, and the first inlet branch
  • the other end of the air branch 3 is connected to the air inlet of the ultrasonic concentration sensor 11, and the first control valve 16 is arranged on the first air inlet branch 3, and the first air inlet branch 3 is used to
  • the first mixed gas in the main intake air path 2 is introduced into the ultrasonic concentration sensor 11 for detection by the ultrasonic concentration sensor 11.
  • One end of the first air outlet branch 14 is connected to the downstream of the air intake main circuit 2, the other end is connected to the air outlet of the ultrasonic concentration sensor 11, and the second control valve 17 is arranged on the first air outlet branch 14.
  • the first air outlet branch 14 re-transmits the first mixed gas detected by the ultrasonic concentration sensor 11 back to the main air inlet 2.
  • the second mixed gas measurement circuit includes a second inlet branch 4 and a second outlet branch 15. One end of the second inlet branch 4 is connected to the upstream of the main outlet path 6, and the other end is connected to an ultrasonic concentration sensor 11, and the third control valve 18 is arranged on the second intake branch 4, and the second intake branch 4 is used to introduce the second mixed gas in the vaporization chamber 10 To the ultrasonic concentration sensor 11 for the ultrasonic concentration sensor 11 to detect.
  • One end of the second air outlet branch 15 is connected to the downstream of the main air outlet 6, and the other end is connected to the air outlet of the ultrasonic concentration sensor 11, and the fourth control valve 19 is arranged on the second air outlet 15;
  • the second gas outlet branch 15 re-transmits the second mixed gas detected in the ultrasonic concentration sensor 11 back to the gas outlet main path 6.
  • the control unit is connected to the ultrasonic concentration sensor 11, and the control unit calculates the concentration of the anesthetic gas in the second mixed gas according to the first measurement result and the second measurement result.
  • each intake branch 1 is provided with a flow sensor 8.
  • the number and position of the flow sensors 8 are not limited, and at least two flow sensors 8 are arranged at different positions of the conveying device to obtain the flow rate of each mixed gas in the first mixed gas.
  • the concentration and average molecular weight of the first mixed gas can be calculated based on the flow data continuously measured by the flow sensor 8 in real time. Then the ultrasonic concentration sensor 11 is always connected to the second mixed gas measuring circuit, continuously and real-time measuring the average molecular weight of the second mixed gas, according to the concentration and average molecular weight of the first mixed gas and the average molecular weight of the second mixed gas obtained by continuous real-time measurement The concentration of the anesthetic gas in the second mixed gas is calculated.
  • the accuracy of the flow sensor 8 is relatively low. Therefore, the accuracy of calculating the concentration and average molecular weight of the first mixed gas based on the flow data continuously measured by the flow sensor 8 in real time is also relatively low.
  • the accuracy of the concentration measurement can be calibrated with the ultrasonic concentration sensor 11 to calibrate the concentration of the first mixed gas calculated based on the flow rate data measured by the flow sensor 8.
  • control unit connects the ultrasonic concentration sensor 11 to the first mixed gas measurement circuit by controlling the air flow path switching device before or every time the second mixed gas is provided to the patient, and uses the ultrasonic concentration sensor 11 to measure The obtained first measurement result calibrates the concentration data calculated from the flow data measured by the flow sensor.
  • the ultrasonic concentration sensor 11 is connected to the second mixed gas measurement circuit, and the ultrasonic concentration sensor 11 continuously outputs the second measurement result in real time and controls
  • the unit calculates the concentration of the anesthetic gas in the second mixed gas according to the continuous real-time obtained concentration data of the first mixed gas after calibration and the second measurement result obtained by continuous real-time measurement.
  • the flow rate sensor 20 detects the flow rate of the gas introduced into each of the intake branch 1, and the oxygen concentration Q1 in the first mixed gas in the main intake path 2 can be calculated.
  • the concentration sensor 11 directly detects the oxygen concentration Q2 in the first mixed gas introduced. Since the gas flow measurement in the intake branch 1 may have errors, compare Q1 and Q2 to the measured actual first mixed gas The oxygen concentration is corrected, the first mixed gas concentration can be calculated through the corrected oxygen concentration data, and the second measurement result can be combined to accurately calculate the anesthetic gas concentration in the second mixed gas.
  • This embodiment also provides a method for measuring anesthetic gas concentration. Using the anesthetic gas concentration measuring system in this embodiment specifically includes the following steps:
  • the first mixed gas is a mixed gas composed of oxygen and nitrous oxide or oxygen and air.
