WO2021139457A1 - 接合手术器械和驱动装置的方法、接合装置及手术机器人 - Google Patents

接合手术器械和驱动装置的方法、接合装置及手术机器人 Download PDF

Info

Publication number
WO2021139457A1
WO2021139457A1 PCT/CN2020/133499 CN2020133499W WO2021139457A1 WO 2021139457 A1 WO2021139457 A1 WO 2021139457A1 CN 2020133499 W CN2020133499 W CN 2020133499W WO 2021139457 A1 WO2021139457 A1 WO 2021139457A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical instrument
coupling
coupling part
joining
driving
Prior art date
Application number
PCT/CN2020/133499
Other languages
English (en)
French (fr)
Inventor
王建辰
王雪生
Original Assignee
深圳市精锋医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010013754.6A external-priority patent/CN111012412A/zh
Priority claimed from CN202010014069.5A external-priority patent/CN111134740B/zh
Application filed by 深圳市精锋医疗科技有限公司 filed Critical 深圳市精锋医疗科技有限公司
Publication of WO2021139457A1 publication Critical patent/WO2021139457A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to the field of medical equipment, in particular to a method for joining a surgical instrument with a driving device, a joining device, and a surgical robot provided with the device.
  • Minimally invasive surgery refers to the use of laparoscopy, thoracoscopy and other modern medical equipment and related equipment to perform surgery inside the body cavity. Compared with traditional surgical methods, minimally invasive surgery has the advantages of less trauma, less pain, and faster recovery.
  • Minimally invasive surgical robots usually include a master operating table and a slave operating device.
  • the master operating table is used to send control commands to the slave operating device according to the doctor's operation to control the slave operating device, and the slave operating device is used to respond to the control command sent by the master operating console. , And carry out the corresponding surgical operation.
  • Surgical instruments are connected to the driving device of the slave operating equipment for performing surgical operations. Therefore, the surgical instruments need to be sterilized, and the slave operating equipment has bacteria. Therefore, a joint device is required to perform the operation between the slave operating equipment and the surgical instrument. Isolation, so as not to cause pollution to the surgical instruments, but there is still no good solution for how to automatically connect the joint device with the driving device and the surgical instrument.
  • the present invention provides a method for automatically joining a surgical instrument and a driving device.
  • a method for coupling a surgical instrument with a driving device wherein the surgical instrument and a driving device are coupled by a coupling device, and the method includes: after the coupling device is connected with the driving device, the driving device performs The first traversal movement of the joining device;
  • the driving device drives the joining device to perform a second traversal movement of the surgical instrument.
  • the movement modes of the first ergodic movement and the second ergodic movement are different.
  • the driving device is in the initial position after the execution of the first traversal motion or the second traversal motion is completed.
  • the driving device includes a plurality of driving couplings, and the first traversal motion is that the plurality of driving couplings rotate a certain angle in a first direction to the initial position.
  • the driving device includes a plurality of driving couplings
  • the first traversal motion is that the plurality of driving couplings are rotated by a certain angle in a first direction from the initial position, and then move along with the first direction. Return to the initial position after rotating the same angle in the opposite second direction.
  • the driving device includes a plurality of driving couplings
  • the movement mode of the first traversal movement is that the plurality of driving couplings are rotated by a first angle in a first direction from the initial position and then moved along with the first angle.
  • Rotate a first angle in an opposite second direction to return to the initial position then continue to rotate in the second direction by a second angle, and then rotate in the first direction by a second angle, and then return to the initial position.
  • the sum of the first angle and the second angle is greater than or equal to 360 degrees.
  • the engagement device includes a plurality of splicing discs
  • the surgical instrument includes a plurality of instrument adapters
  • the plurality of splicing discs are used to engage the plurality of drive adapters and the plurality of instrument adapters
  • the movement mode of the second traversal movement is that the plurality of driving adapters drive the plurality of splicing plates to traverse the plurality of instrument adapters, wherein the second traversal motion of the at least one driving adapter is different from The second traversal movement of the other drive coupling.
  • the at least one drive adapter is used to drive the surgical instrument to rotate, wherein the second traversal movement of the drive adapter for driving the surgical instrument to rotate is different from the first traversal movement of the other drive adapters. 2. Traverse movement.
  • the second traversal movement of at least one of the drive adapters other than the drive adapter for driving the surgical instrument to rotate is that the at least one drive adapter moves from the initial position Start by rotating a third angle in the first direction, and then rotate a third angle in a second direction opposite to the first direction to return to the initial position, then rotate a fourth angle in the second direction, and then move along the first direction. Rotate the direction by a fourth angle and then return to the initial position.
  • the present invention automatically determines whether the joining device and the surgical instrument are correctly connected to the driving device, and then the driving device automatically executes the first traversal movement and the second traversal movement to automatically complete the joining and alignment of the surgical instrument and the driving device, so that the jointed The surgical instrument is correctly returned to the initial position.
  • Fig. 1 is a schematic structural diagram of an embodiment of a surgical robot of the present invention
  • Figure 2 is a schematic diagram of the surgical instrument in Figure 1;
  • FIGS 3 and 4 are partial schematic views of different embodiments of the distal end of the surgical instrument of the present invention.
  • Fig. 5 is a schematic diagram of a joint part of a surgical instrument according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a joint part of a driving device according to an embodiment of the present invention.
  • FIG. 7A and 7B are schematic diagrams of a joining device according to an embodiment of the present invention.
  • Figure 8 is an exploded view of a joining device according to an embodiment of the present invention.
  • Figure 9 is an exploded view of a splice tray according to an embodiment of the present invention.
  • Figure 10 is a cross-sectional view of a joining device according to another embodiment of the present invention.
  • Figure 11 is a cross-sectional view of an elastic member according to another embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a joining device according to another embodiment of the present invention.
  • Figure 13 is a bottom view of a lower splice tray according to an embodiment of the present invention.
  • Fig. 14 is a cross-sectional view of the lower splice tray B-B of Fig. 13 of the present invention.
  • Figure 15 is a top view of an upper splice tray according to an embodiment of the present invention.
  • 16 is a schematic diagram of a drive disk of a drive device according to an embodiment of the present invention.
  • FIG. 17 is a flowchart of a joining method according to an embodiment of the present invention.
  • 18A-18C are schematic diagrams of the joining process of the drive adaptor and the joining plate according to an embodiment of the present invention.
  • Fig. 18D is a partial enlarged view of P in Fig. 18C;
  • 19A-19C are schematic diagrams of the joining process of the splice plate and the instrument adaptor according to an embodiment of the present invention.
  • 20 and 21 are schematic diagrams of an infinite rotation preventing structure according to an embodiment of the present invention.
  • Figure 22 is a cross-sectional view of a surgical instrument, a coupling device, and a driving device in an embodiment of the present invention that are fully coupled;
  • Fig. 23 is a cross-sectional plan view at C-C in Fig. 22.
  • distal and proximal used in this article are locators, which are commonly used terms in the field of interventional medical devices, where “distal” refers to the end far away from the operator during surgery, and “proximal” refers to surgery The end close to the operator during the process.
  • "fully coupled” can be broadly understood as in which two or more objects are connected to any event in one way, which allows absolutely coupled objects to operate together with each other, so that the objects are at least between There is no relative movement in one direction, such as the coupling between the protrusion and the groove, and the two can move relative to each other in the radial direction but not in the axial direction.
  • the terms “coupled”, “joined”, and “coupled” can be used interchangeably.
  • the surgical robot includes a master operating table 1 and a slave operating device 2.
  • the master console 1 is used to send control commands to the slave operation device 2 according to the doctor's operation to control the slave operation device 2, and it is also used to display the image obtained by the slave device 2.
  • the slave operating device 2 is used to respond to the control commands sent by the master console 1 and perform corresponding operations, and the slave operating device 2 is also used to obtain images in the body.
  • the slave operating device 2 includes a mechanical arm 21, a power mechanism 22 provided on the mechanical arm 21, a surgical instrument 100 provided on the power mechanism 22, and a sleeve 24 covering the long shaft 100 of the surgical instrument 100.
  • the mechanical arm 21 is used to adjust the position of the surgical instrument 100; the power mechanism 22 is used to drive the surgical instrument 100 to perform corresponding operations, and the end effector 111 of the surgical instrument 100 is used to extend into the body and perform surgery through its distal end instrument Manipulate, and/or acquire in-vivo images.
  • the long shaft 110 of the surgical instrument 100 passes through the sleeve 23, and the end effector 111 extends out of the sleeve 23 and is driven by the power mechanism 22 to perform operations.
  • the area where the long axis 110 of the surgical instrument 100 is located in the sleeve 23 is a rigid area; in FIG. 4, the area where the long axis 110 of the surgical instrument 100 is located in the sleeve 23 is a flexible area, and the sleeve is bent with the flexible area .
  • the sleeve 24 can also be omitted.
  • the robot arm 21 and the power mechanism 22 of the operating device 2 are bacteria, and the surgical instrument 100 needs to be Sterile, a sterile joint device is provided between the bacteria-containing power mechanism 120 and the sterile surgical instrument 100 to isolate the bacteria-containing power mechanism 120 and the sterile surgical instrument 100.
  • the power of the power mechanism 120 passes from the power mechanism 120 to the surgical instrument 100 through the aseptic joint device to drive the surgical instrument to work, but due to assembly reasons, the power output shaft of the power mechanism and the surgical instrument accept the power driven mechanism It is inevitable that the axis of the surgical instrument 100 will be different from the axis. At this time, the axis of the driven mechanism of the surgical instrument 100 will make an eccentric rotation under the drive of the power mechanism 120. This eccentric motion brings about the surgical instrument 100 and the power mechanism 120. Larger wear and tear, and very loud noises are generated during the operation of the surgical robot. Therefore, a more reasonable design of the aseptic joining device is also needed to make the joining device eliminate the undesired eccentric movement mentioned above.
  • one or more driving devices 300 are arranged in the power mechanism 22, the driving device 300 is bacteria-infected, and the driving device 300 drives the surgical instrument 100 to perform a corresponding surgical operation.
  • the surgical operation includes controlling the long axis
  • the distal end of 110 performs yaw, rotation, pitch and other operations, and also includes corresponding operations on the end effector 111.
  • the end device 111 can be a surgical forceps, a cautery device, a cutting device, an imaging device, etc., according to the surgical instrument Different from the end effector 111, the driving device 300 drives the end effector 111 to perform related operations.
  • An aseptic joining device 200 is arranged between the driving device 300 and the surgical instrument 100.
  • the surgical instrument 100 further includes six instrument adapters 120A-120F.
  • the number of instrument drivers may be other numbers, such as four.
  • the instrument adapters 120A-120F are arranged in the housing 130, and the proximal ends of the instrument adapters 120A-120F are connected to the instrument driving part 150.
  • the instrument driving part 150 also includes a plurality of driving wheels (Not shown in the figure), the instrument adaptors 120A-120F receive the controlled driving force from the driving device 300 to drive the drive wheels through the drive wire to control the movement of the long shaft 110 and the end effector 111, each instrument adaptor 120A- 120F is independent of the movement of other instrument adapters.
  • the distal ends of the instrument adaptors 120A-120F have the same structure. Take the instrument adaptor 120A that drives the long shaft 110 to rotate as an example to illustrate the structure of the instrument adaptors 120A-120F.
  • the top surface 122 of the instrument adaptor disc of the instrument adaptor 120A There is an instrument coupling portion 121 for coupling with the coupling device 200, and the device coupling portion 121 has a first device coupling portion 121A and a second device coupling portion 121B that are fully coupled with the coupling device 200.
  • the device coupling portion is only one of the first device coupling portion 121A and the second device coupling portion 121B.
  • the number can also be other numbers, such as four.
  • the surgical instrument 100 has a first signal receiving and transmitting part 140.
  • the first signal receiving and transmitting part 140 is used to transmit a signal to the controller 330 provided in the power device 22.
  • the signal includes a signal for verifying the authenticity of the surgical instrument 100 and determining the authenticity of the surgical instrument.
  • the controller can also be arranged on the side of the main operating station 1, or other locations from the operating device 2, for example, on the base of the operating device.
  • the driving device 300 includes six driving couplings 320A-320F, a plurality of driving couplings 320A-320F are installed in the driving housing 310, each driving coupling 320A-320F are controlled by the controller 330 to move independently.
  • Each driver independently controls and drives the surgical instrument 100.
  • each drive adapter controls the rotation, yaw, pitch, and opening and closing of the surgical instrument 100.
  • the number of drivers is also other. The number, for example, four.
  • the proximal end of the drive adapter 320A-320F and the engaging device 200 have the same structure.
  • the drive adapter 320A that controls the rotation of the long shaft 110 is taken as an example to illustrate the distal structure of the drive adapter 320A-320F.
  • the driver 320A has the same structure as the engaging device. 200 engages the drive coupling part 321, the drive coupling part 321 has a first drive coupling part 321A and a second drive coupling part 321B that are fully coupled with the coupling device.
  • the number of drive coupling parts may be other numbers. , For example, 4.
  • a third signal receiving and transmitting part 340 is provided on the driving device 300, and the third signal receiving and sending part 340 is used to receive the signal transmitted from the first signal receiving and transmitting part 140 of the surgical instrument 100, and transmit the first signal receiving and sending part 140 to it.
  • the signal of is output to the controller 330, or the signal transmitted from the controller 330 is transmitted to the first signal receiving and transmitting part 140, so as to control the surgical instrument 100.
  • FIGS 7 to 9 show the structure of the joining device 200.
  • the joining device 200 has a housing 210.
  • the housing 210 includes a first housing 211 at the distal end of the joining device and a second housing 212 at the proximal end of the joining device.
  • the housing 211 has a plurality of first cavities 231, and the second housing has a plurality of second cavities 232 corresponding to the cavities 231.
  • the first cavities 231 and the second cavities 232 cooperate to form a plurality of accommodating cavities.
