WO2021139234A1 - 训练方法、ai面试方法及相关设备 - Google Patents

训练方法、ai面试方法及相关设备 Download PDF

Info

Publication number
WO2021139234A1
WO2021139234A1 PCT/CN2020/118213 CN2020118213W WO2021139234A1 WO 2021139234 A1 WO2021139234 A1 WO 2021139234A1 CN 2020118213 W CN2020118213 W CN 2020118213W WO 2021139234 A1 WO2021139234 A1 WO 2021139234A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
training
loss function
data
classification
Prior art date
Application number
PCT/CN2020/118213
Other languages
English (en)
French (fr)
Inventor
邓悦
郑立颖
徐亮
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021139234A1 publication Critical patent/WO2021139234A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • G06F16/3329Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources
    • G06Q10/1053Employment or hiring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of artificial intelligence, in particular to a training method, an AI interview method and related equipment.
  • the first step is that the AI first asks the candidate and obtains the candidate's reply.
  • the second step is that the candidate asks the AI in reverse and asks the candidate's reply. Reply by AI.
  • the inventor found that in the second step, due to the large number of large neural network layers, there will be slower responses or insufficient computing power in mobile terminals, so there is a problem of compressing large neural networks into small neural networks. Technology, but the accuracy of the small neural network is still insufficient, and there is a need for processing technology to improve the classification accuracy of the small neural network.
  • the main purpose of this application is to solve the technical problem of insufficient classification accuracy when a large neural network is compressed into a small neural network, and the small neural network is applied to AI interview responses.
  • the first aspect of this application provides a method for training a text classification neural network, including:
  • training text data and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the training vector data are respectively input into a preset large network and a preset small network for training, and the first processed data output by the large network and the second processed data output by the small network are obtained, as well as the large network and the entire network.
  • the classifier and the small network are respectively adjusted based on the adjustment parameters to obtain a text classification neural network.
  • the second aspect of this application provides an AI interview method based on a text classification neural network.
  • the AI interview method includes:
  • the text classification neural network obtains training vector data by acquiring training text data and performing vectorization processing on the training text data, where the training text data includes historical text data of interview candidates;
  • the training vector data are respectively input into a preset large-scale network and a preset small-scale network for training, to obtain the first processed data output by the large-scale network and the second processed data output by the small-scale network, and the large-scale network and the The overall loss function value corresponding to the small network, where the large network is used to adjust the classification accuracy of the small network;
  • the first processed data, the second processed data, and the training vector data are input into a preset classification Classifier performs classification processing to obtain a classification loss function value; according to the overall loss function value and the classification loss function value, the adjustment parameters of the classifier and the small network are calculated; based on the adjustment parameters, the classifier and the Neural network model obtained by adjusting a small network.
  • the third aspect of the present application provides a training device, including:
  • the vectorization module is used to obtain training text data, and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the numerical value acquisition module is used to input the training vector data into a preset large-scale network and a preset small-scale network for training, to obtain the first processed data output by the large-scale network and the second processed data output by the small-scale network, and Overall loss function values corresponding to the large-scale network and the small-scale network, wherein the large-scale network is used to adjust the classification accuracy of the small-scale network;
  • a classification processing module configured to input the first processed data, the second processed data, and the training vector data into a preset classifier for classification processing to obtain a classification loss function value
  • a calculation module configured to calculate the adjustment parameters of the classifier and the small network according to the overall loss function value and the classification loss function value;
  • the adjustment module is configured to adjust the classifier and the small network respectively based on the adjustment parameters to obtain a text classification neural network.
  • the fourth aspect of this application provides an AI interview device, including:
  • the obtaining module is used to obtain the text data of the interview candidate's rhetorical question, and vectorize the text data to obtain text vector data;
  • the reply generation module is used to input the text vector data into a preset text classification neural network for classification processing, and obtain the reply text data generated by the text classification neural network.
  • the fifth aspect of the present application provides an AI interview device based on a text classification neural network, including: a memory and at least one processor, the memory stores instructions, and the memory and the at least one processor are interconnected by wires ;
  • the at least one processor invokes the instructions in the memory, so that the AI interview device executes the following text classification neural network training method, or the at least one processor invokes all the instructions in the memory.
  • the training method of the text classification neural network includes the following steps:
  • training text data and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the training vector data are respectively input into a preset large network and a preset small network for training, and the first processed data output by the large network and the second processed data output by the small network are obtained, as well as the large network and the entire network.
  • the AI interview method based on the text classification neural network includes the following steps:
  • the text classification neural network obtains training vector data by acquiring training text data and performing vectorization processing on the training text data, where the training text data includes historical text data of interview candidates;
  • the training vector data are respectively input into a preset large-scale network and a preset small-scale network for training, to obtain the first processed data output by the large-scale network and the second processed data output by the small-scale network, and the large-scale network and the The overall loss function value corresponding to the small network, where the large network is used to adjust the classification accuracy of the small network;
  • the first processed data, the second processed data, and the training vector data are input into a preset classification Classifier performs classification processing to obtain a classification loss function value; according to the overall loss function value and the classification loss function value, the adjustment parameters of the classifier and the small network are calculated; based on the adjustment parameters, the classifier and the Neural network model obtained by adjusting a small network.
  • the sixth aspect of the present application provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the following text classification neural network training method , Or make the computer execute the AI interview method based on the text classification neural network as described below
  • the training method of the text classification neural network includes the following steps:
  • training text data and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the training vector data are respectively input into a preset large network and a preset small network for training, and the first processed data output by the large network and the second processed data output by the small network are obtained, as well as the large network and the entire network.
  • the AI interview method based on the text classification neural network includes the following steps:
  • the text classification neural network obtains training vector data by acquiring training text data and performing vectorization processing on the training text data, where the training text data includes historical text data of interview candidates;
  • the training vector data are respectively input into a preset large-scale network and a preset small-scale network for training, to obtain the first processed data output by the large-scale network and the second processed data output by the small-scale network, and the large-scale network and the The overall loss function value corresponding to the small network, where the large network is used to adjust the classification accuracy of the small network;
  • the first processed data, the second processed data, and the training vector data are input into a preset classification Classifier performs classification processing to obtain a classification loss function value; according to the overall loss function value and the classification loss function value, the adjustment parameters of the classifier and the small network are calculated; based on the adjustment parameters, the classifier and the Neural network model obtained by adjusting a small network.
  • the text data of the interview candidates are obtained, and the text data is vectorized to obtain text vector data; the text vector data is input into a preset text classification neural network for classification processing, Obtain the reply text data generated by the text classification neural network; wherein the text classification neural network is trained by a training method, and the training method includes: obtaining training text data, and performing vectorization processing on the training text data , Obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions; input the training vector data into a preset large-scale network and a preset small-scale network for training, and obtain the large-scale network output The first processed data and the second processed data output by the small network and the overall loss function value corresponding to the large network and the small network, wherein the large network is used to adjust the classification accuracy of the small network; The first processed data, the second processed data, and the training vector data are input into a preset classifier for classification processing to obtain a classification loss function value; according to the overall loss function value and the classification
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • FIG. 1 is a schematic diagram of a first embodiment of a training method in an embodiment of this application
  • FIG. 2 is a schematic diagram of a second embodiment of the training method in the embodiment of the application.