  • the conveying device includes three air inlet branches 1 and the three air inlet branches The intake end of 1 is used to input O 2 , air and N 2 O respectively, and each of the intake branches 1 is provided with a solenoid valve 7, and at least two flow sensors are provided at different positions of the conveying device 7 Obtain the flow rate of each mixed gas in the first mixed gas continuously and in real time;
  • S3 Control the ultrasonic concentration sensor 11 to be connected to different measurement circuits through the air flow path switching device;
  • the ultrasonic concentration sensor 11 When the ultrasonic concentration sensor 11 is connected to the first mixed gas measuring circuit, it can measure the sound velocity of the first mixed gas and provide the first measurement result;
  • the ultrasonic concentration sensor 11 When the ultrasonic concentration sensor 11 is connected to the second mixed gas measuring circuit, it can measure the sound velocity of the second mixed gas and provide a second measurement result;
  • the control unit calculates the concentration of the anesthetic gas in the second mixed gas according to the flow rate of each mixed gas in the first mixed gas and the second measurement result.
  • the control unit is connected to the flow sensor 7 and the ultrasonic concentration sensor 11.
  • the control unit calibrates the concentration data calculated from the flow data measured by the flow sensor according to the first measurement result measured by the ultrasonic concentration sensor 11.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种麻醉气体浓度测量系统,通过切换控制阀(9,16,17,18,19),仅使用一个超声波浓度传感器(11)即可测出混合气体中麻醉剂的浓度,降低了系统的体积和成本,消除了传感器差异造成的检测误差,并且根据流量传感器(8)实时测得的第一混合气体中各个成分的流量可以计算出第一混合气体的浓度,在每一次向病人通麻醉剂之前或者每间隔一段时间,利用浓度传感器(11)对根据流量传感器(8)输出的数据计算得到的浓度数据进行校准,校准之后浓度传感器(11)连续实时测量第二混合气体的浓度,根据第二混合气体的浓度以及校准之后得到的第一混合气体的浓度可以得到麻醉气体的浓度,兼顾了麻醉气体浓度测量的实时性和准确性,降低了由于频繁切换电磁阀导致的管道残余气体交叉混合的风险。

Description

一种麻醉气体浓度测量系统及方法 技术领域
本发明涉及气体检测技术领域,尤其涉及一种麻醉气体浓度测量系统。
背景技术
麻醉机或其它具有麻醉功能的医疗设备需要监测所输送的混合气体中麻醉剂的浓度,以将所输送的麻醉剂浓度控制在一定范围内,并且在麻醉机出现故障时,停止向患者输送麻醉剂并用新鲜气体冲洗系统。由于麻醉剂为挥发性液体,需要借助汽化室使其汽化并与包含氧气的第一混合气体混合形成第二混合气体。通常通过比较第一混合气体与第二混合气体的测量结果得到麻醉剂的浓度。
第一混合气体通常是氧气和一氧化二氮和/或空气的混合气体,当麻醉剂的浓度超过预设范围时,通常通过调节汽化室上游的第一混合气体的流量来调节第二混合气体中麻醉剂的浓度。
传统的麻醉气体浓度测量方法多采用非分光红外技术,如专利文献CN101153840B中公开了一种红外气体分析仪,其根据被测气体对某一波段红外光的吸收特性,选择特定波段红外光通过气体样本,利用红外光的衰减量与被测气体样本浓度之间的关系检测麻醉气体的浓度,但由于红外气体分析仪中引入了参考气室,导致红外气体分析仪的体积大、价格昂贵,因此需要寻求体积小、成本低的解决方案。
为了降低麻醉气体浓度测量的成本,现有技术中出现了采用超声技术测量 麻醉气体浓度的技术方案,在专利文献CN102811757B中公开了一种超声麻醉测量系统,其通过在汽化室前后各设置一个超声波浓度传感器,根据两个超声波浓度传感器的测量结果来确定气体混合物中麻醉气体的体积浓度。此方案能够降低麻醉测量系统的体积和成本,但其两个传感器的一致性存在差异,两个传感器的一致性差异将给麻醉浓度测量带来误差,并且其不能直观的显示第一混合气体的流量,不便于第一混合气体流量调节的技术缺陷。
发明内容
有鉴于此,本发明的实施例提供了一种麻醉气体浓度测量系统。
本发明的实施例第一方面提供一种麻醉气体浓度测量系统,包括:
用于输送第一混合气体的输送装置,所述输送装置包括若干进气支路,每一所述进气支路上均设有一电磁阀,在所述输送装置的不同位置设置了至少两个流量传感器以连续实时得到第一混合气体中各混合气体的流量;
汽化室,所述汽化室连接所述输送装置,所述汽化室用于将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
一超声波浓度传感器,以及气流路径转换装置,通过气流路径转换装置的控制可以使所述超声波浓度传感器连接至不同的测量回路;
当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
连接所述超声波浓度传感器及所有流量传感器的控制单元,所述控制单元用于根据第一混合气体中各混合气体的流量和第二测量结果计算得到第二混合 气体中的麻醉气体的浓度。
进一步地,控制单元用于在每次给患者提供第二混合气体之前或者每间隔预设时间T,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据连续实时得到的校准之后的第一混合气体的浓度数据以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
进一步地,在汽化室的上游和第一混合气体测量回路的入口之间设置了气体流量控制部件以促使第一混合气体进入第一混合气体测量回路,在汽化室的下游和第二混合气体测量回路的入口之间设置了气体流量控制部件以促使第二混合气体进入第二混合气体测量回路。
进一步地,所述气流路径转换装置为若干控制阀。
进一步地,第一混合气体测量回路和第二混合气体测量回路之间相互分开,无共用管道。
进一步地,所述超声波浓度传感器具有报警功能,用于在测量的氧气浓度达到一定阈值时发出警报。
本发明的实施例第二方面提供一种麻醉气体浓度测量方法,应用于如本实施例第一方面中任一所述的麻醉气体浓度测量系统,包括以下步骤:
S1:用输送装置输送第一混合气体;
S2:用汽化室将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体,所述汽化室连接所述输送装置;
S3:通过气流路径转换装置控制所述超声波浓度传感器连接至不同的测量 回路;
当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
S4:控制单元根据第一混合气体中各混合气体的流量和第二测量结果计算得到第二混合气体中的麻醉气体的浓度,所述控制单元连接至流量传感器以及超声波浓度传感器,所述控制单元根据所述超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准。
进一步地,在不调节第一混合气体中各组分的流量时,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据连续实时得到的校准之后的第一混合气体的浓度数据以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
进一步地,所述超声波浓度传感器具有报警功能,用于在测量的氧气浓度达到一定阈值时发出警报。
本发明的实施例第三方面提供另一种麻醉气体浓度测量系统,包括:
用于输送第一混合气体的输送装置,所述输送装置包括若干进气支路,每一所述进气支路上均设有一电磁阀;
与所述输送装置连接的汽化室,所述汽化室用于将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
超声波浓度传感器及气流路径转换装置,通过气流路径转换装置的控制可以使所述超声波浓度传感器分时连接至不同的测量回路;
当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
连接所述超声波浓度传感器的控制单元,所述控制单元用于根据第一测量结果和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
进一步地,控制单元在不调节第一混合气体中各组分的流量时,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果并对第一测量结果进行存储,超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据存储的第一测量结果以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
进一步地,所述气流路径转换装置为为若干控制阀。
进一步地,在汽化室的上游和第一混合气体测量回路的入口之间设置了气体流量控制部件以促使第一混合气体进入第一混合气体测量回路,在汽化室的下游和第二混合气体测量回路的入口之间设置了气体流量控制部件以促使第二混合气体进入第二混合气体测量回路。
进一步地,被超声波浓度传感器测量后的第一混合气体和第二混合气体通过同一管路排出。
进一步地,所述第一混合气体测量回路和所述第二混合气体测量回路为相对独立的两管路。
本发明的实施例第四方面提供一种麻醉气体浓度测量方法,应用于如本实施例第三方面中任一所述的麻醉气体浓度测量系统,包括以下步骤:
S1:用输送装置输送第一混合气体;
S2:所述汽化室接收第一混合气体,并将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
S3:通过气流路径转换装置控制所述超声波浓度传感器连接至不同的测量回路;
当超声波浓度传感器连接至第一混合气体测量回路时,测量第一混合气体的声速,并提供第一测量结果;
当超声波浓度传感器连接至第二混合气体测量回路时,测量第二混合气体的声速,并提供第二测量结果;
S4:所述控制单元根据第一测量结果和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
进一步地,所述步骤S3及S4具体为:保持第一混合气体中各组分流量不变,所述控制单元控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果并对第一测量结果进行存储,然后所述控制单元控制气流路径转换装置将超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据存储的第一测量结果以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
