WO2021139424A1 - 文本内涵质量的评估方法、装置、设备及存储介质 - Google Patents

文本内涵质量的评估方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021139424A1
WO2021139424A1 PCT/CN2020/131673 CN2020131673W WO2021139424A1 WO 2021139424 A1 WO2021139424 A1 WO 2021139424A1 CN 2020131673 W CN2020131673 W CN 2020131673W WO 2021139424 A1 WO2021139424 A1 WO 2021139424A1
Authority
WO
WIPO (PCT)
Prior art keywords
text
feature
preset
target
connotation
Prior art date
Application number
PCT/CN2020/131673
Other languages
English (en)
French (fr)
Inventor
唐蕊
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021139424A1 publication Critical patent/WO2021139424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • G06F40/216Parsing using statistical methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/253Grammatical analysis; Style critique
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the medical record system records the occurrence, development, diagnosis and treatment of the patient's disease.
  • the quality control of the medical record is an important part of the hospital's medical quality management.
  • the quality control of medical records is generally performed by professional quality control personnel to evaluate the quality of medical records manually.
  • manual medical record quality control consumes a lot of energy, and is inefficient.
  • the traditional textual connotation quality control system generally checks the connotation of medical records based on some artificially set rules, so as to realize the evaluation of the quality of medical records.
  • the inventor realized that these traditional textual connotation quality control did not consider the overall medical record text, which made the assessment of the textual connotation quality less accurate.
  • some textual connotation quality control systems use natural language processing and deep learning technology to learn a large amount of medical record data to build models to realize the connotation quality control of medical records.
  • these textual connotation quality control systems have the problem of time-consuming model training.
  • the main purpose of this application is to solve the problem that the connotation check based on manually set rules results in low accuracy of the evaluation of the text connotation quality, and the existing text connotation quality control system has the technical problem that the model training is time-consuming.
  • the first aspect of this application provides a method for evaluating the connotation quality of a text, including: obtaining an initial text from a preset medical record text, the initial text including main complaint information, existing medical history information, physical examination information, The first course record information, the course record information, the ward round record information, and the surgical record information; the initial text is preprocessed by natural language processing algorithms to obtain the target text; the preset word bag model and the preset automatic coding model are used to Performing text encoding on the target text to obtain a first text feature; performing feature extraction on the target text to obtain a second text feature, the second text feature including text complexity features, text grammatical style features, and medical semantic features, The feature extraction includes calculating the number of various types of words, the ratio of each type of symbols, and the ratio of the various types of words; the first text feature and the second text feature are performed through a trained logistic regression model.
  • the evaluation process obtains an evaluation result, and the evaluation result is used to identify the connotation quality level of the
  • the second aspect of the present application provides a device for evaluating the quality of text connotation, including a memory, a processor, and computer-readable instructions stored on the memory and running on the processor, and the processor executes the
  • the computer-readable instructions implement the following steps: obtain an initial text from a preset medical record text, the initial text including main complaint information, existing medical history information, physical examination information, first course record information, course record information, ward round record information, and Surgical record information; text preprocessing the initial text by natural language processing algorithms to obtain the target text; text encoding the target text by a preset bag-of-words model and a preset automatic coding model to obtain the first text feature; Perform feature extraction on the target text to obtain a second text feature.
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • the ratio of the type symbols and the ratio of the various types of words; the first text feature and the second text feature are evaluated by a trained logistic regression model to obtain an evaluation result, and the evaluation result is used to identify The connotation quality level of the preset medical record text.
  • the third aspect of the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions run on the computer, the computer executes the following steps: Obtain the initial text in the main complaint, the current medical history information, the physical examination information, the first course record information, the course record information, the ward round record information, and the surgical record information; the initial text is processed by the natural language processing algorithm Perform text preprocessing to obtain the target text; perform text encoding on the target text through a preset bag-of-words model and a preset automatic coding model to obtain a first text feature; perform feature extraction on the target text to obtain a second text feature ,
  • the second text features include text complexity features, text grammatical style features, and medical semantic features, and the feature extraction includes calculating the number of various types of words, the ratio of various types of symbols, and the ratio of the various types of words;
  • the first text feature and the second text feature are evaluated by a trained logistic regression model to obtain an evaluation result, and the evaluation result is used
  • the fourth aspect of the present application provides a textual connotation quality evaluation device, including: a first acquisition module for acquiring an initial text from a preset medical record text, the initial text including main complaint information, existing medical history information, and physical examination Information, first-time course record information, course record information, ward round record information, and surgical record information; a preprocessing module for preprocessing the initial text through a natural language processing algorithm to obtain the target text; an encoding module for The target text is text-encoded through a preset bag-of-words model and a preset automatic encoding model to obtain a first text feature; an extraction module is used to perform feature extraction on the target text to obtain a second text feature.
  • Two text features include text complexity features, text grammatical style features, and medical semantic features.
  • the feature extraction includes calculating the number of various types of words, the ratio of each type of symbols, and the ratio of each type of words; the evaluation module uses By evaluating the first text feature and the second text feature through a trained logistic regression model, an evaluation result is obtained, and the evaluation result is used to identify the connotation quality level of the preset medical record text.
  • an initial text is obtained from a preset medical record text, and the initial text includes main complaint information, current medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgery Record information; perform text preprocessing on the initial text through a natural language processing algorithm to obtain the target text; perform text encoding on the target text through a preset bag-of-words model and a preset automatic coding model to obtain the first text feature; Feature extraction is performed on the target text to obtain a second text feature.
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • the feature extraction includes calculating the number of various types of words and each type.
  • the ratio of the symbols and the ratio of the various types of words; the first text feature and the second text feature are evaluated by a trained logistic regression model to obtain an evaluation result, which is used to identify all State the connotation quality level of the preset medical record text.
  • the characteristics obtained by encoding the medical record text and the characteristics of the textual connotation quality are extracted from the medical record text, and the two are combined as the general characteristics of the text connotation quality, based on the general characteristics of the text connotation quality and the logistic regression algorithm Train classification models to improve the accuracy of text connotation quality evaluation and improve the efficiency of text connotation quality evaluation model training.
  • FIG. 1 is a schematic diagram of an embodiment of a method for evaluating the connotation quality of a text in an embodiment of the application
  • FIG. 2 is a schematic diagram of another embodiment of the method for evaluating the connotation quality of the text in the embodiment of this application;
  • FIG. 3 is a schematic diagram of an embodiment of a device for evaluating text connotation quality in an embodiment of this application
  • FIG. 4 is a schematic diagram of another embodiment of the evaluation device for text connotation quality in an embodiment of this application.
  • Fig. 5 is a schematic diagram of an embodiment of a device for evaluating text connotation quality in an embodiment of the application.
  • the embodiments of the present application provide a method, device, equipment, and storage medium for evaluating the quality of text connotation, which are used to encode features obtained by encoding medical record text, and extract features of text connotation quality from medical record text, and combine the two Combining with the general characteristics of text connotation quality, the classification model is trained according to the general characteristics of text connotation quality and logistic regression algorithm to improve the accuracy of text connotation quality evaluation and the efficiency of text connotation quality evaluation model training.
  • An embodiment of the method for evaluating the connotation quality of the text in the embodiment of the present application includes:
  • the initial text includes chief complaint information, current medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgical record information.
  • the preset medical record text is a digital medical record that is saved, managed, transmitted, and reproduced by electronic equipment in advance, and is used to replace the handwritten paper medical record.
  • the content of the preset medical record text includes all the information of the paper medical record, that is, the preset medical record
  • the text of the embedded medical record and the paper medical record are the same at the text level.
  • the server reads the initial text from the preset database according to different dimensional information of the preset medical record text, and the different dimensional information is used to indicate different contents of the initial text.
  • the server preprocesses the initial text through a preset natural language processing algorithm to obtain the preprocessed target text.
  • the preprocessing includes word segmentation, part-of-speech tagging, and medical named entity recognition.
  • the preprocessed target text includes word segmentation text and part-of-speech Annotation text and entity recognition text.
  • the natural language processing algorithm is an algorithm for intelligent analysis, understanding and obtaining data from human language, including forward maximum matching algorithm, reverse maximum matching algorithm, maximum probability word segmentation algorithm and conditional random field algorithm. It should be emphasized that, in order to further ensure the privacy and security of the target text, the target text may also be stored in a node of a blockchain.
  • the server encodes the target text. Specifically, the server first converts the preprocessed target text into a high-dimensional sparse feature vector through a preset bag-of-words model, and then the server converts the high-dimensional sparse feature vector through a preset
  • the automatic encoding model is converted into a low-dimensional compact feature vector, and the server sets the low-dimensional compact feature vector as the text encoding of the target text, that is, the first text feature.
  • the preset bag-of-words model is a commonly used text representation algorithm when modeling text in natural language processing.