  • FIG. 3 is a schematic diagram of a third embodiment of the training method in the embodiment of this application.
  • Fig. 4 is a schematic diagram of an embodiment of the AI interview method in the embodiment of the application.
  • Fig. 5 is a schematic diagram of an embodiment of the training device in the embodiment of the application.
  • Fig. 6 is a schematic diagram of another embodiment of the training device in the embodiment of the application.
  • FIG. 7 is a schematic diagram of an embodiment of the AI interview device in an embodiment of the application.
  • FIG. 8 is a schematic diagram of an embodiment of the AI interview device in an embodiment of the application.
  • the text data of the interview candidates are obtained, and the text data is vectorized to obtain text vector data; the text vector data is input into a preset text classification neural network for classification processing, Obtain the reply text data generated by the text classification neural network; wherein the text classification neural network is trained by a training method, and the training method includes: obtaining training text data and performing vectorization processing on the training text data , Obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions; input the training vector data into a preset large-scale network and a preset small-scale network for training, and obtain the large-scale network output The first processed data and the second processed data output by the small network and the overall loss function value corresponding to the large network and the small network, wherein the large network is used to adjust the classification accuracy of the small network; The first processed data, the second processed data, and the training vector data are input into a preset classifier for classification processing to obtain a classification loss function value; according to the overall loss function value and the classification loss
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • the first embodiment of the training method of the text classification neural network in the embodiment of the present application includes:
  • training text data and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the training text data "I would like to ask what the specific work content of this post includes?" is obtained in this embodiment, and the training text data "I”, “want”, “please”, “ask”, “one” and “ “ ⁇ ”, “the”, “post”, “position”, “ ⁇ ”, “tool”, “body”, “work”, “work”, “inner”, “content”, “package”, “include” , “Where", “Some”, query the corresponding vector in the character vector correspondence table according to one-hot.
  • the large-scale network is a neural network that has been trained in higher computing equipment.
  • the computing time is too long and high computing power is required. Therefore, it is necessary to compress a large network into a smaller neural network, and the loss function will be set in the corresponding hidden layer during the compression process.
  • the loss function of the hidden layer is the loss function of the first corresponding hidden layer is MSE
  • the expression of MSE is:
  • MSE is the mean square error
  • ym is the sample
  • y-m is the average value of the sample.
  • the loss function in the second corresponding hidden layer is KL divergence, and the expression of KL divergence is:
  • P(x) and Q(x) are two probability distributions on the random variable X.
  • the loss function in the third corresponding hidden layer is cross entropy, and the expression of cross entropy is:
  • P(i) and Q(x) are probability distributions, where P(i) is the true distribution, and Q(x) is the untrue distribution.
  • the results generated by the large-scale neural network and the small-scale neural network also use the cross entropy as the loss function.
  • the probability output function for each element is:
  • T is a set parameter, used to improve the data mobility.
  • L MC ⁇ (L CE (P tea , P stu )+L CE (P data , P stu ))++(1- ⁇ )(L MSE (P tea1 , P stu1 )+L KL (P tea2 , P stu2 )+L CE (P tea3 , P stu3 ))
  • L CE represents the use of cross-entropy loss function
  • L MSE represents the use of MSE loss function
  • L KL represents the use of KL divergence as the loss function
  • P data represents the true label of the original candidate rhetorical text data
  • P tea , P stu represent respectively The final label distribution predicted by the large and small networks
  • P tea1 , P stu1 , P tea2 , P stu2 , P tec3 , and P stu3 represent the data obtained by the middle hidden layer of the large and small networks.
  • the training vector data A [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]T, enter In the large-scale network, the result T1 of the large-scale network processing can be obtained, and the result S1 is obtained by inputting the second small-scale network generated. The result is to compare T1 and S1 in the next step, and input to the classifier by combining (A, T1) and (A, S1). The classifier learns T1 and S1 based on the Text-RNN neural network model to distinguish large The difference between network and small network processing results.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • the training vector data A is combined with the result T1 of the large-scale network processing to generate (A, T1).
  • the text data vector A is combined with the second small network to obtain the result S1 to generate (A, S1), and (A, T1) and (A, S1) are input into the classifier based on the Text-RNN neural network model, and then the Text -The loss function of the RNN neural network model classifier is read as:
  • the classification loss function value LD of the first processed data and the second processed data is obtained by calculation.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • the large-scale network and the small-scale network are output as a whole, and the classifier is regarded as another whole.
  • the classifier continuously adjusts the parameters of the classifier itself by distinguishing the difference between the output data of the large-scale and small-scale networks.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • the obtained adjustment parameters are adjusted to the classifier and the small network, and finally the adjusted small network is used as the text classification neural network of the training result.
  • the mini-max game is for the small network to be as close to the large network as possible, but the classifier can also distinguish the difference between the small network and the large network as much as possible.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • the parameters of the small neural network and the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • the second embodiment of the training method of the text classification neural network in the embodiment of the present application includes:
  • the vectors a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20 respectively correspond to " "I", “Want”, "Please”, “Ask”, “Yi”, “Xia”, “The”, “Post”, “Position”, “The”, “Tools”, “Body”, “Work” , “ ⁇ ”, “ ⁇ ”, “content”, “package”, “include”, “where", “some” characters, according to the sorting arrangement of "I would like to ask what the specific work content of this post includes”, get
  • the corresponding text vector data A [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a
  • the corresponding hidden layer may have a tag mark, for example, marked as 1, 2, 3, it means that there are three hidden layers marked, and the large-scale network and the first small-scale network are jointly marked as the hidden layer of 1. It is the corresponding hidden layer.
  • the loss function of the hidden layer is that the loss function of the first corresponding hidden layer is MSE, and the expression of MSE is:
  • MSE is the mean square error
  • ym is the sample
  • y-m is the average value of the sample.
  • the loss function in the second corresponding hidden layer is KL divergence, and the expression of KL divergence is:
  • P(x) and Q(x) are two probability distributions on the random variable X.
  • the loss function in the third corresponding hidden layer is cross entropy, and the expression of cross entropy is:
  • P(i) and Q(x) are probability distributions, where P(i) is the true distribution, and Q(x) is the untrue distribution.
  • Q) 1 and H(P, Q) 1 of the loss function are obtained after the A vector is input to the large network and the small network.
  • the comprehensive loss function framework is obtained, where the comprehensive loss function framework is:
  • L MC ⁇ (L CE (P tea , P stu )+L CE (P data , P stu ))+(1- ⁇ )(L MSE (P tea1 , P stu1 )+L CE (P tea3 , P stu3 )+L KL (P tea2 , P stu2 ))
  • L CE means to use the cross entropy loss function
  • L MSE means to use the MSE loss function
  • L KL means to use KL divergence as the loss function
  • P data means the true label of the original candidate rhetorical text data
  • P tea , P stu means respectively The final label distribution predicted by the large and small networks
  • P tea1 , P stu1 , P tea2 , P stu2 , P tea3 , P stu3 represent the data obtained by the intermediate hidden layers of the large and small networks.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • the third embodiment of the training method of the text classification neural network in the embodiment of the present application includes:
  • 301 Obtain training text data, and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the first processed data is T1
  • the second processed data is S1
  • the two are respectively combined with the training vector data A to be (A, T1) and (A, S1).
  • (A, T1) and (A, S1) are judged using the Text-RNN neural network model.
  • (A, T1) and (A, S1) are multiplied by the mapping matrix W, and ( A, T1) and (A, S1) become vectors in n-dimensional space.
  • the first mapping data and the second mapping data are respectively multiplied by the weight matrix in the Text-RNN neural network to obtain the trained classification result.
  • the softmax algorithm is used to process the classification results, where the softmax algorithm is:
  • Zi is an i sample
  • j is a set containing i samples.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • Q) 1 and H(P, Q) 1 are substituted into the preset frame: minmax ⁇ L MC +(1- ⁇ )L D .
  • L MC ⁇ (L CE (P tea , P stu )+L CE (P data , P stu ))++(1- ⁇ )(L MSE (P tea1 , P stu1 )+L KL (P tea2 , P stu2 )+L CE (P tea3 , P stu3 ))
  • L CE represents the use of cross-entropy loss function
  • L MSE represents the use of MSE loss function
  • L KL represents the use of KL divergence as the loss function
  • P data represents the true label of the original candidate rhetorical text data
  • P tea , P stu represent respectively The final label distribution predicted by the large and small networks
  • P tea1 , P stu1 , P tea2 , P stu2 , P tea3 , P stu3 represent the data obtained by the intermediate hidden layers of the large and small networks.
  • the parameters of the small network are constantly adjusted to make the game loss function:
  • ⁇ L MC +(1- ⁇ )L D , LMC and LD are all in the extreme point, then it can be considered that the small network corresponding to ⁇ L MC +(1- ⁇ )L D is what we need to obtain Text classification neural network.
  • this application also relates to blockchain technology, and the user's private information can be stored in the blockchain node.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • the first embodiment of the AI interview method based on the text classification neural network in the embodiment of the present application includes:
  • Generate A [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20] T text based on the mapping Vector data.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • the training method and the AI interview method in the embodiment of the application are described above.
  • the training device and the AI interview device in the embodiment of the application are described below.
  • FIG. 5 an implementation of the training device for the text classification neural network in the embodiment of the application Examples include:
  • the vectorization module 501 is configured to obtain training text data, and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates' rhetorical questions;
  • the numerical value acquisition module 502 is configured to input the training vector data into a preset large-scale network and a preset small-scale network for training, to obtain first processed data output by the large-scale network and second processed data output by the small-scale network And overall loss function values corresponding to the large-scale network and the small-scale network, wherein the large-scale network is used to adjust the classification accuracy of the small-scale network;
  • the classification processing module 503 is configured to input the first processed data, the second processed data, and the training vector data into a preset classifier for classification processing to obtain a classification loss function value;
  • the calculation module 504 is configured to calculate the adjustment parameters of the classifier and the small network according to the overall loss function value and the classification loss function value;
  • the adjustment module 505 is configured to adjust the classifier and the small network respectively based on the adjustment parameters to obtain a text classification neural network.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • FIG. 6 another embodiment of the training device for the text classification neural network in the embodiment of the present application includes:
  • the vectorization module 601 is configured to obtain training text data, and perform vectorization processing on the training text data to obtain training vector data, where the training text data includes historical text data of interview candidates;
  • the numerical value acquisition module 602 is configured to input the training vector data into a preset large-scale network and a preset small-scale network for training, to obtain first processed data output by the large-scale network and second processed data output by the small-scale network And overall loss function values corresponding to the large-scale network and the small-scale network, wherein the large-scale network is used to adjust the classification accuracy of the small-scale network;
  • the classification processing module 603 is configured to input the first processed data, the second processed data, and the training vector data into a preset classifier for classification processing to obtain a classification loss function value;
  • the calculation module 604 is configured to calculate the adjustment parameters of the classifier and the small network according to the overall loss function value and the classification loss function value;
  • the adjustment module 605 is configured to adjust the classifier and the small network respectively based on the adjustment parameters to obtain a text classification neural network.
  • the vectorization module 601 is specifically configured to: obtain training text data and obtain a preset vector conversion table; sequentially read the characters in the training text data to obtain a training character combination; according to the training character combination Obtain the character sequence of the training text data by obtaining the time sequence of the characters in the training text; perform deduplication processing on the characters in the training character combination to obtain the character type set; query the vector conversion table according to the characters in the character type set According to the character sorting, the vector is arranged to generate training vector data.
  • the numerical value acquisition module 602 is specifically configured to: input the training vector data into a preset large-scale network and a preset small-scale network for training, to obtain the first processed data output by the large-scale network and the small-scale network The output second processed data; according to the preset network hidden layer mapping relationship, query the preset loss function of the corresponding hidden layer in the large network and the small network; according to the first processed data and the second processed data
  • the training process read all the output values of the loss function to obtain the loss function value of each corresponding hidden layer in the large network and the small network; obtain the preset overall loss function framework, and compare the loss of each corresponding hidden layer
  • the function value is filled into the overall loss function frame to obtain the overall loss function value.
  • the classification processing module 603 is specifically configured to: combine the first processed data and the training vector data to generate first combined data, and combine the second processed data and the training vector data to generate second Combined data; multiplying the first combined data and a preset vector mapping matrix to obtain first mapping data, and multiplying the second combined data and the vector mapping matrix to obtain second mapping data; A first classification result is obtained by multiplying the mapping data and a preset weight matrix, and the second classification result is obtained by multiplying the second mapping data and the weight matrix; normalizing the first classification result is obtained A first normalized result, normalize the second classification result to obtain a second normalized result, and substitute the first normalized result and the second normalized result into a preset Classification loss function, get the classification loss function value.
  • calculation module 604 includes:
  • the function value generating unit 6041 is configured to obtain a preset game loss function frame, and fill the overall loss function value and the classification loss function value into the game loss function frame to obtain the game loss function value;
  • the judging unit 6042 is configured to judge whether the game loss function value, the overall loss function value, and the classification loss function value are all extreme values;
  • the determining unit 6043 is configured to, if the game loss function value, the overall loss function value, and the classification loss function value are all extreme values, confirm the small network corresponding to the game loss function value as a text classification nerve The internet;
  • the adjustment parameter generation unit 6044 is configured to modify the parameters of the classifier and the small network if the game loss function value, the overall loss function value, and the classification loss function value are not all extreme values , Until the game loss function value, the overall loss function value, and the classification loss function value are all extreme values, and the adjustment parameters of the classifier and the small network are obtained.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • an embodiment of the AI interview device in the embodiment of this application includes:
  • the obtaining module 701 is configured to obtain text data of the interview candidate's rhetorical question, and vectorize the text data to obtain text vector data;
  • the reply generation module 702 is configured to input the text vector data into a preset text classification neural network for classification processing to obtain the reply text data generated by the text classification neural network, wherein the text classification neural network passes the above training The device is obtained by executing the above training method.
  • the parameters of the small neural network and the parameters of the classifier are adjusted through the game between the large neural network and the small neural network by the classifier, and the small neural network is improved.
  • the resolution accuracy of the neural network is improved.
  • FIG. 5 and 6 describe in detail the training device in the embodiment of the present application from the perspective of the modular functional entity.
  • Figure 7 above describes the AI interview device in the embodiment of the present application in detail from the perspective of the modular functional entity. From the perspective of hardware processing, the AI interview device in this embodiment of the application is described in detail.
  • FIG. 8 is a schematic structural diagram of an AI interview device provided by an embodiment of the present application.
  • the AI interview device 800 may have relatively large differences due to different configurations or performance, and may include one or more processors (central processing units, CPUs). ) 810 (for example, one or more processors) and memory 820, and one or more storage media 830 (for example, one or more storage devices with a large amount of data) storing application programs 833 or data 832.
  • the memory 820 and the storage medium 830 may be short-term storage or persistent storage.
  • the program stored in the storage medium 830 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the AI interview device 800.
  • the processor 810 may be configured to communicate with the storage medium 830, and execute a series of instruction operations in the storage medium 830 on the AI interview method 800.
  • the AI-based interview device 800 may also include one or more power supplies 840, one or more wired or wireless network interfaces 850, one or more input and output interfaces 860, and/or one or more operating systems 831, such as Windows Serve , Mac OS X, Unix, Linux, FreeBSD, etc.
  • operating systems 831 such as Windows Serve , Mac OS X, Unix, Linux, FreeBSD, etc.
  • FIG. 8 does not constitute a limitation on the AI-based interview device, and may include more or fewer components than shown, or a combination of certain components, or different components Layout.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, and the computer-readable storage medium may also be a volatile computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the instructions run on a computer, the computer executes the steps of the training method and the AI interview method.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the computer usable storage medium may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program required by at least one function, etc.; the storage data area may store a block chain node Use the created data, etc.
  • the blockchain referred to in this application is a new application mode of computer technology such as distributed data storage, point-to-point transmission, consensus mechanism, and encryption algorithm.
  • Blockchain essentially a decentralized database, is a series of data blocks associated with cryptographic methods. Each data block contains a batch of network transaction information for verification. The validity of the information (anti-counterfeiting) and generation of the next block.
  • the blockchain can include the underlying platform of the blockchain, the platform product service layer, and the application service layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Economics (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Human Computer Interaction (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Machine Translation (AREA)