本发明的实施例提供的技术方案带来的有益效果是:本发明提供一种麻醉气体浓度测量系统,通过切换三通阀,仅使用一个超声波浓度传感器即可测出混合气体中的麻醉剂的浓度;降低了麻醉气体浓度测量系统的体积和成本,消 除了传感器差异对麻醉气体检测造成的误差,并且,一方面,根据流量传感器实时测量测得的第一混合气体中各个成分的流量可以计算出第一混合气体的浓度,并且在每一次向病人通麻醉剂之前或者每间隔一段时间可以利用浓度传感器对根据流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后浓度传感器连续实时测量第二混合气体的浓度,兼顾了麻醉气体浓度测量的实时性和准确性,同时降低了由于频繁切换电磁阀导致的第一混合气体和第二混合气体交叉、混合的风险,也提高了测量系统的可靠性。另一方面,浓度传感器先测量第一混合气体的浓度,在流量传感器的流量数据保持不变的情况下,可以认为第一混合气体的浓度保持不变,然后保留此时测量得到的第一混合气体的浓度,切换电磁阀使浓度传感器连续实时测量第二混合气体的浓度,根据第二混合气体的浓度和第一混合气体的浓度计算得到混合气体中的麻醉剂的浓度。当流量计的流量数据出现变化时,第一混合气体的浓度数据也随之改变,等流量计的数据重新达到稳定时,此时切换电磁阀重新测量第一混合气体的浓度数据并进行存储,根据第二混合气体的浓度与存储的变化后的第一混合气体的浓度数据计算得到变化后的混合气体中的麻醉剂的浓度。由于浓度传感器绝大部分时间在实时测量第二混合气体的浓度,兼顾了麻醉气体浓度测量的实时性和准确性,同时降低了由于频繁切换电磁阀导致的第一混合气体和第二混合气体交叉混合的风险,也提高了测量系统的可靠性。
附图说明
图1是本发明实施例1中的一种麻醉气体浓度测量系统的示意图;
图2是本发明实施例2中的一种麻醉气体浓度测量系统的示意图;
图3是本发明实施例3中的一种麻醉气体浓度测量系统的示意图。
图中:1-进气支路、2-进气主路、3-第一进气支路、4-第二进气支路、5-出气支路、6-出气主路、7-电磁阀、8-流量传感器、9-三通阀、10-汽化室、11-超声波浓度传感器、12-第一气体流量控制部件、13-第二气体流量控制部件、14-第一出气支路、15-第二出气支路、16-第一控制阀、17-第二控制阀、18-第三控制阀、19-第四控制阀。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。在本专利中仅以第一混合气体为氧气和一氧化二氮的混合气体,或为氧气和空气组成的混合气体进行举例说明,但对此不作限定。
实施例1
请参考图1,本发明的实施例提供了一种麻醉气体浓度测量系统,包括输送装置、汽化室10、超声波浓度传感器11和控制单元。
所述输送装置用于输送第一混合气体,所述第一混合气体为氧气和一氧化二氮的混合气体,或为氧气和空气组成的混合气体,所述输送装置包括三进气支路1。所述三进气支路1的进气端分别用于输入O 2、AIR和N 2O,每一所述进气支路1上设有一电磁阀7,通过控制所述电磁阀7控制每一所述进气支路1内的气体流量。这里控制所述输入AIR和N 2O中的一种气体的进气支路1上的电磁阀7关闭,由另两所述进气支路1通入气体,形成AIR、O2第一混合气体或N2O、O2第一混合气体。
所述三进气支路1的出气端汇合并通过进气主路2连接所述汽化室10的进气口,所述三进气支路1内气体于所述进气主路内汇合形成第一混合气体,且汇合后的第一混合气体由所述进气主路2进入所述汽化室。第一混合气体进入 所述汽化室10内后会与所述汽化室10内的麻醉气体混合形成第二混合气体。
所述汽化室10的出气口连接出气主路6,所述出气主路6用于输出所述汽化室10内的第二混合气体至麻醉机或其他设备。
所述超声波浓度传感器11还通过气流路径转换装置连接第一混合气体测量回路和第二混合气体测量回路。
本实施例中所述气流路径转换装置为三通阀9。
所述第一混合气体测量回路包括第一进气支路3和所述出气支路5,所述三通阀9设置于所述第一进气支路3上,所述第一进气支路3一端连接所述进气主路2、所述第一进气支路3另一端连接超声波浓度传感器11的进气口,所述第一进气支路3用于将所述进气主路2内的一部分第一混合气体引入所述超声波浓度传感器11。所述出气支路5一端连接所述超声波浓度传感器11的出气口,另一端接入所述出气主路6内,出气支路5用于将进入超声波浓度传感器11内的被测气流引导至所述出气主路,通过所述出气主路6连接患者供气管路。所述第二混合气体测量回路包括第二进气支路4,所述第二进气支路4一端连接至连接超声波浓度传感器11的进气口,另一端接入所述汽化室10的出气端,第一进气支路3和第二进气支路4均通过所述三通阀9进行控制,所述第二进气支路4将汽化室10的出气端的第二混合气体通过所述三通阀9引导至超声波浓度传感器11内,超声波浓度传感器出气支路5用于将进入超声波浓度传感器11内的被测气流引导至所述出气主路6。
通过调节所述三通阀9,使所述超声波浓度传感器11连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;此时第一测量结果为氧气浓度以及第一混合气体的平均分子量。在不调整三进气支路1气体流量的情况下,可以认为第一混合气体的流量和浓度均不变,控制单元可 以对从超声波浓度传感器11接收到的第一测量结果进行存储。
通过调节所述三通阀9,使所述超声波浓度传感器11连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果。
所述控制单元连接所述超声波浓度传感器11,所述控制单元根据存储的第一测量结果和实时采集的第二测量结果可以实时计算得到第二混合气体中的麻醉气体的浓度。
因此在本实施例中超声波浓度传感器11几乎95%的时间在测量第二混合气体的声速,而只有5%的时间在测量第一混合气体的声速,几乎一直在使用存储的第一测量结果进行计算,仅仅通过一个超声波浓度传感器11配合电磁阀的控制实现了麻醉气体浓度的实时测量。在每次给患者提供第二混合气体之前或者每间隔预设时间T均可对第一混合气体的声速进行测量,并对第一测量结果进行存储,然后连续实时采集第二测量结果,并根据存储的第一测量结果和实时采集的第二测量结果可以实时计算得到第二混合气体中的麻醉气体的浓度。
