WO2021139735A1 - 活体检测模块、装置、系统和方法 - Google Patents

活体检测模块、装置、系统和方法 Download PDF

Info

Publication number
WO2021139735A1
WO2021139735A1 PCT/CN2021/070717 CN2021070717W WO2021139735A1 WO 2021139735 A1 WO2021139735 A1 WO 2021139735A1 CN 2021070717 W CN2021070717 W CN 2021070717W WO 2021139735 A1 WO2021139735 A1 WO 2021139735A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
unit
module
data processing
Prior art date
Application number
PCT/CN2021/070717
Other languages
English (en)
French (fr)
Inventor
林圣富
尤秋林
韩凯伦
张正阳
伍茂仁
Original Assignee
合圣科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合圣科技股份有限公司 filed Critical 合圣科技股份有限公司
Priority to CN202180008836.4A priority Critical patent/CN114945956A/zh
Priority to EP21738885.9A priority patent/EP4113369A4/en
Publication of WO2021139735A1 publication Critical patent/WO2021139735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection

Definitions

  • the present disclosure relates to biological living detection and fraud detection, and more particularly to a living detection module, device, system and method for biological living detection and fraud detection based on multiple images captured by a camera.
  • Biometrics uses the unique biological characteristics of human individuals to verify the individual's identification code.
  • the advantages of a biometric authentication system include a high degree of security and the inability to lose biometrics.
  • biometric verification is vulnerable to "image attacks" involving spoofing, which attempts to defeat biometric verification or recognition procedures.
  • the method of image attack will vary with different biometric modalities; in other words, the method of image attack will vary depending on whether the biometric technology uses fingerprints, faces, irises, voices, or any possible modalities.
  • Biological key features keystroke
  • biometric verification mechanism needs to have the function of detecting fraud, and it also needs to deal with other types of image attacks against the biometric modality.
  • Liveness detection is not only effective for biometric verification, it can also be used to identify fraud.
  • Biometric verification is used to verify whether the user is an authorized user of the system.
  • biometric fraud ie, live detection
  • live detection can be used as part of the registration process to verify that the authorized user is actually a real person.
  • In vivo detection is a technology used to detect biometric fraud, which is used to determine whether a biological sample comes from a living human or some kind of false performance. Analyze and calculate the collected biological sample data to determine whether the source of the biological sample is a living body or imitation, and then live body detection can be realized.
  • In vivo detection can be divided into two main categories, one is active in vivo detection, and the other is passive in vivo detection.
  • Active live detection authorized users will perform an action that is difficult to be copied by fraudulent means.
  • Active living detection can also incorporate biometric modalities, such as key biometric analysis or speaker identification.
  • Pronunciation recognition can analyze the movement of the mouth to judge the living body.
  • passive living body detection algorithms can be used to detect indicators or features of non-real-time images without interacting with the user. Experiments have found that capturing high-quality biological data during the verification process can help improve the performance of feature matching and live detection algorithms. Nevertheless, "image attacks" similar to scams are still one of the challenges of biometric verification.
  • biometric technology that uses facial recognition fraudsters can use the “mask” made by 3D printers to defraud.
  • scammers can use fake fingerprints made of silica gel for fraud.
  • an image capturing system which includes a main board, a light emitting unit, an image sensing unit, and a data processing module.
  • the light-emitting unit is electrically connected to the main board, and has a laser unit and a first optical module.
  • the laser unit is used for emitting emitted light with an output power exceeding 20 milliwatts
  • the first optical module is used for transmitting the emitted light of the light emitting unit.
  • the image sensing unit is electrically connected to the main board close to the light emitting unit, and has a second optical module and an image sensing module. The second optical module is used to capture the passing image.
  • the image sensing module is used for generating a plurality of image signals of the plurality of captured images.
  • the data processing module is electrically connected to the main board near the light source and the image sensing unit, and is used for generating a plurality of living body detection signals of the plurality of image signals of the plurality of captured images.
  • the laser unit includes a substrate having a side surface and a first inclined surface; a conductive layer formed on the side surface and the first inclined surface; and a laser light source.
  • the laser light source is electrically connected to the conductive layer formed on the side surface.
  • the emitted light through the light emitting unit of the first optical module is the reflected light of the conductive layer formed on the first inclined surface.
  • the inner angle between the side surface and the first inclined surface is between 25 degrees and 75 degrees.
  • the inner included angle passes through the first optical module of the image capturing system to provide design flexibility for the configuration of the emitted light of the light-emitting unit.
  • the present disclosure forms different optical structures by changing the size of the inner included angle (for example, adjusting the inclination angle by adjusting the size of the oblique side and the vertical side), so that the light-emitting unit in the image capturing system can be Achieve the same target launch area.
  • the material of the conductive layer includes at least one of gold (Au), silver (Ag), copper (Cu), nickel (Ni), titanium (Ti), and tungsten (W) or a combination of the above elements. Any combination, thereby providing design flexibility of the conductivity and reflectivity of the conductive layer.
  • the conductive layer is formed on the side surface and the first inclined surface to reduce the amount of absorption of the emitted light of the light-emitting unit when it is reflected.
  • the laser light source electrically connected to the conductive layer and the circuit of the image capturing system coupled to the laser light source can dissipate heat through the thermal conductivity of the conductive layer.
  • the data processing module is used to generate the plurality of living body detection signals from at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • the living body detection data is generated from each living body detection signal in at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • the present disclosure generates the multiple image signals of the multiple captured images by adjusting the on/off state and timing of the laser light source, and further processes each living body detection signal including a preset number, which can improve the performance of the image capture system Signal-to-noise ratio and reduce the amount of ambient light received.
  • the data processing module is used to generate the feature identification data from at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • the feature identification data is generated from at least one sequential image signal, where each sequential image signal includes a different image signal; the present disclosure generates the multiple captures by adjusting the on/off state and timing of the laser light source Taking the multiple image signals of the image, and further processing each image signal including the default amount, can reduce the amount of ambient light received and improve the signal-to-noise ratio of the image capturing system.
  • the laser unit is an edge-emitting laser unit, and the coherent length of the edge-emitting laser unit is less than 30 cm.
  • the present disclosure uses edge-emitting laser units to provide high output power and longer coherent length.
  • High output power can improve the contrast between living bodies and environmental scenes to improve the performance of living body detection and feature recognition.
  • the edge-emitting laser unit is electrically connected to the conductive layer formed on the side surface, and the thickness of the light-emitting unit of the image capturing system can be reduced by selecting an appropriate inner angle.
  • the image sensor module includes a complementary metal oxide semiconductor (complementary metal oxide semiconductor, CMOS) array, a charged coupled device (CDD) array, and a photodiode (PD) array. At least one.
  • CMOS complementary metal oxide semiconductor
  • CDD charged coupled device
  • PD photodiode
  • the present disclosure provides an image capturing device including an image capturing system and a display.
  • the image capturing system of the image capturing device includes a main board, a light emitting unit, an image sensing unit, and a data processing module.
  • the light-emitting unit is electrically connected to the main board, and has a laser unit and a first optical module.
  • the laser unit is used to emit light with an output power of more than twenty milliwatts.
  • the first optical module is used for transmitting the emitted light of the light-emitting unit.
  • the image sensing unit is electrically connected to the main board close to the light emitting unit, and has a second optical module and an image sensing module.
  • the second optical module is used to capture the passing image.
  • the image sensing module is used for generating a plurality of image signals of the plurality of captured images.
  • the data processing module is electrically connected to the main board close to the light source and the image sensing unit, and is used for generating a plurality of living body detection signals and feature identification data of a plurality of image signals of the plurality of captured images.
  • the laser unit includes a substrate having a side surface and a first inclined surface; a conductive layer formed on the side surface and the first inclined surface; and a laser light source.
  • the laser light source is electrically connected to the conductive layer formed on the side surface.
  • the emitted light through the light emitting unit of the first optical module is the reflected light of the conductive layer formed on the first inclined surface.
  • the display device is coupled to the image capturing system for displaying the multiple captured images of the image sensing unit.
  • the inner angle between the side surface of the image capturing system of the image capturing device and the first inclined surface is between 25 degrees and 75 degrees.
  • the material of the conductive layer of the image capturing system of the image capturing device includes at least one of gold, silver, copper, nickel, titanium, and tungsten or any combination of the foregoing elements.
  • the data processing module of the image capturing system of the image capturing device is used to generate a plurality of living body detection signals from at least one sequential image signal, wherein each sequential image signal includes Different image signals.
  • the data processing module of the image capturing system of the image capturing device is used to generate feature identification data from at least one sequential image signal, wherein each sequential image signal includes a different Image signal.
  • the laser unit is an edge-emitting laser unit, and the coherent length of the edge-emitting laser unit is less than 30 cm.
  • the image sensing module of the image capturing system of the image capturing device includes at least one of a complementary metal oxide semiconductor array, a charge coupled device array, or a photodiode array.
  • the present disclosure provides a method for capturing images through an image capturing device.
  • the method includes capturing and generating a plurality of image signals, generating a plurality of living body detection signals of the plurality of image signals, generating living body detection data and a living body score, and judging whether the living body score exceeds a living body threshold to verify the user or lock the Image capture device.
  • the method includes emitting light having an output power of more than twenty milliwatts to a target through a light emitting unit through a first optical path; capturing a plurality of images through an image sensing unit and transmitting the plurality of images to an image through a second optical path Sensing module; indicating that the image sensing unit has generated the plurality of captured images through the image capturing device; generating a plurality of image signals of the plurality of captured images through the image sensing module of the image sensing unit; The plurality of image signals of the plurality of captured images are processed by a data processing module to generate a plurality of living body detection signals; the plurality of living body detection signals are processed by the data processing module to generate living body detection data; and the data processing module Comparing the living body detection data with the data in the database to generate a living body score; and determining whether the living body score exceeds the living body threshold through the data processing module; if so, authenticating the user to use the image capturing device or further processing the multiple image signals; If not, lock the image
  • the laser unit of the light-emitting unit of the image capturing device emits emission light having an output power of more than twenty milliwatts and transmits the emission through a first optical path Light to the target.
  • the laser unit of the image capturing device includes a substrate having a side surface and a first inclined surface; a conductive layer formed on the side surface and the first inclined surface; and the laser light source.
  • the laser light source is electrically connected to the conductive layer formed on the side surface.
  • the emitted light emitted to the target via the first optical path is reflected light from the conductive layer formed on the first inclined surface.
  • the inner angle between the side surface and the first inclined surface is between 25 degrees and 75 degrees.
  • the material of the conductive layer of the image capturing system of the image capturing device includes at least one of gold, silver, copper, nickel, titanium, and tungsten, or Any combination of the above elements.
  • the step of generating the plurality of living body detection signals includes generating a plurality of living body detection signals through at least one sequential image signal, wherein each sequential image signal includes a different Image signal.
  • the step of further processing the plurality of image signals further includes: generating feature identification data through the data processing module: The data processing module compares the feature identification data with the data in the database to generate a matching score; compares the matching score with the unlocking threshold of the image capture device through the data processing module; and determines whether the matching score exceeds the threshold through the data processing module
  • the unlocking threshold if it is, the user is authenticated to use the image capture device or to further process the multiple image signals; if not, the image capture device is locked.
  • the step of generating the feature recognition data includes generating the feature recognition data from at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • the laser unit is an edge-emitting laser unit, and the coherent length of the edge-emitting laser unit is less than 30 cm.
  • the image sensing module includes at least one of a complementary metal oxide semiconductor array, a charge coupled device array, or a photodiode array.
  • FIG. 1A is a schematic diagram of an imaging module according to an embodiment of the disclosure.
  • FIG. 1B is a cross-sectional view of the imaging module of FIG. 1A on line A-A according to an embodiment of the disclosure.
  • Fig. 2 is a partial cross-sectional view of an imaging module according to an alternative embodiment of the present disclosure.
  • FIG. 3 is a partial schematic diagram of an image capturing device according to an embodiment of the disclosure.
  • FIG. 4 is a partial schematic diagram of an image capturing device according to an alternative embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional view of the packaging structure of the laser light emitting unit according to an embodiment of the disclosure.
  • FIG. 6 is a partial cross-sectional view of the packaging structure of the laser light emitting unit according to an alternative embodiment of the present disclosure.
  • FIG. 7 is a partial cross-sectional view of a package structure of a laser light emitting unit according to another alternative embodiment of the present disclosure.
  • FIG. 8 is a partial cross-sectional view of a package structure of a laser light emitting unit according to still another alternative embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the laser light emitting unit emitting co-dimming light according to an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the laser light emitting unit emitting co-dimming light according to an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the laser light emitting unit emitting co-dimming light according to an embodiment of the disclosure.
  • Fig. 12A is a photo of a user's hand characteristics according to an embodiment of the disclosure.
  • FIG. 12B is an enlarged view of the index finger and thumb of the user's hand in the photo of FIG. 12A according to an embodiment of the present disclosure.
  • FIG. 13 is a timing diagram of light pulses according to an embodiment of the disclosure.
  • Fig. 14 is a timing diagram of light pulses and ambient light reception according to an alternative embodiment of the present disclosure.
  • FIG. 15 is a timing diagram of the received light pulse and ambient light according to another alternative embodiment of the present disclosure.
  • Fig. 16 is a timing diagram of light pulses and ambient light reception according to still another alternative embodiment of the present disclosure.
  • FIG. 17 is a timing diagram of the received light pulse and ambient light amount according to still another alternative embodiment of the disclosed embodiment.
  • FIG. 18 is a schematic diagram of the laser light emitting unit emitting co-dimming light through a diffuser and a lens according to an embodiment of the present disclosure.
  • 19 is a partial cross-sectional view of a package structure of a laser light emitting unit according to another alternative embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of an image capturing device according to an embodiment of the disclosure.
  • FIG. 21 is a schematic diagram of an image capturing device according to an alternative embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of capturing images of subcutaneous features of a user's face according to an embodiment of the present disclosure.
  • FIG. 23 is a flowchart of a living body identification verification process according to an embodiment of the present disclosure.