  • the preset automatic encoding model compresses and encodes the input data, that is, the high-dimensional original data is represented by a low-dimensional vector.
  • the compressed low-dimensional vector retains the typical characteristics of the input data, so that the original data can be restored more conveniently.
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • Feature extraction includes calculating the number of various types of words and the ratio of various types of symbols And the ratio of each type of word.
  • the first feature and the second feature are the combined features of the text encoding and text features of the target text, and the logical regression model is trained to evaluate the connotation quality of the medical record text.
  • Training a logistic regression model is more efficient than training other machine learning or deep learning models.
  • the server evaluates the first text feature and the second text feature through the trained logistic regression model, and obtains the evaluation result, which is used to identify the connotation quality level of the preset medical record text.
  • the server combines the first text feature and the second text feature, and inputs the combined text feature into the trained logistic regression model; the server performs evaluation processing through the trained logistic regression model to obtain the evaluation result, The evaluation result is used to identify the connotative quality level of the preset medical record text.
  • the connotative quality level uses 2, 1 and 0 to represent the level of the preset medical record text, that is, high level, medium level, and low level.
  • the preset medical record text A is obtained after classification and processing through a trained logistic regression model
  • the model output value is 2, 2 is also the evaluation result, and 2 indicates that the connotation quality level of the preset medical record text is high.
  • the initial text includes main complaint information, existing medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgical record information.
  • the server reads the initial text from the preset database according to the different dimensional information of the preset medical record text.
  • the different dimensional information is used to indicate the different content of the initial text.
  • the different content of the initial text includes the main complaint information, the existing medical history information, and the search Physical information, first-time course record information, disease course record information, ward round record information, and surgical record information.
  • the preset medical record text is a digital medical record that is saved, managed, transmitted, and reproduced by electronic equipment in advance, and is used to replace the handwritten paper medical record.
  • the server uses natural language processing algorithms to segment the initial text to obtain the segmented text.
  • Word segmentation is the process of recombining consecutive characters into a word sequence according to preset rules.
  • the target text includes sentences and paragraphs.
  • Sentences Words and words between paragraphs and paragraphs are consecutive characters.
  • the server uses a forward maximum matching algorithm or a reverse maximum matching algorithm to perform word segmentation processing on the target text, the minimum unit granularity of the segmented text obtained is words.
  • the server performs word segmentation on the initial text according to the contextual semantics according to the maximum probability word segmentation algorithm, so as to perform ambiguity recognition and new word recognition on the initial text.
  • Ambiguity refers to the existence of multiple word segmentation results for the same string to be segmented. Refers to words that are not included in the dictionary.
  • the server obtains multiple character strings from the initial text, and each character string of the server takes out multiple candidate words in the order from left to right; the server finds out the probability value of each candidate word from the preset dictionary and records it All the neighboring words of each candidate word; the server calculates the cumulative probability of each candidate word, and compares all the neighboring words of each candidate word to obtain the best neighboring word of each candidate word; if the current word is a character The ending word of the string, and the cumulative probability is the maximum, the server sets the current word as the ending word of the string; the current word is set as the starting point, and the server outputs the best left-neighbor words of each word in order from right to left , Get the word segmentation result of the string of the target text, repeat the above process until all the word results of the target text are obtained.
  • part-of-speech tagging is the process of judging the grammatical category of each word one by one in the segmented text, determining its part of speech and labeling it.
  • the part of speech includes content words and function words.
  • the server uses a conditional random field algorithm to perform part-of-speech tagging on the word segmentation text to obtain the part-of-speech tagging text.
  • the server extracts multiple target words from the target text, and converts the multiple target words into m-dimensional feature vectors through a preset bag-of-words model, where m is a positive integer. Further, the server counts the number of times each word appears in the preprocessed target text through a preset bag-of-words model. After the server merges all the words and the corresponding times, the merged data is standardized to obtain the m-dimensional Feature vector.
  • the m-dimensional feature vector is a high-dimensional sparse feature vector. The position corresponding to each element in the m-dimensional feature vector represents the number of times the corresponding word appears in the preset medical record text. Among them, the high-dimensional sparse feature vector Most of the features are 0. It should be noted that the preset bag-of-words model does not consider the contextual relationship between words in the text, but only considers the weight of all words in the text, and the weight is related to the frequency of the word in the text
  • the server converts the m-dimensional feature vector obtained by the preset bag-of-words model into an n-dimensional feature vector through a preset automatic encoding model, where n is a positive integer and n is less than m.
  • the server system inputs the m-dimensional feature vector into the preset automatic coding model, and converts the m-dimensional feature vector into an n-dimensional feature vector through the preset automatic coding model, where the n-dimensional feature vector is a low-dimensional compact feature vector .
  • the preset auto-encoding model is a pre-trained auto-encoding network model.
  • Text complexity features include the number of various types of words and sentences in the target text, for example, the number of words that appear in the segmented text, the number of words that appear in the segmented text, the number of sentences that appear in the segmented text, and the segmented text The average number of words per word, the average number of words per sentence in the segmented text, and the average number of words per sentence in the segmented text.
  • the text grammatical style features include the ratio of various types of symbols and the ratio of various types of words.
  • the ratio of various types of symbols and the ratio of various types of words that is, by calculating the frequency of a certain type of words or symbols, for example, the ratio of the content words that appear in the part of speech tagging text to the total number of words, the content words include nouns, verbs, Adjectives, numerals, quantifiers and pronouns; the ratio of function words that appear in the part-of-speech tagged text to the total number of words.
  • function words include adverbs, prepositions, conjunctions, auxiliary words, interjections, and onomatopoeias; all punctuations appearing in the part-of-speech tagged text
  • the number of symbols, punctuation includes dots, labels and symbols, the ratio of the number of dots that appear in the part-of-speech tag text to the number of all punctuation marks, the ratio of the number of labels that appear in the part-of-speech tag text to the number of all punctuation marks, and the part of speech The ratio of the number of symbols that appear in the labeled text to the number of all punctuation marks.
  • the server matches and reads the named entities associated with the preset medical treatment from the entity recognition text.
  • medical semantic features include the number of medical entities appearing in the entity recognition text, and the medical entities belonging to the symptoms appearing in the entity recognition text. The number of medical entities that belong to diseases in the entity recognition text, the number of medical entities that belong to inspections in the entity recognition text, and the number of medical entities that belong to drugs that appear in the entity recognition text.
  • the server assembles and merges the text complexity feature, the text grammatical style feature, and the medical semantic feature into the second text feature.
  • the text complexity feature extracted from the word segmentation text is used to indicate the characters in the text. Attribute features of words and sentences; text grammatical style features extracted from part-of-speech tagging processed by part-of-speech tagging are used to indicate the attributes of words and punctuation in the text; medical semantic features are used to indicate diseases, symptoms, inspections, and drugs Attribute characteristics of medical entities.
  • the server combines the first text feature and the second text feature, and inputs the combined text feature into the trained logistic regression model; the server evaluates the combined features through the trained logistic regression model, Obtain the evaluation result, which is used to identify the connotation quality level of the preset medical record text.
  • the connotative quality level uses A, B, and C to represent the level of the preset medical record text, that is, high level, medium level, and low level.
  • the preset medical record text A is obtained after classification and processing through a trained logistic regression model
  • the output value of the model is A, and A is also the evaluation result.
  • A indicates that the connotation quality level of the preset medical record text is a high level
  • C indicates that the connotation quality level of the preset medical record text is a low level.
  • the server trains the initial logistic regression model, obtains the trained logistic regression model, inputs the sample feature vector to the initial logistic regression model to be trained, and learns the relationship between the feature vector reflecting the connotation of the medical record text and the text connotation quality score, and obtains The output of the model.
  • the test data is used to evaluate the quality control of the proposed text, and to calculate the accuracy, precision and recall rate.
  • the logistic regression model is trained faster in the machine learning model.
  • the model converges to obtain the trained logistic regression model; the server inputs the test data set to the trained logistic regression The intensional quality level classification is performed in the model to obtain the classification results, and the trained logistic regression model is updated iteratively based on the classification results.
  • the server obtains a plurality of electronic medical record samples, the electronic medical record samples are used to indicate the samples that have been evaluated by the percentile system; the server performs text encoding and extracts text features on the multiple electronic medical record samples to obtain the first feature set and the first feature set. Second feature set; the server constructs a feature matrix of multiple electronic medical record samples from the second feature set according to the preset feature sequence; the server extracts multiple connotation quality scores from multiple marked electronic medical record samples, and scores multiple connotation quality scores The column vector is formed to obtain the scoring matrix; the server calculates the feature matrix and the scoring matrix according to the preset formula to obtain multiple Pearson correlation coefficients.