  • Cavity a plurality of accommodating cavities are used for accommodating the splice plates 220A-220F
  • the first cavity 231 has a first edge portion 2311 for restricting the splice plates 220A-220F from moving toward the distal end in the axial direction
  • the second cavity 232 has a The second edge 2312 restricts the movement of the engaging discs 220A-220F toward the proximal end in the axial direction.
  • the housing 210 of the joining device 200 has a second signal receiving and transmitting portion 240, and the second signal receiving and transmitting portion 240 is respectively connected with the first signal receiving and transmitting portion 140 on the surgical instrument 100 and the third signal receiving and transmitting portion 340 on the driving device.
  • the electrical connection is used to electrically connect the first signal receiving and transmitting portion 140 and the third signal receiving and transmitting portion 340 for signal transmission between the two.
  • the second signal receiving and transmitting portion 240 can also be independently connected to the third signal receiving and transmitting portion 340.
  • the three-signal receiving and sending unit 340 transmits a signal, which can be a determination signal to determine whether the joining device is properly connected to the driving device 300, or other signals, such as determining whether the joining device 200 is completely connected to the driving device 300 or the surgical instrument 100 Determining signal for engagement.
  • a signal which can be a determination signal to determine whether the joining device is properly connected to the driving device 300, or other signals, such as determining whether the joining device 200 is completely connected to the driving device 300 or the surgical instrument 100 Determining signal for engagement.
  • the splice tray 220A is taken as an example to illustrate the structure of the splice tray.
  • the splice tray 220A has an upper splice tray 2210 and a lower splice tray 2230 that have basically the same structure.
  • the upper splice tray 2210 and the lower splice tray 2230 are connected by an elastic member 2220. Under the action of the elastic member 2220 , The upper splice plate 2210 and the lower splice plate 2230 can move independently of each other in the axial direction.
  • the upper splice tray 2210 has a first contact surface 2211.
  • the first contact surface 2211 is used for the coupling device 200 to interfere with the instrument joint 121 of the surgical instrument 100 during the process of joining the surgical instrument 100.
  • the first contact surface 2211 is provided with
  • the first coupling part 223 is coupled with the instrument joint 121.
  • the lower splice tray 2230 has a second contact surface 2235, and the second contact surface 2235 is used for the coupling device 200 to interfere with the driving coupling portion 321 of the driving device 300 during the coupling process with the driving device 300, and the second contact surface 2235
  • a second coupling portion 222 for engaging with the driving coupling portion 321 is provided thereon.
  • the upper and lower splice plates 2210, 2230 both have a fan-shaped first protrusion 225 and a second protrusion 226.
  • a fan-shaped recess 229 is formed between the first protrusion 225 and the second protrusion 226.
  • the upper splice plate 2210 The first protrusion 225 and the second protrusion 226 can be received in the recess 229 of the lower splice plate. Accordingly, the first protrusion 225 and the second protrusion 226 of the lower splice plate can be received in the recess of the upper splice plate.
  • both the upper and lower engagement plates 2210 and 2230 have mounting holes 227 for mounting springs.
  • the center line A of the first coupling part 223 and the center line B of the second coupling part 222 are perpendicular to each other, and the center line A passes through the center of the first coupling part 223 and the upper splice plate
  • the center of the circle 2210, the center line B passes through the center of the second coupling portion 222 and the center of the lower bonding plate 2230.
  • the first bump 225, the second bump 226, and the concave portion 229 are not limited to fan shapes. In other embodiments, the first bump 225, the second bump 226, and the concave portion 229 may have other shapes, such as a first convex.
  • the block 225 and the second bump 226 are rectangular bumps, and the recess 229 is I-shaped.
  • the first protrusion 225 of the upper splice plate 2210 is provided with the first coupling part 223A of the first coupling part 223, and the second protrusion 226 of the upper splice plate 2210 is provided with the second coupling part 223B of the first coupling part 223.
  • the first coupling part 223A is used to couple with the first instrument coupling part 121A during the joining process of the joining device 200 and the surgical instrument 100
  • the second coupling part 223B is used to couple with the second instrument coupling part 121A during the joining process of the joining device 200 and the surgical instrument 100.
  • the instrument coupling part 121B is coupled.
  • first coupling part 223A and the second coupling part 223B are not limited to being provided in the first bump 225 and the second bump 226. In other embodiments, the first coupling part 223A and the second coupling part 223B It can also be provided in the recess 229.
  • the distance from the outer side of the first coupling member 223A to the center of the upper splice plate 2210 is greater than the distance from the outer side of the second coupling member 223B to the center of the upper splice plate 2210.
  • the distance from the outer side of the first instrument coupling part 121A of the instrument coupling part 121 to the center of the instrument adaptor 120A is greater than that of the second instrument coupling part 121B.
  • the distance from the outer side to the center of the instrument adaptor 120A, and the outer side refers to the side away from the center in the radial direction.
  • the distance from the inner side of the first coupling member 223A to the center of the upper splice plate 2210 is smaller than the distance from the outer side of the second coupling member 223B to the center of the upper splice plate 2210.
  • the distance from the inner side of the first instrument coupling part 121A of the instrument coupling part 121 to the center of the instrument adaptor 120A is smaller than that of the second instrument coupling part 121B.
  • the distance from the inner side to the center of the instrument adaptor 120A, and the inner side refers to the side close to the center in the radial direction.
  • the shapes of the first coupling part 223A and the second coupling part 223B are different. As shown in FIG. 9, the shapes of the first coupling part 223A and the second coupling part 223B are different. It is a groove structure, that is, the first coupling member 223A separates the first protrusion 225 of the upper splice tray 2210 into two pieces, namely, the right protrusion 225A and the left protrusion 225B. The outer side of the second coupling member 223B does not penetrate the second protrusion 226 of the upper bonding plate 2210.
  • the distance from the outside of the first coupling part 223A to the center of the upper splice plate 2210 is also greater than that from the outside of the second coupling part 223B to the center of the upper splice plate 2210 distance.
  • the distance from the outer side of the part 121B to the center of the instrument adaptor 120A does not require the shape of the first instrument coupling part 121A and the second instrument coupling part 121B to be set differently.
  • the shapes of the first instrument coupling part 121A and the second instrument coupling part 121B are not limited to those shown in FIG. 9.
  • the first instrument coupling part 121A and the second instrument coupling part 121B do not have any similarity, for example
  • the first instrument coupling part 121A is a cylinder, and the second instrument coupling part 121B is a cuboid.
  • the first protrusion 225 and the second protrusion 226 are provided with anti-corrosion devices, respectively.
  • Mis-installation settings 228A and 228B the first splice tray’s anti-error-installation setting 228B is matched with the corresponding second splice tray’s anti-error-installation setting 228A, and the second splice tray’s anti-error-installation setting 228A is matched with the corresponding second splice tray.
  • Mistake-proof installation is equipped with 228B to cooperate.
  • the first splice disc 2210 and the second splice disc 2230 can only move independently of each other in the axial direction, and cannot move independently of each other in the radial direction.
  • the splice plate 420 is in the shape of an "I"
  • the upper splice plate 4210 of the splice plate 420 is fixedly connected to the lower splice plate 4230
  • the upper splice plate 4210 is preferably connected to the lower plate.
  • the disc 4230 is integrally formed as a piece
  • the elastic member 4220 is fixed on the housing 410.
  • the elastic member 4220 includes an upper elastic portion 4221 facing the proximal end and a lower elastic portion 4222 facing the distal end.
  • the housing 410 includes a first housing 411 and a second housing 412.
  • the splice plate 420 is installed in the cavity formed by the first housing 411 and the second housing 412.
  • the first housing 411 has a restricted joint
  • the first edge portion 4311 of the disk 4230 moves toward the distal end
  • the second housing 412 has a second edge portion 4312 that restricts the upper engagement disk 4210 from moving toward the proximal end.
  • the first housing 411 and the second housing 412 further include a first inner ring 4111 and a second inner ring 4121 respectively, and the elastic member 4220 is installed on the first inner ring 4111 and the second inner ring 4121.
  • the lower elastic portion 4222 is compressed, so that the lower elastic part 4222 provides elastic force that can move the splice plate 420 toward the distal end of the joining device.
  • the upper elastic portion 4221 is compressed, so that the upper elastic portion 4221 can provide elastic force for moving the splicing disc toward the proximal end of the coupling device.
  • the elastic member 4220 includes a housing 4225.
  • the base 4223 of the upper elastic portion 4221 and the base 4224 of the lower elastic member 4222 are installed in the housing 4225.
  • the spring 4222 is installed on the base 4223 and the lower elastic member of the upper elastic portion 4221. 4222 between the base 4224.
  • the first inner ring 4111 and the second inner ring 4121 are respectively incomplete inner rings.
  • the elastic member 4220 is There are multiple, the first elastic member 4220A is fixed on the first inner ring 4111, and the second elastic member 4222B is fixedly installed on the second inner ring 4112.
  • the first inner ring 4111 and the second inner ring 4112 may also be just a protruding mounting seat for mounting the elastic member 4220.
  • Fig. 11 is a cross-sectional view of the lower splice tray 2230 along the BB plane.
  • the second coupling member 222B has the same cross-section as the third coupling member 222A in a plane parallel to the BB plane.
  • the three coupling part 222A is illustrated as an example.
  • the third coupling part 222A has a first guide arc surface 2231 and a second guide arc surface 2232 for guiding the first drive coupling part 321A to enter on both sides of the entrance.
  • the distal end of the first guide arc surface 2231 transitions smoothly to the first inclined surface 2233
  • the distal end of the second guiding surface 2232 smoothly transitions to the second inclined surface 2234
  • the angle between the first inclined surface 2233 and the adjacent side surface is ⁇ 1
  • the angle between the second inclined surface 2234 and the adjacent side surface is ⁇ 2
  • ⁇ 1 is equal to ⁇ 2, but in other embodiments, ⁇ 1 may not be equal to ⁇ 2.
  • the lower engagement plate 2230 and the drive adapter The 320A cannot move relative to one another in the axial direction, but can move relative to one another in the radial direction.
  • the first inclined surface 2233 and the second inclined surface 2234 may also be set to other shapes, such as arc shapes, which only need to satisfy the requirement that the third coupling part 222A and the first driving coupling part 321A can be completely connected.
  • the coupling conditions will be described in detail in the process of the driving device 300 and the process of coupling the surgical instrument 100 and the coupling device 200 described below.
  • the second contact surface 2211 of the lower splice tray 2210 has a first coupling part 223A that is coupled to the first instrument coupling part 121A of the instrument splice tray 120A of the operation 100, and is connected to the second instrument coupling part 121B.
  • the coupled second coupling part 223B Because the upper splice tray 2210 has basically the same structure as the lower splice tray 2230, the specific structure of the upper splice tray 2210 will not be repeated, and the structure of the lower splice tray 2230 can be referred to.
  • the drive adapter 320A 322 shows the drive adapter 320A 322, the other drive adapters 230B-320F all have the same drive disk, take the drive disk 322 of the drive adapter 320A as an example to illustrate the structure of the drive disk, the drive disk 322 has a drive disk 323, the driving disc 323 has a driving disc top surface 324 facing the surgical instrument 100, and the driving disc top surface 324 has a first driving coupling part 321A coupled with the third coupling part 222A of the coupling device 200, and the coupling device The fourth coupling part 222B of the 200 performs the second driving coupling part 321B for coupling.
  • the bottom surface of the drive disc is connected to the drive shaft 325, and the drive shaft 325 is connected to the power output shaft (for example, the motor output shaft) of the drive coupling 320A.
  • the joining process of the driving device 300, the joining device 200, and the surgical instrument 100 is divided into two stages.
  • the first stage is the joining of the drive device 300 and the joining device 200
  • the second stage is the drive device 300 and the joining device. 200 is joined with the surgical instrument 100 together.
  • the drive adapters 320A-320F of the drive device 300 are in initial positions, which are defined according to the initial state of the surgical tool 100 and stored in the controller 330.
  • the surgical instrument 100 is in the initial state, the long axis 110 of the surgical instrument 100 is in a straight state, that is, the yaw angle, pitch angle, etc. of the distal end of the long axis 110 are 0 degrees, and it is rotated at a fixed position. If the end effector 111 surgical forceps, scissors Cutting equipment, etc., which are closed.
  • the initial state is artificially defined and is not limited to the above-mentioned position. In some other embodiments, the initial position of the surgical tool 100 may be different, for example, the distal end of the long shaft 110 is slightly deflected relative to the straight state. .
  • the driving device 300 is engaged with the joining device 200, and the drive couplings 320A-320F of the drive device 300 are respectively coupled to the splicing discs 220A-220F of the coupling device 200 to drive the coupling 320A and the splicing discs.
  • 220A is taken as an example to illustrate the joining process of the driving device 300 and the joining device 200.
  • the joining process of other drive couplings and the splice plate is the same as the joining process of the drive coupling 320A and the joining plate 220A.
  • the controller 330 of the driving device 300 senses whether the coupling device 200 is connected to the driving device 300 through the third signal transmitter 340, and if the coupling device 200 is correctly connected to the driving device 300, the second signal transmitter 240 of the coupling device 200 A connection signal can be sent to the third signal receiver 340.
  • the connection signal includes a verification signal for verifying the authenticity of the joining device 200 and/or a confirmation signal for whether the joining device 200 is properly connected to the driving device 300, and controls
  • the device 330 receives the connection signal to confirm that the bonding device 200 is correctly connected to the driving device 300, and executes and controls to drive the bonding of the bonding devices 320A-320F and the bonding plates 220A-220F.
  • the drive adapter 320A rotates in the first direction (for example, clockwise) from the initial position under the control of the controller 330, and the first drive coupling part 321A rotates to the second guide arc 2232 of the third coupling part 222A, the lower splice plate 2230 moves toward the distal end along the axial direction under the elastic force of the elastic member 2220, and gradually introduces the first driving coupling part into the third coupling part 222A.
  • the first drive coupling part 321 further slides into the third coupling part 222A until the first drive coupling part 321 and the third coupling part 222A are completely coupled.
  • the first drive coupling part 321A is likely to change from the third because the rotation speed of the drive coupling 320A is too fast.