Abstract

本申请涉及人工智能领域,公开了一种训练方法、AI面试方法及相关设备,用于AI面试对候选人的提问进行回复。该方法包括:获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据,其中,所述文本分类神经网络通过训练方法训练得出。本申请实施例,在将大型的神经网络压缩为小型的神经网络过程中,提高了小型的神经网络的分辨精度。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链中。

Description

训练方法、AI面试方法及相关设备
本申请要求于2020年6月16日提交中国专利局、申请号为202010548373.8、发明名称为“训练方法、AI面试方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及人工智能领域,尤其涉及一种训练方法、AI面试方法及相关设备。
背景技术
自在围棋领域上,人工智能成功战胜人类最强棋手,人工智能领域就不断被人们重视。在人工智能领域中深度学习、图像识别、自动驾驶、智能回复等领域,技术不断涌现,极大的改变了人类的生活。在移动支付领域,人脸识别技术被广泛应用。在自动驾驶领域,深度学习与图像识别不断创造新的奇迹。
在智能回复领域中,在应用场景AI招聘的过程中有两个步骤,第一步骤为AI先对候选人进行提问并获取候选人的回复,第二步骤为候选人对AI进行反向提问并由AI给予回复。发明人发现,在第二步骤中,由于大型的神经网络层集数较为巨大,在移动终端中会出现回复较慢或者算力不足的情况,因此出现了将大型神经网络压缩为小型神经网络的技术,但是小型神经网络的精度还存在不足的问题,需要有提高小型神经网络的分类精度的处理技术。
发明内容
本申请的主要目的在于解决当大型神经网络压缩为小型神经网络,小型神经网络应用于AI面试答复时分类精度不足的技术问题。
本申请第一方面提供了一种文本分类神经网络的训练方法,包括:
获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
本申请第二方面提供了一种基于文本分类神经网络的AI面试方法,所述AI面试方法包括:
获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
本申请第三方面提供了一种训练装置,包括:
向量化模块,用于获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
数值获取模块,用于将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
分类处理模块,用于将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
计算模块,用于根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
调整模块,用于基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
本申请第四方面提供了一种AI面试装置,包括:
获取模块,用于获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
答复生成模块,用于将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据。
本申请第五方面提供了一种基于文本分类神经网络的AI面试设备,包括:存储器和至少一个处理器,所述存储器中存储有指令,所述存储器和所述至少一个处理器通过线路互连;
所述至少一个处理器调用所述存储器中的所述指令,以使得所述AI面试设备执行如下所述的文本分类神经网络的训练方法,或者所述至少一个处理器调用所述存储器中的所述指令,以使得所述AI面试设备执行如下所述的基于文本分类神经网络的AI面试方法
其中,所述文本分类神经网络的训练方法包括以下步骤:
获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络;
所述基于文本分类神经网络的AI面试方法包括以下步骤:
获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
本申请的第六方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如下所述的文本分类神经网络的训练方法,或者使得计算机执行如下所述的基于文本分类神经网络的AI面试方法
其中,所述文本分类神经网络的训练方法包括以下步骤:
获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络;
所述基于文本分类神经网络的AI面试方法包括以下步骤:
获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
本申请提供的技术方案中,获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;其中,所述文本分类神经网络通过训练方法训练得出,所述训练方法包括:获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
附图说明
图1为本申请实施例中训练方法的第一个实施例示意图;
图2为本申请实施例中训练方法的第二个实施例示意图;
图3为本申请实施例中训练方法的第三个实施例示意图;
图4为本申请实施例中AI面试方法的一个实施例示意图;
图5为本申请实施例中训练装置的一个实施例示意图;
图6为本申请实施例中训练装置的另一个实施例示意图;
图7为本申请实施例中AI面试装置的一个实施例示意图;
图8为本申请实施例中AI面试设备的一个实施例示意图。
具体实施方式
本申请提供的技术方案中,获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;其中,所述文本分类神经网络通过训练方法训练得出,所述训练 方法包括:获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解,下面对本申请实施例的具体流程进行描述,请参阅图1,本申请实施例中文本分类神经网络的训练方法的第一个实施例包括:
101、获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
在本实施例中,获得训练文本数据“我想请问一下该岗位的具体工作内容包括哪些?”,其中分别对“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”,依据one-hot在字符向量对应表中查询对应的向量,其中,字符表向量对应表中one-hot维度为表中拥有字符种类的数量,将one-hot处理的数据根据“我想请问一下该岗位的具体工作内容包括哪些?”的字符排序将向量进行排序获得A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T,其中,向量a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20分别对应“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”字符。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
102、将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
在本实施例中,大型网络是已经在较高运算设备中训练好的神经网络,但是大型网络由于层集数量过大,在实际运算过程中,运算时间过长且需要较高的运算能力。因此需要将大型网络压缩为较小神经网络,在压缩过程中会在制定对应的隐藏层中设置损失函数。
在一种实施例中,隐藏层的损失函数分别为在第一对应隐藏层的损失函数为MSE,MSE的表达式为:
Figure PCTCN2020118213-appb-000001
其中,MSE为平方均差,ym为样本,y-m为样本的平均值。
在第二对应隐藏层的损失函数为KL散度,KL散度的表达式为:
Figure PCTCN2020118213-appb-000002
其中,P(x)与Q(x)是随机变量X上的两个概率分布。
在第三对应隐藏层的损失函数为交叉熵,交叉熵的表达式为:
H(P,Q)=-∑P(i)log(Q(x))
其中P(i)与Q(x)为概率分布,其中P(i)为真实分布,Q(x)为非真实分布。
最后,将大型神经网络与小型神经网络对应生成的结果也使用交叉熵作为损失函数,函数表达式为:H(P,Q)=-∑P(i)log(Q(x)),p(i)作为大型神经网络的输出结果,而Q(x)作为小型神经网络输出的结果。
根据知识蒸馏神经网络中,对每个元素的概率输出函数为:
Figure PCTCN2020118213-appb-000003
其中,T为设置的参数,用于提高数据的迁移率。
整体损失函数为L=αL (soft)+(1-α)L (hard)。在各个隐藏层中获得损失函数的数据,使用知识蒸馏神经网络模型,重新代入后将整体损失函数确认定为:
L MC=λ(L CE(P tea,P stu)+L CE(P data,P stu))++(1-λ)(L MSE(P tea1,P stu1)+L KL(P tea2,P stu2)+L CE(P tea3,P stu3))
其中,L CE表示使用交叉熵损失函数,L MSE表示使用MSE损失函数,L KL表示使用KL散度作为损失函数;P data表示原始候选人反问文本数据的真实标签,P tea,P stu分别表示大型网络和小型网络最终预测出的标签分布;P tea1,P stu1,P tea2,P stu2,P tec3,P stu3则表示大型和小型网络的中间隐藏层得到的数据。通过将LMC损失函数最小化,调整第一小型网络的参数,最后得到第二小型网络。将训练向量数据A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T,输入大型网络中,就能得到大型网络处理的结果T1,而输入生成的第二小型网络得到结果S1。得到结果是为了下一步对T1与S1进行比对,通过组合(A,T1)与(A,S1)输入至分类器,分类器基于Text-RNN神经网络模型对T1与S1进行学习,分辨大型网络与小型网络处理的结果的不同。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
103、将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
在本实施例中,将训练向量数据A与大型网络处理的结果T1组合,生成(A,T1)。而文本数据向量A与第二小型网络得到结果S1组合,生成(A,S1),将(A,T1)与(A,S1)输入基于Text-RNN神经网络模型的分类器中,然后将Text-RNN神经网络模型分类器的损失函数读取为:
Figure PCTCN2020118213-appb-000004
p(X ij)表示第j个候选人反问文本数据X j属于第i类的真实概率(i=0表示输入的软标签来自大型网络,i=1表示输入的软标签由小型网络生成),而
Figure PCTCN2020118213-appb-000005
是TextRNN中的softmax层计算得到的第j个反馈语句属于第i类的预测概率。通过计算获得第一处理数据与第二处理数据的分类损失函数值LD。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
104、根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
在本实施例中,将大型网络与小型网络作为一个整体的数据输出,而分类器则作为另一整体,分类器通过分辨大型网络与小型网络输出数据的不同而不断调整分类器本身的参数,将LD与LMC写入博弈损失函数框架中minmax μL MC+(1-μ)L D,然后使用极大极小博弈使得LD、LMC与μL MC+(1-μ)L D均取得极值,如果有多个参数均达到极值点,则进行进一步判断μL MC+(1-μ)L D取得极小值的参数的修改方式为调整参数。此外,本申请还涉及区块链技术, 用户的隐私信息可存储于区块链节点中。
105、基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
在本实施例中,将获得的调整参数对分类器和小型网络进行调整,最后将调整的小型网络作为训练结果的文本分类神经网络。不断调整小型网络的参数使得博弈损失函数取最小minmax μL MC+(1-μ)L D,且LD与LMC也为最小值,此时即停止调整小型网络的参数。极大极小博弈是为了小型网络尽可能的靠近大型网络,但分类器还能尽可能的分辨出小型网络与大型网络之间的区别。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