本实施例中还可以设置气体流量控制部件提高进入所述第一进气支路3内的气流流速和所述第二进气支路4内的气流流速,具体的在所述进气主路2上设置第一气体流量控制部件12,将所述第一气体流量控制部件12设置于所述第一进气支路3和所述汽化室10的进气口之间;在所述出气主路上6设置第二气体流量控制部件13,将所述第二气体流量控制部件13设置于所述第二进气支路4和所述出气支路5之间。
气体流量控制部件可以是阻流件或者控制阀等流量调整部件。
所述超声波浓度传感器11可以有具体实现形式,具体可以为X型、W型,V型,N型、π型或者对射型超声波浓度传感器。
所述超声波浓度传感器11为报警式超声波浓度传感器气体浓度传感器,具 有气体浓度检测和报警功能,可以兼做浓度流量报警用。
在本实施例中,第一混合气体测量回路和第二混合气体测量回路共用三通阀9以及出气支路5。
实施例2
请参考图2,本发明的实施例提供了一种麻醉气体浓度测量系统,包括输送装置、汽化室10、超声波浓度传感器11和控制单元。本实施例与实施例一的区别在于第一混合气体测量回路和第二混合气体测量回路的进气支路3和4以及出气支路5均相互分离,本实施例相对于实施一的优势在于,可以避免在控制超声波浓度传感器连接至第一混合气体测量回路和第二混合气体测量回路之间转换的过程中,共用管道内存在残气、残气容易造成测量气体混合,带来测量误差,因此实施例二进一步提升了麻醉气体测量的精度。以下为其中的一种可能实施方式。超声波浓度传感器本实施例中所述气流路径转换装置为四个控制阀,具体为第一控制阀16、第二控制阀17、第三控制阀18和第四控制阀19。
所述第一混合气体测量回路包括第一进气支路3和第一出气支路14,所述第一进气支路3一端接入所述进气主路2上游,所述第一进气支路3另一端连接超声波浓度传感器11的进气口,且所述第一控制阀16设置于所述第一进气支路3上,所述第一进气支路3用于将所述进气主路2内的第一混合气体引入所述超声波浓度传感器11,供所述超声波浓度传感器11检测。
所述第一出气支路14一端接入所述进气主路2下游,另一端连接超声波浓度传感器11的出气口,且第二控制阀17设置于所述第一出气支路14上。所述第一出气支路14将所述超声波浓度传感器11检测之后的第一混合气体重新输送回所述进气主路2。
所述第二混合气体测量回路包括第二进气支路4和第二出气支路15,所述第二进气支路4一端接入所述出气主路6上游,另一端连接超声波浓度传感器11的进气口,且所述第三控制阀18设置于所述第二进气支路4上,所述第二进气支路4用于引入所述汽化室10内的第二混合气体至所述超声波浓度传感器11,供所述超声波浓度传感器11检测。
所述第二出气支路15一端接入所述出气主路6下游,另一端连接超声波浓度传感器11的出气口,且所述第四控制阀19设置于所述第二出气支路15上,所述第二出气支路15将所述超声波浓度传感器11内检测之后的第二混合气体重新输送回所述出气主路6。
通过调节四所述控制阀(16、17、18、19),使所述超声波浓度传感器11连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
通过调节四所述控制阀(16、17、18、19),使所述超声波浓度传感器11连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果。
所述控制单元连接所述超声波浓度传感器11,所述控制单元根据第一测量结果和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
实施例3
请参考图3,在实施例2的一种麻醉气体浓度测量系统基础上,为了对所述三进气支路1输入的气体流量进行直观、实时的调整,在每一所述进气支路1上设有一流量传感器8。但事实上流量传感器8的个数和位置不限,在所述输送装置的不同位置设置至少两个流量传感器8即可得到第一混合气体中各混合气 体的流量。
在本实施中可以根据流量传感器8连续实时测得的流量数据计算出第一混合气体的浓度和平均分子量。然后超声波浓度传感器11一直连接至第二混合气体测量回路,连续实时的测量第二混合气体的平均分子量,根据连续实时测量得到的第一混合气体的浓度和平均分子量和第二混合气体的平均分子量计算得到第二混合气体中麻醉气体的浓度。
但是相对于超声波浓度传感器11,流量传感器8的精度比较低,因此根据流量传感器8连续实时测得的流量数据计算出第一混合气体的浓度和平均分子量的精度也比较低,为了进一步提高麻醉气体浓度测量的精度,可以利用超声波浓度传感器11对根据流量传感器8测量的流量数据计算出的第一混合气体的浓度进行校准。
即所述控制单元在每次给患者提供第二混合气体之前或者每间隔预设时间T,通过控制气流路径转换装置将超声波浓度传感器11连接至第一混合气体测量回路,利用超声波浓度传感器11测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后超声波浓度传感器11连接至第二混合气体测量回路,超声波浓度传感器11连续实时输出第二测量结果,控制单元根据连续实时得到的校准之后的第一混合气体的浓度数据以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
具体的,通过所述流量传感器20检测每一所述进气支路1通入气体的流量,可以计算出所述进气主路2内的第一混合气体中的氧气浓度Q1,所述超声波浓度传感器11直接检测通入的第一混合气体中的氧气浓度Q2,由于所述进气支路1中的气体流量测量可能存在误差,比较Q1和Q2对测得的实际的第一混合气体中的氧气浓度进行校正,通过校正后的氧气浓度数据可以计算出第一混合气体 浓度,再结合第二测量结果可以准确计算第二混合气体中的麻醉气体浓度。
本实施例还提供了一种麻醉气体浓度测量方法,使用本实施例中的麻醉气体浓度测量系统,具体包括以下步骤:
S1:用输送装置输送第一混合气体,第一混合气体为氧气和一氧化二氮或氧气和空气组成的混合气体,所述输送装置包括三进气支路1,所述三进气支路1的进气端分别用于输入O 2、空气和N 2O,每一所述进气支路1上均设有一电磁阀7,在所述输送装置的不同位置设置了至少两个流量传感器7以连续实时得到第一混合气体中各混合气体的流量;
S2:用汽化室10将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体,所述汽化室10连接所述输送装置;
S3:通过气流路径转换装置控制所述超声波浓度传感器11连接至不同的测量回路;
当超声波浓度传感器11连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