  • FIG. 24 is a component flow chart of a living body identification verification process according to an embodiment of the disclosure.
  • FIG. 25A is a schematic diagram of an image of the feature that the infrared light-shielding material is wrapped around the middle finger of the user's hand according to an embodiment of the present disclosure.
  • FIG. 25B is a schematic diagram of a photograph of the feature that the infrared light-shielding material of FIG. 25A is wrapped around the middle finger of a user's hand according to an embodiment of the present disclosure.
  • FIG. 25C is a schematic diagram of a living body signal of the infrared shielding material of FIG. 25A wrapped around the middle finger of a user's hand according to an embodiment of the present disclosure.
  • FIG. 26A is a schematic diagram of a photo of the features of a user's face according to an embodiment of the disclosure.
  • FIG. 26B is a schematic diagram of a photo of a living body signal of the user's face in FIG. 26A according to an embodiment of the present disclosure.
  • FIG. 26C is a schematic diagram of a photograph of the subcutaneous features of the user's face in FIG. 26A according to an embodiment of the present disclosure.
  • living body detection and feature recognition will be used to illustrate the implementation principles related to biological living body detection and fraud detection, and to explain the living body detection system, device and method provided in this disclosure through embodiments, including imaging modules and image captures.
  • the implementation concept of the acquisition system and image capture device includes an image sensing unit, a light emitting unit, and a data processing module, a living body detection and feature recognition method, and any combination in the prior art.
  • those skilled in the art can modify or change according to one or more implementation principles of this disclosure to realize the image sensing unit, light emitting unit, data processing module, and living body detection and feature identification methods of this disclosure. This achieves the corresponding results, characteristics and/or performance.
  • Various units, circuits or other parts can be "used” to perform one or more tasks.
  • the term “to” generally refers to the operation function of performing one or more tasks through a circuitry including multiple circuits.
  • the above-mentioned units, circuits, or other parts can be used to perform tasks, even if some components in the circuit system are not activated.
  • a circuit structure composed of hardware circuits and/or memory can be used to execute multiple instructions defined in the instruction set architecture to perform one or more tasks.
  • the above-mentioned memory can be volatile memory, such as static random access memory (DRAM) or dynamic random access memory (DRAM) and/or non-volatile memory (non-volatile memory). Volatile memory, such as optical discs or magnetic disk storage, flash memory, programmable read-only memory, etc.
  • corporate entities or individuals can selectively restrict the use or access of corporate entity data or personal data, respectively.
  • hardware and/or software components can be used to prevent or prevent enterprise entity data or personal data from being read, respectively.
  • FIG. 1A is a schematic diagram of a module including an integrated circuit according to an embodiment of the disclosure.
  • FIG. 1B is a cross-sectional view of the module in FIG. 1A on line A-A according to an embodiment of the present disclosure.
  • 2 is a schematic diagram of a partial cross-section of a module including an integrated circuit according to an alternative embodiment of the present disclosure.
  • FIG. 3 is a partial schematic diagram of an image capturing device 100 having an imaging module including an integrated circuit 180 according to an embodiment of the disclosure.
  • FIGS. 1A to 4 are a partial schematic diagram of an image capturing device 100 having an imaging module including an integrated circuit and a plurality of components according to an alternative embodiment of the present disclosure.
  • the light emitting unit 160 is electrically connected to the main board 190 (as shown in FIG. 1A), and has a laser unit 168 and a first optical module 165 (as shown in FIG. 1B).
  • the laser unit 168 is used to emit the emitted light with an output power exceeding 20 milliwatts
  • the first optical module 165 is used to transmit the emitted light of the light-emitting unit 160.
  • the laser unit 168 may be a near-infrared (NIR) light source, but the present disclosure is not limited thereto.
  • NIR near-infrared
  • Common laser light sources in the field can be applied to the embodiments of the disclosure, such as distributed feedback (DFB) laser light, distributed Bragg reflector (DBR) laser light, Fabry-Perot laser light or Any combination of light-emitting diodes, etc.
  • the laser unit 168 can be realized by a combination of one or more non-infrared light sources, and those skilled in the art can implement the laser unit according to actual application requirements, but the present disclosure is not limited thereto.
  • the laser unit 168 can emit light with a wavelength range of 700 nanometers to 1000 nanometers when the total emission time is between 0.1 milliseconds and 500 milliseconds, which has continuous wave (CW), pulse Waves or waveforms of the above combination, but the present disclosure is not limited to this.
  • CW continuous wave
  • the image sensing unit 140 is electrically connected to the main board 190 (as shown in FIG. 1A) close to the light emitting unit 160, and has a second optical module 145 and an image sensing module 142 (as shown in FIG. 1B).
  • the second optical module 145 is used to capture the passing image.
  • the image sensor module 142 is used to generate a plurality of image signals of a plurality of captured images.
  • the multiple captured images may include, for example, still images, recorded images, and/or frame-by-frame images.
  • the data processing module 180 is electrically connected to the main board 190 close to the light source and the image sensing units 160 and 140, and is used to generate a plurality of living body detection signals of a plurality of image signals for capturing images.
  • the data processing module 180 includes a circuit for executing multiple instructions defined in the instruction set architecture, such as an application specific integrated circuit (ASIC). It is easy to understand that the data processing module 180 may include other chips, circuits, or a combination of the above to perform related data processing tasks required by the data processing module 180, but the present disclosure is not limited thereto.
  • the laser unit 168 includes a substrate 161, a conductive layer 150 and a laser light source 162.
  • the substrate 161 has a side surface 167 and a first inclined surface 164 a, and the first inclined surface 164 a extends from the side surface 167.
  • the conductive layer 150 is formed on the side surface 167 and the first inclined surface 164a.
  • the laser light source 162 is electrically connected to the conductive layer 150 formed on the side surface 167.
  • the emitted light of the light emitting unit 160 is the reflected light of the conductive layer 150 formed on the first inclined surface 164a via the first optical module 165.
  • the laser unit 168 further includes a housing 163 that surrounds the substrate 161, the conductive layer 150 and the laser light source 162.
  • the image sensing module 142 includes a complementary metal oxide semiconductor (complementary metal oxide semiconductor, CMOS) array, a charged coupled device (CDD) array, and a photodiode (PD) array. At least one.
  • CMOS complementary metal oxide semiconductor
  • CDD charged coupled device
  • PD photodiode
  • the image sensing module 142 can include a sensing array of 2x2 to 999x999 sensing units, the image sensing module 142 can sense black and white images or color images, and the focal ratio (f-number, f/#) of the second optical module 145 ) Is, for example, a value greater than three.
  • the image sensor module 142 has a plurality of sensor module circuits 149 for electrically connecting the image sensor module 142 to the motherboard 190.
  • the laser unit 168 has a plurality of laser unit circuits 169 for electrically connecting the laser light source 162 to the main board 190.
  • the motherboard 190 has a plurality of connectors 194 for connecting the electronic circuit to other circuits, parts or components.
  • the motherboard 190 may be a flexible printed circuit board (FPCB) with multiple board-to-board connectors. It is easy to understand that the motherboard 190 can connect its own electronic circuit to other circuits, parts or components by any known means, such as Quad Flat No-lead (QFN) package pins, PCB golden fingers, etc.
  • QFN Quad Flat No-lead
  • the main board 190 may not be a flexible printed circuit, and the main board 190 has a plurality of solder bumps 196 for connecting its own electronic circuit to other circuits, parts or components.
  • the substrate 161 of the laser unit 168 includes a second inclined surface 164b, wherein the second inclined surface 164b extends from the side surface 167 and is opposite to the first inclined surface 164a, the first inclined surface 164a and the second inclined surface 164b Adjacent to the edge surface 166, the edge surface 166 is opposite to the side surface 167.
  • the edge surface 166 completely supports the first optical module 165. In certain embodiments, the edge surface 166 may partially support or not support the first optical module 165.
  • the present disclosure does not limit the support structure of the edge surface 166, as long as the light emitted by the light-emitting unit 160 of the first optical module 165 is the reflected light of the conductive layer 150 formed on the first inclined surface 164a, it belongs to the scope of the present disclosure. .
  • FIG. 5 is a partial cross-sectional view of the packaging structure of the laser light emitting unit according to an embodiment of the disclosure.
  • 6 is a partial cross-sectional view of the packaging structure of the laser light emitting unit according to an alternative embodiment of the present disclosure.
  • FIG. 7 is a partial cross-sectional view of a package structure of a laser light emitting unit according to another alternative embodiment of the present disclosure.
  • FIG. 8 is a partial cross-sectional view of a package structure of a laser light emitting unit according to still another alternative embodiment of the present disclosure. Please refer to FIGS. 5 to 8 and FIGS.
  • partial cross-sectional views of the package structure include substrates 261, 361, 561, 661, laser light sources 262, 362, 562, 662, and Conductive layers 250, 350, 550, 650.
  • the laser unit also includes side surfaces 267, 367, 567, 667 and first inclined surfaces 264a, 364a, 564a, 664a, respectively, wherein a plurality of first inclined surfaces 264a, 364a, 564a, 664a are from the side surfaces 267, 367, 567, respectively. , 667 extension.
  • the substrate 361 of the light emitting unit further includes a second inclined surface 364b, wherein the second inclined surface 364b extends from the side surface 367 and is opposite to the first inclined surface 364a.
  • the inner angles between the side surfaces 267, 367, 567, 667 and the first inclined surfaces 264a, 364a, 564a, 664a are between 25 degrees and 75 degrees, respectively.
  • the inner angles between the side surfaces 267, 367 and the first inclined surfaces 264a, 364a are 45 degrees, respectively.
  • the inner angle between the side surface 567 and the first inclined surface 564a is less than 45 degrees.
  • the inner angle between the side surface 667 and the first inclined surface 664a is greater than 45 degrees.
  • the length of the hypotenuse corresponding to the inner included angle ⁇ may be different, which means that those skilled in the art can adjust the length of the first oblique surfaces 264a, 364a, 564a, 664a according to application requirements, but the present disclosure is not limited to this. .
  • the lengths of the first inclined surfaces 264a, 364a, 564a, and 664a corresponding to the inner included angle ⁇ are all the same.
  • the present disclosure does not limit the length of the first inclined surface 264a, 364a, 564a, 664a, as long as the light emitted by the light emitting unit 160 of the first optical module 165 is the reflected light of the conductive layer 150 formed on the first inclined surface 164a , All belong to the scope of this disclosure.
  • the inner included angle passes through the first optical module of the image capturing system to provide design flexibility for the configuration of the emitted light of the light-emitting unit.
  • different optical structures can be formed by changing the size of the inner included angle (for example, adjusting the tilt angle by adjusting the size of the hypotenuse and the vertical side), so that the light-emitting units in the image capturing system can achieve the same Target launch area.
  • the material of the conductive layer 150 includes at least one of gold (Au), silver (Ag), copper (Cu), nickel (Ni), titanium (Ti), and tungsten (W) or a combination of the above elements. Any combination, thereby providing design flexibility of the conductivity and reflectivity of the conductive layer 150.
  • the conductive layer is formed on the side surface and the first inclined surface to reduce the amount of absorption when the emitted light of the light-emitting unit is reflected.
  • the laser light source electrically connected to the conductive layer and the circuit of the image capture system coupled to the laser light source can dissipate heat through the thermal conductivity of the conductive layer.
  • the laser light source 162 is an edge-emitting laser unit, and the coherent length of the edge-emitting laser unit is less than 30 cm.
  • FIG. 9 is a schematic diagram of a laser light emitting unit (such as a laser diode chip 191) emitting co-dimming light 172 according to an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a laser light emitting unit (such as a laser diode chip 193) emitting co-dimming light 174 according to an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of a laser light emitting unit (such as a laser diode chip 195) emitting co-dimming light 176 according to an embodiment of the disclosure. Please refer to FIGS. 9 to 11 and FIGS.
  • a plurality of laser light emitting units 191, 193, 195 can respectively emit co-dimmable lights 172, 174, 176 to a target 179, so that a plurality of detectors 194, 196 can be The reflected light 177, 175 of the target 179 is detected.
  • Coherence is the unique characteristic of laser light radiation in the luminescence process. Temporal coherence and spatial coherence can be used to describe the coherence characteristics of light.
  • the coherence length (Lcoh) can be used to describe time coherence. In detail, the coherence length Lcoh is used to describe the distance at which the laser beam remains coherent beyond the propagation distance.
  • the spatial coherence or lateral coherence of the laser beam is used to describe the correlation between multiple phases of the light field in one side direction.
  • the size of the coherent length Lcoh is related to the divergence ( ⁇ ) of the beam at the point of irradiation. In the configuration of multiple light sources, the size of the emission area can be greater than one light wavelength.
  • speckle is a speckle pattern, which appears when laser light is incident on a non-specular reflective surface.
  • FIG. 12A is a photo of a user's hand characteristics according to an embodiment of the disclosure.
  • FIG. 12B is an enlarged view of the index finger and thumb of the user's hand in the photo of FIG. 12A according to an embodiment of the present disclosure. Please refer to FIGS. 12A and 12B, and FIGS. 1A to 11, when a large number of elementary waves interfere with each other, a spot pattern will appear.
  • the present disclosure uses edge-emitting laser light with high output power, which can improve the contrast between a living body and an environmental scene, so as to improve the performance of living body detection and feature recognition.
  • the edge-emitting laser photoelectrically connects the conductive layer 150 formed on the side surface 167, and the thickness of the light-emitting unit 160 of the image capturing system 130 can be reduced by selecting an appropriate inner angle.
  • the data processing module 180 is used to generate each living body detection signal from at least one sequential image signal, wherein each sequential image signal includes a different image signal. In some embodiments, the data processing module 180 is used to generate feature identification data from at least one sequential image signal, wherein each sequential image signal includes a different image signal. In certain embodiments, the different image signals may be image signals of different depths ( ⁇ L) to realize the phenomenon of light interference.
  • FIG. 13 is a timing diagram of light pulses according to an embodiment of the disclosure.
  • Fig. 14 is a timing diagram of light pulses and ambient light reception according to an alternative embodiment of the present disclosure.
  • FIG. 15 is a timing diagram of the received light pulse and ambient light according to another alternative embodiment of the present disclosure.
  • Fig. 16 is a timing diagram of light pulses and ambient light reception according to still another alternative embodiment of the present disclosure.
  • FIG. 17 is a timing diagram of the received light pulse and ambient light amount according to still another alternative embodiment of the disclosed embodiment. Please refer to FIG. 13 to FIG.
  • the present disclosure generates each living body detection signal from at least one sequential image signal to generate living body detection data, wherein each sequential image signal includes a different image signal;
  • each sequential image signal includes a different image signal;
  • multiple image signals for multiple captured images are generated, and further processing includes a preset number of each living body detection signal, which can improve the reliability of the image capture system 130. Noise ratio and reduce the amount of ambient light reception.
  • the feature identification data is generated from at least one sequential image signal, where each sequential image signal includes a different image signal; in this way, the present disclosure adjusts the on/off state and timing of the laser light source 162, Multiple image signals of multiple captured images are generated, and each image signal including the default number is further processed, which can increase the signal-to-noise ratio of the image capture system 130 and reduce the amount of ambient light received.
  • each image signal of the multiple captured images is generated within 0.05 seconds, and at least one sequential image signal including different image signals is generated within 0.5 seconds, but the present disclosure is not limited to this .
  • Those skilled in the art can adjust the generation time of multiple captured images and at least one sequential image signal respectively according to actual application requirements, so that the generation time is shorter or longer than 0.05 second and 0.5 second, respectively.