请参阅图2,本申请实施例中文本分类神经网络的训练方法的第二个实施例包括:
201、获取训练文本数据,以及获取预置向量转换表;
在本实施例中,获取候选人输入文本“我想请问一下该岗位的具体工作内容包括哪些?”,并获取“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”字符对应的字符向量对应表,表中有映射关系。
202、依次读取所述训练文本数据中的字符,得到训练字符组合;
在本实施例中,“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”字符是被读取获得,然后训练字符组合I={“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”}。
203、根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;
在本实施例中,训练字符组合I={“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”}中字符的读取是有时间对应映射的,因此根据时间顺序可以得到对应的排序为:我想请问一下该岗位的具体工作内容包括哪些。
204、对所述训练字符组合中字符进行去重处理,得到字符种类集合;
在本实施例中,训练字符组合I={“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”}中如果有重复的字符将会被去重,然后得到字符种类集合P={“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”}。在另一种实施例中,训练字符组合I={“很”“好”“工”“资”“也”“好”“岗”“位”“也”“好”},经过去重后得到字符种类集合P={“很”“好”“工”“资”“也”“岗”“位”“也”}。
205、根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据;
在本实施例中,将向量a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20分别对应“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”字符,根据“我想请问一下该岗位的具体工作内容包括哪些”的排序排列,得到对应的本文向量数据A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T。
206、将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;
在本实施例中,将已经获得的向量数据A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T输入至预置的大型网络 与小型网络中,进行分类处理,然后大型网络输出第一处理数据T1,而小型网络输出第二处理数据S1。
207、根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;
在本实施例中,对应的隐藏层可以有标签标记,例如标记为1、2、3,则说明存在三层被标记的隐藏层,而大型网络与第一小型网络共同标记为1的隐藏层则为对应的隐藏层。
藏层的损失函数分别为在第一对应隐藏层的损失函数为MSE,MSE的表达式为:
Figure PCTCN2020118213-appb-000006
其中,MSE为平方均差,ym为样本,y-m为样本的平均值。
在第二对应隐藏层的损失函数为KL散度,KL散度的表达式为:
Figure PCTCN2020118213-appb-000007
其中,P(x)与Q(x)是随机变量X上的两个概率分布。
在第三对应隐藏层的损失函数为交叉熵,交叉熵的表达式为:
H(P,Q)=-∑P(i)log(Q(x))
其中P(i)与Q(x)为概率分布,其中P(i)为真实分布,Q(x)为非真实分布。
208、根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;
在本实施例中,通过A向量输入至大型网络与小型网络后得到损失函数的输出值MSE1、KL(P||Q) 1、H(P,Q) 1
209、获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值;
在本实施例中,将综合损失函数框架获取,其中综合损失函数框架为:
L MC=λ(L CE(P tea,P stu)+L CE(P data,P stu))+(1-λ)(L MSE(P tea1,P stu1)+L CE(P tea3,P stu3)+L KL(P tea2,P stu2))
其中,L CE表示使用交叉熵损失函数,L MSE表示使用MSE损失函数,L KL表示使用KL散度作为损失函数;P data表示原始候选人反问文本数据的真实标签,P tea,P stu分别表示大型网络和小型网络最终预测出的标签分布;P tea1,P stu1,P tea2,P stu2,P tea3,P stu3则表示大型和小型网络的中间隐藏层得到的数据。
然后将MSE1、KL(P||Q) 1、H(P,Q) 1输入到整体损失函数框架中,得到整体损失函数值。
210、将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
211、根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
212、基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
请参阅图3,本申请实施例中文本分类神经网络的训练方法的第三个实施例包括:
301、获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
302、将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络 对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
303、将所述第一处理数据与所述训练向量数据组合生成第一组合数据,以及将第二处理数据与所述训练向量数据组合生成第二组合数据;
在本实施例中,第一处理数据为T1,而第二处理数据为S1,然后将两者分别与训练向量数据A进行组合,为(A,T1)和(A,S1)。
304、将所述第一组合数据与预置向量映射矩阵相乘得到第一映射数据,以及将所述第二组合数据与所述向量映射矩阵相乘得到第二映射数据;
在本实施例中,将(A,T1)和(A,S1)使用Text-RNN神经网络模型进行判断,先将(A,T1)和(A,S1)与映射矩阵W相乘,将(A,T1)和(A,S1)变为n维空间中的向量。
305、将所述第一映射数据与预置权重矩阵相乘得到第一分类结果,以及将所述第二映射数据与所述权重矩阵相乘得到第二分类结果;
在本实施例中,获得了n维空间的向量后,将第一映射数据和第二映射数据分别与Text-RNN神经网络中的权重矩阵相乘,得到经过训练的分类结果。
306、对所述第一分类结果进行归一化处理得到第一归一化结果,并对所述第二分类结果进行归一化处理得到第二归一化结果,以及将所述第一归一化结果和所述第二归一化结果代入预置分类损失函数,得出分类损失函数值;
在本实施例中,使用softmax算法对分类结果进行处理,其中,softmax算法为:
Figure PCTCN2020118213-appb-000008
其中,Zi为i样本,j为包含i样本的集合。
将得到的结果代入损失函数:
Figure PCTCN2020118213-appb-000009
p(X ij)表示第j个候选人反问文本数据X j属于第i类的真实概率(i=0表示输入的软标签来自大型网络,i=1表示输入的软标签由小型网络生成),而
Figure PCTCN2020118213-appb-000010
是TextRNN中的softmax层计算得到的第j个反馈语句属于第i类的预测概率。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
307、获取预置博弈损失函数框架,将所述整体损失函数值和所述分类损失函数值填入所述博弈损失函数框架,得到博弈损失函数值;
在本实施例中,将MSE1、KL(P||Q) 1、H(P,Q) 1构成的LMC与LD的数值代入到预置的框架:minmax μL MC+(1-μ)L D
L MC=λ(L CE(P tea,P stu)+L CE(P data,P stu))++(1-λ)(L MSE(P tea1,P stu1)+L KL(P tea2,P stu2)+L CE(P tea3,P stu3))
其中,L CE表示使用交叉熵损失函数,L MSE表示使用MSE损失函数,L KL表示使用KL散度作为损失函数;P data表示原始候选人反问文本数据的真实标签,P tea,P stu分别表示大型网络和小型网络最终预测出的标签分布;P tea1,P stu1,P tea2,P stu2,P tea3,P stu3则表示大型和小型网络的中间隐藏层得到的数据。
308、判断所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是否均为极值;
在本实施例中,不断调整小型网络的参数使得博弈损失函数:
minmax μL MC+(1-μ)L D
判断μL MC+(1-μ)L D、LMC和LD是否均在极值点中,如果都在极值点中,且结果唯一,则认为改点的参数为所求的参数。但如果均衡的极值点不唯一,则需要找到μL MC+(1-μ)L D在均衡的极值点中取得最小值对应的参数为所求参数。
309、若是,则将所述博弈损失函数值对应的小型网络确认为文本分类神经网络;
在本实施例中,μL MC+(1-μ)L D、LMC和LD恰好均在极值点中,则可以认为μL MC+(1-μ)L D对应的小型网络是我们需要获得的文本分类神经网络。
310、若否,则修改所述分类器的参数和所述小型网络的参数,直至所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值均为极值,得到所述分类器和小型网络的调整参数;
在本实施例中,如果μL MC+(1-μ)L D、LMC和LD有一个不在极值点中,则需要调整训练的参数,使得μL MC+(1-μ)L D、LMC和LD均在极值点中以获得极大极小博弈的最优解。得到最优解后,将调整方式生成为调整参数。此外,本申请还涉及区块链技术,用户的隐私信息可存储于区块链节点中。
311、基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
请参阅图4,本申请实施例中基于文本分类神经网络的AI面试方法的第一个实施例包括:
401、获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
在本实施例中,获取候选人输入文本“我想请问一下该岗位的具体工作内容包括哪些?”,并获取“我”、“想”、“请”、“问”、“一”、“下”、“该”、“岗”、“位”、“的”、“具”、“体”、“工”、“作”、“内”、“容”、“包”、“括”、“哪”、“些”字符对应的字符向量对应表,表中有映射关系。根据映射关系生成A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T的文本向量数据。
402、将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
在本实施例中,将A=[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20]T输入至已经训练完成的文本分类神经网络,根据文本分类神经网络分类A为设定的“工作类”,然后调用“工作类”的内容数据生成答复文本数据。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
上面对本申请实施例中训练方法和AI面试方法进行了描述,下面对本申请实施例中训练装置和AI面试装置进行描述,请参阅图5,本申请实施例中文本分类神经网络的训练装置一个实施例包括:
向量化模块501,用于获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
数值获取模块502,用于将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