当超声波浓度传感器11连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
S4:控制单元根据第一混合气体中各混合气体的流量和第二测量结果计算得到第二混合气体中的麻醉气体的浓度,所述控制单元连接至流量传感器7以及超声波浓度传感器11,所述控制单元根据所述超声波浓度传感器11测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种麻醉气体浓度测量系统,其特征在于,包括:
    用于输送第一混合气体的输送装置,所述输送装置包括若干进气支路,每一所述进气支路上均设有一电磁阀,在所述输送装置的不同位置设置了至少两个流量传感器以连续实时得到第一混合气体中各混合气体的流量;
    汽化室,所述汽化室连接所述输送装置,所述汽化室用于将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
    一超声波浓度传感器,以及气流路径转换装置,通过气流路径转换装置的控制可以使所述超声波浓度传感器连接至不同的测量回路;
    当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
    当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
    连接所述超声波浓度传感器及所有流量传感器的控制单元,所述控制单元用于根据第一混合气体中各混合气体的流量和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  2. 如权利要求1所述的一种麻醉气体浓度测量系统,其特征在于:控制单元用于在每次给患者提供第二混合气体之前或者每间隔预设时间T,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据连续实时得到的校准之后的第一混合气体的浓度数据以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  3. 如权利要求1所述的一种麻醉气体浓度测量系统,其特征在于:在汽化室的上游和第一混合气体测量回路的入口之间设置了气体流量控制部件以促使第一混合气体进入第一混合气体测量回路,在汽化室的下游和第二混合气体测量回路的入口之间设置了气体流量控制部件以促使第二混合气体进入第二混合气体测量回路。
  4. 如权利要求1所述的一种麻醉气体浓度测量系统,其特征在于:所述气流路径转换装置为若干控制阀。
  5. 如权利要求1所述的一种麻醉气体浓度测量系统,其特征在于:第一混合气体测量回路和第二混合气体测量回路之间相互分开,无共用管道。
  6. 如权利要求1所述的一种麻醉气体浓度测量系统,其特征在于:所述超声波浓度传感器具有报警功能,用于在测量的氧气浓度达到一定阈值时发出警报。
  7. 一种麻醉气体浓度测量方法,应用于如权利要求1-6中任一所述的麻醉气体浓度测量系统,其特征在于,包括以下步骤:
    S1:用输送装置输送第一混合气体;
    S2:用汽化室将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体,所述汽化室连接所述输送装置;
    S3:通过气流路径转换装置控制所述超声波浓度传感器连接至不同的测量回路;
    当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
    当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合气体的声速,并提供第二测量结果;
    S4:控制单元根据第一混合气体中各混合气体的流量和第二测量结果计算 得到第二混合气体中的麻醉气体的浓度,所述控制单元连接至流量传感器以及超声波浓度传感器,所述控制单元根据所述超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准。
  8. 如权利要求7所述的麻醉气体浓度测量方法,其特征在于:在不调节第一混合气体中各组分的流量时,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果对流量传感器测得的流量数据计算得到的浓度数据进行校准,校准之后超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据连续实时得到的校准之后的第一混合气体的浓度数据以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  9. 如权利要求7所述的麻醉气体浓度测量方法,其特征在于:所述超声波浓度传感器具有报警功能,用于在测量的氧气浓度达到一定阈值时发出警报。
  10. 一种麻醉气体浓度测量系统,其特征在于,包括:
    用于输送第一混合气体的输送装置,所述输送装置包括若干进气支路,每一所述进气支路上均设有一电磁阀;
    与所述输送装置连接的汽化室,所述汽化室用于将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
    超声波浓度传感器及气流路径转换装置,通过气流路径转换装置的控制可以使所述超声波浓度传感器分时连接至不同的测量回路;
    当超声波浓度传感器连接至第一混合气体测量回路时,可以测量第一混合气体的声速,并提供第一测量结果;
    当超声波浓度传感器连接至第二混合气体测量回路时,可以测量第二混合 气体的声速,并提供第二测量结果;
    连接所述超声波浓度传感器的控制单元,所述控制单元用于根据第一测量结果和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  11. 如权利要求10所述的麻醉气体浓度测量系统,其特征在于:控制单元在不调节第一混合气体中各组分的流量时,通过控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果并对第一测量结果进行存储,超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据存储的第一测量结果以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  12. 如权利要求10所述的麻醉气体浓度测量系统,其特征在于:所述气流路径转换装置为为若干控制阀。