  • the entrance of the coupling part 222A jumps directly without entering the third coupling part 222A.
  • the drive adapter 320A rotates 180 degrees in the first direction from the initial position and then rotates 180 degrees in the second direction opposite to the first direction before returning to the initial position, and then continues to rotate 180 degrees in the second direction before moving Rotate 180 degrees in the first direction to return to the initial position, so that the first drive coupling part 321A and the second drive coupling part 321B complete the traversing movement of the splice plate 220A, so it needs to be on both sides of the entrance of the third coupling part 222A Set the guide arc.
  • the drive adapter 320A can also rotate 360 degrees in only one direction so that the engagement disc 220 performs a traversal movement. After the traversal movement is completed, the coupling 320A is driven to drive the coupling disc 220A back to the initial position.
  • the distance from the outside of the first drive coupling part 321A to the center of the drive disc is different from the distance from the outside of the second drive coupling part 321A to the center of the drive disc.
  • this arrangement can ensure that the third coupling part 222A can only be coupled with the first drive coupling part 321A, but cannot be coupled with the second drive coupling part 321B; similarly, the fourth coupling part 222B can only be coupled with the second drive coupling part 321B.
  • the component 321B is coupled, but cannot be coupled with the first drive coupling component 321A. This coupling and alignment method is very important for the surgical instrument 100 to return to the initial position described later.
  • 18C shows a state in which the drive adapter 320A is completely coupled to the splice plate 220A.
  • the first drive coupling part 321A of the drive adapter 320A is completely coupled with the third coupling part 222A of the splice plate 220A
  • the second drive coupling part 321B It is fully coupled with the fourth coupling part 222B of the splice tray 220A.
  • the complete coupling of the first drive coupling member 321A and the third coupling member 222A of the splice tray 220A is taken as an example to illustrate the fully coupled state.
  • FIG. 18D is an enlarged view of the close contact point P0 of FIG. 18C.
  • the lower splice plate 2230 In the fully coupled state, the lower splice plate 2230 cannot move relative to the drive coupling 320A in the axial and rotational directions. At this time, the lower splice plate 2230 receives a thrust Ft1 from the drive adaptor 320A toward the lower splice plate 2230, a frictional force Ff1 opposite to the thrust Ft1, and an elastic force Fs1 from the elastic member 2220, of which,
  • the angle ⁇ needs to be such that the frictional force Ff1 is greater than the thrust force Ft1, or the sum of the frictional force Ff1 and the elastic force Fs1 is greater than the thrust force Ft1.
  • first gap G1 between the second contact surface 2235 of the splice plate 220A and the top surface 324 of the drive disk of the drive splice plate 320A.
  • the existence of the first gap G1 is essential for maintaining the fully coupled state. It is important to ensure that the distance h2 from the close contact point P0 to the second contact surface 2235 of the splice plate 220A is smaller than the distance h1 from the close contact point P0 to the top surface 324 of the drive disc of the drive adaptor 320A.
  • the first traversal movement of the first engagement stage is that the driving device 300 drives the plurality of drive adapters 320A-320F to rotate a certain angle in the first direction from the initial position and then move in the direction opposite to the first direction. Rotate the same angle in the direction of, and then return to the initial position. In this way, the driving device 300 rotates twice to complete the traversal of the joining device 200.
  • the above-mentioned certain angle is preferably 360 degrees.
  • the drive adapters 320A-320F of the drive device 300 are not at the initial position, but at a position different from the initial position by a certain angle.
  • the joint device 200 is traversed by rotating the direction at a certain angle.
  • the driving device 300 is just at the initial position, so that the driving device 300 only needs to rotate once to complete the traversal of the joint device 200, and the movement mode is simpler
  • the above-mentioned certain angle different from the initial position is preferably 360 degrees.
  • the second joining stage is that the drive device 300 and the joining device 200 are joined together with the surgical instrument 100.
  • the lower joining disc 2230 of the joining device 200 has been completely coupled with the drive device 300, so the second stage During the joining process, the driving device 300 drives the joining discs 220A-220F of the joining device 200 to couple the instrument adaptors 120A-120F of the surgical instrument 100.
  • the second stage of the joining process is illustrated by driving the coupling 320A to drive the coupling disc 220A and the instrument coupling 120A.
  • the coupling process of other coupling discs and other equipment couplings is the same.
  • the first signal receiving and transmitting 140 on the surgical instrument 100 is controlled by the second signal receiving and transmitting portion 240 on the joining device 200 and the third signal receiving and transmitting portion 340 on the driving device 300.
  • the controller 330 transmits a signal through which the controller 330 determines whether the surgical instrument 100 is correctly connected to the joining device 200.
  • the signal includes a verification signal for verifying the authenticity of the surgical instrument 100 and whether the surgical instrument 100 is properly connected to the joining device. Confirmation signal on 200. It is understandable that the signal sent by the first signal receiving and sending unit 330 is not limited to the above two types. In some other embodiments, the signal may only be a confirmation signal, or may also include other signals.
  • the controller 330 confirms that the surgical instrument 100 has been correctly connected to the joining device 200 by detecting the signal from the first signal receiving and sending part 140, the controller 330 controls to drive the joining plate 320A from the initial position in the first direction (for example, clockwise) Rotate, the initial position is the same as the above initial position. Because the second-stage splice plate 320A has been completely coupled with the lower splice plate 2230, the splice plate 220A will rotate in the first direction along with the drive splice plate 320A.
  • the first splice plate 2210 starts to gradually move toward the distal end in the axial direction under the elastic force of the elastic portion 2220.
  • the drive adapter 120A continues to rotate, the first instrument coupling part 121A further slides into the first coupling part 223A through the guide arc surface until the first instrument coupling part 121A and the first coupling part 223A are completely coupled.
  • the instrument adaptor 120A is completely coupled with the splice plate 220A.
  • the first instrument coupling part 121A is completely coupled with the first coupling part 223A
  • the second instrument coupling part 121B is completely coupled with the second coupling part 223B.
  • the upper splice plate 2210 cannot move relative to the instrument adaptor in the axial and rotational directions.
  • the upper splice plate 2210 receives the thrust force Ft2 from the instrument driver 120A toward the upper splice plate 2210, the friction force Ff2 opposite to the thrust force Ft2, and the elastic force Fs2 from the elastic member 2220, of which,
  • Ft2 y( ⁇ 2, ⁇ ,M2)
  • Ff2 s( ⁇ 2, ⁇ ,M2)
  • ⁇ 2 is the coefficient of friction between the first instrument coupling part 121A and the splice plate 220A; ⁇ is the angle between the inclined surface of the first coupling part 223A and the adjacent side surface of the instrument (refer to ⁇ ), and M2 is the torque of the splice plate 220A .
  • the angle ⁇ needs to be such that the friction force Ff2 is greater than the thrust force Ft2, or the sum of the friction force Ff2 and the elastic force Fs2 is greater than the thrust force Ft2.
  • the splice plate 220A is driven by the drive adaptor 320A to rotate 180 degrees in the first direction from the initial position, then rotate 180 degrees in the second direction opposite to the first direction to return to the initial position, and then rotate 180 degrees in the first direction Then return to the initial position by 180 degrees in the second direction, so that the first coupling part 223A and the second coupling part 223B of the splice plate 320A complete the traversal movement of the instrument splice plate 320A.
  • the adaptor is driven 320A drives the engagement disc 220A and the instrument drive disc 120A to return to the initial position together.
  • the surgical instrument 100 returns to the initial state at this time.
  • the aforementioned joining method can make the surgical instrument 100 return to the initial state after being joined to the joining device 200, thereby facilitating the operation of the surgeon. Therefore, in this joining method, setting the joining plate 220A of the joining device 200 to the only corresponding coupling form with the drive adaptor 320A and the instrument adaptor 120A is crucial for returning the surgical instrument 100 to the initial state after joining.
  • the coupling device, the driving coupling and the instrument coupling are not uniquely corresponding, and at this time, it is extremely easy for the surgical instrument to be unable to correctly return to the initial state after coupling.
  • the driver 330 independently controls the traversal mode of the splice plate 220A-220F to the instrument adaptor 120A-120F in the second joining stage .
  • the way of traversing the instrument engaging disc that drives the long axis 110 of the surgical instrument 100 to rotate is different from that of other instrument engaging discs.
  • the drive coupling 320A is a drive coupling disc that drives the long shaft 110 to rotate
  • the other drive coupling discs 320B-320F drive other motions (such as yaw, pitch, etc.) of the long shaft 110 and the end effector 111
  • the controller 330 controls the drive coupling
  • the way in which the adapter 320A drives the splicing disc 220A to traverse the instrument adapter 120A is similar to the first embodiment of the first traversal mode, that is, the splicing disc 120A is triggered from the initial position to rotate in the first direction at an angle less than or equal to 180 degrees and then along the Rotate the same angle in the opposite second direction to return to the initial device, then rotate in the second direction to an angle less than or equal to 180 degrees, and then rotate the same angle in the first direction to return to the initial position, so that the splice plate 220A completes driving the instrument After traversing the splice plate 120A, it returns to the initial position.
  • the controller 330 controls the part of the splice trays 220B-220F to traverse the surgical instruments as follows: the part of the splice trays 220B-220F is triggered from the initial position to rotate a small angle ⁇ in the first direction and then move along the first direction. Rotate a small angle ⁇ in an opposite second direction to return to the initial position, then rotate a small angle ⁇ in the second direction and then rotate a small angle ⁇ in the first direction to return to the initial position, preferably ⁇ is less than 13 degrees.
  • the distal end of the long axis 110 of the surgical instrument 100 cannot move substantially in the patient's body, otherwise the tissues in the patient's body will be damaged. Therefore, before the surgical instrument 100 is not joined to the joining device 200, all the instrument adaptors except the instrument adaptor that drives the long shaft 110 to rotate are near the initial position (this position is referred to as the near initial initial setting). In this way, the operation range of the surgical instrument 100 in the patient's body during the second stage of joining process can be made smaller, and damage to the tissue in the patient's body can be avoided.
  • the small angle ⁇ of the rotation of the splice plates 220B-220F needs to be greater than the deflection angle of the surgical instrument 100 to return to the initial position from the adjacent position.
  • the power mechanism 22 may be provided to allow only the surgical instrument 100 in the adjacent position to pass through the sleeve 23.
  • the second stage of joining first adjust the surgical instrument 100 to the adjacent position. For example, the medical staff only needs to adjust the end of the long shaft 110 of the surgical instrument 100 to be in a nearly straight state, and then pass the long shaft 110 through.
  • the controller 330 After passing the sleeve 23 into the patient's body, and after the surgical instrument 100 is connected to the joining device 200, the controller 330 performs the second stage of joining.
  • the distance between the first coupling part 223A and the second coupling part 223B of the coupling disc 220A engaged with the driving coupling 320A that drives and controls the rotation of the long shaft 110 is different from the center of the coupling disc.
  • the shape is different, the third coupling part 222A and the fourth coupling part 222B on the upper splice plate 2210 are different from the center of the splice plate or the shape is different, while the first to fourth coupling parts of the other splice plates 220B-220F
  • the distance from the upper splice plate or the lower splice plate is the same, or the shape is the same. This is because the instrument adapters 220B-220F are in the initial position attachment, and the coupling parts with the same position or the same shape on the same adapter plate will not affect their return to the initial position.
  • the device adapter that drives the long shaft to rotate is provided with a blocking device that prevents it from rotating indefinitely.
  • the instrument adaptor 120A is a drive adaptor that drives the long shaft 110 to rotate
  • the instrument adaptor 120A is disposed on the frame body 151 of the instrument drive part 150, and the frame body 151 has an annular groove 124
  • a section of the annular groove 124 has a blocking body 125
  • a sliding post 123 is fixedly connected to the proximal end of the instrument adapter 120A, and the other end of the sliding post 123 is arranged in the annular groove 124.
  • the sliding post 123 When the instrument adapter 120A rotates, the sliding post 123 is driven to slide in the annular groove 124. When the sliding post 123 slides to meet the blocking body 125, the blocking body 125 prevents the sliding post 123 from sliding further, thereby preventing the appliance adapter 120A Rotation.
  • the instrument adaptor 120A cannot rotate 360 degrees. Therefore, in the second stage of joining, the splice plate 220A does not need to traverse the instrument adaptor 120A 360 degrees, only according to the annular groove.
  • the size of the central angle of 124 defines that the splice plate 220A traverses the instrument adaptor 120A.
  • the preferred central angle of the annular groove 124 is 320 degrees.
  • the axis of the driving engagement discs 320A-320F will inevitably be out of concentricity with the axis of the corresponding instrument driving discs 120A-120F.
  • the drive adapter 320A is engaged with the instrument adapter 120A through the engagement disc 220A.
  • the axis of the drive adapter 320A is D1
  • the axis of the instrument adapter 120A is D2.
  • D2 is opposite to the axis of D1.
  • the drive adapter 320A, the adapter plate 220A, and the instrument adapter 120A are in a hard joint, the drive adapter 320A will drive the adapter 220 to make an eccentric rotational movement, which affects the drive device 300 and the surgical instrument 100
  • the damage is very large, and there will be a lot of noise during exercise. Therefore, in order to eliminate the disadvantages caused by hard joints, in one embodiment, the drive joint 320A, the joint disc 220A, and the instrument joint 120A are soft joints.
  • a third gap G3 in the radial direction between the instrument engagement portion 121 of the instrument adapter 120A and the first coupling portion 223 of the adapter disc 220A, and the drive engagement portion 321 of the drive adapter 320A and the second coupling portion 222 of the adapter disc 220A
  • a third gap G3 between the splice plate 220A and a fourth gap G4 between the inner wall of the accommodating cavity of the housing 210.
  • the existence of the third gap G3 and the fourth gap G4 enables the splice plate 220A to drive the adapter 120A and the instrument.
  • the adapter 320A translates in the radial direction in the accommodating cavity of the housing 210, and this translational movement of the adapter plate can reduce the eccentric movement of the driving adapter 220.
  • the width of the fourth gap G4 in the radial direction of the splice disc is greater than the width of the third gap G3 in the radial direction of the splice disc, and the width of the third gap G3 in the radial direction of the splice disc The width is greater than the eccentric distance ⁇ D, so as to achieve a soft joint between the drive adapter 320A, the adapter plate 220A, and the instrument adapter 120A.