分类处理模块503,用于将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
计算模块504,用于根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
调整模块505,用于基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
请参阅图6,本申请实施例中文本分类神经网络的训练装置的另一个实施例包括:
向量化模块601,用于获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
数值获取模块602,用于将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
分类处理模块603,用于将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
计算模块604,用于根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
调整模块605,用于基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
可选的,所述向量化模块601具体用于:获取训练文本数据,以及获取预置向量转换表;依次读取所述训练文本数据中的字符,得到训练字符组合;根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;对所述训练字符组合中字符进行去重处理,得到字符种类集合;根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据。
可选的,所述数值获取模块602具体用于:将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值。
可选的,所述分类处理模块603具体用于:将所述第一处理数据与所述训练向量数据组合生成第一组合数据,以及将第二处理数据与所述训练向量数据组合生成第二组合数据;将所述第一组合数据与预置向量映射矩阵相乘得到第一映射数据,以及将所述第二组合数据与所述向量映射矩阵相乘得到第二映射数据;将所述第一映射数据与预置权重矩阵相乘得到第一分类结果,以及将所述第二映射数据与所述权重矩阵相乘得到第二分类结果;对所述第一分类结果进行归一化处理得到第一归一化结果,并对所述第二分类结果进行归一化处理得到第二归一化结果,以及将所述第一归一化结果和所述第二归一化结果代入预置分类损失函数,得出分类损失函数值。
其中,所述计算模块604包括:
函数值生成单元6041,用于获获取预置博弈损失函数框架,将所述整体损失函数值和所述分类损失函数值填入所述博弈损失函数框架,得到博弈损失函数值;
判断单元6042,用于判断所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是否均为极值;
确定单元6043,用于若所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是均为极值,则将所述博弈损失函数值对应的小型网络确认为文本分类神经网络;
调整参数生成单元6044,用于若所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值不均为极值,则修改所述分类器的参数和所述小型网络的参数,直至所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值均为极值,得到所述分类器和小型网络的调整参数。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
请参阅图7,本申请实施例中AI面试装置的一个实施例包括:
获取模块701,用于获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
答复生成模块702,用于将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据,其中,所述文本分类神经网络通过上述训练装置 执行上述训练方法得到。
本申请实施例中,在将大型的神经网络压缩为小型的神经网络过程中,通过分类器对大型神经网络与小型神经网络的博弈调整小型神经网络的参数和分类器的参数,提高了小型的神经网络的分辨精度。
上面图5和图6从模块化功能实体的角度对本申请实施例中的训练装置进行详细描述,上面图7从模块化功能实体的角度对本申请实施例中的AI面试装置进行详细描述,下面从硬件处理的角度对本申请实施例中AI面试设备进行详细描述。
图8是本申请实施例提供的一种AI面试设备的结构示意图,该AI面试设备800可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central processing units,CPU)810(例如,一个或一个以上处理器)和存储器820,一个或一个以上存储应用程序833或数据832的存储介质830(例如一个或一个以上海量存储设备)。其中,存储器820和存储介质830可以是短暂存储或持久存储。存储在存储介质830的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对AI面试设备800中的一系列指令操作。更进一步地,处理器810可以设置为与存储介质830通信,在AI面试方法800上执行存储介质830中的一系列指令操作。
基于AI面试设备800还可以包括一个或一个以上电源840,一个或一个以上有线或无线网络接口850,一个或一个以上输入输出接口860,和/或,一个或一个以上操作系统831,例如Windows Serve,Mac OS X,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图8示出的AI面试设备结构并不构成对基于AI面试设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行所述训练方法和所述AI面试方法的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统或装置、单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。进一步地,所述计算机可用存储介质可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据区块链节点的使用所创建的数据等。
本申请所指区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(Blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。区块链可以包括区块链底层平台、平台产品服务层以及应用服务层等。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种文本分类神经网络的训练方法,其中,所述训练方法包括:
    获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
    将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
    将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
    根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
    基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
  2. 根据权利要求1所述的文本分类神经网络的训练方法,其中,所述获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据包括:
    获取训练文本数据,以及获取预置向量转换表;
    依次读取所述训练文本数据中的字符,得到训练字符组合;
    根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;
    对所述训练字符组合中字符进行去重处理,得到字符种类集合;
    根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据。
  3. 根据权利要求1或2所述的文本分类神经网络的训练方法,其中,所述将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络中对应的整体损失函数值包括:
    将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;
    根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;
    根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;
    获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值。
  4. 根据权利要求3所述的文本分类神经网络的训练方法,其中,所述将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值包括:
    将所述第一处理数据与所述训练向量数据组合生成第一组合数据,以及将第二处理数据与所述训练向量数据组合生成第二组合数据;
    将所述第一组合数据与预置向量映射矩阵相乘得到第一映射数据,以及将所述第二组合数据与所述向量映射矩阵相乘得到第二映射数据;
    将所述第一映射数据与预置权重矩阵相乘得到第一分类结果,以及将所述第二映射数据与所述权重矩阵相乘得到第二分类结果;
    对所述第一分类结果进行归一化处理得到第一归一化结果,并对所述第二分类结果进行归一化处理得到第二归一化结果,以及将所述第一归一化结果和所述第二归一化结果代入预置分类损失函数,得出分类损失函数值。
  5. 根据权利要求4所述的文本分类神经网络的训练方法,其中,所述根据所述损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数包括:
    获取预置博弈损失函数框架,将所述整体损失函数值和所述分类损失函数值填入所述博弈损失函数框架,得到博弈损失函数值;
    判断所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是否均为极值;
    若是,则将所述博弈损失函数值对应的小型网络确认为文本分类神经网络;
    若否,则修改所述分类器的参数和所述小型网络的参数,直至所述博弈损失函数值、所述整体 损失函数值和所述分类损失函数值均为极值,得到所述分类器和小型网络的调整参数。
  6. 一种基于文本分类神经网络的AI面试方法,其中,所述AI面试方法包括:
    获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
    将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
    其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
  7. 一种基于文本分类神经网络的训练装置,其中,所述训练装置包括:
    向量化模块,用于获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
    数值获取模块,用于将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
    分类处理模块,用于将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
    计算模块,用于根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
    调整模块,用于基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
  8. 根据权利要求7所述的文本分类神经网络的训练装置,其中,所述向量化模块还用于:
    获取训练文本数据,以及获取预置向量转换表;
    依次读取所述训练文本数据中的字符,得到训练字符组合;
    根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;
    对所述训练字符组合中字符进行去重处理,得到字符种类集合;