  • the preset formula is: Wherein X i is the text feature set each of the second feature, the connotation Y i for each quality score, r is reflected to indicate the degree of linear correlation two variables of X i and Y i; Pearson each server determines whether the coefficient is greater than Preset threshold; if each Pearson correlation coefficient is greater than the preset threshold, the server sets the corresponding text feature as the target text feature, and sets the selected target text feature and the first feature set as the preset text feature sample.
  • the first acquisition module 301 is used to acquire the initial text from the preset medical record text.
  • the initial text includes main complaint information, current medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgical record information ;
  • the preprocessing module 302 is configured to perform text preprocessing on the initial text through a natural language processing algorithm to obtain the target text;
  • the first encoding module 303 is configured to perform text encoding on the target text through a preset bag-of-words model and a preset automatic encoding model to obtain the first text feature;
  • the extraction module 304 is used to perform feature extraction on the target text to obtain a second text feature.
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • Feature extraction includes calculating the number and number of various types of words The ratio of type symbols and the ratio of each type of words;
  • the evaluation module 305 is used to evaluate the first text feature and the second text feature through the trained logistic regression model to obtain the evaluation result, which is used to identify the connotation quality level of the preset medical record text.
  • the features obtained by encoding the medical record text and the features of the textual connotation quality are extracted from the medical record text, and the two are combined as the general features of the text connotation quality, according to the general features and logic of the text connotative quality
  • the regression algorithm trains the classification model to improve the accuracy of the text connotation quality evaluation and the efficiency of the text connotation quality evaluation model training.
  • FIG. 4 another embodiment of the device for evaluating the connotation quality of the text in the embodiment of the present application includes:
  • the first acquisition module 301 is used to acquire the initial text from the preset medical record text.
  • the initial text includes main complaint information, current medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgical record information ;
  • the preprocessing module 302 is configured to perform text preprocessing on the initial text through a natural language processing algorithm to obtain the target text;
  • the first encoding module 303 is configured to perform text encoding on the target text through a preset bag-of-words model and a preset automatic encoding model to obtain the first text feature;
  • the extraction module 304 is used to perform feature extraction on the target text to obtain a second text feature.
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • Feature extraction includes calculating the number and number of various types of words The ratio of type symbols and the ratio of each type of words;
  • the evaluation module 305 is used to evaluate the first text feature and the second text feature through the trained logistic regression model to obtain the evaluation result, which is used to identify the connotation quality level of the preset medical record text.
  • the preprocessing module 302 may also be specifically used for:
  • the initial text is segmented through natural language processing algorithms to obtain the segmented text
  • the entity recognition text includes k words, and k is a positive integer
  • the target text may also be stored in a node of a blockchain.
  • the first encoding module 303 is specifically configured to:
  • the n-dimensional feature vector is set as the first text feature, and the first text feature is stored in the preset data table.
  • the evaluation device for the connotation quality of the text also includes:
  • the second encoding module 307 is configured to encode the training feature vector through a preset encoder to obtain a target feature vector, the dimension of the target feature vector is y, y is a positive integer, and x>y;
  • the decoding module 308 is configured to decode the y-dimensional target feature vector through a preset decoder to obtain the x-dimensional feature vector Z';
  • the extraction module 304 may also be specifically used for:
  • the text complexity features include the number of various types of words and sentences in the target text;
  • Text grammatical style features include the ratio of various types of symbols and the ratio of various types of words;
  • the evaluation device for the connotation quality of the text also includes:
  • the third acquiring module 310 is used to acquire preset text feature samples
  • the calculation module 312 is configured to calculate the loss function corresponding to the initial logistic regression model based on the training data set;
  • the update module 313 is used to update the target model parameters in the initial logistic regression model according to the loss function to obtain a trained logistic regression model