  • the first optical module 165 includes one or more diffusers and/or lenses to transmit the emitted light of the light-emitting unit 160, but the present disclosure is not limited thereto. It is easy to understand that the first optical module 165 may include additional elements to implement different functions, and those skilled in the art can modify or change the features of the disclosure accordingly. As long as the light emitted by the light emitting unit 160 of the first optical module 165 is the reflected light of the conductive layer 150 formed on the first inclined surface 164a, it belongs to the scope of the present disclosure. 18 is a schematic diagram of the laser light emitting unit emitting co-dimming light through a diffuser and a lens according to an embodiment of the present disclosure.
  • the first optical module 165 includes one or more diffusers and/or lenses to implement far-field optics Control to reduce the amount of ambient light received and improve the signal-to-noise ratio.
  • the present disclosure provides an image capturing device including an image capturing system and a display.
  • the image capture device can be integrated in a small or handheld computer device.
  • the image capture device may perform wireless communication through a wireless local area network (WLAN) and/or radio frequency communication technology, such as Wi-Fi, cellular wireless communication, and/or Bluetooth wireless communication.
  • WLAN wireless local area network
  • the user can implement the image capture device using devices such as applications, memory, and displays.
  • the image capture device can be coupled to a device or system (such as a computer terminal) to perform the verification process.
  • the display is, for example, a liquid crystal display screen, a touch screen or an indicating billboard.
  • the display may include a user input interface, for example, the display may interact with the user to obtain input data.
  • FIG. 20 is a schematic diagram of an image capturing device 700 having an imaging module 730 including an integrated circuit according to an embodiment of the disclosure.
  • FIG. 21 is a schematic diagram of an image capturing device 800 having an imaging module 830 including an integrated circuit according to an alternative embodiment of the present disclosure. Please refer to FIGS. 20 to 21, and to FIGS. 1A to 19, the image capturing systems of the multiple image capturing devices 700 and 800 respectively include a main board, a light emitting unit, an image sensing unit, and a data processing module. Each light-emitting unit is electrically connected to the main board, and has a laser unit and a first optical module.
  • Each laser unit is used to respectively emit emitted light having an output power of more than 20 milliwatts
  • each first optical module is used to respectively transmit the emitted light of the light-emitting unit.
  • Each image sensing unit is electrically connected to the main board close to the light emitting unit, and has a second optical module and an image sensing module. The second optical module is used to capture the passing image. The image sensing module is used for generating multiple image signals of multiple captured images.
  • Each data processing module is electrically connected to the main board close to the light source and the image sensing unit, and is used to generate the living body detection signal and the feature identification data of the multiple image signals of the multiple captured images.
  • Each light-emitting unit further includes a substrate having a side surface and a first inclined surface; a conductive layer formed on the side surface and the first inclined surface; and a laser light source.
  • Each laser light source is electrically connected to the conductive layer formed on the side surface and the first inclined surface. The emitted light respectively passing through each light emitting unit of the first optical module is the reflected light of the conductive layer formed on the side surface and the first inclined surface.
  • the present disclosure provides a method for capturing images through an image capturing device.
  • the method includes capturing and generating a plurality of image signals, generating a plurality of living body detection signals of the plurality of image signals, generating living body detection data and a living body score, and judging whether the living body score exceeds a living body threshold to verify the user or lock the Image capture device.
  • FIG. 22 is a schematic diagram of capturing an image of the subcutaneous feature 181 of the user's face (ie, the target 189) according to an embodiment of the present disclosure.
  • FIG. 23 is a flowchart of a living body identification verification process according to an embodiment of the present disclosure.
  • FIG. 24 is a component flow chart of a living body identification verification process according to an embodiment of the disclosure.
  • the method for capturing images includes emitting light having an output power of more than twenty milliwatts through a light emitting unit 160 and transmitting the emitted light through a first optical path;
  • the passed images are captured by the image sensing unit 140 and the captured images are transmitted to the image sensing module 142 through the second optical path.
  • the present disclosure uses an image capturing device to indicate that the image sensing unit 140 has generated multiple captured images.
  • the present disclosure uses a light-emitting diode display and/or displaying text on the display to indicate that the image sensing unit 140 has Multiple captured images are generated, but the disclosure is not limited to this.
  • the image sensor module 142 of the image sensor unit 140 generates multiple image signals for multiple captured images.
  • the data processing module 180 processes multiple image signals of multiple captured images to generate multiple living body detection signals.
  • the data processing module 180 processes multiple living body detection signals to generate living body detection data.
  • the present disclosure uses the data processing module 180 to compare the living body detection data with the data in the database to generate a living body score. In this disclosure, the data processing module 180 determines whether the living body score exceeds the living body threshold; if so, the user authorization of the image capturing device is verified or further processing multiple image signals; if not, the image capturing device is locked.
  • the method of capturing images through the image capturing device of the present disclosure may further include other steps or tasks, but the present disclosure is not limited to the above-mentioned embodiments.
  • the emission light having an output power of more than twenty milliwatts is emitted through the light-emitting unit 160 and the emission light is transmitted through the first optical path.
  • the present disclosure triggers the verification process through an application program, and issues instructions on the display or indicating billboard to indicate one or more default living body detection areas for the image sensing unit 140 to capture multiple images.
  • this disclosure does not Limited to this.
  • multiple identical or different components and their matching methods and/or existing methods can all be added to the embodiments of the present disclosure.
  • some verification sensing methods including dot-projector (dot-projector), time-of-flight (ToF) sensing, two-dimensional surface imaging and three-dimensional depth sensing, etc., can all be added to this disclosure Examples.
  • the present disclosure uses the laser unit 168 of the light emitting unit 160 to emit emitted light having an output power of more than 20 milliwatts and transmit the emitted light through the first optical path.
  • the laser unit 168 includes a substrate 161, a conductive layer 150 and a laser light source 162.
  • the substrate 161 has a side surface 167 and a first inclined surface 164a.
  • the conductive layer 150 is formed on the side surface 167 and the first inclined surface 164a, and the emitted light of the light emitting unit 160 via the first optical path is the reflected light of the conductive layer 150 formed on the first inclined surface 164a.
  • the image sensing module 142 includes at least one of a complementary metal oxide semiconductor array, a charge coupled device array, and a photodiode array.
  • the inner angle ⁇ between the side surface 167 and the first inclined surface 164a is between 25 degrees and 75 degrees.
  • the length of the hypotenuse corresponding to the inner included angle ⁇ may be different, but the disclosure is not limited thereto. In a specific embodiment, the lengths of the hypotenuses corresponding to the inner included angles may be the same, as long as the light emitted by the light emitting unit 160 of the first optical module 165 is the reflected light of the conductive layer 150 formed on the first inclined surface 164a. It belongs to the scope of this disclosure.
  • the inner included angle passes through the first optical module of the image capturing system to provide design flexibility for the configuration of the emitted light of the light-emitting unit.
  • different optical structures can be formed by changing the size of the inner included angle (for example, adjusting the tilt angle by adjusting the size of the hypotenuse and the vertical side), so that the light-emitting units in the image capturing system can achieve the same Target launch area.
  • the material of the conductive layer 150 of the image capturing system 130 of the image capturing device includes at least one of gold, silver, copper, nickel, titanium, and tungsten or any of the foregoing elements combination.
  • the conductive layer is formed on the side surface and the first inclined surface to reduce the amount of absorption when the emitted light of the light-emitting unit is reflected.
  • the laser light source electrically connected to the conductive layer and the circuit of the image capture system coupled to the laser light source can dissipate heat through the thermal conductivity of the conductive layer.
  • the step of generating the living body detection signal includes generating each living body detection signal from at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • each living body detection signal may be a comprehensive result of capturing blood vessel characteristics and blood flow signals, but the disclosure is not limited to this.
  • Each living body detection signal can be a comprehensive result of extracting retinal features, palmprint features, fingerprint features, and so on.
  • the method further includes generating feature identification data and matching scores; and determining whether the matching scores exceed the unlocking threshold to verify the user or lock the image capture device; when determining that the living body score exceeds the living body score When the threshold is reached, the image signal is further processed.
  • the data processing module 180 compares the feature identification data with the data in the database to generate a matching score. In the present disclosure, the data processing module 180 determines whether the matching score exceeds the unlocking threshold. If so, the present disclosure authenticates the user to use the image capturing device; if not, the present disclosure locks the image capturing device.
  • the step of generating feature recognition data includes generating feature recognition data from at least one sequential image signal, wherein each sequential image signal includes a different image signal.
  • the laser light source 162 is an edge-emitting laser unit, and the coherent length of the edge-emitting laser unit is less than 30 cm.
  • the present disclosure uses edge-emitting laser light to provide design flexibility that requires a single light source with a higher output power and a longer coherent length.
  • the laser light 191 of the light emitting unit can emit the co-dimmable light 172 to the target 179, so that the detector 194 can detect the reflected light 177 of the target 179.
  • FIG. 25A is a schematic diagram of an image of the feature that the infrared light-shielding material is wrapped around the middle finger of the user's hand according to an embodiment of the present disclosure.
  • FIG. 25B is a schematic diagram of a photograph of the feature that the infrared light-shielding material of FIG. 25A is wrapped around the middle finger of a user's hand according to an embodiment of the present disclosure.
  • FIG. 25C is a schematic diagram of a living body signal of the infrared shielding material of FIG.
  • FIG. 25A wrapped around the middle finger of a user's hand according to an embodiment of the present disclosure.
  • FIG. 26A is a schematic diagram of a photo of the features of a user's face according to an embodiment of the disclosure.
  • FIG. 26B is a schematic diagram of a photo of a living body signal of the user's face in FIG. 26A according to an embodiment of the present disclosure.
  • FIG. 26C is a schematic diagram of a photograph of the subcutaneous features of the user's face in FIG. 26A according to an embodiment of the present disclosure. Please refer to FIGS. 25A to 26C and FIGS. 1A to 24.
  • the present disclosure generates life detection data from each of at least one sequential image signal of each living body detection signal, wherein each sequential image signal includes a different image
  • each sequential image signal includes a different image
  • the present disclosure generates multiple image signals of multiple captured images by adjusting the on/off state and timing of the laser light source 162, and further processes each living body detection signal including a preset number, which can reduce the ambient light
  • the received volume and the signal-to-noise ratio of the image capturing system 130 are improved.
  • the present disclosure generates feature identification data from at least one sequential image signal, where each sequential image signal includes a different image signal; in this way, the present disclosure adjusts the on/off state and timing of the laser light source 162 , Generate multiple image signals of multiple captured images, and further process each image signal including the default number, which can reduce the amount of ambient light received and improve the signal-to-noise ratio of the image capture system 130.
  • the edge-emitting laser photoelectrically connects the conductive layer 150 formed on the side surface 167, and the thickness of the light-emitting unit 160 of the image capturing system 130 can be reduced by selecting an appropriate inner angle.
  • Biometrics uses the unique biological characteristics of human individuals to verify the individual's identification code.
  • the advantages of a biometric verification system include high security and the inability to lose biometrics.
  • biometric verification is vulnerable to “image attacks” involving fraud, which are attempts to attack biometric verification or identification procedures.
  • In vivo detection is a technology used to detect biometric fraud, which is used to determine whether a biological sample comes from a living human or some kind of false performance. Analyze and calculate the collected biological sample data to determine whether the source of the biological sample is a living body or imitation, and then live body detection can be realized.
  • the present disclosure provides a living body detection device and related verification method.
  • the living body detection device includes a light-emitting unit, an image sensing unit and a data processing module.
  • the substrate of the light-emitting unit has a first inclined surface, and the emitted light is the reflected light of the first inclined surface.
  • This disclosure triggers the verification process through the application to verify the user.
  • the light emitting unit emits light with a specific pattern in a specific period to generate a plurality of image signals.
  • the present disclosure generates a plurality of living body detection signals for judging a living body, wherein the plurality of living body detection signals are generated by calculating a plurality of light interference patterns from at least one sequential image signal.
  • the present disclosure further generates feature identification data for matching, wherein the feature identification data is calculated from at least one sequential image signal to calculate multiple light interference patterns. produce.
  • the present disclosure compares the feature identification data with the previous registration data to lock or unlock the living body detection device and/or the system coupled with it.
  • the first optical module of the image capturing system with the inner included angle disclosed in the present disclosure provides design flexibility for the configuration of the emitted light of the light-emitting unit.
  • different optical structures can be formed by changing the size of the inner included angle (for example, adjusting the tilt angle by adjusting the size of the hypotenuse and the vertical side), so that the light-emitting units in the image capturing system can achieve the same Target launch area.
  • This disclosure uses edge-emitting laser light to provide a single light source with higher output power and design flexibility with a longer coherent length.
  • the present disclosure uses edge-emitting laser light with high output power, which can improve the contrast between a living body and an environmental scene, so as to improve the performance of living body detection and feature recognition.
  • the edge-emitting laser photoelectrically connects the conductive layer formed on the side surface, and the thickness of the light-emitting unit of the image capture system can be reduced by selecting an appropriate inner angle.
  • the living body detection data is generated by generating each living body detection signal from at least one sequential image signal, wherein each of the following image signals includes a different image signal; in this way, the present disclosure adjusts the on/off of the laser light source State and timing, generate multiple image signals of multiple captured images, and further process each living body detection signal including a preset number, which can increase the signal-to-noise ratio of the image capture system and reduce the amount of ambient light received.
  • the feature identification data is generated from at least one sequential image signal, where each sequential image signal includes a different image signal; in this way, the present disclosure generates by adjusting the on/off state and timing of the laser light source
  • the multiple image signals of multiple captured images are further processed including the default number of each image signal, which can reduce the amount of ambient light received and improve the signal-to-noise ratio of the image capture system.
  • the conductive layer is formed on the side surface and the first inclined surface to reduce the amount of absorption when the emitted light of the light-emitting unit is reflected.
  • the laser light source electrically connected to the conductive layer and the circuit of the image capture system coupled to the laser light source can dissipate heat through the thermal conductivity of the conductive layer.
  • the material of the conductive layer includes gold, silver, copper, nickel, titanium, and tungsten, thereby providing design flexibility of the conductivity and reflectivity of the conductive layer.
  • A-A Line segment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)
  • Endoscopes (AREA)