Abstract

一种将手术器械(100)与驱动装置(300)接合的方法,手术器械(100)与驱动装置(300)通过接合装置(200)进行接合,方法包括:判断接合装置(200)是否与驱动装置(300)连接;如果接合装置(200)与驱动装置(300)连接,驱动装置(300)执行对接合装置(200)的第一遍历运动;判断手术器械(100)是否与接合装置(200)连接;如果手术器械(100)与接合装置(200)连接,驱动装置(300)驱动接合装置(200)执行对手术器械(100)的第二遍历运动。可以自动判断接合装置(200)以及手术器械(100)是否与驱动装置(300)连接,然后自动接合并且对位,使接合后的手术器械(100)正确回到初始位置。

Description

接合手术器械和驱动装置的方法、接合装置及手术机器人 技术领域
本发明涉及医疗器械领域,特别是涉及一种将手术器械与驱动装置接合的方法、接合装置及具有该装置的手术机器人。
背景技术
微创手术是指利用腹腔镜、胸腔镜等现代医疗器械及相关设备在人体腔体内部施行手术的一种手术方式。相比传统手术方式微创手术具有创伤小、疼痛轻、恢复快等优势。
随着科技的进步,微创手术机器人技术逐渐成熟,并被广泛应用。微创手术机器人通常包括主操作台及从操作设备,主操作台用于根据医生的操作向从操作设备发送控制命令,以控制从操作设备,从操作设备用于响应主操作台发送的控制命令,并进行相应的手术操作。手术器械与从操作设备的驱动装置连接,用于执行外科手术,故手术器械需要进行无菌处理,而从操纵设备是有菌的,故需要一种接合装置能对从操作设备与手术器械进行隔离,以免对手术器械造成污染,而如何实现自动将接合装置与驱动装置和手术器械接合目前依然没有很好的解决方案。
发明内容
基于此,本发明提供一种用于自动接合手术器械和驱动装置的方法。
一种将手术器械与驱动装置接合的方法,其中手术器械与驱动装置通过接合装置进行接合,所述方法包括:在所述接合装置与所述驱动装置连接后,所述驱动装置执行对所述接合装置的第一遍历运动;
在所述手术器械与所述接合装置连接后,所述驱动装置驱动所述接合装置执行对所述手术器械的第二遍历运动。
优选的,所述第一遍历运动与所述第二遍历运动的运动方式不同。
优选的,所述第一遍历运动或所述第二遍历运动执行完毕后所述驱动装置 处于初始位置。
优选的,所述驱动装置包括多个驱动接合器,所述第一遍历运动为所述多个驱动接合器沿第一方向旋转一定角度到所述初始位置。
优选的,所述驱动装置包括多个驱动接合器,所述第一遍历运动为所述多个驱动接合器从所述初始位置出发沿第一方向旋转一定角度后再沿与所述第一方向相反的第二方向旋转相同角度后回到所述初始位置。
优选的,所述驱动装置包括多个驱动接合器,所述第一遍历运动的运动方式为所述多个驱动接合器从所述初始位置出发沿第一方向旋转第一角度后再沿与第一方向相反的第二方向旋转第一角度回到所述初始位置,然后继续沿所述第二方向旋转第二角度后再沿所述第一方向旋转第二角度后回到所述初始位置。
优选的,所述第一角度与所述第二角度之和大于或等于360度。
优选的,所述接合装置包括多个接合盘,所述手术器械包括多个器械接合器,所述多个接合盘用于接合所述多个驱动接合器和所述多个器械接合器;
所述第二遍历运动的运动方式为所述多个驱动接合器驱动所述多个接合盘对所述多个器械接合器进行遍历,其中所述至少一个驱动接合器的第二遍历运动不同于所述其他驱动接合器的第二遍历运动。
优选的,所述至少一个驱动接合器用于驱动所述手术器械进行旋转,其中所述用于驱动所述手术器械进行旋转的驱动接合器的第二遍历运动不同于所述其他驱动接合器的第二遍历运动。
优选的,所述除用于驱动所述手术器械进行旋转的驱动接合器以外的其他驱动接合器中的至少一个驱动接合器的第二遍历运动为所述至少一个驱动接合器从所述初始位置出发沿第一方向旋转第三角度后再沿与第一方向相反的第二方向旋转第三角度回到所述初始位置,然后沿所述第二方向旋转第四角度后再沿所述第一方向旋转第四角度后回到所述初始位置。本发明通过自动判断接合装置以及手术器械是否与驱动装置正确连接,然后驱动装置自动执行第一遍历运动和第二遍历运动,以自动完成手术器械与驱动装置的接合与对位,使接合后的手术器械正确回到初始位置。
附图说明
图1为本发明手术机器人实施例的结构示意图;
图2为图1中的手术器械示意图;
图3、图4分别本发明手术器械的远端不同实施例的局部示意图;
图5为本发明一实施例的手术器械的接合部分的示意图;
图6为本发明一实施例的驱动装置的接合部分的示意图;
图7A、7B为本发明一实施例的接合装置示意图;
图8为本发明一实施例的接合装置的爆炸图;
图9为本发明一实施例的接合盘的爆炸图;
图10为本发明另一实施例的接合装置截面图;
图11为本发明另一实施例的弹性件截面图;
图12为本发明另一实施例的接合装置截面图;
图13为本发明一实施例的下接合盘仰视图;
图14为本发明图13的下接合盘B-B处的截面图;
图15为本发明一实施例的上接合盘俯视图;
图16为本发明一实施例的驱动装置的驱动盘的示意图;
图17为本发明一实施例的接合方法的流程图;
图18A-18C为本发明一实施例的驱动接合器与接合盘的接合过程示意图;
图18D为图18C的P处局部放大图;
图19A-19C为本发明一实施例的接合盘与器械接合器的接合过程示意图;
图20、图21为本发明一实施例的无限旋转的阻止结构示意图;
图22为本发明一实施例的手术器械、接合装置、驱动装置完全耦合的截面图;
图23为图22的C-C处截面俯视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。 附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“耦合”另一个元件,它可以是直接耦合到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。本文所使用的术语“远端”、“近端”作为方位词,该方位词为介入医疗器械领域惯用术语,其中“远端”表示手术过程中远离操作者的一端,“近端”表示手术过程中靠近操作者的一端。本文所使用的“完全耦合”可以被广义地理解为其中两个或更多物体以一种方式被连接到任何事件,改方式允许绝对耦合的物体彼此在一起进行操作,使得物体之间至少在一个方向上没有相对移动,例如突出物和凹槽的耦合,两者可以在径向相对移动但不能在轴向相对移动。说明书和权利要求书中,术语“耦合”、“接合”、“耦接”可以互换使用。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1、图2所示,手术机器人包括主操作台1及从操作设备2。其中,主操作台1用于根据医生的操作向从操作设备2发送控制命令,以控制从操作设备2,其还用于显示从设备2获取的影像。从操作设备2用于响应主操作台1发送的控制命令,并进行相应的操作,并且从操作设备2还用于获取体内的影像。
从操作设备2包括机械臂21、设置于机械臂21上的动力机构22、设置于动力机构22上的手术器械100,以及套设手术器械100的长轴100的套管24。机械臂21用于调节手术器械100的位置;动力机构22用于驱动手术器械100执行相应操作,手术器械100的末端执行器111用于伸入体内,并通过其位于 远端的末端器械执行手术操作,及/或获取体内影像。具体的,如图3、图4所示,手术器械100的长轴110穿设套管23,其末端执行器111伸出套管23外,并通过动力机构22驱动其执行操作。图3中,手术器械100的长轴110位于套管23内的区域为刚性区域;图4中,手术器械100的长轴110位于套管23内的区域为柔性区域,套管随柔性区域弯曲。也可以省略套管24。
为在手术机器人手术过程中提供满意的无菌环境,需要对无菌器械和有菌器械进行中间隔离,一般从操作设备2的机械臂21及动力机构22是有菌的,手术器械100需要是无菌的,在有菌动力机构120与无菌的手术器械100需要之间配置一种无菌接合装置,以对有菌的动力机构120和无菌的手术器械100进行隔离。
动力机构120的动力(例如马达动力输出)从动力机构120经过无菌接合装置到达手术器械100以驱动手术器械工作,但是由于装配的原因,动力机构的动力输出轴和手术器械接受动力从动机构的轴难以避免地会出现不同轴的情况,此时手术器械100从动机构的轴将在动力机构120的带动下做偏心旋转运动,这种偏心运动对手术器械100和动力机构120带来较大磨损,并且会是手术机器人工作过程中产生非常大的噪音,因此也需要对无菌接合装置进行更合理的设计,以使接合装置能消解掉上述不期望的偏心运动。
如图5至图7所示,一个或多个驱动装置300设置在动力机构22内,驱动装置300是有菌的,驱动装置300驱动手术器械100执行相应的手术操作,手术操作包括控制长轴110的远端进行偏摆、旋转、俯仰等操作,还包括对末端执行器111进行与之相应的操作,末端器械111可以是手术钳、烧灼设备、剪削设备、成像设备等,根据手术器械末端执行器111的不同,驱动装置300驱动末端执行器111执行相关操作。驱动装置300与手术器械100之间配置有无菌接合装置200。
手术器械100进一步包括六个器械接合器120A-120F,其它实施例中器械驱动器可以是其他数量的个数,例如四个。器械接合器120A-120F设置在壳体130内,器械接合器120A-120F的近端连接到器械驱动部150,器械驱动部150还包括驱动长轴110和末端执行器111的多个驱动轮(图未示出),器械接合器 120A-120F接收来自驱动装置300的受控的驱动力以带动驱动轮通过驱动丝进而控制长轴110和末端执行器111的运动,每一个器械接合器120A-120F独立于其他的器械接合器运动。
器械接合器120A-120F的远端具有相同的结构,以驱动长轴110旋转的器械接合器120A为例说明器械接合器120A-120F的结构,器械接合器120A的器械接合器圆盘顶面122上具有与接合装置200进行接合的器械接合部121,器械接合部121具有与接合装置200进行完全耦合的第一器械耦合部件121A和第二器械耦合部件121B,其他实施例中器械耦合部件的个数也可以是其他数量,例如4个。
手术器械100具有第一信号接发部140,第一信号接发部140用于传输信号给设置在动力装置22内的控制器330,该信号包括验证手术器械100真伪的信号和判定手术器械100是否连接到接合装置200上的判定信号,其他实施例中,控制器也可以设置在主操作台1一侧,或者从操作设备2其他位置,例如从操作设备的基座上。
图6示出了驱动装置300的近端接合面立体视图,驱动装置300包括六个驱动接合器320A-320F,多个驱动接合器320A-320F安装在驱动壳体310内,每个驱动接合器320A-320F受控制器330控制独立运动。每个驱动器分别独立控制和驱动手术器械100,例如每个驱动接合器分别控制手术器械100的旋转、偏摆、俯仰、末端器械开合等操作,在其他实施例中,驱动器的个数也是其他数量,例如四个。
驱动接合器320A-320F近端与接合装置200接合的部分具有相同结构,以控制长轴110旋转的驱动接合器320A为例说明驱动接合器320A-320F的远端结构,驱动器320A具有与接合装置200进行接合的驱动接合部321,驱动接合部321具有与接合装置进行完全耦合的第一驱动耦合部件321A和第二驱动耦合部件321B,其他实施例中驱动耦合部件的个数也可以是其他数量,例如4个。
驱动装置300上设置第三信号接发部340,第三信号接发器340用于接收手术器械100的第一信号接发部140传输过来的信号,并将第一信号接发部140传送过来的信号输出给控制器330,或将控制器330传送过来的信号传输给第一 信号接发部140,以对手术器械100进行控制。
图7至图9示出了接合装置200的结构,接合装置200具有壳体210,壳体210包括接合装置远端的第一壳体211和接合装置近端的第二壳体212,第一壳体211上就有多个第一空腔231,第二壳体上具有与空腔231对应的多个第二空腔232,第一空腔231与第二空腔232配合构成多个容纳腔,多个容纳腔用于容纳接合盘220A-220F,第一空腔231具有用于限制接合盘220A-220F沿轴向朝远端运动的第一边缘部2311,第二空腔232具有用于限制接合盘220A-220F沿轴向朝近端运动的第二边缘部2312。
接合装置200的壳体210上具有第二信号接发部240,第二信号接发部240分别与手术器械100上的第一信号接发部140和驱动装置上的第三信号接发部340电连接,用于将第一信号接发部140与和第三信号接发部340电连接上,以在两者之间进行信号的传输,第二信号接发部240也可以独立的向第三信号接发部340传送信号,该信号可以是判定接合装置是否合适的连接到驱动装置300上的判定信号,也可以是其他信号,例如判定接合装置200是否与驱动装置300或手术器械100完全接合的判定信号。
多个接合盘220A-220F的结构相似,以接合盘220A为例说明接合盘的结构。如图9和图13所示,接合盘220A具有结构基本相同的上接合盘2210和下接合盘2230,上接合盘2210与下接合盘2230中间通过弹性件2220连接,在弹性件2220的作用下,上接合盘2210与下接合盘2230在轴向上可以相互独立运动。