  • the test module 314 is configured to input the test data set into the trained logistic regression model to classify the connotation quality level, obtain the classification result, and iteratively update the trained logistic regression model based on the classification result.
  • the third obtaining module 310 may also be specifically used for:
  • the feature matrix and scoring matrix are calculated according to the preset formula, and multiple Pearson correlation coefficients are obtained.
  • the preset formula is: Wherein, each X i is a text characteristic feature of the second set, each Y i connotation quality score, r is reflected to indicate the degree of linear correlation two variables of X i and Y i;
  • the features obtained by encoding the medical record text and the features of the textual connotation quality are extracted from the medical record text, and the two are combined as the general features of the text connotation quality, according to the general features and logic of the text connotative quality
  • the regression algorithm trains the classification model to improve the accuracy of the text connotation quality evaluation and the efficiency of the text connotation quality evaluation model training.
  • FIG. 5 is a schematic structural diagram of a textual connotative quality evaluation device provided by an embodiment of the present application.
  • the textual connotative quality evaluation device 500 may have relatively large differences due to different configurations or performances, and may include one or more processors (central processing units, CPU) 510 (for example, one or more processors) and memory 520, one or more storage media 530 (for example, one or one storage device with a large amount of storage) storing application programs 533 or data 532.
  • the memory 520 and the storage medium 530 may be short-term storage or persistent storage.
  • the program stored in the storage medium 530 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations in the device 500 for evaluating the connotative quality of the text.
  • the processor 510 may be configured to communicate with the storage medium 530, and execute a series of instruction operations in the storage medium 530 on the device 500 for evaluating the quality of text connotation.
  • the textual quality assessment device 500 may also include one or more power supplies 540, one or more wired or wireless network interfaces 550, one or more input and output interfaces 560, and/or one or more operating systems 531, for example Windows Serve, Mac OS X, Unix, Linux, FreeBSD, etc.
  • operating systems 531 for example Windows Serve, Mac OS X, Unix, Linux, FreeBSD, etc.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium or a volatile computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions, and when the computer instructions are executed on the computer, the computer executes the following steps:
  • Obtain an initial text from a preset medical record text the initial text including main complaint information, current medical history information, physical examination information, first course record information, disease course record information, ward round record information, and surgical record information;
  • the second text feature includes text complexity features, text grammatical style features, and medical semantic features.
  • the first text feature and the second text feature are evaluated by a trained logistic regression model to obtain an evaluation result, and the evaluation result is used to identify the connotation quality level of the preset medical record text.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

一种文本内涵质量的评估方法、装置、设备及存储介质,涉及人工智能技术领域,用于提高文本内涵质量的评估的准确性。从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息(101);通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本(102);通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征(103);对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率(104);通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级(105)。所述方法还涉及区块链技术,所述目标文本存储于区块链中。

Description

文本内涵质量的评估方法、装置、设备及存储介质
本申请要求于2020年05月14日提交中国专利局、申请号为202010405915.6、发明名称为“文本内涵质量的评估方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及机器学习领域,尤其涉及一种文本内涵质量的评估方法、装置、设备及存储介质。
背景技术
病历系统记录了病人疾病的发生、发展、诊断和治疗情况,病历的质量控制是医院的医疗质量管理中重要组成部分。病历质控一般由专业质控人员通过人工方式对病历进行质量评估。然而,普遍存在专业质控人员不足、人工病历质控耗费精力大、效率低的问题。
随着电子病历系统在医院的普及,电子病历逐步取代了手工书写病历,使得病历信息的收集更加方便、快捷。然而,现有的电子病历系统一般只对病历的形式进行检查,不能对病历的质量进行检查。
传统的文本内涵质控系统一般是基于一些人工设定的规则对病历的内涵进行检查,从而实现对病历的质量进行评估。然而,发明人意识到,这些传统文本内涵质控并没有对整体的病历文本进行考虑,使得对文本内涵质量的评估的准确性较低。同时目前一些文本内涵质控系统通过自然语言处理和深度学习技术对大量病历数据的学习建立模型,实现病历的内涵质控,但是,这些文本内涵质控系统存在模型训练耗时大的问题。
发明内容
本申请的主要目的在于解决了基于人工设定规则进行内涵检查,导致文本内涵质量的评估的准确性较低,以及现有的文本内涵质控系统存在模型训练耗时大的技术问题。
为实现上述目的,本申请第一方面提供了一种文本内涵质量的评估方法,包括:从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
本申请第二方面提供了一种文本内涵质量的评估设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机可读指令,所述处理器执行所述计算机可读指令时实现如下步骤:从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
本申请第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有 计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如下步骤:从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
本申请第四方面提供了一种文本内涵质量的评估装置,包括:第一获取模块,用于从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;预处理模块,用于通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;编码模块,用于通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;提取模块,用于对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;评估模块,用于通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
本申请提供的技术方案中,从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。本申请中,通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
附图说明
图1为本申请实施例中文本内涵质量的评估方法的一个实施例示意图;
图2为本申请实施例中文本内涵质量的评估方法的另一个实施例示意图;
图3为本申请实施例中文本内涵质量的评估装置的一个实施例示意图;
图4为本申请实施例中文本内涵质量的评估装置的另一个实施例示意图;