Abstract

本揭露提供一种活体检测装置和相关验证方法。该活体检测装置包括发光单元、影像感测单元和数据处理模块。该发光单元的基板具有第一斜表面,发射光为该第一斜表面的反射光。本揭露通过应用程序触发验证流程,用以验证用户。该发光单元在特定周期内发出具有特定图案的光,以产生多个影像信号。本揭露产生用于判断活体的多个活体检测信号,其中本揭露从至少一依序的影像信号中,计算每一光干涉图案,以产生该多个活体检测信号。当该多个活体检测信号的活体分数达到活体门槛时,本揭露进一步产生用于匹配的特征辨识数据,其中该特征辨识数据是从至少一依序的影像信号中,计算每一干涉图案所产生。接着,本揭露比较该特征辨识数据和先前注册数据,以锁定或解锁该活体检测装置及/或与其耦接的系统。

Description

活体检测模块、装置、系统和方法 技术领域
本揭露涉及一种生物活体检测和诈骗检测,尤其涉及一种根据摄影机撷取的多张影像来进行生物活体检测和诈骗检测的活体检测模块、装置、系统和方法。
背景技术
生物识别技术使用人类个体独特的生物特征来验证个人的身份识别码。生物验证(authentication)系统的优点包括了高度安全性和生物特征的不可遗失性。然而,生物验证易受到涉及诈骗(spoofing)的“图像攻击”,此类行为企图击败生物验证(verification)或辨识(recognition)程序。图像攻击的方式会随着不同的生物特征模态(modality)而有所改变;也就是说,图像攻击的方式会随着生物识别技术是否使用了指纹、脸部、虹膜、声音或任何可能的生物关键特征(keystroke)。
虽然使用多种生物特征模态的生物验证系统比较难以被诈骗,但诈骗者仍可使用不同的诈骗手段来各个击破多种生物特征模态。因此,生物验证的机制需具备检测诈骗的功能,也需针对生物特征模态来应付其他类型的图像攻击。
活体检测(liveness detection)不仅对生物验证而言是有效的,也可用以辨识诈骗。生物验证用以验证用户是否为系统的授权用户。在实际应用中,生物识别诈骗(即活体检测)可作为入职报到程序中的一部分,用以验证取得授权的使用者实质上是一个真实的人。
活体检测是一种用于检测生物识别诈骗的技术,用以判断生物样本是来自活生生的人类或是某种虚假的表现。对搜集的生物样本数据进行分析与演算,借此判断生物样本的来源是活体或仿制品,即可实现活体检测。
活体检测主要可分为两大类,其一是主动式活体检测,另一是被动式活体检测。针对主动式活体检测,取得授权的使用者将进行一个难以被诈骗手段所复制的行动。主动式活体检测也可将生物特征模态纳入其中,例如生物关键特征分析或发声者(speaker)辨识。发音辨识可分析嘴部的动作来判断活体。针对被动式活体检测,在不需和使用者进行互动的前提下,可通过算法来检测非实时影像的指标或特征。实验发现,在验证的过程中撷取高质量的生物数据,有助于改善特征匹配和活体检测的算法的表现。尽管如此,类似诈骗的“图像攻击”依旧是生物验证的挑战之一。举例来说,对 于使用人脸辨识的生物识别技术而言,诈骗者可利用3D打印机所制造的“面具”来进行诈骗。在另一范例中,对于使用指纹辨识的生物识别技术而言,诈骗者可利用硅胶所制成的伪造指纹来进行诈骗。
发明内容
因此,为了解决上述缺失,本揭露提供一种影像撷取系统,其包括主板、发光单元、影像感测单元以及数据处理模块。该发光单元电性连接该主板,具有镭射单元和第一光学模块。该镭射单元用以发射具有输出功率超过二十毫瓦的发射光,该第一光学模块用以传输该发光单元的该发射光。该影像感测单元电性连接靠近该发光单元的该主板,具有第二光学模块和影像感测模块。该第二光学模块用以撷取通过的影像。该影像感测模块用以产生该多张撷取影像的多个影像信号。该数据处理模块电性连接靠近该光源和该影像感测单元的该主板,用以产生该多张撷取影像的该多个影像信号的多个活体检测信号。该镭射单元包括基板,具有侧表面和第一斜表面;导电层,形成在该侧表面和该第一斜表面之上;以及镭射光源。该镭射光源电性连接形成在该侧表面之上的该导电层。经由该第一光学模块的该发光单元的该发射光为形成在该第一斜表面之上的该导电层的反射光。
在一些实施例中,该侧表面和该第一斜表面之间的内夹角介于25度到75度。
本揭露该内夹角通过影像撷取系统的该第一光学模块为发光单元的发射光的配置提供设计弹性。举例来说,本揭露通过改变该内夹角的大小(例如,通过调整斜边和垂直边的大小来调整倾斜角)来构成不同的光学结构,让该影像撷取系统内的该发光单元可实现相同的目标发射区域。
在一些实施例中,该导电层的材质包括金(Au)、银(Ag)、铜(Cu)、镍(Ni)、钛(Ti)和钨(W)中的至少一者或上述元素的任意组合,借此提供该导电层的导电率和反射率的设计弹性。
该导电层形成在该侧表面和该第一斜表面之上,用以减少该发光单元的该发射光被反射时的吸收量。此外,电性连接该导电层的该镭射光源和耦接到该镭射光源的该影像撷取系统的电路可通过该导电层的热传导能力来散热。
在一些实施例中,该数据处理模块用以从至少一个依序的影像信号中,产生该多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
该活体检测数据是从至少一个依序影像信号中的每一活体检测信号而产生,其中每一依序影像信号包括不同的影像信号。本揭露通过调整该镭射光源的开/关状态和时序,产生该多张撷取影像的该多个影像信号,进一步处理包括预设数量的每一活体检测信号,可提升该影像撷取系统的信噪比并降低环境光的接收量。
在一些实施例中,该数据处理模块用以从至少一个依序的影像信号中,产生该特征辨识数据,其中每一依序的影像信号包括不同的影像信号。
该特征辨识数据是从至少一个依序的影像信号中产生,其中每一依序的影像信号包括不同的影像信号;本揭露通过调整该镭射光源的开/关状态和时序,产生该多张撷取影像的该多个影像信号,进一步处理包括默认数量的每一影像信号,可降低环境光的接收量并提升该影像撷取系统的信噪比。
在一些实施例中,该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
本揭露使用边缘发射镭射单元提供高输出功率与更长同调长度。高输出功率可提高活体和环境景物之间的对比,以改善活体检测和特征辨识的表现。该边缘发射镭射单元电性连接形成在该侧表面之上的该导电层,通过选择适当的该内夹角,可降低该影像撷取系统的该发光单元的厚度。
在一些实施例中,该影像感测模块包括互补型金属氧化物半导体(complementary metal oxide semiconductor,CMOS)阵列、电荷耦合装置(charged coupled device,CDD)阵列和光电二极管(photodiode,PD)阵列中的至少一者。
在一实施例中,本揭露提供一种影像撷取装置,包括影像撷取系统和显示器。该影像撷取装置的该影像撷取系统包括主板、发光单元、影像感测单元以及数据处理模块。该发光单元电性连接该主板,具有镭射单元和第一光学模块。该镭射单元用以发射具有输出功率超过二十毫瓦的发射光。该第一光学模块用以传输该发光单元的该发射光。该影像感测单元电性连接靠近该发光单元的该主板,具有第二光学模块和影像感测模块。该第二光学模块用以撷取通过的影像。该影像感测模块用以产生该多张撷取影像的多个影像信号。该数据处理模块电性连接靠近该光源和该影像感测单元的该主板,用以产生该多张撷取影像的多个影像信号的多个活体检测信号和特征辨识数据。该镭射单元包括基板,具有侧表面和第一斜表面;导电层,形成在该侧表面和该第一斜表面之上;以及镭射光源。该镭射光源电性连接形成在该侧表面之上的该导电层。经由该第一光学模块的该发光单元的该发射光为形成在该第一斜表面之上的该导电层的反射光。该显示装置,耦接于该影像撷取系统,用以显示该影像感测单元的该多张撷取影像。
在一些实施例中,该影像撷取装置的该影像撷取系统的该侧表面和该第一斜表面之间的内夹角介于25度到75度。
在一些实施例中,该影像撷取装置的该影像撷取系统的该导电层的材质包括金、银、铜、镍、钛和钨中的至少一者或上述元素的任意组合。
在一些实施例中,该影像撷取置的该影像撷取系统的该数据处理模块用以从至少一个依序的影像信号中,产生多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
在一些实施例中,该影像撷取置的该影像撷取系统的该数据处理模块用以从至少一个依序的影像信号中,产生特征辨识数据,其中每一依序的影像信号包括不同的影像信号。
在一些实施例中,该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
在一些实施例中,该影像撷取装置的该影像撷取系统的该影像感测模块包括互补型金属氧化物半导体阵列、电荷耦合装置阵列或光电二极管阵列中的至少一者。
在一实施例中,本揭露提供一种通过影像撷取装置来撷取影像的方法。该方法包括撷取并产生多个影像信号,产生该多个影像信号的多个活体检测信号,产生活体检测数据和活体分数,以及判断该活体分数是否超过活体门槛,用以验证用户或锁定该影像撷取装置。该方法包括通过发光单元将具有输出功率超过二十毫瓦的发射光经由第一光学路径发射至目标;通过影像感测单元撷取多个影像并经由第二光学路径传输该多个影像至影像感测模块;通过该影像撷取装置指示该影像感测单元已产生该多个撷取影像;通过该影像感测单元的该影像感测模块产生该多个撷取影像的多个影像信号;通过数据处理模块处理该多个撷取影像的该多个影像信号,以产生多个活体检测信号;通过该数据处理模块处理该多个活体检测信号,以产生活体检测数据;通过该数据处理模块比较该活体检测数据和数据库的数据,以产生活体分数;以及通过该数据处理模块判断该活体分数是否超过活体门槛;若是,则认证用户使用该影像撷取装置或进一步处理该多个影像信号;若否,则锁定该影像撷取装置。
在用于撷取影像的方法的一些实施例中,该影像撷取装置的该发光单元的该镭射单元发射具有输出功率超过二十毫瓦的发射光并经由第一光学路径用以传输该发射光至该目标。在用于撷取影像的方法中,该影像撷取装置的该镭射单元包括基板,具有侧表面和第一斜表面;导电层,形成在该侧表面和该第一斜表面之上;以及镭射光源。该镭射光源电性连接形成在该侧表面之上的该导电层。经由该第一光学路径发射至该目标的发射光为从形成在该第一斜表面之上的该导电层的反射光。在用于撷取影像的方法的一些实施例中,该侧表面和该第一斜表面之间的内夹角介于25度到75度。
在用于撷取影像的方法的一些实施例中,该影像撷取装置的该影像撷取系统的该导电层的的材质包括金、银、铜、镍、钛和钨中的至少一者或上述元素的任意组合。
在用于撷取影像的方法的一些实施例中,产生该多个活体检测信号的步骤包括通过至少一依序的影像信号产生多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
在用于撷取影像的方法的一些实施例中,其中,当判断该活体分数超 过该活体门槛时,进一步处理该多个影像信号的步骤还包括:通过该数据处理模块产生特征辨识数据:通过该数据处理模块比较该特征辨识数据和该数据库的数据,产生匹配分数;通过该数据处理模块比较该匹配分数和该影像撷取装置的解锁门槛;以及通过该数据处理模块判断该匹配分数是否超过该解锁门槛;若是,则认证该用户使用该影像撷取装置或进一步处理该多个影像信号;若否,则锁定该影像撷取装置。