上接合盘2210具有第一接触面2211,第一接触面2211用于接合装置200在和手术器械100接合的过程中与手术器械100的器械接合部121相抵触,第一接触面2211上设置有与器械接合部121进行耦合的第一耦合部223。相应地,下接合盘2230具有第二接触面2235,第二接触面2235用于接合装置200在和驱动装置300接合的过程中与驱动装置300的驱动接合部321进行抵触,第二接触面2235上设置有与驱动接合部321进行接合的第二耦合部222。
上、下接合盘2210、2230都具有呈扇形的第一凸块225和第二凸块226,第一凸块225与第二凸块226之间具有呈扇形的凹陷部229,上接合盘2210的第一凸块225和第二凸块226可以容纳在下接合盘的凹陷部229中,相应地, 下接合盘的第一凸块225和第二凸块226可以容纳在上接合盘的凹陷部229中,上、下接合盘2210、2230上都具有安装弹簧的安装孔227。上接合盘2210与下接合盘2230安装好后第一耦合部223的中心线A与第二耦合部222的中心线B相互垂直,中心线A穿过第一耦合部223的中心和上接合盘2210的圆心,中心线B穿过第二耦合部222的中心和下接合盘2230的圆心。第一凸块225、第二凸块226以及凹陷部229不限于扇形,在其他实施例中,第一凸块225、第二凸块226以及凹陷部229可以是其他形状的,例如第一凸块225和第二凸块226为呈矩形的凸块,凹陷部229呈工字形。
上接合盘2210的第一凸块225中设置有第一耦合部223的第一耦合部件223A,上接合盘2210的第二凸块226中设置有第一耦合部223的第二耦合部件223B。第一耦合部件223A用于在接合装置200和手术器械100的接合过程中与第一器械耦合部件121A进行耦合,第二耦合部件223B用于接合装置200和手术器械100的接合过程中与第二器械耦合部件121B进行耦合。可以理解的是,第一耦合部件223A和第二耦合部件223B不限于设置在第一凸块225和第二凸块226中,在其他实施例中,第一耦合部件223A和第二耦合部件223B也可以设置在凹陷部229中。
一实施例中,第一耦合部件223A的外侧到上接合盘2210圆心的距离大于第二耦合部件223B的外侧到上接合盘2210圆心的距离。此时为了将第一耦合部223与器械接合部121进行完全耦合,相应地,器械接合部121的第一器械耦合部件121A的外侧到器械接合器120A圆心的距离大于第二器械耦合部件121B的外侧到器械接合器120A的圆心的距离,所述外侧是指径向上远离圆心的一侧。
一实施例中,第一耦合部件223A的内侧到上接合盘2210圆心的距离小于第二耦合部件223B的外侧到上接合盘2210圆心的距离。此时为了将第一耦合部223与器械接合部121进行完全耦合,相应地,器械接合部121的第一器械耦合部件121A的内侧到器械接合器120A圆心的距离小于第二器械耦合部件121B的内侧到器械接合器120A的圆心的距离,所述内侧是指径向上靠近圆心的一侧。
一实施例中,第一耦合部件223A与第二耦合部件223B的形状不一样,如图9所示,第一耦合部件223A与第二耦合部件223B的形状不一样,第一耦合部件223A的外侧为凹槽结构,即第一耦合部件223A将上接合盘2210的第一凸块225分开成两块,即右凸块225A和左凸块225B。第二耦合部件223B外侧未贯通上接合盘2210的第二凸块226。在此实施例中第一耦合部件223A不仅形状与第二耦合部件223B不一样,而且第一耦合部件223A外侧到上接合盘2210圆心的距离也大于第二耦合部件223B外侧到上接合盘2210圆心的距离。此时为了将第一耦合部223与器械接合部121进行完全耦合,相应地,只需保持器械接合部121的第一器械耦合部件121A的外侧到器械接合器120A圆心的距离大于第二器械耦合部件121B的外侧到器械接合器120A的圆心的距离,不需要将第一器械耦合部件121A和第二器械耦合部件121B的形状设置成不一样。但是第一器械耦合部件121A和第二器械耦合部件121B的形状不限于图9所示,在其他实施例中,第一器械耦合部件121A和第二器械耦合部件121B的不具有任何相似性,例如第一器械耦合部件121A为圆柱体,第二器械耦合部件121B为长方体。
因为第一接合盘2210与第二接合盘2230具有基本相同的结构,为了防止误装第一接合盘2210和第二接合盘2230,在第一凸块225和第二凸块226上分别具有防错装设置228A和228B,第一接合盘的防错装设置228B与相应的第二接合盘的防错装设置228A配合,第二接合盘的防错装设置228A与相应的第二接合盘的防错装设置228B配合。第一接合盘2210与第二接合盘2230安装好后,第一接合盘2210与第二接合盘2230只能沿轴向相互独立运动,不能沿径向相互独立运动。
本发明接合装置另一实施例如图10至图12所示,接合盘420呈“工”字形,接合盘420的上接合盘4210与下接合盘4230固定连接,优选的上接合盘4210与下接合盘4230一体成型为一个件,弹性件4220固定在壳体410上,弹性件4220包括朝向近端的上弹性部4221和朝向远端的下弹性部4222。具体的,壳体410包括第一壳体411与第二壳体412,接合盘420安装在第一壳体411与第二壳体412构成的空腔内,第一壳体411具有限制下接合盘4230朝远端运动 的第一边缘部4311,第二壳体412具有限制上接合盘4210朝近端运动的第二边缘部4312。第一壳体411与第二壳体412还分别包括第一内环4111和第二内环4121,弹性件4220安装在第一内环4111和第二内环4121上。故当手术器械100的驱动接合器抵压下接合盘4230时,下弹性部4222被压缩,使得下弹性部4222提供可以使接合盘420朝接合装置远端运动的弹力,当器械驱动器抵压上接合盘4210时,上弹性部4221被压缩,使得上弹性部4221可以提供使接合盘朝接合装置近端运动的弹力。
如图11所示,弹性件4220包括外壳4225,上弹性部4221的底座4223和下弹性件4222的底座4224都安装在外壳4225内,弹簧4222安装在上弹性部4221的底座4223和下弹性件4222的底座4224之间。
优选的,如图12所示,为了使接合盘420更高效的安装到壳体410内,第一内环4111和第二内环4121分别为非完整的内环,具体的,弹性件4220为多个,第一弹性件4220A固定在第一内环4111上,第二弹性件4222B固定安装在第二内环4112上。在其他实施例中,第一内环4111和第二内环4112也可以只是一个为了安装弹性件4220的突出的安装座。
如图13和图14所示,图11为下接合盘2230沿B-B面的截面图,第二耦合部件222B在沿与B-B面平行的面的截面与第三耦合部件222A截面相同,因此以第三耦合部件222A示例说明。第三耦合部件222A具有入口处两侧具有引导第一驱动耦合部件321A进入的第一引导弧面2231和第二引导弧面2232,第一引导弧面2231远端平缓过渡到第一倾斜面2233,第二引导面2232的远端平缓过渡到第二倾斜面2234,第一倾斜面2233与相邻的侧面的夹角为θ1,第二倾斜面2234与其相邻的侧面的夹角为θ2,其中θ1等于θ2,然而在其他的实施例中θ1可以与θ2不相等。当第三耦合部件222A与第一驱动耦合部件321A完全耦合时,第一驱动耦合部件321A被紧密卡在第一倾斜面2233与第二倾斜面2234之间,此时下接合盘2230与驱动接合器320A在轴向上不可以相对移动,但在径向上可以相对移动。在其他的一些实施例中,也可以将第一倾斜面2233与第二倾斜面2234设置为其他形状,例如弧形,只需要满足能将第三耦合部件222A与第一驱动耦合部件321A进行完全耦合的条件,该条件会在下述的驱动 装置300以及手术器械100与接合装置200接合的过程中详细说明。
如图15所示下接合盘2210的第二接触面2211上具有与手术100的器械接合盘120A的第一器械耦合部件121A进行耦合的第第一耦合部件223A,与第二器械耦合部件121B进行耦合的第二耦合部件223B。因为上接合盘2210有与下接合盘2230基本相同的结构,因此关于上接合盘的2210的具体结构就不再赘述,可以参考下接合盘2230的结构。
图16示出了驱动接合器320A的322,其他驱动接合器230B-320F都具有相同的驱动盘,以驱动接合器320A的驱动盘322为例说明驱动盘的结构,驱动盘322具有驱动圆盘323,驱动圆盘323具有面向手术器械100的驱动圆盘顶面324,驱动圆盘顶面324上具有与接合装置200的第三耦合部件222A进行耦合的第一驱动耦合部件321A,与接合装置200的第四耦合部件222B进行耦合的第二驱动耦合部件321B。驱动圆盘底面连接到驱动轴325,驱动轴325与驱动接合器320A的动力输出轴(例如马达输出轴)相连接。
如图17所示,驱动装置300、接合装置200、手术器械100的接合过程分为两个阶段,第一阶段为驱动装置300与接合装置200进行接合,第二阶段为驱动装置300和接合装置200一起与手术器械100进行接合。
一实施例中,在第一阶段接合开始之前,驱动装置300的驱动接合器320A-320F处于初始位置,该初始位置是根据手术工具100的初始状态定义的并存储在控制器330内,手术器械100处于初始状态是,手术器械100的长轴110处于笔直状态,即长轴110的远端的偏摆角度、俯仰角度等为0度,旋转在固定位置,如果末端执行器111手术钳、剪削设备等,其为闭合状态。可以理解的是,初始状态是人为定义的,不限于上述位置,在其他一些实施例中,手术工具100的初始位置可以是不同的,例如长轴110的远端相对笔直状态稍微小角度偏摆。
在第一接合阶段中,即驱动装置300与接合装置200进行接合,驱动装置300的驱动接合器320A-320F分别于接合装置200的接合盘220A-220F相接合,以驱动接合器320A与接合盘220A为例说明驱动装置300与接合装置200的接合过程,在本实施例中其他驱动接合器与接合盘的接合过程和驱动接合器320A 与接合盘220A的接合过程相同。
驱动装置300的控制器330通过第三信号接发器340感测接合装置200是否连接到驱动装置300,如果接合装置200正确连接到驱动装置300上,接合装置200的第二信号接发器240可向第三信号接发器340发送连接信号,该连接信号包括对接合装置200的真伪进行验证的验证信号和/或接合装置200是否合乎要求地连接到驱动装置300上的确认信号,控制器330接收该连接信号确认接合装置200正确连接到驱动装置300上,执行控制驱动接合器320A-320F与接合盘220A-220F的接合。
图18A-18D示出了驱动接合器320A与接合盘220A接合的过程。在将接合装置200连接到驱动装置300上时,驱动接合器320A的第一驱动耦合部件321A和第二驱动耦合部件321B抵触接合盘220A的第二接触面2235,接合盘220A的下接合盘2230在第一驱动耦合部件321A和第二驱动耦合部件321B推动下沿轴向朝近端移动并压缩弹性件2220,上接合盘2210在弹性件2220的作用下与接合装置壳体210的第二边缘部2312相抵触。
驱动接合器320A在控制器330的控制下从初始位置沿第一方向旋转(例如顺时针),第一驱动耦合部件321A旋转到第三耦合部件222A的第二引导弧面2232时,下接合盘2230在弹性件2220的弹力作用下朝沿轴向远端移动,逐渐将第一驱动耦合部件引入第三耦合部件222A内。随着驱动接合器320A继续旋转,第一驱动耦合部件321进一步滑入第三耦合部件222A内,直至第一驱动耦合部件321与第三耦合部件222A完全耦合。如果未在第三耦合部件222A的入口处设置引导第一引导弧面2231和第二引导弧面2232,由于驱动接合器320A的旋转速度过快,第一驱动耦合部件321A很可能会从第三耦合部件222A的入口处直接跃过,而没有进入到第三耦合部件222A内。本实施例中驱动接合器320A从初始位置沿第一方向旋转180度然后沿与第一方向相反的第二方向旋转180度在回到初始位置,然后继续沿第二方向旋转180度后再沿第一方向旋转180度回到初始位置,以使第一驱动耦合部件321A和第二驱动耦合部件321B完成对接合盘220A的遍历运动,故需要在在第三耦合部件222A的入口两侧都需要设置引导弧面。其他一些实施例中,驱动接合器320A也可以只沿一个方向 旋转360度从而接合盘220进行遍历运动。遍历运动完成后,驱动接合器320A带动接合盘220A回到初始位置。
因为第三耦合部件222A与第四耦合部件222B的形状不一样,相应地,第一驱动耦合部件321A的外侧到驱动盘圆心的距离与第二驱动耦合部件321A的外侧到驱动盘圆心的距离不一样,该设置能确保第三耦合部件222A只能与第一驱动耦合部件321A进行耦合,而不能与第二驱动耦合部件321B进行耦合;同样的,第四耦合部件222B只能与第二驱动耦合部件321B进行耦合,而不能与第一驱动耦合部件321A进行耦合,这种耦合对位方式对后述的手术器械100回归初始位置至关重要。