图5为本申请实施例中文本内涵质量的评估设备的一个实施例示意图。
具体实施方式
本申请实施例提供了一种文本内涵质量的评估方法、装置、设备及存储介质,用于通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四” 等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解,下面对本申请实施例的具体流程进行描述,请参阅图1,本申请实施例中文本内涵质量的评估方法的一个实施例包括:
101、从预置病历文本中获取初始文本,初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息。
其中,预置病历文本是预先采用电子设备保存、管理、传输以及重现的数字化的医疗记录,并用于取代手写纸张病历,预置病历文本的内容包括纸张病历的所有信息,也就是说,预置病历文本与纸张病历在文本层面是相同的。进一步地,服务器从预置数据库中按照预置病历文本的不同维度信息读取初始文本,不同维度信息用于指示初始文本的不同内容。
102、通过自然语言处理算法对初始文本进行文本预处理,得到目标文本。
服务器通过预设的自然语言处理算法对初始文本进行文本预处理,得到预处理后的目标文本,该预处理包括分词、词性标注以及医疗命名实体识别,预处理后的目标文本包括分词文本、词性标注文本和实体识别文本。
需要说明的是,自然语言处理算法就是智能分析,理解和从人类语言中获取数据的一种算法,包括正向最大匹配算法、逆向最大匹配算法、最大概率分词算法以及条件随机场算法。需要强调的是,为进一步保证上述目标文本的私密和安全性,上述目标文本还可以存储于一区块链的节点中。
103、通过预置词袋模型和预置自动编码模型对目标文本进行文本编码,得到第一文本特征。
服务器对目标文本进行文本编码,具体的,服务器首先将预处理后的目标文本的目标文本通过预置词袋模型转换为高维稀疏的特征向量,然后服务器将高维稀疏的特征向量通过预置自动编码模型转换为低维紧密的特征向量,服务器将该低维紧密的特征向量设置为目标文本的文本编码,也就是第一文本特征。其中,预置词袋模型是自然语言处理中在建模文本时常用的文本表示算法,预置自动编码模型对输入数据进行压缩编码,也就是将高维的原始数据采用低维的向量表示,使得压缩后的低维向量保留输入数据的典型特征,从而能够较为方便的恢复原始数据。
104、对目标文本进行特征提取,得到第二文本特征,第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,特征提取包括计算各类型字词的数量、各类型符号的比率和各类型字词的比率。
服务器对预处理后的目标文本提取第二文本特征,第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征。其中,预处理后的目标文本包括分词文本、词性标注文本和实体识别文本,特征的提取是通过计算某类词或者符号出现的频率,例如,各类型字词的数量、各类型符号的比率和各类型字词的比率,第二文本特征在一定程度上能够反映出病历的内涵质量。
105、通过训练好的逻辑回归模型对第一文本特征和第二文本特征进行评估处理,得到评估结果,评估结果用于标识预置病历文本的内涵质量等级。
其中,第一特征和第二特征为目标文本的文本编码和文本特征所结合的特征,训练逻 辑回归模型进行病历文本内涵质量的评估。训练逻辑回归模型相对训练其它机器学习或者深度学习模型效率高。服务器通过训练好的逻辑回归模型对第一文本特征和第二文本特征进行评估处理,得到评估结果,该评估结果用于标识预置病历文本的内涵质量等级。具体的,服务器将第一文本特征和第二文本特征进行合并,并将合并后的文本特征输入到训练好的逻辑回归模型中;服务器通过训练好的逻辑回归模型进行评估处理,得到评估结果,该评估结果用于标识预置病历文本的内涵质量等级。其中,内涵质量等级分别采用2、1和0表示预置病历文本的等级,也就是高等级、中等级和低等级,例如,预置病历文本A通过训练好的逻辑回归模型进行分类处理后得到模型输出值为2,2也为评估结果,2表示预置病历文本的内涵质量等级为高等级。
需要说明的是,文本内涵质量的个性化评估是通过对病历文本特征的不同选择来实现的。不同的医院有不同的文本内涵质量评估要求,例如,A医院对病历文本的语法要求较高,将着重于能够反映病历文本语法的特征;B医院对病历文本中出现的医疗术语要求比较高,将着重于这些医疗实体相关的特征,具体此处不做限定。
本申请实施例中,通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
请参阅图2,本申请实施例中文本内涵质量的评估方法的另一个实施例包括:
201、从预置病历文本中获取初始文本,初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息。
具体的,服务器从预置数据库中按照预置病历文本的不同维度信息读取初始文本,不同维度信息用于指示初始文本的不同内容,初始文本的不同内容包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息。其中,预置病历文本是预先采用电子设备保存、管理、传输以及重现的数字化的医疗记录,并用于取代手写纸张病历。
202、通过自然语言处理算法对初始文本进行文本预处理,得到目标文本。
具体的,首先,服务器通过自然语言处理算法对初始文本进行分词,得到分词文本,其中,分词就是将连续的字符按照预置规则重新组合成词序列的过程,目标文本中包括句子和段落,句子和段落之间的字与词是连续的字符。具体的,服务器采用正向最大匹配算法或者逆向最大匹配算法对目标文本进行分词处理后,得到分词文本的最小单位粒度是词。
进一步地,服务器根据最大概率分词算法按照上下文语义对初始文本进行分词,以便于对初始文本进行歧义识别和新词识别,歧义是指对同一个待切分字符串存在多个分词结果,新词是指未被词典收录的词。具体的,服务器从初始文本中获取多个字串,服务器每个字串按照从左到右的顺序取出多个候选词;服务器从预置词典中查出每个候选词的概率值,并记录每个候选词的全部左邻词;服务器计算每个候选词的累计概率,并从每个候选词的全部左邻词中比较得到每个候选词的最佳左邻词;若当前词为字串的尾词,且累计概率为最大值,则服务器设置当前词为字串的终点词;将当前词设置为起点,服务器按照从右到左顺序依次将每个词的最佳左邻词输出,得到目标文本的字串的分词结果,重复执行以上过程,直到得到目标文本的全部分词结果。
然后,服务器对分词文本进行词性标注,得到词性标注文本。其中,词性标注就是对分词文本中句子逐个判定每个词的语法范畴、确定其词性并加以标注的过程,词性包括实词和虚词。可选的,服务器采用条件随机场算法对分词文本进行词性标注,得到词性标注文本。
其次,服务器对词性标注文本进行医疗命名实体识别,得到实体识别文本,该实体识别文本包括k个词,k为正整数。其中,医疗命名实体识别就是对词性标注文本中与医疗相关的专有名词进行识别并归类的过程,例如,专有名词包括感冒、上呼吸道、感染、发烧、改善以及治愈。可选的,服务器根据条件随机场算法对词性标注文本进行医疗命名实体识别,得到实体识别文本;最后,服务器将分词文本、词性标注文本述实体识别文本设置为目标文本。
203、通过预置词袋模型和预置自动编码模型对目标文本进行文本编码,得到第一文本特征。
具体的,首先,服务器从目标文本中提取多个目标词,并通过预置词袋模型将多个目标词转换为m维特征向量,m为正整数。进一步地,服务器通过预置词袋模型统计每个词在预处理后的目标文本中出现的次数,服务器将所有词和对应的次数进行合并后,将合并后的数据进行标准化处理,得到m维特征向量,m维特征向量为高维稀疏的特征向量,其中,m维特征向量中每个元素对应的位置表示对应的词在预置病历文本中出现的次数,其中,高维稀疏的特征向量的大部分特征为0。需要说明的是,预置词袋模型不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词在文本中的权重,而权重与词在文本中出现的频率有关
其次,服务器通过预置自动编码模型将通过预置词袋模型得到的m维特征向量转换为n维特征向量,n为正整数,并且n小于m。具体的,服务器系统将m维特征向量输入到预置自动编码模型中,通过预置自动编码模型将m维特征向量转换为n维特征向量,其中,n维特征向量为低维紧密的特征向量。预置自动编码模型为预先训练好的自动编码网络模型,训练预置自动编码模型的具体过程进一步包括:服务器获取训练特征向量Z,训练特征向量的维数为x,x为正整数;服务器通过预置编码器对训练特征向量x进行编码得到目标特征向量,目标特征向量的维数为y,y为正整数,并且x>y;服务器通过预置解码器对y维目标特征向量向量解码得到x维特征向量Z';服务器计算Z和Z'的交叉熵损失函数,采用梯度下降算法迭代更新初始自动编码模型中各个参数,直到初始自动编码模型训练收敛时,得到训练好的预置自动编码模型。最后,服务器将n维特征向量设置为第一文本特征,并将n维特征向量存储到预置数据表中。
204、从分词文本中提取文本复杂度特征,文本复杂度特征包括目标文本中各类型字词的数量和句子的数量。
文本复杂度特征包括目标文本中各类型字词的数量和句子的数量,例如,分词文本中出现的字的数量、分词文本中出现的词的数量、分词文本中出现的句子的数量、分词文本中平均每个词的字数、分词文本中平均每个句子的字数以及分词文本中平均每个句子的词数。
205、从词性标注文本中提取文本语法风格特征,文本语法风格特征包括各类型符号的比率和各类型字词的比率。
其中,各类型符号的比率和各类型字词的比率,也就是通过计算某类词或者符号出现的频率,例如,词性标注文本中出现的实词占总词数的比率,实词包括名词、动词、形容词、数词、量词和代词;词性标注文本中出现的虚词占总词数的比率,其中,虚词包括副词、介词、连词、助词、叹词、拟声词;词性标注文本中出现的所有标点符号的数目,标点符号包括点号、标号和符号、词性标注文本中出现的点号的数目占所有标点符号数目的比率、词性标注文本中出现的标号的数目占所有标点符号数目的比率以及词性标注文本中出现的符号的数目占所有标点符号数目的比率。
206、从实体识别文本中确定与预置医疗关联的命名实体,得到医疗语义特征。
进一步地,服务器从实体识别文本中匹配并读取与预置医疗关联的命名实体,例如,医疗语义特征包括实体识别文本中出现的医疗实体的数目、实体识别文本中出现的属于症状的医疗实体的数目、实体识别文本中出现的属于疾病的医疗实体的数目、实体识别文本中出现的属于检验检查的医疗实体的数目以及实体识别文本中出现的属于药品的医疗实体的数目。
207、将文本复杂度特征、文本语法风格特征和医疗语义特征设置为第二文本特征。
也就是,服务器对文本复杂度特征、文本语法风格特征和医疗语义特征进行组装并合并为第二文本特征,可以理解的是,从分词处理的分词文本提取的文本复杂度特征用于指示文本中字、词和句子的属性特征;从词性标注处理的词性标注文本提取的文本语法风格特征用于指示文本中词和标点符号的属性特征;医疗语义特征用于指示疾病、症状、检验检查和药品的医疗实体的属性特征。
208、通过训练好的逻辑回归模型对第一文本特征和第二文本特征进行评估处理,得到评估结果,评估结果用于标识预置病历文本的内涵质量等级。
其中,训练逻辑回归模型相对训练其它机器学习或者深度学习模型效率高。具体的,服务器将第一文本特征和第二文本特征进行合并,并将合并后的文本特征输入到训练好的逻辑回归模型中;服务器通过训练好的逻辑回归模型对合并的特征进行评估处理,得到评估结果,该评估结果用于标识预置病历文本的内涵质量等级。其中,内涵质量等级分别采用A、B和C表示预置病历文本的等级,也就是高等级、中等级和低等级,例如,预置病历文本A通过训练好的逻辑回归模型进行分类处理后得到模型输出值为A,A也为评估结果,A表示预置病历文本的内涵质量等级为高等级,C表示预置病历文本的内涵质量等级为低等级。
服务器对初始逻辑回归模型进行训练,得到训练好的逻辑回归模型,将样本特征向量输入到待训练的初始逻辑回归模型,学习反映病历文本内涵的特征向量和文本内涵质量评分之间的关系,得到模型的输出。需要说明的是,使用测试数据对提出的文本内涵质控进行评估,计算准确率、精确率和召回率,逻辑回归模型在机器学习模型中是训练速度较快的。具体的,服务器获取预置文本特征样本;服务器从预置文本特征样本中按照预置比率选取训练数据集和测试数据集,该预置文本特征样本为预先通过人工标记分数的文本特征样本;服务器基于训练数据集获取初始逻辑回归模型对应的损失函数;服务器按照损失函数更新初始逻辑回归模型中的目标模型参数,得到训练好的逻辑回归模型,进一步地,服务器通过梯度下降算法对损失函数求解最小值,并计算得到模型参数的估计值,再将估计值代入目标逻辑回归模型函数中,多次迭代后模型收敛,得到训练好的逻辑回归模型;服务器将测试数据集输入到训练好的逻辑回归模型中进行内涵质量等级分类,得到分类结果,并基于分类结果迭代更新训练好的逻辑回归模型。