在用于撷取影像的方法的特定实施例中,产生该特征辨识数据的步骤包括从至少一依序的影像信号中,产生该特征辨识数据,其中每一依序的影像信号包括不同的影像信号。
用于撷取影像的方法的一些实施例中,该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
用于撷取影像的方法的一些实施例中,该影像感测模块包括互补型金属氧化物半导体阵列、电荷耦合装置阵列或光电二极管阵列中的至少一者。
附图说明
下文列举实施例配合所附附图作详细说明,但所描述的具体实施例仅用以解释本案,并不用以限定本案,而结构操作的描述非用以限制其执行的顺序,所产生具有均等功效的装置,都为本揭示内容所涵盖的范围。为易于理解,以下各附图中的类似元件将被指定为相同符号。
图1A为根据本揭露实施例成像模块的示意图。
图1B为根据本揭露实施例图1A的成像模块在线段A-A的剖面图。
图2为根据本揭露替代实施例成像模块的局部剖面图。
图3为根据本揭露实施例影像撷取装置的局部示意图。
图4为根据本揭露替代实施例影像撷取装置的局部示意图。
图5为根据本揭露实施例镭射发光单元的封装结构的局部剖面图。
图6为根据本揭露替代实施例镭射发光单元的封装结构的局部剖面图。
图7为根据本揭露另一替代实施例镭射发光单元的封装结构的局部剖面图。
图8为根据本揭露再一替代实施例镭射发光单元的封装结构的局部剖面图。
图9为根据本揭露实施例镭射发光单元发射同调光的示意图。
图10为根据本揭露实施例镭射发光单元发射同调光的示意图。
图11为根据本揭露实施例镭射发光单元发射同调光的示意图。
图12A为根据本揭露实施例用户的手部特征的照片。
图12B为根据本揭露实施例图12A的照片中使用者的手部的食指和大拇指的放大图。
图13为根据本揭露实施例光脉冲的时序图。
图14为根据本揭露替代实施例光脉冲和环境光的接收量的时序图。
图15为根据本揭露另一替代实施例光脉冲和环境光的接收量的时序图。
图16为根据本揭露再一替代实施例光脉冲和环境光的接收量的时序图。
图17为根据本揭露实施例又一替代实施例光脉冲和环境光的接收量的时序图。
图18为根据本揭露实施例镭射发光单元通过扩散器和透镜来发射同调光的示意图。
图19为根据本揭露另一替代实施例镭射发光单元的封装结构的局部剖面图。
图20为根据本揭露实施例影像撷取装置的示意图。
图21为根据本揭露替代实施例影像撷取装置的示意图。
图22为根据本揭露实施例撷取使用者的脸部表皮下特征的影像的示意图。
图23为根据本揭露实施例活体辨识验证流程的流程图。
图24为根据本揭露实施例活体辨识验证流程的元件流程图。
图25A为根据本揭露实施例红外遮光材料缠绕在使用者手部的中指周围的特征的影像的示意图。
图25B为根据本揭露实施例图25A的红外遮光材料缠绕在使用者手部的中指周围的特征的照片的示意图。
图25C为根据本揭露实施例图25A的红外遮光材料缠绕在使用者手部的中指周围的活体信号的示意图。
图26A为根据本揭露实施例用户脸部的特征的照片的示意图。
图26B为根据本揭露实施例图26A的使用者脸部的活体信号的照片的示意图。
图26C为根据本揭露实施例图26A的使用者脸部的表皮下特征的照片的示意图。
具体实施方式
以下将通过活体检测和特征辨识的特定实施例说明相关于生物活体检测和诈骗检测的实施原则,以及通过实施例来解释本揭露所提供的活体检测系统、装置和方法,包括成像模块、影像撷取系统和影像撷取装置的实施概念。具体而言,本揭露的实施原则包括影像感测单元、发光单元和数据处理模块、活体检测和特征辨识方法以及现有技术中的任意组合。尽管如此,本领域技术人员当可根据本揭露的一项或多项实施原则,进行修饰或变化,实现本揭露的影像感测单元、发光单元和数据处理模块以及活体 检测和特征辨识方法,借此达到相对应的结果、特征及/或效能。
因此,即便是不同于本文所讨论的特定范例的特征,只要符合本揭露一项或多项实施原则的影像感测单元、发光单元、数据处理模块和用于活体检测和特征辨识的方法,都属本揭露的范畴。据此,本领域技术人员在了解本揭露的影像感测单元、发光单元、数据处理模块和用于活体检测和特征辨识的方法的实施方式之后,当可由本揭露内容所教示的技术,加以改变及修饰,并不脱离本揭露的精神与范围。
各式各样的单元、电路或其他零件可被“用以”进行一项或多项任务。于本文中,“用以”一词是泛指通过包括多个电路的电路系统(circuitry)来进行一项或多项任务的操作功能。例如,上述单元、电路或其他零件可用以进行任务,即便电路系统中的部分元件没有被启用。一般而言,由硬件电路及/或内存所构成的电路结构,可用以执行定义于指令集架构内的多个指令,以进行一项或多项任务的操作功能。上述内存可以是挥发性内存(volatile memory),例如静态随机存取内存(static random access memory,DRAM)或动态随机存取内存(dynamic random access memory,DRAM)及/或非挥发性内存(non-volatile memory),例如光盘片或磁盘片(magnetic disk storage)、闪存、可编程只读存储器等。
于本揭露的示范实施例可思及的是,企业实体或个人可选择性地分别限制企业实体数据或个人数据的使用或存取。也就是说,硬件及/或软件元件可用以分别避免或防止企业实体数据或个人数据被读取。
本揭露提供一种影像撷取系统130,其包括主板190、发光单元160、影像感测单元140以及数据处理模块180。图1A为根据本揭露实施例包括集成电路的模块的示意图。图1B为根据本揭露实施例在图1A的模块在线段A-A的剖面图。图2为根据本揭露替代实施例包括集成电路的模块的局部剖面的示意图。图3为根据本揭露实施例具有包括集成电路180的成像模块的影像撷取装置100的局部示意图。图4为根据本揭露替代实施例具有包括集成电路和多个元件的成像模块的影像撷取装置100的局部示意图。请参考图1A到图4,发光单元160电性连接主板190(如图1A所示),并具有镭射单元168和第一光学模块165(如图1B所示)。镭射单元168用以发射具有输出功率超过二十毫瓦的发射光,第一光学模块165用以传输发光单元160的发射光。在一些实施例中,镭射单元168可以是近红外(near-infrared,NIR)光源,然而本揭露不限于此。本领域常见的镭射光源都可适用于本揭露实施例,例如分布式反馈(distributed feedback,DFB)镭射光、分布式布拉格反射器(distributed bragg reflector,DBR)镭射光、Fabry-Perot镭射光或是任何发光二极管的组合等。镭射单元168可以由一个或多个非红外光源的组合来实现,本领域技术人员可根据实际应用需求来实现镭射单元,然而本揭露不限于此。举例来说,镭射单元168可在总发射时间介于0.1毫秒到500毫秒之间,发出具有波长范围在700纳米到1000纳米之 间的发射光,其具有连续波(continuous wave,CW)、脉冲波或上述组合的波形,然而本揭露不限于此。影像感测单元140电性连接靠近发光单元160的主板190(如图1A所示),并具有第二光学模块145和影像感测模块142(如图1B所示)。第二光学模块145用以撷取通过的影像。影像感测模块142用以产生多张撷取影像的多个影像信号。多张撷取影像可包括,举例来说,静止影像、摄录影像及/或逐帧(frame-by-frame)影像。数据处理模块180电性连接靠近光源的主板190和影像感测单元160、140,用以产生多张撷取影像的多个影像信号的多个活体检测信号。举例来说,在特定实施例中,数据处理模块180包括电路,用以执行定义于指令集架构内的多个指令,例如特殊应用集成电路(Application Specific Integrated circuit,ASIC)。容易理解的是,数据处理模块180可包括其他芯片、电路或上述的组合,用以进行数据处理模块180所需的相关数据处理任务,然而本揭露不限于此。如图2所示,镭射单元168包括基板161、导电层150和镭射光源162。基板161具有侧表面167和第一斜表面164a,第一斜表面164a从侧表面167延伸。导电层150形成在侧表面167和第一斜表面164a之上。镭射光源162电性连接形成在侧表面167之上的导电层150。发光单元160的发射光经由第一光学模块165为形成在第一斜表面164a之上的导电层150的反射光。在一些实施例中,镭射单元168还包括壳体163,壳体163环绕基板161、导电层150和镭射光源162。
在一些实施例中,影像感测模块142包括互补型金属氧化物半导体(complementary metal oxide semiconductor,CMOS)阵列、电荷耦合装置(charged coupled device,CDD)阵列和光电二极管(photodiode,PD)阵列中的至少一者。影像感测模块142可包括2x2到999x999个感测单元的感测阵列,影像感测模块142可以感测黑白影像或彩色影像,且第二光学模块145的焦比(f-number,f/#)例如是大于三的数值。
在一些实施例中,影像感测模块142具有多条感测模块线路149,用以将影像感测模块142电性连接到主板190。在一些实施例中,镭射单元168具有多条镭射单元线路169,用以将镭射光源162电性连接到主板190。
在特定实施例中,主板190具有多个连接器194,用以将电子电路连接其他电路、零件或元件。例如但不限于,主板190可以是具有多个板对板连接器的软性印刷电路板(flex printed circuit board,FPCB)。容易理解的是,主板190可通过任何已知的方式将自身的电子电路连接到其他电路、零件或元件,例如四方平面无导线(Quad Flat No-lead,QFN)封装接脚、PCB金手指等,然而本揭露不限于此。在特定实施例中,主板190可以不是软性印刷电路,且主板190具有多个焊接凸块196,用以将自身的电子电路连接到其他电路、零件或元件。
在一些实施例中,镭射单元168的基板161包括第二斜表面164b,其中第二斜表面164b从侧表面167延伸并相对于第一斜表面164a,第一斜表 面164a和第二斜表面164b相邻边缘表面166,边缘表面166相对于侧表面167。在特定实施例中,边缘表面166完全支撑第一光学模块165。在特定实施例中,边缘表面166可局部地支撑或不支撑第一光学模块165。然而本揭露不限制边缘表面166的支撑结构,只要经由第一光学模块165的发光单元160的发射光为形成在第一斜表面164a之上的导电层150的反射光,都属本揭露的范畴。
图5为根据本揭露实施例镭射发光单元的封装结构的局部剖面图。图6为根据本揭露替代实施例镭射发光单元的封装结构的局部剖面图。图7为根据本揭露另一替代实施例镭射发光单元的封装结构的局部剖面图。图8为根据本揭露再一替代实施例镭射发光单元的封装结构的局部剖面图。请参考图5到图8,以及参考图1A到图4,在一些实施例中,封装结构的局部剖面图分别包括基板261、361、561、661,镭射光源262、362、562、662,以及导电层250、350、550、650。镭射单元还分别包括侧表面267、367、567、667和第一斜表面264a、364a、564a、664a,其中多个第一斜表面264a、364a、564a、664a分别从侧表面267、367、567、667延伸。在替代实施例中,如图6所示,发光单元的基板361还包括第二斜表面364b,其中第二斜表面364b从侧表面367延伸并相对于第一斜表面364a。