  13. 如权利要求10所述的麻醉气体浓度测量系统,其特征在于:在汽化室的上游和第一混合气体测量回路的入口之间设置了气体流量控制部件以促使第一混合气体进入第一混合气体测量回路,在汽化室的下游和第二混合气体测量回路的入口之间设置了气体流量控制部件以促使第二混合气体进入第二混合气体测量回路。
  14. 如权利要求10所述的麻醉气体浓度测量系统,其特征在于:被超声波浓度传感器测量后的第一混合气体和第二混合气体通过同一管路排出。
  15. 如权利要求10所述的麻醉气体浓度测量系统,其特征在于:所述第一混合气体测量回路和所述第二混合气体测量回路为相对独立的两管路。
  16. 一种麻醉气体浓度测量方法,应用于如权利要求10-15中任一所述的麻醉气体浓度测量系统,其特征在于,包括以下步骤:
    S1:用输送装置输送第一混合气体;
    S2:所述汽化室接收第一混合气体,并将麻醉剂进行汽化并与第一混合气体进行混合以得到第二混合气体;
    S3:通过气流路径转换装置控制所述超声波浓度传感器连接至不同的测量回路;
    当超声波浓度传感器连接至第一混合气体测量回路时,测量第一混合气体的声速,并提供第一测量结果;
    当超声波浓度传感器连接至第二混合气体测量回路时,测量第二混合气体的声速,并提供第二测量结果;
    S4:所述控制单元根据第一测量结果和第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
  17. 如权利要求16所述的麻醉气体浓度测量方法,其特征在于:所述步骤S3及S4具体为:保持第一混合气体中各组分流量不变,所述控制单元控制气流路径转换装置将超声波浓度传感器连接至第一混合气体测量回路,利用超声波浓度传感器测量得到的第一测量结果并对第一测量结果进行存储,然后所述控制单元控制气流路径转换装置将超声波浓度传感器连接至第二混合气体测量回路,超声波浓度传感器连续实时输出第二测量结果,控制单元根据存储的第一测量结果以及连续实时测量得到的第二测量结果计算得到第二混合气体中的麻醉气体的浓度。
PCT/CN2021/070930 2020-01-10 2021-01-08 一种麻醉气体浓度测量系统及方法 WO2021139789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010027921.2 2020-01-10
CN202010027921.2A CN111060589A (zh) 2020-01-10 2020-01-10 一种麻醉气体浓度测量系统及方法

Publications (1)

Publication Number Publication Date
WO2021139789A1 true WO2021139789A1 (zh) 2021-07-15

Family

ID=70307038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070930 WO2021139789A1 (zh) 2020-01-10 2021-01-08 一种麻醉气体浓度测量系统及方法

Country Status (2)

Country Link
CN (1) CN111060589A (zh)
WO (1) WO2021139789A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060589A (zh) * 2020-01-10 2020-04-24 湖北锐意自控系统有限公司 一种麻醉气体浓度测量系统及方法
CN113855982B (zh) * 2021-09-30 2023-07-18 深圳市科曼医疗设备有限公司 麻醉蒸发装置
CN114082059B (zh) * 2021-12-24 2024-03-19 河北谊安奥美医疗设备有限公司 一种麻醉机自动标校装置和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5727545A (en) * 1995-06-02 1998-03-17 Siemens Elema Ab Gas mixing system for an anaesthetic apparatus
US5832917A (en) * 1995-01-23 1998-11-10 Instrumentarium Oy Method and arrangement for vaporizing an anaesthetic
CN101329228A (zh) * 2008-07-29 2008-12-24 北京大学 一种过氧酰基硝酸脂类物质进样系统及检测方法
CN101639744A (zh) * 2008-07-22 2010-02-03 通用电气公司 触摸屏控制系统和方法
CN102811757A (zh) * 2009-11-16 2012-12-05 马奎特紧急护理公司 具有被监视输送装置的呼吸设备
CN102908705A (zh) * 2011-08-01 2013-02-06 深圳迈瑞生物医疗电子股份有限公司 电子流量监控器、控制方法及麻醉机
CN104267154A (zh) * 2014-10-17 2015-01-07 河南省计量科学研究院 气体分析仪校准装置
CN209783650U (zh) * 2019-06-12 2019-12-13 慨迩医疗科技(成都)有限公司 一种变频制氧机测试设备
CN111060589A (zh) * 2020-01-10 2020-04-24 湖北锐意自控系统有限公司 一种麻醉气体浓度测量系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395105A (zh) * 2001-07-06 2003-02-05 肖诗忠 多相流产量仪
ATE438587T1 (de) * 2001-10-30 2009-08-15 Teijin Ltd Sauerstoffanreicherungsvorrichtung
CN104181228B (zh) * 2014-09-18 2017-02-22 电子科技大学 一种加快痕量气体集成探测器响应的方法
CN105510478A (zh) * 2015-12-30 2016-04-20 聚光科技(杭州)股份有限公司 非甲烷总烃在线检测装置及方法