进一步地,服务器获取多个电子病历样本,电子病历样本用于指示已采用百分制分数进行内涵质量评估的样本;服务器对多个电子病历样本进行文本编码以及提取文本特征,得到第一特征集和第二特征集;服务器将第二特征集按照预置特征顺序构建多个电子病历样本的特征矩阵;服务器从已标记的多个电子病历样本中提取多个内涵质量评分,并将多个内涵质量评分组成列向量,得到评分矩阵;服务器根据预置公式对特征矩阵和评分矩阵进行计算,得到多个皮尔森相关系数,预置公式为:
Figure PCTCN2020131673-appb-000001
其中 X i为每个第二特征集中的文本特征,Y i为每个内涵质量评分,r用来指示反映两个变量X i和Y i的线性相关程度;服务器判断每个皮尔森系数是否大于预置阈值;若每个皮尔森相关系数大于预置阈值,则服务器将对应的文本特征设置为目标文本特征,并将选取的目标文本特征和第一特征集设置为预置文本特征样本。
本申请实施例中,通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
上面对本申请实施例中文本内涵质量的评估方法进行了描述,下面对本申请实施例中文本内涵质量的评估装置进行描述,请参阅图3,本申请实施例中文本内涵质量的评估装置的一个实施例包括:
第一获取模块301,用于从预置病历文本中获取初始文本,初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
预处理模块302,用于通过自然语言处理算法对初始文本进行文本预处理,得到目标文本;
第一编码模块303,用于通过预置词袋模型和预置自动编码模型对目标文本进行文本编码,得到第一文本特征;
提取模块304,用于对目标文本进行特征提取,得到第二文本特征,第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,特征提取包括计算各类型字词的数量、各类型符号的比率和各类型字词的比率;
评估模块305,用于通过训练好的逻辑回归模型对第一文本特征和第二文本特征进行评估处理,得到评估结果,评估结果用于标识预置病历文本的内涵质量等级。
本申请实施例中,通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
请参阅图4,本申请实施例中文本内涵质量的评估装置的另一个实施例包括:
第一获取模块301,用于从预置病历文本中获取初始文本,初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
预处理模块302,用于通过自然语言处理算法对初始文本进行文本预处理,得到目标文本;
第一编码模块303,用于通过预置词袋模型和预置自动编码模型对目标文本进行文本编码,得到第一文本特征;
提取模块304,用于对目标文本进行特征提取,得到第二文本特征,第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,特征提取包括计算各类型字词的数量、各类型符号的比率和各类型字词的比率;
评估模块305,用于通过训练好的逻辑回归模型对第一文本特征和第二文本特征进行评估处理,得到评估结果,评估结果用于标识预置病历文本的内涵质量等级。
可选的,预处理模块302还可以具体用于:
通过自然语言处理算法对初始文本进行分词,得到分词文本;
对分词文本进行词性标注,得到词性标注文本;
对词性标注文本进行医疗命名实体识别,得到实体识别文本,实体识别文本包括k个词,k为正整数;
将分词文本、词性标注文本和实体识别文本设置为目标文本。
需要强调的是,为进一步保证上述目标文本的私密和安全性,上述目标文本还可以存储于一区块链的节点中。
可选的,第一编码模块303具体用于:
从目标文本中提取多个目标词,并通过预置词袋模型将多个目标词转换为m维特征向量,m为正整数;
通过预置自动编码模型将m维特征向量转换为n维特征向量,n为正整数,并且n小于m;
将n维特征向量设置为第一文本特征,并将第一文本特征存储到预置数据表中。
可选的,文本内涵质量的评估装置还包括:
第二获取模块306,用于获取训练特征向量Z,训练特征向量的维数为x,x为正整数;
第二编码模块307,用于通过预置编码器对训练特征向量进行编码,得到目标特征向量,目标特征向量的维数为y,y为正整数,并且x>y;
解码模块308,用于通过预置解码器对y维目标特征向量进行解码,得到x维特征向量Z';
处理模块309,用于计算Z和Z'的交叉熵损失函数,并采用梯度下降算法迭代更新初始自动编码模型中各个参数,直到初始自动编码模型训练收敛时,得到预置自动编码模型。
可选的,提取模块304还可以具体用于:
从分词文本中提取文本复杂度特征,文本复杂度特征包括目标文本中各类型字词的数量和句子的数量;
从词性标注文本中提取文本语法风格特征,文本语法风格特征包括各类型符号的比率和各类型字词的比率;
从实体识别文本中确定与预置医疗关联的命名实体的数量,得到医疗语义特征;
将文本复杂度特征、文本语法风格特征和医疗语义特征设置为第二文本特征。
可选的,文本内涵质量的评估装置还包括:
第三获取模块310,用于获取预置文本特征样本;
选取模块311,用于从预置文本特征样本中按照预置比率选取训练数据集和测试数据集,预置文本特征样本为预先通过人工标记分数的文本特征样本;
计算模块312,用于基于训练数据集计算初始逻辑回归模型对应的损失函数;
更新模块313,用于按照损失函数更新初始逻辑回归模型中的目标模型参数,得到训练好的逻辑回归模型;
测试模块314,用于将测试数据集输入到训练好的逻辑回归模型中进行内涵质量等级分类,得到分类结果,并基于分类结果迭代更新训练好的逻辑回归模型。
可选的,第三获取模块310还可以具体用于:
获取多个电子病历样本,电子病历样本用于指示已采用百分制分数进行内涵质量评估的样本;
对多个电子病历样本进行文本编码以及提取文本特征,得到第一特征集和第二特征集;
将第二特征集按照预置特征顺序构建多个电子病历样本的特征矩阵;
从已标记的多个电子病历样本中提取多个内涵质量评分,并将多个内涵质量评分组成列向量,得到评分矩阵;
根据预置公式对特征矩阵和评分矩阵进行计算,得到多个皮尔森相关系数,预置公式 为:
Figure PCTCN2020131673-appb-000002
其中,X i为每个第二特征集中的文本特征,Y i为每个内涵质量评分,r用来指示反映两个变量X i和Y i的线性相关程度;
判断每个皮尔森系数是否大于预置阈值;
若每个皮尔森相关系数大于预置阈值,则将对应的文本特征设置为目标文本特征,并将选取的目标文本特征和第一特征集设置为预置文本特征样本。
本申请实施例中,通过对病历文本进行编码得到的特征,以及从病历文本中提取文本内涵质量的特征,并将二者结合作为文本内涵质量的总特征,根据文本内涵质量的总特征和逻辑回归算法训练分类模型,提高对文本内涵质量评估的准确性,并提高文本内涵质量评估模型训练的效率。
上面图3和图4从模块化功能实体的角度对本申请实施例中的文本内涵质量的评估装置进行详细描述,下面从硬件处理的角度对本申请实施例中文本内涵质量的评估设备进行详细描述。
图5是本申请实施例提供的一种文本内涵质量的评估设备的结构示意图,该文本内涵质量的评估设备500可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central processing units,CPU)510(例如,一个或一个以上处理器)和存储器520,一个或一个以上存储应用程序533或数据532的存储介质530(例如一个或一个以上海量存储设备)。其中,存储器520和存储介质530可以是短暂存储或持久存储。存储在存储介质530的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对文本内涵质量的评估设备500中的一系列指令操作。更进一步地,处理器510可以设置为与存储介质530通信,在文本内涵质量的评估设备500上执行存储介质530中的一系列指令操作。
文本内涵质量的评估设备500还可以包括一个或一个以上电源540,一个或一个以上有线或无线网络接口550,一个或一个以上输入输出接口560,和/或,一个或一个以上操作系统531,例如Windows Serve,Mac OS X,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图5示出的文本内涵质量的评估设备结构并不构成对文本内涵质量的评估设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请所指区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(Blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。区块链可以包括区块链底层平台、平台产品服务层以及应用服务层等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,也可以为易失性计算机可读存储介质。计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如下步骤:
从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;
通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;
对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;
通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种文本内涵质量的评估方法,其中,包括:
    从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
    通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;
    通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;
    对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;
    通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
  2. 根据权利要求1所述的文本内涵质量的评估方法,其中,所述目标文本存储于区块链中,所述通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本,包括:
    通过自然语言处理算法对所述初始文本进行分词,得到分词文本;
    对所述分词文本进行词性标注,得到词性标注文本;
    对所述词性标注文本进行医疗命名实体识别,得到实体识别文本,所述实体识别文本包括k个词,所述k为正整数;
    将所述分词文本、所述词性标注文本和所述实体识别文本设置为目标文本。
  3. 根据权利要求1所述的文本内涵质量的评估方法,其中,所述通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征,包括:
    从所述目标文本中提取多个目标词,并通过预置词袋模型将所述多个目标词转换为m维特征向量,所述m为正整数;
    通过预置自动编码模型将所述m维特征向量转换为n维特征向量,所述n为正整数,并且所述n小于所述m;
    将所述n维特征向量设置为第一文本特征,并将所述第一文本特征存储到预置数据表中。
  4. 根据权利要求1所述的文本内涵质量的评估方法,其中,在所述从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息之前,还包括:
    获取训练特征向量Z,所述训练特征向量的维数为x,所述x为正整数;
    通过预置编码器对所述训练特征向量进行编码,得到目标特征向量,所述目标特征向量的维数为y,所述y为正整数,并且x>y;
    通过预置解码器对所述y维目标特征向量进行解码,得到所述x维特征向量Z';
    计算所述Z和所述Z'的交叉熵损失函数,并采用梯度下降算法迭代更新初始自动编码模型中各个参数,直到所述初始自动编码模型训练收敛时,得到预置自动编码模型。
  5. 根据权利要求2所述的文本内涵质量的评估方法,其中,所述对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率,包括:
    从所述分词文本中提取文本复杂度特征,所述文本复杂度特征包括所述目标文本中各类型字词的数量和句子的数量;
    从所述词性标注文本中提取文本语法风格特征,所述文本语法风格特征包括各类型符号的比率和所述各类型字词的比率;
    从所述实体识别文本中确定与预置医疗关联的命名实体的数量,得到医疗语义特征;
    将所述文本复杂度特征、所述文本语法风格特征和所述医疗语义特征设置为第二文本特征。
  6. 根据权利要求1-5中任意一项所述文本内涵质量的评估方法,其中,在所述从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息之前,还包括:
    获取预置文本特征样本;