图18C示出了驱动接合器320A与接合盘220A完全耦合的状态,此时驱动接合器320A的第一驱动耦合部件321A与接合盘220A的第三耦合部件222A完全耦合,第二驱动耦合部件321B与接合盘220A的第四耦合部件222B完全耦合。在完全耦合的状态下,以第一驱动耦合部件321A与接合盘220A的第三耦合部件222A完全耦合为例说明该完全耦合状态。在完全耦合的状态下,下接合盘2230的第一倾斜面2233和第二倾斜面2234与第一驱动耦合部件321A紧密接触,在第一倾斜面2233和第二倾斜面2234与第一驱动耦合部件321A紧密接触的位置存在紧密接触点P0,图18D为图18C紧密接触点P0处的放大图。
在完全耦合的状态下,下接合盘2230在轴向和旋转方向上不可以相对驱动接合器320A移动。此时下接合盘2230受到来自驱动接合器320A方向朝下接合盘2230的推力Ft1,与推力Ft1方向相反的摩擦力Ff1和来自弹性件2220的弹力Fs1,其中,
Ft1=f(μ1,θ,M1);
Ff1=g(μ1,θ,M1);
Fs1=k(μ1,θ,M1);
μ1为第一驱动耦合部件321A与接合盘220A之间的摩擦系数;θ为第一倾斜面2233和第二倾斜面2234与其相邻的侧面的夹角,其中θ=θ1=θ2;M1为驱动接合器320A的扭矩。
在手术机器人的工作过程中维持驱动接合盘320A与接合盘220A完全耦合 是至关重要的,因此角度θ需要满足使得摩擦力Ff1大于推力Ft1,或者摩擦力Ff1和弹力Fs1之和大于推力Ft1。
在完全耦合的状态下,接合盘220A的第二接触面2235与驱动接合盘320A的驱动圆盘顶面324之间存在第一间隙G1,第一间隙G1的存在对于维持完全耦合状态时至关重要的,因此是要确保紧密接触点P0到接合盘220A的第二接触面2235的距离h2小于紧密接触点P0到驱动接合器320A的驱动圆盘顶面324的距离h1。
本发明另一实施例中,第一接合阶段的第一遍历运动为驱动装置300多个驱动接合器320A-320F从初始位置出发沿第一方向旋转一定角度后再沿与所述第一方向相反的方向旋转相同角度后回到初始位置,这样驱动装置300旋转两次既可以完成对接合装置200的遍历,该上述一定角度优选为360度。
本发明另一实施例中,在第一接合阶段开始前,驱动装置300的驱动接合器320A-320F不是处于初始位置,而是处于与初始位置相差一定角度的位置,这样驱动装置300以沿一个方向旋转相差的一定角度的方式对接合装置200进行遍历,遍历完成后驱动装置300刚好处于初始位置,这样只需要驱动装置300只需要旋转一次就可以完成对接合装置200进行遍历,运动方式更加简单,上述与初始位置相差的一定角度优选为360度。
第二接合阶段为驱动装置300和接合装置200一起与手术器械100进行接合,此时经过第一阶段的耦合,接合装置200的下接合盘2230已经与驱动装置300完全耦合了,因此第二阶段接合过程中驱动装置300驱动接合装置200的接合盘220A-220F对手术器械100的器械接合器120A-120F进行耦合。以驱动接合器320A带动接合盘220A与器械接合器120A的接合过程示例说明第二阶段接合过程,其他接合盘与其他器械接合器的接合过程与之相同。
在手术器械100与接合装置200连接后,手术器械100上的第一信号接发140通过接合装置200上的第二信号接发部240、驱动装置300上的第三信号接发部340向控制器330传送信号,控制器330通过该信号判断手术器械100是否正确连接到接合装置200,该信号包括对手术器械100的真伪进行验证的验证信号和手术器械100是否合乎要求地连接到接合装置200上的确认信号。可以 理解的时,上述第一信号接发部330发送的信号不限于上述两种,其他一些实施例中,该信号可以只为确认信号,也可以还包括其他一些信号。
如图19A所示,当手术器械100连接到接合装置200上后,器械接合器120A的第一器械耦合部件121A和第二器械耦合部件121B与上接合盘2210上的第一接触面相抵触,上接合盘2210被器械接合器120A压迫沿轴向朝远端运动并压缩弹性部2220。如果控制器330通过检测到来自第一信号接发部140信号确认手术器械100已经正确连接到接合装置200上,控制器330控制驱动接合盘320A从初始位置开始沿第一方向(例如顺时针)旋转,初始位置与上述初始位置相同。因为第二阶段接合盘320A已经与下接合盘2230完全耦合了,因此接合盘220A将随驱动接合盘320A一起沿第一方向旋转。
如图19B所示,当第一耦合部件223A的引导弧面逐渐与第一器械耦合部件121A接触时,第一接合盘2210在弹性部2220的弹力作用下开始逐渐沿轴向朝远端运动。随着驱动接合器120A的继续旋转,第一器械耦合部件121A进一步通过引导弧面滑入第一耦合部件223A内,直至第一器械耦合部件121A与第一耦合部件223A完全耦合。
如图19C所示,器械接合器120A与接合盘220A完全耦合,此时第一器械耦合部件121A与第一耦合部件223A完全耦合,第二器械耦合部件121B与第二耦合部件223B完全耦合。与下接合盘220A一样,在完全耦合的状态下,上接合盘2210在轴向和旋转方向上不可以相对器械接合器移动。此时上接合盘2210受到来自器械驱动器120A方向朝上接合盘2210的推力Ft2,与推力Ft2方向相反的摩擦力Ff2和来自弹性件2220的弹力Fs2,其中,
Ft2=y(μ2,α,M2);
Ff2=s(μ2,α,M2);
Fs2=t(μ2,α,M2);
μ2为第一器械耦合部件121A与接合盘220A之间的摩擦系数;α为第一耦合部件223A的倾斜面与器相邻的侧面的夹角(可参照θ),M2为接合盘220A的扭矩。
比较理想的是上述0°<θ<10°,0°<α<10°,这样可以使得接合盘与述 接合盘与所述驱动装置和所述手术器械完全耦合后不能轴向移动。
同样地,在手术机器人的工作过程中始终需要维持接合盘220A与器械接合器120A完全耦合,因此角度α需要满足使得摩擦力Ff2大于推力Ft2,或者摩擦力Ff2和弹力Fs2之和大于推力Ft2。
同样地,在完全耦合的状态下上接合盘2210上的第一接触面2211与器械接合器120A的器械接合器圆盘顶面122之间存在第二间隙G2,为了始终维持第二间隙G2存在,确保第一器械耦合部件121A与第一耦合部件223A的紧密接触点到接合盘220A的第一接触面2211的距离小于紧密接触点到,器械接合器120A的器械接合器圆盘顶面122的距离。
接合盘220A在驱动接合器320A的驱动下从初始位置出发沿第一方向旋转180度后再沿与第一方向相反的第二方向旋转180度回到初始位置,然后沿第一方向旋转180度后再沿第二方向180度回到初始位置,以使接合盘320A的第一耦合部件223A和第二耦合部件223B完成接对器械接合盘320A的遍历运动,遍运动历完成后,驱动接合器320A带动接合盘220A和器械驱动盘120A一起回到初始位置,此时由于初始位置是根据与手术器械100的初始状态定义的,因此此时手术器械100回到初始状态。不管手术器械100在接合到接合装置200前是什么状态,通过上述接合方法都能使手术器械100接合到接合装置200后回到初始状态,从而便于外科医生操作。故在本接合方法中将接合装置200的接合盘220A设置为与驱动接合器320A、器械接合器120A唯一对应耦合形式对于接合后使手术器械100回归到初始状态是至关重要的。现有技术中接合装置和驱动接合器以及器械接合器并非唯一对应,此时极容易使手术器械接合后无法正确回归到初始状态。
一实施例中,为了提高使用手术机器人的效率,使可以在病人体内对手术器械100回归初始状态,在第二接合阶段驱动器330独立控制接合盘220A-220F对器械接合器120A-120F的遍历方式。具体地,对驱动手术器械100的长轴110旋转的器械接合盘的遍历方式与其他器械接合盘的遍历方式不同。假设驱动接合器320A为驱动长轴110旋转的驱动接合盘,其他驱动接合盘320B-320F驱动长轴110和末端执行器111的其他运动(例如偏摆、俯仰等),控制器330控制 驱动接合器320A带动接合盘220A遍历器械接合器120A的方式与第一遍历方式的第一实施例类似,即接合盘120A从初始位置触发沿第一方向旋转小于或等于180度的角度再沿与第一方向相反的第二方向旋转相同角度回到初始装置,然后沿第二方向旋转小于或等于180度的角度后再沿第一方向旋转相同角度回到初始位置,以使接合盘220A完成对器械驱动接合盘120A的遍历后再回到初始位置。而控制器330控制其他接合盘220B-220F中的部分接合盘遍历手术器械的方式为:接合盘220B-220F中的部分接合盘从初始位置触发沿第一方向旋转小角度β然后再沿与第一方向相反的第二方向旋转小角度β回到初始位置,然后沿第二方向旋转小角度β再沿第一方向旋转小角度β回到初始位置,优选的β小于13度。
因为本实施例中需要在病人体内完成手术器械100初始状态的回归,因此手术器械100的长轴110的远端不能在病人体内大幅度动作,否则会对病人体内的组织造成损伤。因此需要在手术器械100在未接合到接合装置200前,除驱动长轴110旋转的器械接合器以外的其他器械接合器都处在初始位置附近(将这种位置称为临近初初始置),这样可以使得手术器械100在在第二阶段的接合过程中在病人体内动作的幅度较小,避免对病人体内组织造成损伤。为了使手术器械100能从临近初始位置正确回归到初始位置,还需要使上述接合盘220B-220F旋转的小角度β大于手术器械100从临近位置回到初始位置需要偏转的角度。
为确保第二阶段接合前手术器械100处于临近初始位置,可以在动力机构22上设置只允许在处于临近位置的手术器械100通过套管23。在第二阶段接合时,先将手术器械100调整到临近位置,例如医护人员只需把手术器械100的长轴110的末端调整大致笔直状态即可以使其处于临近位置,然后将长轴110穿过套管23进入病人体内,手术器械100与接合装置200连接后,控制器330执行第二阶段接合。
一实施例中,在手术器械处于临近初始位置时,与驱动控制长轴110旋转的驱动接合器320A接合的接合盘220A的第一耦合部件223A与第二耦合部件223B距离接合盘圆心距离不一样或者形状不一样,上接合盘2210上的第三耦 合部件222A和第四耦合部件222B距离上接合盘圆心距离不一样或者形状不一样,而其他接合盘220B-220F的第一至第四耦合部件距离上接合盘或下接合盘的距离相同,或者形状相同。这是因为器械接合器220B-220F处于初始位置附件,相同的接合盘上位置相同或形状相同的耦合部件不会对其回归初始位置造成影响。
一实施例中,为了阻止驱动手术器械100长轴110旋转的器械接合器无限旋转带来的问题,例如无限旋转需要更多的驱动丝。因此在驱动长轴旋转的器械接合器中设置有阻止其无限旋转的阻止装置。如图20和图21所示,假设器械接合器120A为驱动长轴110旋转的驱动接合器,器械接合器120A设置在器械驱动部150的架体151上,架体151上具有环形槽124,环形槽124中一段具有阻断体125,器械接合器120A近端固定连接有滑动柱123,滑动柱123的另一端设置在环形槽124中。
当器械接合器120A在旋转时带动滑动柱123在环形槽124内滑动,当滑动柱123滑动到遇到阻断体125时,阻断体125阻止滑动柱123进一步滑动,从而阻止器械接合器120A的旋转。
在本实施例中因为阻断体125的存在,器械接合器120A无法旋转360度,因此在接合的第二阶段,接合盘220A也无需对器械接合器120A进行360度遍历,只需根据环形槽124的圆心角大小,定义接合盘220A对器械接合器120A进行遍历。优选的环形槽124的圆心角为320度,此时接合盘220A从初始位置出发沿第一方向旋转160度后遇到阻断体125后再沿与第一方向相反的第二方向旋转160度回到初始位置,然后沿第二方向旋转160度后遇到阻断体125后再沿第一方向旋转160度回到初始位置。
由于装配的原因,驱动装置300、接合装置200以及手术器械100完全接合好后,驱动接合盘320A-320F的轴心难免会和对应的器械驱动盘120A-120F的轴心不同心。如图22和图23所示,驱动接合器320A通过接合盘220A与器械接合器120A相接合,驱动接合器320A的轴心为D1,器械接合器120A的轴心为D2,D2相对与D1的偏心距离ΔD,如果驱动接合器320A、接合盘220A以及器械接合器120A之间为硬接合,则驱动接合器320A会驱动接合器220做偏心 的旋转运动,这样对驱动装置300和手术器械100的损伤非常大,而且运动过程中会产生较大的噪音。故为了消除硬接合带来的不利,一实施例中,驱动接合器320A、接合盘220A以及器械接合器120A之间为软接合。
具体地,器械接合器120A的器械接合部121与接合盘220A的第一耦合部223在径向上存在第三间隙G3,驱动接合器320A的驱动接合部321与接合盘220A的第二耦合部222之间存在第三间隙G3接合盘220A与壳体210的容纳腔内壁之间存在第四间隙G4,第三间隙G3和第四间隙G4的存在使得接合盘220A能相对于驱动接合器120A和器械接合器320A在壳体210的容纳腔内沿径向方向上平移,接合盘的这种平移运动能消减驱动接合器220的偏心运动。为了完全消除上述偏心运动带来的不利影响,优选的,使得第四间隙G4在接合盘径向上的宽度大于第三间隙G3在接合盘径向上的宽度,第三间隙G3在接合盘径向上的宽度大于偏心距离ΔD,从而实现驱动接合器320A、接合盘220A以及器械接合器120A之间的软接合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (33)