    根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据。
  9. 根据权利要求1或2所述的文本分类神经网络的训练装置,其中,所述数值获取模块还用于:
    将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;
    根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;
    根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;
    获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值。
  10. 一种基于文本分类神经网络的AI面试装置,其中,所述AI面试装置包括:
    获取模块,用于获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
    答复生成模块,用于将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据,其中所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行 训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
  11. 一种基于文本分类神经网络的AI面试设备,其中,所述AI面试设备包括:存储器和至少一个处理器,所述存储器中存储有指令,所述存储器和所述至少一个处理器通过线路互连;
    所述至少一个处理器调用所述存储器中的所述指令,以使得所述AI面试设备执行如下所述的文本分类神经网络的训练方法,或者所述至少一个处理器调用所述存储器中的所述指令,以使得所述AI面试设备执行如下所述的基于文本分类神经网络的AI面试方法;
    其中,所述文本分类神经网络的训练方法包括以下步骤:
    获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
    将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
    将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
    根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
    基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
    所述基于文本分类神经网络的AI面试方法包括以下步骤:
    获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
    将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
    其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对所述分类器和小型网络进行调整得到的神经网络模型。
  12. 根据权利要求11所述的文本分类神经网络的训练设备,其中,所述获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,包括以下步骤:
    获取训练文本数据,以及获取预置向量转换表;
    依次读取所述训练文本数据中的字符,得到训练字符组合;
    根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;
    对所述训练字符组合中字符进行去重处理,得到字符种类集合;
    根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据。
  13. 根据权利要求11或12所述的文本分类神经网络的训练设备,其中,所述将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络中对应的整体损失函数值,包括以下步骤:
    将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;
    根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;
    根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;
    获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值。
  14. 根据权利要求13所述的文本分类神经网络的训练设备,其中,所述将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值,包括以下步骤:
    将所述第一处理数据与所述训练向量数据组合生成第一组合数据,以及将第二处理数据与所述训练向量数据组合生成第二组合数据;
    将所述第一组合数据与预置向量映射矩阵相乘得到第一映射数据,以及将所述第二组合数据与所述向量映射矩阵相乘得到第二映射数据;
    将所述第一映射数据与预置权重矩阵相乘得到第一分类结果,以及将所述第二映射数据与所述权重矩阵相乘得到第二分类结果;
    对所述第一分类结果进行归一化处理得到第一归一化结果,并对所述第二分类结果进行归一化处理得到第二归一化结果,以及将所述第一归一化结果和所述第二归一化结果代入预置分类损失函数,得出分类损失函数值。
  15. 根据权利要求14所述的文本分类神经网络的训练设备,其中,所述根据所述损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数,包括以下步骤:
    获取预置博弈损失函数框架,将所述整体损失函数值和所述分类损失函数值填入所述博弈损失函数框架,得到博弈损失函数值;
    判断所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是否均为极值;
    若是,则将所述博弈损失函数值对应的小型网络确认为文本分类神经网络;
    若否,则修改所述分类器的参数和所述小型网络的参数,直至所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值均为极值,得到所述分类器和小型网络的调整参数。
  16. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如下所述的文本分类神经网络的训练方法,或者所述计算机程序被处理器执行时实现如下所述的基于文本分类神经网络的AI面试方法。
    其中,所述文本分类神经网络的训练方法包括以下步骤:
    获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;
    将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;
    将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;
    根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;
    基于所述调整参数分别对所述分类器和小型网络进行调整,得到文本分类神经网络。
    所述基于文本分类神经网络的AI面试方法包括以下步骤:
    获取面试获选人反问的文本数据,将所述文本数据向量化,得到文本向量数据;
    将所述文本向量数据输入至预置文本分类神经网络中进行分类处理,得到所述文本分类神经网络生成的答复文本数据;
    其中,所述文本分类神经网络为通过获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据,其中,所述训练文本数据包括面试候选人反问的历史文本数据;将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络对应的整体损失函数值,其中,所述大型网络用于调整所述小型网络的分类精度;将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值;根据所述整体损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数;基于所述调整参数分别对 所述分类器和小型网络进行调整得到的神经网络模型。
  17. 根据权利要求16所述的计算机可读存储介质,其中,所述文本分类神经网络的训练方法的计算机程序被所述处理器执行所述获取训练文本数据,并对所述训练文本数据进行向量化处理,得到训练向量数据的步骤时,包括以下步骤:
    获取训练文本数据,以及获取预置向量转换表;
    依次读取所述训练文本数据中的字符,得到训练字符组合;
    根据所述训练字符组合中字符的获得时间顺序,得到所述训练文本数据的字符排序;
    对所述训练字符组合中字符进行去重处理,得到字符种类集合;
    根据所述字符种类集合中的字符查询所述向量转换表中对应的向量,并根据所述字符排序将所述向量排列生成训练向量数据。
  18. 根据权利要求16或17所述的计算机可读存储介质,其中,所述文本分类神经网络的训练方法的计算机程序被所述处理器执行所述将所述训练向量数据分别输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据以及所述大型网络与所述小型网络中对应的整体损失函数值的步骤时,包括以下步骤:
    将所述训练向量数据输入预置大型网络和预置小型网络中进行训练,得到所述大型网络输出的第一处理数据和所述小型网络输出的第二处理数据;
    根据预置网络隐藏层映射关系,查询出所述大型网络与所述小型网络中对应隐藏层的预置损失函数;
    根据所述第一处理数据和所第二处理数据的训练过程,读取所有所述损失函数输出的数值,得到所述大型网络与所述小型网络中各个对应隐藏层的损失函数值;
    获取预置整体损失函数框架,将各个对应隐藏层的损失函数值填入所述整体损失函数框架中,得到整体损失函数值。
  19. 根据权利要求18所述的计算机可读存储介质,其中,所述文本分类神经网络的训练方法的计算机程序被所述处理器执行所述将所述第一处理数据、所述第二处理数据和所述训练向量数据输入预置分类器进行分类处理,得到分类损失函数值的步骤时,包括以下步骤:
    将所述第一处理数据与所述训练向量数据组合生成第一组合数据,以及将第二处理数据与所述训练向量数据组合生成第二组合数据;
    将所述第一组合数据与预置向量映射矩阵相乘得到第一映射数据,以及将所述第二组合数据与所述向量映射矩阵相乘得到第二映射数据;
    将所述第一映射数据与预置权重矩阵相乘得到第一分类结果,以及将所述第二映射数据与所述权重矩阵相乘得到第二分类结果;
    对所述第一分类结果进行归一化处理得到第一归一化结果,并对所述第二分类结果进行归一化处理得到第二归一化结果,以及将所述第一归一化结果和所述第二归一化结果代入预置分类损失函数,得出分类损失函数值。
  20. 根据权利要求19所述的计算机可读存储介质,其中,所述文本分类神经网络的训练方法的计算机程序被所述处理器执行所述根据所述损失函数值和所述分类损失函数值,计算所述分类器和小型网络的调整参数的步骤时,包括以下步骤:
    获取预置博弈损失函数框架,将所述整体损失函数值和所述分类损失函数值填入所述博弈损失函数框架,得到博弈损失函数值;
    判断所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值是否均为极值;
    若是,则将所述博弈损失函数值对应的小型网络确认为文本分类神经网络;
    若否,则修改所述分类器的参数和所述小型网络的参数,直至所述博弈损失函数值、所述整体损失函数值和所述分类损失函数值均为极值,得到所述分类器和小型网络的调整参数。
PCT/CN2020/118213 2020-06-16 2020-09-28 训练方法、ai面试方法及相关设备 WO2021139234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010548373.8 2020-06-16
CN202010548373.8A CN111737429B (zh) 2020-06-16 2020-06-16 训练方法、ai面试方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021139234A1 true WO2021139234A1 (zh) 2021-07-15