在一些实施例中,侧表面267、367、567、667和第一斜表面264a、364a、564a、664a之间的内夹角分别介于25度到75度。在图5的本实施例和图6的替代实施例中,侧表面267、367和第一斜表面264a、364a之间的内夹角分别为45度。在图7的另一替代实施例中,侧表面567和第一斜表面564a之间的内夹角小于45度。在图8的再一替代实施例中,侧表面667和第一斜表面664a之间的内夹角大于45度。在特定实施例中,内夹角θ对应的斜边长度可以不同,意即本领域技术人员可根据应用需求来调整第一斜表面264a、364a、564a、664a的长度,然而本揭露不限于此。在特定实施例中,内夹角θ对应的第一斜表面264a、364a、564a、664a的长度都相同。然而本揭露不限制第一斜表面264a、364a、564a、664a的长度,只要经由第一光学模块165的发光单元160的发射光为形成在第一斜表面164a之上的导电层150的反射光,都属本揭露的范畴。
本揭露内夹角通过影像撷取系统的第一光学模块为发光单元的发射光的配置提供设计弹性。举例来说,本揭露可以通过改变内夹角的大小(例如,通过调整斜边和垂直边的大小来调整倾斜角)来构成不同的光学结构,让影像撷取系统内的发光单元可实现相同的目标发射区域。
在一些实施例中,导电层150的材质包括金(Au)、银(Ag)、铜(Cu)、镍(Ni)、钛(Ti)和钨(W)中的至少一者或上述元素的任意组合,借此提供导电层150的导电率和反射率的设计弹性。
导电层形成在侧表面和第一斜表面之上,用以减少发光单元的发射光被反射时的吸收量。此外,电性连接导电层的镭射光源和耦接到镭射光源 的影像撷取系统的电路可通过导电层的热传导能力来散热。
在一些实施例中,镭射光源162是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
本揭露使用边缘发射镭射光,提供输出功率较高的单一光源和同调长度(coherence length)较长的设计弹性。图9为根据本揭露实施例镭射发光单元(例如镭射二极管芯片191)发射同调光172的示意图。图10为根据本揭露实施例镭射发光单元(例如镭射二极管芯片193)发射同调光174的示意图。图11为根据本揭露实施例镭射发光单元(例如镭射二极管芯片195)发射同调光176的示意图。请参考图9到图11,以及参考图1A到图8,多个镭射发光单元191、193、195可分别发射同调光172、174、176到目标179,使得多个检测器194、196可检测目标179的反射光177、175。同调性(coherence)是镭射光辐射在发光过程中的独有特性,时间同调(temporal coherence)和空间同调(spatial coherence)可用以描述光的同调特性。同调长度(Lcoh)可用以描述时间同调,详细来说,同调长度Lcoh用以描述激光束超过传播距离仍维持同调的距离。激光束的空间同调或侧向同调(lateral coherence)用以描述在一侧方向上的光场的多个相位之间的相关性(correlation)。同调长度Lcoh的大小和光束在照射点(point of irradiation)的发散度(φ)有关。在多个光源的配置下,发射区域的尺寸可大于一个光波长。实验发现,光斑(speckle)是一种斑点图案,当镭射光入射到非镜面(non-specular)反射面时会出现光斑。图12A为根据本揭露实施例用户的手部特征的照片。图12B为根据本揭露实施例图12A的照片中使用者的手部的食指和大拇指的放大图。请参考图12A和图12B,以及参考图1A到图11,当大量的元波(elementary wave)互相干涉时会出现光斑图案。
本揭露使用高输出功率的边缘发射镭射光,可提高活体和环境景物之间的对比,以改善活体检测和特征辨识的表现。边缘发射镭射光电性连接形成在侧表面167之上的导电层150,通过选择适当的内夹角,可降低影像撷取系统130的发光单元160的厚度。
在一些实施例中,数据处理模块180用以从至少一依序的影像信号中,产生每一活体检测信号,其中每一依序的影像信号包括不同的影像信号。在一些实施例中,数据处理模块180用以从至少一依序的影像信号中,产生特征辨识数据,其中每一依序的影像信号包括不同的影像信号。在特定实施例中,不同的影像信号可以是不同深度(ΔL)的影像信号,用以实现光干涉现象。
图13为根据本揭露实施例光脉冲的时序图。图14为根据本揭露替代实施例光脉冲和环境光的接收量的时序图。图15为根据本揭露另一替代实施例光脉冲和环境光的接收量的时序图。图16为根据本揭露再一替代实施例光脉冲和环境光的接收量的时序图。图17为根据本揭露实施例又一替代实施例光脉冲和环境光的接收量的时序图。请参考图13到图17,本揭露从 至少一依序的影像信号中,产生每一活体检测信号,以产生活体检测数据,其中每一依序的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源162的开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括预设数量的每一活体检测信号,可提升影像撷取系统130的信噪比并降低环境光的接收量。此外,特征辨识数据是从至少一依序的影像信号中产生,其中每一依序的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源162的开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括默认数量的每一影像信号,可提升影像撷取系统130的信噪比并降低环境光的接收量。在特定实施例中,多张撷取影像的每一影像信号是在0.05秒内产生,且包括不同的影像信号的至少一依序的影像信号是在0.5秒内产生,然而本揭露不限于此。本领域技术人员可根据实际应用需求来分别调整多张撷取的影像和至少一依序的影像信号的产生时间,使其产生时间分别在短于或长于0.05秒和0.5秒。
在一些实施例中,第一光学模块165包括一个或多个扩散器及/或透镜,用以传输发光单元160的发射光,然而本揭露不限于此。容易理解的是,第一光学模块165可包括额外的元件,用以实现不同的功能,本领域技术人员当可据以修饰或变化本揭露特征。只要经由第一光学模块165的发光单元160的发射光为形成在第一斜表面164a之上的导电层150的反射光,都属本揭露的范畴。图18为根据本揭露实施例镭射发光单元通过扩散器和透镜来发射同调光的示意图。图19为根据本揭露另一替代实施例镭射发光单元的封装结构的局部剖面图。请参考图18到图19,以及参考图1A到图17,在一些实施例中,第一光学模块165包括一个或多个扩散器及/或透镜,用以实现远场(far-field)光学控制,以降低环境光的接收量并提升信噪比。
在一实施例中,本揭露提供一种影像撷取装置,包括影像撷取系统和显示器。在一些实施例中,影像撷取装置可整合在小型或手持式计算机装置内。在特定实施例中,影像撷取装置可通过无线局域网络(wireless local area network,WLAN)及/或射频通信技术来进行无线通信,例如Wi-Fi、蜂巢式无线通信及/或蓝牙无线通信。在特定实施例中,用户可使用应用程序、内存和显示器等装置来实现影像撷取装置。在特定实施例中,影像撷取装置可耦接于装置或系统(例如计算机终端)来执行验证流程。显示器例如是液晶显示屏幕、触控屏幕或指示广告牌。在一些实施例中,显示器可包括用户输入接口,例如显示器可和使用者进行互动来取得输入数据。图20为根据本揭露实施例具有包括集成电路的成像模块730的影像撷取装置700的示意图。图21为根据本揭露替代实施例具有包括集成电路的成像模块830的影像撷取装置800的示意图。请参考图20到图21,以及参考图1A到图19,多个影像撷取装置700、800的影像撷取系统分别包括主板、发光单元、影像感测单元和数据处理模块。每一发光单元分别电性连接主 板,并具有镭射单元和第一光学模块。每一镭射单元用以分别发射具有输出功率超过二十毫瓦的发射光,每一第一光学模块用以分别传输发光单元的发射光。每一影像感测单元分别电性连接靠近发光单元的主板,并具有第二光学模块和影像感测模块。第二光学模块用以撷取通过的影像。影像感测模块用以产生多张撷取影像的多个影像信号。每一数据处理模块分别电性连接靠近光源和影像感测单元的主板,用以产生多张撷取影像的多个影像信号的活体检测信号和特征辨识数据。每一发光单元还分别包括基板,具有侧表面和第一斜表面;导电层,形成在侧表面和第一斜表面之上;以及镭射光源。每一镭射光源分别电性连接形成在侧表面和第一斜表面之上的导电层。分别经由第一光学模块的每一发光单元的发射光为形成在侧表面和第一斜表面之上的导电层的反射光。
关于影像撷取装置的其他特征和原则,可参考上述实施例的相关描述,为求简洁,于此不再赘述。
在一实施例中,本揭露提供一种通过影像撷取装置来撷取影像的方法。该方法包括撷取并产生多个影像信号,产生该多个影像信号的多个活体检测信号,产生活体检测数据和活体分数,以及判断该活体分数是否超过活体门槛,用以验证用户或锁定该影像撷取装置。图22为根据本揭露实施例撷取使用者的脸部(即,目标189)的表皮下特征181的影像的示意图。图23为根据本揭露实施例活体辨识验证流程的流程图。图24为根据本揭露实施例活体辨识验证流程的元件流程图。请参考图22到图24,并参考图1A到图21,用于撷取影像的方法包括通过发光单元160发射具有输出功率超过二十毫瓦的发射光并通过第一光学路径传输发射光;通过影像感测单元140撷取通过的影像并通过第二光学路径传输该多个撷取影像到影像感测模块142。于一实施例中,本揭露通过影像撷取装置指示影像感测单元140已产生多张撷取影像,例如本揭露通过发光二极管显示器及/或在显示器中显示文字来指示影像感测单元140已产生多张撷取影像,然而本揭露不限于此。本揭露通过影像感测单元140的影像感测模块142产生多张撷取影像的多个影像信号。本揭露通过数据处理模块180处理多张撷取影像的多个影像信号,以产生多个活体检测信号。本揭露通过数据处理模块180处理多个活体检测信号,以产生活体检测数据。本揭露通过数据处理模块180比较活体检测数据和数据库的数据,以产生活体分数。本揭露通过数据处理模块180判断活体分数是否超过活体门槛;若是,验证影像撷取装置的用户授权或进一步处理多个影像信号;若否,锁定影像撷取装置。
容易理解的是,本揭露的通过影像撷取装置来撷取影像的方法可进一步包括其他步骤或任务,然而本揭露不限于上述实施例。举例来说,本揭露在发出发射光之前,通过发光单元160发射具有输出功率超过二十毫瓦的发射光并通过第一光学路径传输发射光。本揭露通过应用程序来触发验证流程,在显示器或指示广告牌发出指令,用以指示一个或多个默认的活 体检测区域,以供影像感测单元140来撷取多张影像,然而本揭露不限于此。在另一范例中,多个相同或不同的元件和其配合方法及/或现有方法都可加入本揭露实施例。举例来说,一些验证感测方法包括点阵投影器(dot-projector)、飞行时间(time-of-flight,ToF)感测、二维表面成像和三维深度感测等,都可加入本揭露实施例。