    从所述预置文本特征样本中按照预置比率选取训练数据集和测试数据集,所述预置文本特征样本为预先通过人工标记分数的文本特征样本;
    基于所述训练数据集计算初始逻辑回归模型对应的损失函数;
    按照所述损失函数更新所述初始逻辑回归模型中的目标模型参数,得到训练好的逻辑回归模型;
    将所述测试数据集输入到所述训练好的逻辑回归模型中进行内涵质量等级分类,得到分类结果,并基于所述分类结果迭代更新所述训练好的逻辑回归模型。
  7. 根据权利要求6所述的文本内涵质量的评估方法,其中,所述获取预置文本特征样本,包括:
    获取多个电子病历样本,所述电子病历样本用于指示已采用百分制分数进行内涵质量评估的样本;
    对所述多个电子病历样本进行文本编码以及提取文本特征,得到第一特征集和第二特征集;
    将所述第二特征集按照预置特征顺序构建所述多个电子病历样本的特征矩阵;
    从已标记的多个电子病历样本中提取多个内涵质量评分,并将所述多个内涵质量评分组成列向量,得到评分矩阵;
    根据预置公式对所述特征矩阵和所述评分矩阵进行计算,得到多个皮尔森相关系数,所述预置公式为:
    Figure PCTCN2020131673-appb-100001
    其中,X i为每个所述第二特征集中的文本特征,Y i为每个所述内涵质量评分,r用来指示反映两个变量所述X i和所述Y i的线性相关程度;
    判断每个皮尔森系数是否大于预置阈值;
    若所述每个皮尔森相关系数大于所述预置阈值,则将对应的文本特征设置为目标文本特征,并将选取的目标文本特征和所述第一特征集设置为所述预置文本特征样本。
  8. 一种文本内涵质量的评估设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机可读指令,所述处理器执行所述计算机可读指令时实现如下步骤:
    从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
    通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;
    通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;
    对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;
    通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
  9. 根据权利要求8所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    通过自然语言处理算法对所述初始文本进行分词,得到分词文本;
    对所述分词文本进行词性标注,得到词性标注文本;
    对所述词性标注文本进行医疗命名实体识别,得到实体识别文本,所述实体识别文本包括k个词,所述k为正整数;
    将所述分词文本、所述词性标注文本和所述实体识别文本设置为目标文本。
  10. 根据权利要求8所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    从所述目标文本中提取多个目标词,并通过预置词袋模型将所述多个目标词转换为m维特征向量,所述m为正整数;
    通过预置自动编码模型将所述m维特征向量转换为n维特征向量,所述n为正整数,并且所述n小于所述m;
    将所述n维特征向量设置为第一文本特征,并将所述第一文本特征存储到预置数据表中。
  11. 根据权利要求8所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    获取训练特征向量Z,所述训练特征向量的维数为x,所述x为正整数;
    通过预置编码器对所述训练特征向量进行编码,得到目标特征向量,所述目标特征向量的维数为y,所述y为正整数,并且x>y;
    通过预置解码器对所述y维目标特征向量进行解码,得到所述x维特征向量Z';
    计算所述Z和所述Z'的交叉熵损失函数,并采用梯度下降算法迭代更新初始自动编码模型中各个参数,直到所述初始自动编码模型训练收敛时,得到预置自动编码模型。
  12. 根据权利要求9所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    从所述分词文本中提取文本复杂度特征,所述文本复杂度特征包括所述目标文本中各类型字词的数量和句子的数量;
    从所述词性标注文本中提取文本语法风格特征,所述文本语法风格特征包括各类型符号的比率和所述各类型字词的比率;
    从所述实体识别文本中确定与预置医疗关联的命名实体的数量,得到医疗语义特征;
    将所述文本复杂度特征、所述文本语法风格特征和所述医疗语义特征设置为第二文本特征。
  13. 根据权利要求8-12中任意一项所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    获取预置文本特征样本;
    从所述预置文本特征样本中按照预置比率选取训练数据集和测试数据集,所述预置文 本特征样本为预先通过人工标记分数的文本特征样本;
    基于所述训练数据集计算初始逻辑回归模型对应的损失函数;
    按照所述损失函数更新所述初始逻辑回归模型中的目标模型参数,得到训练好的逻辑回归模型;
    将所述测试数据集输入到所述训练好的逻辑回归模型中进行内涵质量等级分类,得到分类结果,并基于所述分类结果迭代更新所述训练好的逻辑回归模型。
  14. 根据权利要求13所述的文本内涵质量的评估设备,所述处理器执行所述计算机程序时还实现以下步骤:
    获取多个电子病历样本,所述电子病历样本用于指示已采用百分制分数进行内涵质量评估的样本;
    对所述多个电子病历样本进行文本编码以及提取文本特征,得到第一特征集和第二特征集;
    将所述第二特征集按照预置特征顺序构建所述多个电子病历样本的特征矩阵;
    从已标记的多个电子病历样本中提取多个内涵质量评分,并将所述多个内涵质量评分组成列向量,得到评分矩阵;
    根据预置公式对所述特征矩阵和所述评分矩阵进行计算,得到多个皮尔森相关系数,所述预置公式为:
    Figure PCTCN2020131673-appb-100002
    其中,X i为每个所述第二特征集中的文本特征,Y i为每个所述内涵质量评分,r用来指示反映两个变量所述X i和所述Y i的线性相关程度;
    判断每个皮尔森系数是否大于预置阈值;
    若所述每个皮尔森相关系数大于所述预置阈值,则将对应的文本特征设置为目标文本特征,并将选取的目标文本特征和所述第一特征集设置为所述预置文本特征样本。
  15. 一种计算机可读存储介质,所述计算机可读存储介质中存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如下步骤:
    从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
    通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;
    通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;
    对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;
    通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
  16. 根据权利要求15所述的计算机可读存储介质,当所述计算机指令在计算机上运行时,使得计算机还执行以下步骤:
    通过自然语言处理算法对所述初始文本进行分词,得到分词文本;
    对所述分词文本进行词性标注,得到词性标注文本;
    对所述词性标注文本进行医疗命名实体识别,得到实体识别文本,所述实体识别文本包括k个词,所述k为正整数;
    将所述分词文本、所述词性标注文本和所述实体识别文本设置为目标文本。
  17. 根据权利要求15所述的计算机可读存储介质,当所述计算机指令在计算机上运行时,使得计算机还执行以下步骤:
    从所述目标文本中提取多个目标词,并通过预置词袋模型将所述多个目标词转换为m维特征向量,所述m为正整数;
    通过预置自动编码模型将所述m维特征向量转换为n维特征向量,所述n为正整数,并且所述n小于所述m;
    将所述n维特征向量设置为第一文本特征,并将所述第一文本特征存储到预置数据表中。
  18. 根据权利要求15所述的计算机可读存储介质,当所述计算机指令在计算机上运行时,使得计算机还执行以下步骤:
    获取训练特征向量Z,所述训练特征向量的维数为x,所述x为正整数;
    通过预置编码器对所述训练特征向量进行编码,得到目标特征向量,所述目标特征向量的维数为y,所述y为正整数,并且x>y;
    通过预置解码器对所述y维目标特征向量进行解码,得到所述x维特征向量Z';
    计算所述Z和所述Z'的交叉熵损失函数,并采用梯度下降算法迭代更新初始自动编码模型中各个参数,直到所述初始自动编码模型训练收敛时,得到预置自动编码模型。
  19. 根据权利要求16所述的计算机可读存储介质,当所述计算机指令在计算机上运行执行以下步骤时,使得计算机还执行以下步骤:
    从所述分词文本中提取文本复杂度特征,所述文本复杂度特征包括所述目标文本中各类型字词的数量和句子的数量;
    从所述词性标注文本中提取文本语法风格特征,所述文本语法风格特征包括各类型符号的比率和所述各类型字词的比率;
    从所述实体识别文本中确定与预置医疗关联的命名实体的数量,得到医疗语义特征;
    将所述文本复杂度特征、所述文本语法风格特征和所述医疗语义特征设置为第二文本特征。
  20. 一种文本内涵质量的评估装置,其中,所述文本内涵质量的评估装置包括:
    第一获取模块,用于从预置病历文本中获取初始文本,所述初始文本包括主诉信息、现有病史信息、查体信息、首次病程记录信息、病程记录信息、查房记录信息以及手术记录信息;
    预处理模块,用于通过自然语言处理算法对所述初始文本进行文本预处理,得到目标文本;
    第一编码模块,用于通过预置词袋模型和预置自动编码模型对所述目标文本进行文本编码,得到第一文本特征;
    提取模块,用于对所述目标文本进行特征提取,得到第二文本特征,所述第二文本特征包括文本复杂度特征、文本语法风格特征和医疗语义特征,所述特征提取包括计算各类型字词的数量、各类型符号的比率和所述各类型字词的比率;
    评估模块,用于通过训练好的逻辑回归模型对所述第一文本特征和所述第二文本特征进行评估处理,得到评估结果,所述评估结果用于标识所述预置病历文本的内涵质量等级。
PCT/CN2020/131673 2020-05-14 2020-11-26 文本内涵质量的评估方法、装置、设备及存储介质 WO2021139424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010405915.6A CN111737975A (zh) 2020-05-14 2020-05-14 文本内涵质量的评估方法、装置、设备及存储介质
CN202010405915.6 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021139424A1 true WO2021139424A1 (zh) 2021-07-15

Family

ID=72647178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131673 WO2021139424A1 (zh) 2020-05-14 2020-11-26 文本内涵质量的评估方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111737975A (zh)
WO (1) WO2021139424A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505117A (zh) * 2021-07-26 2021-10-15 平安信托有限责任公司 基于数据指标的数据质量评估方法、装置、设备及介质
CN113627525A (zh) * 2021-08-10 2021-11-09 工银科技有限公司 特征提取模型的训练方法、医保风险识别方法及装置
CN113657114A (zh) * 2021-08-31 2021-11-16 平安医疗健康管理股份有限公司 疾病名称对码列表的生成方法、装置、设备及存储介质
CN113657325A (zh) * 2021-08-24 2021-11-16 北京百度网讯科技有限公司 用于确定标注样式信息的方法、装置、介质及程序产品
CN113822045A (zh) * 2021-09-29 2021-12-21 深圳市易平方网络科技有限公司 一种基于多模态数据的影评质量的识别方法及相关装置