  1. 一种接合手术器械和驱动装置的方法,其特征在于,所述手术器械与所述驱动装置通过接合装置进行接合,所述方法包括:
    在所述接合装置与所述驱动装置连接后,所述驱动装置执行对所述接合装置的第一遍历运动;
    在所述手术器械与所述接合装置连接后,所述驱动装置驱动所述接合装置执行对所述手术器械的第二遍历运动。
  2. 如权利要求1所述的方法,其特征在于,所述第一遍历运动与所述第二遍历运动的运动方式不同。
  3. 如权利要求1所述的方法,其特征在于,所述第一遍历运动或所述第二遍历运动执行完毕后所述驱动装置处于初始位置。
  4. 如权利要求3所述的方法,其特征在于,所述驱动装置包括多个驱动接合器,所述第一遍历运动为所述多个驱动接合器沿第一方向旋转一定角度到所述初始位置。
  5. 如权利要求3所述的方法,其特征在于,所述驱动装置包括多个驱动接合器,所述第一遍历运动为所述多个驱动接合器从所述初始位置出发沿第一方向旋转一定角度后再沿与所述第一方向相反的第二方向旋转相同角度后回到所述初始位置。
  6. 如权利要求3所述的方法,其特征在于,所述驱动装置包括多个驱动接合器,所述第一遍历运动的运动方式为所述多个驱动接合器从所述初始位置出发沿第一方向旋转第一角度后再沿与第一方向相反的第二方向旋转第一角度回到所述初始位置,然后继续沿所述第二方向旋转第二角度后再沿所述第一方向旋转第二角度后回到所述初始位置。
  7. 如权利要求6所述的方法,其特征在于,所述第一角度与所述第二角度之和大于或等于360度。
  8. 如权利要求6所述的方法,其特征在于,所述接合装置包括多个接合盘,所述手术器械包括多个器械接合器,所述多个接合盘用于接合所述多个驱动接合器和所述多个器械接合器;
    所述第二遍历运动的运动方式为所述多个驱动接合器驱动所述多个接合盘对所述多个器械接合器进行遍历,其中所述至少一个驱动接合器的第二遍历运动不同于所述其他驱动接合器的第二遍历运动。
  9. 如权利要求8所述的方法,其特征在于,所述至少一个驱动接合器用于驱动所述手术器械进行旋转,其中所述用于驱动所述手术器械进行旋转的驱动接合器的第二遍历运动不同于所述其他驱动接合器的第二遍历运动。
  10. 如权利要求9所述的方法,其特征在于,所述除用于驱动所述手术器械进行旋转的驱动接合器以外的其他驱动接合器中的至少一个驱动接合器的第二遍历运动为所述至少一个驱动接合器从所述初始位置出发沿第一方向旋转第三角度后再沿与第一方向相反的第二方向旋转第三角度回到所述初始位置,然后沿所述第二方向旋转第四角度后再沿所述第一方向旋转第四角度后回到所述初始位置。
  11. 如权利要求10所述的方法,其特征在于,所述第一角度大于所述第三角度或所述第四角度,所述第二角度大于所述第三角度或所述第四角度。
  12. 一种用于接合手术器械和驱动装置的接合装置,其包括:
    接合盘和具有容纳腔的壳体,所述接合盘被容纳在所述容纳腔内;
    所述接合盘包括上接合盘和下接合盘,所述上接盘具有用于与所述手术器械的器械进行耦合的第一耦合部,所述下接合盘具有用于与所述驱动装置进行耦合的第二耦合部;
    弹性件,所述弹性件弹性抵触于所述上接合盘与所述下接合盘之间。
  13. 如权利要求12所述的接合装置,其特征在于,所述上接合盘相对所述下接合盘可以沿所述接合盘的轴向运动。
  14. 如权利要求12所述的接合装置,其特征在于,所述上接合盘与所述下接合盘固定连接或一体成型,所述壳体具有用于安装所述弹性件安装部。
  15. 如权利要求12所述的接合装置,其特征在于,所述第一耦合部具有第一耦合部件和第二耦合部件,所述第一耦合部件与所述第二耦合部件距离上接合盘圆心的距离不同,或者所述第一耦合部件与所述第二耦合部件的形状不同;
    所述第二耦合部具有第三耦合部件和第四耦合部件,所述第三耦合部件与 所述第四耦合部件距离下接合盘圆心的距离不同,或者所述第三耦合部件与所述第四耦合部件的形状不同。
  16. 如权利要求15所述的接合装置,其特征在于,所述第一耦合部或所述第二耦合部的入口处具有第一引导弧面和第二引导弧面,所述第一引导弧面和第二引导弧面用于引导所述驱动装置与所述第二耦合部进行耦合,和引导所述手术器械与所述第一耦合部进行耦合。
  17. 如权利要求15所述的接合装置,其特征在于,所述第一耦合部或所述第二耦合部包括倾斜面,所述倾斜面用于将所述接合盘与所述驱动装置和所述手术器械完全耦合。
  18. 如权利要求15所述的接合装置,其特征在于,所述第一耦合部或所述第二耦合部包括引导弧面和倾斜面,所述引导弧面一端位于所述第一耦合部或所述第二耦合部的入口处,另一端与所述倾斜面相连。
  19. 如权利要求12所述的接合装置,其特征在于,所述下接合盘具有第一接触面,所述第一接触面用于在所述下接合盘与所述驱动装置完全耦合时与所述手术器械之间存在第一间隙;
    所述上接盘具有第二接触面,所述第二接触面用于在所述上接合盘与所述手术器械完全耦合时,与所述手术器械之间存在第二间隙。
  20. 如权利要求12所述的接合装置,其特征在于,所述第一耦合部用于在与所述手术器械完全耦合时,与所述手术器械的与所述第一耦合部耦合的部分之间存在第三间隙。
  21. 如权利要求20所述的接合装置,其特征在于,所述接合盘与所述容纳腔内壁之间存在第四间隙。
  22. 如权利要求21所述的接合装置,其特征在于,所述第四间隙在所述接合盘径向上的宽度大于所述第三间隙在所述接合盘径向上的宽度。
  23. 如权利要求17所述的接合装置,其特征在于,所述倾斜面与所述接合盘的轴线之间具有夹角,所述夹角的大小足以使得所述接合盘与所述驱动装置和所述手术器械完全耦合后不能轴向移动。
  24. 如权利要求23所述的接合装置,其特征在于,所述下接合盘用于在所 述第二耦合部与所述驱动装置完全耦合时,受到来自驱动装置的第一推力、弹性件的第一弹力、与驱动装置之间的第一摩擦力,其中所述第一摩擦力大于所述第一推力;或者第一摩擦力与所述第一弹力之和大于所述第一推力。
  25. 如权利要求23所述的接合装置,其特征在于,所述上接合盘用于在所述第一耦合部与所述手术器械完全耦合时,受到来自手术器械的第二推力、弹性件的第二弹力、与手术器械之间的第二摩擦力,其中所述第二摩擦力大于所述第二推力;或者所述第二摩擦力与所述第二弹力之和大于所述第二推力。
  26. 如权利要求13所述的接合装置,其特征在于,所述上接合盘具有凸块,所需下接合盘具有凹陷部,所述凸块用于嵌入所述凹陷部以将所述上接合盘与下接合盘组装成所述接合盘。
  27. 如权利要求26所述的接合装置,其特征在于,所述第一耦合部与所述弹性件都设置在所述凸块中。
  28. 如权利要求14所述的接合装置,其特征在于,所述弹性件包括外壳、上尖端、下尖端以及弹簧,所述上尖端和下尖端分别具有安装在所述外壳内的底座,所述弹簧安装在所述上尖端与所述下尖端的底座之间。
  29. 如权利要求12所述的接合装置,其特征在于,所述接合装置还包括信号接发部,用于与所述驱动装置、和/或所述手术器械之间传递信号。
  30. 一种手术机器人,包括主操作设备和从操作设备,所述从操作设备用于根据所述主操作设备的输入执行相应操作,所述从操作设备包括驱动装置和手术器械,其特征在于,所述驱动装置通过接合装置进行接合与所述手术器械接合,接合手术器械和驱动装置的方法包括:
    在所述接合装置与所述驱动装置连接后,所述驱动装置执行对所述接合装置的第一遍历运动;
    在所述手术器械与所述接合装置连接后,所述驱动装置驱动所述接合装置执行对所述手术器械的第二遍历运动。
  31. 一种手术机器人,其特征在于,包括:
    手术器械,所述手术器械用于执行外科手术;
    动力机构,所述动力机构包括一个以上的驱动装置,所述驱动装置用于驱 动和控制所述手术器械;
    接合装置,用于接合所述手术器械与驱动装置,所述接合装置包括:
    接合盘和具有容纳腔的壳体,所述接合盘被容纳在所述容纳腔内;
    所述接合盘包括上接合盘和下接合盘,所述上接盘具有用于与所述手术器械的器械进行耦合的第一耦合部,所述下接合盘具有用于与所述驱动装置进行耦合的第二耦合部;
    弹性件,所述弹性件弹性抵触于所述上接合盘与所述下接合盘之间。
  32. 如权利要求31所述的手术机器人,其特征在于,所述手术器械包括用于与所述接合装置进行接合装置进行接合的器械接合器和用于阻止所述手术器械进行无限旋转的阻止装置。
  33. 如权利要求32所述的手术机器人,其特征在于,所述阻止装置包括设置在手术器械上的环形槽和滑动柱,所述滑动柱一端与所述器械接合器固定连接,另一端在所述滑行槽内滑动,所述滑行槽内设置有阻断体,所述阻断体用于阻止所述滑动柱滑动。
PCT/CN2020/133499 2020-01-07 2020-12-03 接合手术器械和驱动装置的方法、接合装置及手术机器人 WO2021139457A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010013754.6 2020-01-07
CN202010013754.6A CN111012412A (zh) 2020-01-07 2020-01-07 用于接合驱动装置和手术器械的接合装置及手术机器人
CN202010014069.5 2020-01-07
CN202010014069.5A CN111134740B (zh) 2020-01-07 2020-01-07 手术器械与驱动装置的接合方法、从操作设备及手术机器人