CN106512166B (zh) * 2016-12-30 2019-01-11 深圳市普博科技有限公司 麻醉机潮气量的设定方法及装置
CN110464939A (zh) * 2019-08-13 2019-11-19 湖南明康中锦医疗科技发展有限公司 呼吸支持设备氧浓度控制装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832917A (en) * 1995-01-23 1998-11-10 Instrumentarium Oy Method and arrangement for vaporizing an anaesthetic
US5727545A (en) * 1995-06-02 1998-03-17 Siemens Elema Ab Gas mixing system for an anaesthetic apparatus
CN101639744A (zh) * 2008-07-22 2010-02-03 通用电气公司 触摸屏控制系统和方法
CN101329228A (zh) * 2008-07-29 2008-12-24 北京大学 一种过氧酰基硝酸脂类物质进样系统及检测方法
CN102811757A (zh) * 2009-11-16 2012-12-05 马奎特紧急护理公司 具有被监视输送装置的呼吸设备
CN102908705A (zh) * 2011-08-01 2013-02-06 深圳迈瑞生物医疗电子股份有限公司 电子流量监控器、控制方法及麻醉机
CN104267154A (zh) * 2014-10-17 2015-01-07 河南省计量科学研究院 气体分析仪校准装置
CN209783650U (zh) * 2019-06-12 2019-12-13 慨迩医疗科技(成都)有限公司 一种变频制氧机测试设备
CN111060589A (zh) * 2020-01-10 2020-04-24 湖北锐意自控系统有限公司 一种麻醉气体浓度测量系统及方法

Also Published As

Publication number Publication date
CN111060589A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021139789A1 (zh) 一种麻醉气体浓度测量系统及方法
US11000667B2 (en) Breathing apparatus with monitored delivery device
US11471641B2 (en) Systems and method for delivery of therapeutic gas to patients in need thereof using enhanced breathing circuit gas (BCG) flow measurement
US8365724B2 (en) Medical vaporizer and method of control of a medical vaporizer
US8701659B2 (en) Patient ventilation system with a gas identification unit
US5558083A (en) Nitric oxide delivery system
US6955171B1 (en) System and method for delivering therapeutic gas to a patient
EP0886532B1 (en) Ventilatory system with additional gas administrator
EP0960629B1 (en) High concentration NO pulse delivery device
US8141552B2 (en) Respiratory anaesthesia apparatus with device for measuring the xenon concentration
US9149590B2 (en) Anesthetic breathing apparatus having volume reflector unit with controllable penetration
EP1455876B1 (en) Gas identification system and volumetrically corrected gas delivery system
JPH06319802A (ja) 麻酔薬気化器
US7063668B2 (en) Method and arrangement for acoustic determination of moisture content of a gas mixture
US10610659B2 (en) Gas mixer incorporating sensors for measuring flow and concentration
CN114288505A (zh) 用于提供加以麻醉剂的呼吸气体流的装置
US20190321576A1 (en) Gas mixer for proving a gas mixture to a mechanical ventilator
CN211652778U (zh) 一种麻醉气体浓度测量系统
CN111103351A (zh) 一种麻醉气体浓度测量系统
CN211652686U (zh) 一种麻醉气体浓度测量系统
US20120006325A1 (en) Bypass flow element for diverter flow measurement
EP2164551B1 (en) A patient ventilation system with gas identification means
AU2017100108A4 (en) Method for Monitoring Gas Analyser and Breathing Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21739000

Country of ref document: EP

Kind code of ref document: A1