在通过影像撷取装置来撷取影像的方法中,本揭露通过发光单元160的镭射单元168发射具有输出功率超过二十毫瓦的发射光并通过第一光学路径传输该发射光。在通过影像撷取装置来撷取影像的方法中,镭射单元168包括基板161、导电层150和镭射光源162。基板161具有侧表面167和第一斜表面164a。导电层150形成在侧表面167和第一斜表面164a之上,经由第一光学路径的发光单元160的发射光为形成在第一斜表面164a之上的导电层150的反射光。
在撷取影像的方法的一些实施例中,影像感测模块142包括互补型金属氧化物半导体阵列、电荷耦合装置阵列和光电二极管阵列中的至少一者。
在撷取影像的方法的一些实施例中,侧表面167和第一斜表面164a之间的内夹角θ介于25度到75度。
在特定实施例中,内夹角θ对应的斜边长度可以不同,然而本揭露不限于此。在特定实施例中,内夹角对应的斜边长度可以相同,只要经由第一光学模块165的发光单元160的发射光为形成在第一斜表面164a之上的导电层150的反射光,都属本揭露的范畴。
本揭露内夹角通过影像撷取系统的第一光学模块为发光单元的发射光的配置提供设计弹性。举例来说,本揭露可以通过改变内夹角的大小(例如,通过调整斜边和垂直边的大小来调整倾斜角)来构成不同的光学结构,让影像撷取系统内的发光单元可实现相同的目标发射区域。
在撷取影像的方法的一些实施例中,影像撷取装置的影像撷取系统130的导电层150的材质包括金、银、铜、镍、钛和钨中的至少一者或上述元素的任意组合。
导电层形成在侧表面和第一斜表面之上,用以减少发光单元的发射光被反射时的吸收量。此外,电性连接导电层的镭射光源和耦接到镭射光源的影像撷取系统的电路可通过导电层的热传导能力来散热。
在撷取影像的方法的一些实施例中,产生活体检测信号的步骤包括从至少一依序的影像信号中,产生每一活体检测信号,其中每一依序的影像信号包括不同的影像信号。举例来说,每一活体检测信号可以是撷取血管特征和血流信号的综合结果,然而本揭露不限于此。每一活体检测信号可以是撷取视网膜特征、掌纹特征和指纹特征等的综合结果。
在撷取影像的方法的一些实施例中,该方法还包括产生特征辨识数据和匹配分数;以及判断匹配分数是否超过解锁门槛,用以验证用户或锁定影像撷取装置;在判断活体分数超过活体门槛时,进一步处理影像讯号。 本揭露通过数据处理模块180比较特征辨识数据和数据库的数据,产生匹配分数。本揭露通过数据处理模块180判断匹配分数是否超过解锁门槛。若是,则本揭露认证用户使用影像撷取装置;若否,则本揭露锁定影像撷取装置。
在撷取影像的方法的特定实施例中,产生特征辨识数据的步骤包括从至少一依序的影像信号中,产生特征辨识数据,其中每一依序的影像信号包括不同的影像信号。
在撷取影像的方法的一些实施例中,镭射光源162是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
本揭露使用边缘发射镭射光,提供需具备输出功率较高和同调长度较长的单一光源的设计弹性。发光单元的镭射光191可发射同调光172到目标179,使得检测器194可检测目标179的反射光177。
本揭露使用高输出功率的该边缘发射镭射单元,可提高活体和环境景物之间的对比,以改善活体检测和特征辨识的表现。图25A为根据本揭露实施例红外遮光材料缠绕在使用者手部的中指周围的特征的影像的示意图。图25B为根据本揭露实施例图25A的红外遮光材料缠绕在使用者手部的中指周围的特征的照片的示意图。图25C为根据本揭露实施例图25A的红外遮光材料缠绕在使用者手部的中指周围的活体信号的示意图。图26A为根据本揭露实施例用户脸部的特征的照片的示意图。图26B为根据本揭露实施例图26A的使用者脸部的活体信号的照片的示意图。图26C为根据本揭露实施例图26A的使用者脸部的表皮下特征的照片的示意图。请参考图25A到图26C,并参考图1A到图24,本揭露从至少一依序的影像信号的每一活体检测信号,产生活体检测数据,其中每一依序的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源162开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括预设数量的每一活体检测信号,可降低环境光的接收量并提升影像撷取系统130的信噪比。此外,本揭露从至少一依序的影像信号中,产生特征辨识数据,其中每一依序的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源162开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括默认数量的每一影像信号,可降低环境光的接收量并提升影像撷取系统130的信噪比。
边缘发射镭射光电性连接形成在侧表面167之上的导电层150,通过选择适当的内夹角,可降低影像撷取系统130的发光单元160的厚度。关于影像撷取装置的其他特征和原则,可参考上述实施例的相关描述,为求简洁,于此不再赘述。
生物识别技术使用人类个体独特的生物特征来验证个人的身份识别码。生物验证系统的优点包括了高度安全性和生物特征的不可遗失性。然而,生物验证易受到涉及诈骗的“图像攻击”,此类行为企图攻击生物验证或 辨识程序。
活体检测是一种用于检测生物识别诈骗的技术,用以判断生物样本是来自活生生的人类或是某种虚假的表现。对搜集的生物样本数据进行分析与演算,借此判断生物样本的来源是活体或仿制品,即可实现活体检测。
针对被动式活体检测,在不需和使用者进行互动的前提下,可通过算法来检测非实时影像的指标或特征。实验发现,在验证的过程中撷取高质量的生物数据,有助于改善特征匹配和活体检测的算法的表现。尽管如此,类似诈骗的“图像攻击”依旧是生物验证的挑战之一。
本揭露提供一种活体检测装置和相关验证方法。该活体检测装置包括发光单元、影像感测单元和数据处理模块。该发光单元的基板具有第一斜表面,发射光为该第一斜表面的反射光。本揭露通过应用程序触发验证流程,用以验证用户。该发光单元在特定周期内发出具有特定图案的光,以产生多个影像信号。本揭露产生用于判断活体的多个活体检测信号,其中该多个活体检测信号是从至少一依序的影像信号中,计算多个光干涉图案所产生。当该多个活体检测信号的活体分数达到活体门槛时,本揭露进一步产生用于匹配的特征辨识数据,其中该特征辨识数据是从至少一依序的影像信号中,计算多个光干涉图案所产生。接着,本揭露比较该特征辨识数据和先前注册数据,以锁定或解锁该活体检测装置及/或与其耦接的系统。
在一些实施例中,本揭露内夹角通过影像撷取系统的第一光学模块为发光单元的发射光的配置提供设计弹性。举例来说,本揭露可以通过改变内夹角的大小(例如,通过调整斜边和垂直边的大小来调整倾斜角)来构成不同的光学结构,让影像撷取系统内的发光单元可实现相同的目标发射区域。本揭露使用边缘发射镭射光,提供输出功率较高的单一光源和同调长度较长的设计弹性。本揭露使用高输出功率的边缘发射镭射光,可提高活体和环境景物之间的对比,以改善活体检测和特征辨识的表现。边缘发射镭射光电性连接形成在侧表面之上的导电层,通过选择适当的内夹角,可降低影像撷取系统的发光单元的厚度。活体检测数据是从至少一依序的影像信号中,产生每一活体检测信号而产生,其中每一依顺的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源的开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括预设数量的每一活体检测信号,可提升影像撷取系统的信噪比并降低环境光的接收量。此外,特征辨识数据是从至少一依序的影像信号中产生,其中每一依序的影像信号包括不同的影像信号;如此一来,本揭露通过调整镭射光源的开/关状态和时序,产生多张撷取影像的多个影像信号,进一步处理包括默认数量的每一影像信号,可降低环境光的接收量并提升影像撷取系统的信噪比。
并且在一些实施例中,导电层形成在侧表面和第一斜表面之上,用以减少发光单元的发射光被反射时的吸收量。此外,电性连接导电层的镭射 光源和耦接到镭射光源的影像撷取系统的电路可通过导电层的热传导能力来散热。导电层的材质包括金、银、铜、镍、钛和钨,借此提供该导电层的导电率和反射率的设计弹性。
虽然本揭示内容已以实施方式揭露如上,然其并非用以限定本揭示内容,本领域技术人员,在不脱离本揭示内容的精神和范围内,当可作各种更动与润饰,因此本揭示内容的保护范围当视后附的权利要求书所界定者为准。关于本文中使用的方向用语,例如:“上”、“下”、“高”、“低”、“水平”、“垂直”、“左”、“右”等,仅是参考附加附图的方向,并非用以限定绝对的结构关系、位置及/或指向。关于本文中使用的用语“第一”、“第二”、…等,并非特别指称次序或顺位的意思,也非用以限定本发明,其仅为了区别以相同技术用语描述的元件或操作。关于本文中使用的用语“包括”、“具有”等等,均为开放性的用语,即意指“包括但不限于”。除非上下文清楚指明,否则该用语并非特别指称或暗示次序或顺位,也非用以限定本揭示文件。关于本文中使用的用语“一”描述单一元件,然其并非用以限定“唯一仅有”,除非上下文清楚指明,否则该用语指称“一个或多个”。此外,本文中所使用的“及/或”,包括相关列举项目中一或多个项目的任意一个以及其所有组合。在本文中所使用的范围用词,例如“至少”、“大于”、“小于”、“不大于”…等用语,包括全部范围及/或部分范围的上限或下限。虽然本案已以实施方式揭露如上,然其并非限定本揭露,本领域技术人员,在不脱离本揭露的精神和范围内,当可作各种的更动与润饰,因此本揭露的保护范围当视后附的权利要求书所界定者为准。
考虑到可以应用所公开的原理的许多可能的实施例,本揭露保留要求保护本文描述的特征和操作的任何和所有组合的权利,包括要求保护属于上述范围和精神内的所有权利的权利,在权利要求书以及在本申请的整个起诉期间或要求本申请的利益或优先权的任何申请中,随时提出的任何权利要求以及在所附权利要求和任何权利要求中描述的描述以及在字面上和等效地叙述的组合。
【符号说明】
130:影像撷取系统
140:影像感测单元
142:影像感测模块
145:第二光学模块
149:感测模块线路
150,250,350,550,650:导电层
160:发光单元
161,261,361,561,661:基板
162,262,362,562,662:镭射光源
163:壳体
164a,264a,364a,564a,664a:第一斜表面
164b,364b:第二斜表面
165:第一光学模块
166:边缘表面
167,267,367,567,667:侧表面
168:镭射单元
169:镭射单元线路
172,174,176:发射同调光
179,189:目标
180:数据处理模块
181:表皮下特征
190:主板
191,193,195:镭射发光单元
194:连接器
196:焊接凸块
700、800:影像撷取装置
730、830:成像模块
θ:内夹角
A-A:线段。