Publications (1)

Publication Number Publication Date
WO2021139457A1 true WO2021139457A1 (zh) 2021-07-15

Family

ID=76787705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133499 WO2021139457A1 (zh) 2020-01-07 2020-12-03 接合手术器械和驱动装置的方法、接合装置及手术机器人

Country Status (1)

Country Link
WO (1) WO2021139457A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090248039A1 (en) * 2008-03-31 2009-10-01 Intuitive Surgical, Inc. Sterile Drape Interface for Robotic Surgical Instrument
CN102630154A (zh) * 2009-09-23 2012-08-08 伊顿株式会社 无菌适配器、转轮联接结构以及手术用器械的联接结构
CN109602496A (zh) * 2013-08-15 2019-04-12 直观外科手术操作公司 机器人器械从动元件
CN111012412A (zh) * 2020-01-07 2020-04-17 深圳市精锋医疗科技有限公司 用于接合驱动装置和手术器械的接合装置及手术机器人
CN111134740A (zh) * 2020-01-07 2020-05-12 深圳市精锋医疗科技有限公司 用于接合手术设备的驱动装置和手术器械的接合方法
CN211911680U (zh) * 2020-01-07 2020-11-13 深圳市精锋医疗科技有限公司 用于接合驱动装置和手术器械的接合装置及手术机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090248039A1 (en) * 2008-03-31 2009-10-01 Intuitive Surgical, Inc. Sterile Drape Interface for Robotic Surgical Instrument
CN102630154A (zh) * 2009-09-23 2012-08-08 伊顿株式会社 无菌适配器、转轮联接结构以及手术用器械的联接结构
CN109602496A (zh) * 2013-08-15 2019-04-12 直观外科手术操作公司 机器人器械从动元件
CN111012412A (zh) * 2020-01-07 2020-04-17 深圳市精锋医疗科技有限公司 用于接合驱动装置和手术器械的接合装置及手术机器人
CN111134740A (zh) * 2020-01-07 2020-05-12 深圳市精锋医疗科技有限公司 用于接合手术设备的驱动装置和手术器械的接合方法
CN211911680U (zh) * 2020-01-07 2020-11-13 深圳市精锋医疗科技有限公司 用于接合驱动装置和手术器械的接合装置及手术机器人

Similar Documents

Publication Publication Date Title
US11744645B2 (en) Surgical tool with a two degree of freedom wrist
JP6388628B2 (ja) アクチュエータ装置
US10835331B2 (en) Wrist articulation by linked tension members
CN111134740B (zh) 手术器械与驱动装置的接合方法、从操作设备及手术机器人
KR20110008189A (ko) 제어자의 모션을 로봇 매니퓰레이터로부터 부착된 기구로 전달하기 위한 커플러
CN111012412A (zh) 用于接合驱动装置和手术器械的接合装置及手术机器人
CN211911680U (zh) 用于接合驱动装置和手术器械的接合装置及手术机器人
WO2021139457A1 (zh) 接合手术器械和驱动装置的方法、接合装置及手术机器人
CN116965861A (zh) 一种手术器械及其与无菌适配器的接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912527

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20912527

Country of ref document: EP

Kind code of ref document: A1