Family

ID=72649522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118213 WO2021139234A1 (zh) 2020-06-16 2020-09-28 训练方法、ai面试方法及相关设备

Country Status (2)

Country Link
CN (1) CN111737429B (zh)
WO (1) WO2021139234A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113672715A (zh) * 2021-08-20 2021-11-19 上海大参林医疗健康科技有限公司 一种意图识别系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107908635A (zh) * 2017-09-26 2018-04-13 百度在线网络技术(北京)有限公司 建立文本分类模型以及文本分类的方法、装置
CN109961442A (zh) * 2019-03-25 2019-07-02 腾讯科技(深圳)有限公司 神经网络模型的训练方法、装置和电子设备
CN110363116A (zh) * 2019-06-28 2019-10-22 上海交通大学 基于gld-gan的不规则人脸矫正方法、系统及介质
US20190370604A1 (en) * 2018-05-30 2019-12-05 Oracle International Corporation Automated building of expanded datasets for training of autonomous agents
CN111274377A (zh) * 2020-01-23 2020-06-12 支付宝(杭州)信息技术有限公司 一种训练标记预测模型的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10055434B2 (en) * 2013-10-16 2018-08-21 University Of Tennessee Research Foundation Method and apparatus for providing random selection and long-term potentiation and depression in an artificial network
KR102563752B1 (ko) * 2017-09-29 2023-08-04 삼성전자주식회사 뉴럴 네트워크를 위한 트레이닝 방법, 뉴럴 네트워크를 이용한 인식 방법 및 그 장치들
CN109376903B (zh) * 2018-09-10 2021-12-17 浙江工业大学 一种基于博弈神经网络的pm2.5浓度值预测方法
CN109902722A (zh) * 2019-01-28 2019-06-18 北京奇艺世纪科技有限公司 分类器、神经网络模型训练方法、数据处理设备及介质
CN110222152B (zh) * 2019-05-29 2021-05-14 北京邮电大学 一种基于机器阅读理解的问题答案获取方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107908635A (zh) * 2017-09-26 2018-04-13 百度在线网络技术(北京)有限公司 建立文本分类模型以及文本分类的方法、装置
US20190370604A1 (en) * 2018-05-30 2019-12-05 Oracle International Corporation Automated building of expanded datasets for training of autonomous agents
CN109961442A (zh) * 2019-03-25 2019-07-02 腾讯科技(深圳)有限公司 神经网络模型的训练方法、装置和电子设备
CN110363116A (zh) * 2019-06-28 2019-10-22 上海交通大学 基于gld-gan的不规则人脸矫正方法、系统及介质
CN111274377A (zh) * 2020-01-23 2020-06-12 支付宝(杭州)信息技术有限公司 一种训练标记预测模型的方法及系统

Also Published As

Publication number Publication date
CN111737429A (zh) 2020-10-02
CN111737429B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US11176328B2 (en) Non-factoid question-answering device
Demidova et al. Use of fuzzy clustering algorithms ensemble for SVM classifier development
Idrissi et al. Genetic algorithm for neural network architecture optimization
CN109086787B (zh) 用户画像获取方法、装置、计算机设备以及存储介质
US8650138B2 (en) Active metric learning device, active metric learning method, and active metric learning program
US20210125101A1 (en) Machine learning device and method
CN109800307A (zh) 产品评价的分析方法、装置、计算机设备及存储介质
US11874866B2 (en) Multiscale quantization for fast similarity search
US20210049536A1 (en) Apparatus for Determining Role Fitness While Eliminating Unwanted Bias
CN109885695B (zh) 资产建议生成方法、装置、计算机设备和存储介质
WO2021139234A1 (zh) 训练方法、ai面试方法及相关设备
CN112364889A (zh) 一种基于云平台的制造资源智能匹配系统
CN113886550A (zh) 基于注意力机制的问答匹配方法、装置、设备及存储介质
JPH08227408A (ja) ニューラルネットワーク
CN115730597A (zh) 多级语义意图识别方法及其相关设备
JP2007004411A (ja) 複数の信頼ネットワークグラフの統合装置・方法
US20240160642A1 (en) Systems and methods for categorization of ingested database entries to determine topic frequency
CN110427464A (zh) 一种代码向量生成的方法以及相关装置
WO2021217866A1 (zh) 用于ai智能面试的识别的方法、装置、计算机设备及存储介质
US20230128891A1 (en) Method, electronic device and system for trading signal generation of financial instruments using graph convolved dynamic mode decomposition
Kim et al. On using prototype reduction schemes to optimize kernel-based nonlinear subspace methods
Kim et al. On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods
Munoz et al. From indefinite to positive semi-definite matrices
CN114386604A (zh) 基于多教师模型的模型蒸馏方法、装置、设备及存储介质
CN115329158B (zh) 一种基于多源异构电力数据的数据关联方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912238

Country of ref document: EP

Kind code of ref document: A1