Claims (20)

  1. 一种影像撷取系统,其特征在于,包括:
    主板;
    发光单元,电性连接该主板,具有镭射单元和第一光学模块,该镭射单元用以发射具有输出功率超过二十毫瓦的发射光,该第一光学模块用以传输该发光单元的该发射光;
    影像感测单元,电性连接靠近该发光单元的该主板,具有第二光学模块和影像感测模块,该第二光学模块用以撷取通过的影像,该影像感测模块用以产生该多张撷取影像的多个影像信号;以及
    数据处理模块,电性连接靠近该光源和该影像感测单元的该主板,用以产生该多张撷取影像的该多个影像信号的多个活体检测信号;
    其中该镭射单元包括:
    基板,具有侧表面和第一斜表面;
    导电层,形成在该侧表面和该第一斜表面之上;以及
    镭射光源,该镭射光源电性连接形成在该侧表面之上的该导电层,且经由该第一光学模块的该发光单元的该发射光为形成在该第一斜表面之上的该导电层的反射光。
  2. 如权利要求1所述的影像撷取系统,其中该侧表面和该第一斜表面之间的内夹角介于25度到75度。
  3. 如权利要求1所述的影像撷取系统,其中该数据处理模块用以从至少一依序的影像信号中,产生该多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
  4. 如权利要求1所述的影像撷取系统,其中该数据处理模块还用以产生该多张撷取影像的该多个影像信号的特征辨识数据。
  5. 如权利要求4所述的影像撷取系统,其中该数据处理模块还用以从至少一依序的影像信号中,产生该特征辨识数据,其中每一依序的影像信号包括不同的影像信号。
  6. 如权利要求1所述的影像撷取系统,其中该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
  7. 如权利要求1所述的影像撷取系统,其中该影像感测模块包括互补型金属氧化物半导体阵列、电荷耦合装置阵列或光电二极管阵列中的至少一者。
  8. 一种影像撷取装置,其特征在于,包括:
    影像撷取系统,包括:
    主板;
    发光单元,电性连接该主板,具有镭射单元和第一光学模块,该镭射 单元用以发射具有输出功率超过二十毫瓦的发射光,该第一光学模块用以传输该发光单元的该发射光;
    影像感测单元,电性连接靠近该发光单元的该主板,具有第二光学模块和影像感测模块,该第二光学模块用以撷取通过的影像,该影像感测模块用以产生该多张撷取影像的多个影像信号;以及
    数据处理模块,电性连接靠近该光源和该影像感测单元的该主板,用以产生该多张撷取影像的该多个影像信号的多个活体检测信号;
    其中该镭射单元包括:
    基板,具有侧表面和第一斜表面;
    导电层,形成在该侧表面和该第一斜表面之上;以及
    镭射光源,该镭射光源以电性连接形成在该侧表面之上的该导电层,且经由该第一光学模块的该发光单元的该发射光为形成在该第一斜表面之上的该导电层的反射光;以及
    显示装置,耦接于该影像撷取系统,用以显示该影像感测单元的该多张撷取影像。
  9. 如权利要求8所述的影像撷取装置,其中该侧表面和该第一斜表面之间的内夹角介于25度到75度。
  10. 如权利要求8所述的影像撷取装置,其中该数据处理模块用以从至少一依序的影像信号中,产生该多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
  11. 如权利要求8所述的影像撷取装置,其中该数据处理模块还用以产生该多张撷取影像的该多个影像信号的特征辨识数据。
  12. 如权利要求11所述的影像撷取装置,其中该数据处理模块还用以从至少一依序的影像信号中,产生该特征辨识数据,其中每一依序影像信号包括不同的影像信号。
  13. 如权利要求8所述的影像撷取装置,其中该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
  14. 如权利要求8所述的影像撷取装置,其中该影像感测模块包括互补型金属氧化物半导体阵列、电荷耦合装置阵列或光电二极管阵列中的至少一者。
  15. 一种撷取影像的方法,用于影像撷取装置,其特征在于,包括:
    通过发光单元将具有输出功率超过二十毫瓦的发射光经由第一光学路径发射至目标;
    通过影像感测单元撷取多个影像并经由第二光学路径传输该多个影像至影像感测模块;
    通过该影像撷取装置指示该影像感测单元已产生该多个撷取影像;通过该影像感测单元的该影像感测模块产生该多个撷取影像的多个影像信号;
    通过数据处理模块处理该多个撷取影像的该多个影像信号,以产生多个活体检测信号;
    通过该数据处理模块处理该多个活体检测信号,以产生活体检测数据;
    通过该数据处理模块比较该活体检测数据和数据库的数据,以产生活体分数;以及
    通过该数据处理模块判断该活体分数是否超过活体门槛;若是,则认证用户使用该影像撷取装置或进一步处理该多个影像信号;若否,则锁定该影像撷取装置;
    其中该发光单元的镭射单元用以发射具有输出功率超过二十毫瓦的发射光,并经由该第一光学路径用以传输该发光单元的该发射光至该目标,且该影像感测单元的该影像感测模块用以产生该多个撷取影像的多个影像信号;
    其中该镭射单元包括:
    基板,具有侧表面和第一斜表面;
    导电层,形成在该侧面和该第一斜表面之上;以及
    镭射光源,经由该第一光学路径发射至该目标的发射光为形成在该第一斜表面之上的该导电层的反射光。
  16. 如权利要求15所述的撷取影像的方法,其中该侧表面和该第一斜表面之间的内夹角介于25度到75度。
  17. 如权利要求15所述的撷取影像的方法,其中,产生多个活体检测信号包括:
    通过至少一依序的影像信号产生该多个活体检测信号,其中每一依序的影像信号包括不同的影像信号。
  18. 如权利要求15所述的撷取影像的方法,其中,当判断该活体分数超过该活体门槛时,进一步处理该多个影像信号的步骤还包括:
    通过该数据处理模块产生特征辨识数据:
    通过该数据处理模块比较该特征辨识数据和该数据库的数据,产生匹配分数;
    通过该数据处理模块比较该匹配分数和该影像撷取装置的解锁门槛;以及
    通过该数据处理模块判断该匹配分数是否超过该解锁门槛;若是,则认证该用户使用该影像撷取装置或进一步处理该多个影像信号;若否,锁定该影像撷取装置;
    其中该特征辨识数据是从至少一依序的影像信号中产生,每一依序影像信号包括不同的影像信号。
  19. 如权利要求15所述的撷取影像的方法,其中该镭射单元是边缘发射镭射单元,该边缘发射镭射单元的同调长度小于三十公分。
  20. 如权利要求15所述的撷取影像的方法,其中该影像感测模块包括互 补型金属氧化物半导体阵列、电荷耦合装置阵列或光电二极管阵列中的至少一者。
PCT/CN2021/070717 2020-01-09 2021-01-07 活体检测模块、装置、系统和方法 WO2021139735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180008836.4A CN114945956A (zh) 2020-01-09 2021-01-07 活体检测模块、装置、系统和方法
EP21738885.9A EP4113369A4 (en) 2020-01-09 2021-01-07 MODULE, APPARATUS, SYSTEM AND METHOD FOR LIFE SIGNS DETECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062959128P 2020-01-09 2020-01-09
US62/959,128 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021139735A1 true WO2021139735A1 (zh) 2021-07-15

Family

ID=76763665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070717 WO2021139735A1 (zh) 2020-01-09 2021-01-07 活体检测模块、装置、系统和方法

Country Status (5)

Country Link
US (1) US11468712B2 (zh)
EP (1) EP4113369A4 (zh)
CN (1) CN114945956A (zh)
TW (1) TW202127309A (zh)
WO (1) WO2021139735A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915543A (zh) * 2013-01-08 2014-07-09 Lg伊诺特有限公司 发光器件封装
CN107958178A (zh) * 2017-04-22 2018-04-24 深圳信炜科技有限公司 光电传感模组及其制备方法、电子装置
CN108596061A (zh) * 2018-04-12 2018-09-28 Oppo广东移动通信有限公司 人脸识别方法、装置及移动终端、存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795569B1 (en) 1999-05-11 2004-09-21 Authentec, Inc. Fingerprint image compositing method and associated apparatus
US7460696B2 (en) * 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
JP5451540B2 (ja) 2009-10-16 2014-03-26 日立オムロンターミナルソリューションズ株式会社 生体認証装置および生体認証方法
US9639765B2 (en) 2014-09-05 2017-05-02 Qualcomm Incorporated Multi-stage liveness determination
CN106236060B (zh) 2015-06-04 2021-04-09 松下知识产权经营株式会社 生物体信息检测装置
CN105637532B (zh) * 2015-06-08 2020-08-14 北京旷视科技有限公司 活体检测方法、活体检测系统以及计算机程序产品
US10679081B2 (en) * 2015-07-29 2020-06-09 Industrial Technology Research Institute Biometric device and wearable carrier
US9971948B1 (en) 2015-11-12 2018-05-15 Apple Inc. Vein imaging using detection of pulsed radiation
RU2627926C1 (ru) 2016-07-18 2017-08-14 Самсунг Электроникс Ко., Лтд. Оптическая система для биометрической идентификации пользователя
JP7241063B2 (ja) * 2017-08-22 2023-03-16 ルミレッズ ホールディング ベーフェー 生体認証のためのレーザスペックル分析
US10719692B2 (en) 2017-09-09 2020-07-21 Apple Inc. Vein matching for difficult biometric authentication cases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915543A (zh) * 2013-01-08 2014-07-09 Lg伊诺特有限公司 发光器件封装
CN107958178A (zh) * 2017-04-22 2018-04-24 深圳信炜科技有限公司 光电传感模组及其制备方法、电子装置
CN108596061A (zh) * 2018-04-12 2018-09-28 Oppo广东移动通信有限公司 人脸识别方法、装置及移动终端、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113369A4 *

Also Published As

Publication number Publication date
US20210216800A1 (en) 2021-07-15
US11468712B2 (en) 2022-10-11
EP4113369A4 (en) 2024-05-29
TW202127309A (zh) 2021-07-16
CN114945956A (zh) 2022-08-26
EP4113369A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US11460885B2 (en) Eyewear device with fingerprint sensor for user input
US11100204B2 (en) Methods and devices for granting increasing operational access with increasing authentication factors
US11513205B2 (en) System and method associated with user authentication based on an acoustic-based echo-signature
TWI536272B (zh) 生物辨識裝置及方法
US10657363B2 (en) Method and devices for authenticating a user by image, depth, and thermal detection
KR101923335B1 (ko) 지문 위조 방지 광 감지를 갖는 다기능 지문 센서
US9690480B2 (en) Controlled access to functionality of a wireless device
US9491171B2 (en) System and method for vascular mapping authentication
JP5292821B2 (ja) 静脈画像取得装置および静脈画像取得方法
US20200026831A1 (en) Electronic Device and Corresponding Methods for Selecting Initiation of a User Authentication Process
EP3189473A1 (en) Swipe motion registration on a fingerprint sensor
US20190156003A1 (en) Methods and Systems for Launching Additional Authenticators in an Electronic Device
JP2009032227A (ja) 指静脈認証装置および情報処理装置
JP2022540733A (ja) クロミナンスベースの顔ライブネス検出のための方法およびシステム
WO2021139735A1 (zh) 活体检测模块、装置、系统和方法
KR101547659B1 (ko) 손가락 정맥 스캐닝을 이용하는 생체 인증 장치 및 이를 구비한 단말기
JP2009087263A (ja) 指静脈認証装置および情報処理装置
JP6846330B2 (ja) 生体認証装置および生体認証システム
KR101962401B1 (ko) 지정맥·지문으로 이루어진 하이브리드형 하드웨어 인증장치
CN110753925A (zh) 登记指纹的方法
CN112154443B (zh) 光路折叠的光学指纹感应器
CN111699678B (zh) 使用面部id感测的安全检查系统和安全检查方法
KR102468133B1 (ko) 발 정맥 인증 장치
KR20220037473A (ko) 촬영 장치 및 인증 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738885

Country of ref document: EP

Effective date: 20220809