CN114219184A (zh) * 2022-01-24 2022-03-22 中国工商银行股份有限公司 产品交易数据预测方法、装置、设备、介质和程序产品
CN114493507A (zh) * 2022-01-11 2022-05-13 中广核工程有限公司 核电站物项编码分类方法及系统
CN114880471A (zh) * 2022-04-24 2022-08-09 内蒙古健康医疗大数据有限公司 一种基于文本分类算法的电子病历质量评估方法及系统
CN115964678A (zh) * 2023-03-16 2023-04-14 微云智能科技有限公司 一种基于多传感器数据的智能识别方法及系统
CN117252739A (zh) * 2023-11-17 2023-12-19 山东山大鸥玛软件股份有限公司 一种评卷方法、系统、电子设备及存储介质
CN117422071A (zh) * 2023-12-19 2024-01-19 中南大学 一种文本词项多重分割标注转换方法及装置
CN117995347A (zh) * 2024-04-07 2024-05-07 北京惠每云科技有限公司 病历内涵质控方法、装置、电子设备及存储介质
CN118297069A (zh) * 2024-06-06 2024-07-05 北方健康医疗大数据科技有限公司 基于自然语言处理的数据治理系统、方法、设备及介质
CN118395953A (zh) * 2024-06-28 2024-07-26 山东山大鸥玛软件股份有限公司 融入元示例的作文评语生成方法、装置、电子设备及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111737975A (zh) * 2020-05-14 2020-10-02 平安科技(深圳)有限公司 文本内涵质量的评估方法、装置、设备及存储介质
CN113298283A (zh) * 2020-10-19 2021-08-24 阿里巴巴集团控股有限公司 一种内容对象预测方法和装置以及内容对象推荐方法
CN112288279A (zh) * 2020-10-30 2021-01-29 平安医疗健康管理股份有限公司 基于自然语言处理和线性回归的业务风险评估方法和装置
CN112507722B (zh) * 2020-11-30 2023-08-01 北京百度网讯科技有限公司 电子病历内涵质控方法和装置
CN112579729B (zh) * 2020-12-25 2024-05-21 百度(中国)有限公司 文档质量评价模型的训练方法、装置、电子设备和介质
CN112734202B (zh) * 2020-12-31 2024-06-28 深圳平安医疗健康科技服务有限公司 基于电子病历的医疗能力评价方法、装置、设备及介质
CN113707296B (zh) * 2021-08-25 2024-04-02 深圳平安智慧医健科技有限公司 医疗方案数据处理方法、装置、设备及存储介质
CN114398486B (zh) * 2022-01-06 2022-08-26 北京博瑞彤芸科技股份有限公司 一种智能定制获客宣传语的方法和装置
CN117952121B (zh) * 2024-03-27 2024-07-05 北方健康医疗大数据科技有限公司 一种医疗文本的质量评估方法、系统、电子设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063919A (ja) * 2010-09-15 2012-03-29 Fujifilm Corp 医用レポート評価装置、医用レポート評価方法、医用レポート評価プログラム、並びに医用ネットワークシステム
US20150324523A1 (en) * 2014-05-06 2015-11-12 Koninklijke Philips N.V. System and method for indicating the quality of information to support decision making
CN108182279A (zh) * 2018-01-26 2018-06-19 有米科技股份有限公司 基于文本特征的对象分类方法、装置和计算机设备
CN109726285A (zh) * 2018-12-18 2019-05-07 广州多益网络股份有限公司 一种文本分类方法、装置、存储介质及终端设备
CN110162779A (zh) * 2019-04-04 2019-08-23 北京百度网讯科技有限公司 病历质量的评估方法、装置及设备
CN110413730A (zh) * 2019-06-27 2019-11-05 平安科技(深圳)有限公司 文本信息匹配度检测方法、装置、计算机设备和存储介质
CN111737975A (zh) * 2020-05-14 2020-10-02 平安科技(深圳)有限公司 文本内涵质量的评估方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063919A (ja) * 2010-09-15 2012-03-29 Fujifilm Corp 医用レポート評価装置、医用レポート評価方法、医用レポート評価プログラム、並びに医用ネットワークシステム
US20150324523A1 (en) * 2014-05-06 2015-11-12 Koninklijke Philips N.V. System and method for indicating the quality of information to support decision making
CN108182279A (zh) * 2018-01-26 2018-06-19 有米科技股份有限公司 基于文本特征的对象分类方法、装置和计算机设备
CN109726285A (zh) * 2018-12-18 2019-05-07 广州多益网络股份有限公司 一种文本分类方法、装置、存储介质及终端设备
CN110162779A (zh) * 2019-04-04 2019-08-23 北京百度网讯科技有限公司 病历质量的评估方法、装置及设备
CN110413730A (zh) * 2019-06-27 2019-11-05 平安科技(深圳)有限公司 文本信息匹配度检测方法、装置、计算机设备和存储介质
CN111737975A (zh) * 2020-05-14 2020-10-02 平安科技(深圳)有限公司 文本内涵质量的评估方法、装置、设备及存储介质

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505117A (zh) * 2021-07-26 2021-10-15 平安信托有限责任公司 基于数据指标的数据质量评估方法、装置、设备及介质
CN113627525A (zh) * 2021-08-10 2021-11-09 工银科技有限公司 特征提取模型的训练方法、医保风险识别方法及装置
CN113657325A (zh) * 2021-08-24 2021-11-16 北京百度网讯科技有限公司 用于确定标注样式信息的方法、装置、介质及程序产品
CN113657325B (zh) * 2021-08-24 2024-04-12 北京百度网讯科技有限公司 用于确定标注样式信息的方法、装置、介质及程序产品
CN113657114A (zh) * 2021-08-31 2021-11-16 平安医疗健康管理股份有限公司 疾病名称对码列表的生成方法、装置、设备及存储介质
CN113822045B (zh) * 2021-09-29 2023-11-17 重庆市易平方科技有限公司 一种基于多模态数据的影评质量的识别方法及相关装置
CN113822045A (zh) * 2021-09-29 2021-12-21 深圳市易平方网络科技有限公司 一种基于多模态数据的影评质量的识别方法及相关装置
CN114493507A (zh) * 2022-01-11 2022-05-13 中广核工程有限公司 核电站物项编码分类方法及系统
CN114219184A (zh) * 2022-01-24 2022-03-22 中国工商银行股份有限公司 产品交易数据预测方法、装置、设备、介质和程序产品
CN114880471A (zh) * 2022-04-24 2022-08-09 内蒙古健康医疗大数据有限公司 一种基于文本分类算法的电子病历质量评估方法及系统
CN115964678A (zh) * 2023-03-16 2023-04-14 微云智能科技有限公司 一种基于多传感器数据的智能识别方法及系统
CN115964678B (zh) * 2023-03-16 2023-10-03 微云智能科技有限公司 一种基于多传感器数据的智能识别方法及系统
CN117252739A (zh) * 2023-11-17 2023-12-19 山东山大鸥玛软件股份有限公司 一种评卷方法、系统、电子设备及存储介质
CN117252739B (zh) * 2023-11-17 2024-03-12 山东山大鸥玛软件股份有限公司 一种评卷方法、系统、电子设备及存储介质
CN117422071A (zh) * 2023-12-19 2024-01-19 中南大学 一种文本词项多重分割标注转换方法及装置
CN117422071B (zh) * 2023-12-19 2024-03-15 中南大学 一种文本词项多重分割标注转换方法及装置
CN117995347A (zh) * 2024-04-07 2024-05-07 北京惠每云科技有限公司 病历内涵质控方法、装置、电子设备及存储介质
CN118297069A (zh) * 2024-06-06 2024-07-05 北方健康医疗大数据科技有限公司 基于自然语言处理的数据治理系统、方法、设备及介质
CN118395953A (zh) * 2024-06-28 2024-07-26 山东山大鸥玛软件股份有限公司 融入元示例的作文评语生成方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN111737975A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2021139424A1 (zh) 文本内涵质量的评估方法、装置、设备及存储介质
CN111274806B (zh) 分词和词性识别方法、装置及电子病历的分析方法、装置
CN110059185B (zh) 一种医学文档专业词汇自动化标注方法
CN109871538A (zh) 一种中文电子病历命名实体识别方法
CN112002411A (zh) 一种基于电子病历的心脑血管病知识图谱问答方法
CN113011533A (zh) 文本分类方法、装置、计算机设备和存储介质
CN111738004A (zh) 一种命名实体识别模型的训练方法及命名实体识别的方法
US11989518B2 (en) Normalized processing method and apparatus of named entity, and electronic device
CN112800766B (zh) 基于主动学习的中文医疗实体识别标注方法及系统
CN106844351B (zh) 一种面向多数据源的医疗机构组织类实体识别方法及装置
CN111783466A (zh) 一种面向中文病历的命名实体识别方法
CN112687328B (zh) 确定临床描述信息的表型信息的方法、设备和介质
CN114662476B (zh) 一种融合词典与字符特征的字符序列识别方法
CN111950283A (zh) 面向大规模医疗文本挖掘的中文分词和命名实体识别系统
CN117708339B (zh) 一种基于预训练语言模型的icd自动编码方法
CN115310448A (zh) 一种基于bert和字词向量结合的中文命名实体识别方法
CN116628186B (zh) 文本摘要生成方法及系统
CN114358001A (zh) 诊断结果的标准化方法及其相关装置、设备和存储介质
CN117235275A (zh) 一种基于大语言模型推理的医学疾病编码映射方法及装置
CN117891958B (zh) 一种基于知识图谱的标准数据处理方法
WO2022242074A1 (zh) 一种多特征融合的中文医疗文本命名实体识别方法
CN113158659B (zh) 一种基于司法文本的涉案财物计算方法
CN112015871B (zh) 基于事件集远程监督的人物关系自动标注方法
CN114444467A (zh) 一种中医文献内容分析方法和装置
CN113297851A (zh) 一种针对易混淆运动损伤实体词的识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912981

Country of ref document: EP

Kind code of ref document: A1