WO2021139143A1 - 模块单元位置伺服系统及其控制方法、模块化机器人 - Google Patents

模块单元位置伺服系统及其控制方法、模块化机器人 Download PDF

Info

Publication number
WO2021139143A1
WO2021139143A1 PCT/CN2020/106303 CN2020106303W WO2021139143A1 WO 2021139143 A1 WO2021139143 A1 WO 2021139143A1 CN 2020106303 W CN2020106303 W CN 2020106303W WO 2021139143 A1 WO2021139143 A1 WO 2021139143A1
Authority
WO
WIPO (PCT)
Prior art keywords
buckle
rotating
servo system
module unit
position sensor
Prior art date
Application number
PCT/CN2020/106303
Other languages
English (en)
French (fr)
Inventor
杨健勃
Original Assignee
北京可以科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020031987.4U external-priority patent/CN211806148U/zh
Priority claimed from CN202010017093.4A external-priority patent/CN111216103A/zh
Application filed by 北京可以科技有限公司 filed Critical 北京可以科技有限公司
Priority to JP2022542099A priority Critical patent/JP7507509B2/ja
Priority to EP20912780.2A priority patent/EP4088879A4/en
Publication of WO2021139143A1 publication Critical patent/WO2021139143A1/zh
Priority to US17/900,882 priority patent/US20220410405A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions

Definitions

  • the invention relates to the technical field of electronic products, in particular to a modular unit position servo system and a control method thereof, and a modular robot.
  • the relative movement between mechanical structures is usually realized by using a transmission structure, such as the relative rotation between two hemispheres of a spherical structure.
  • the existing module unit measures the relative rotation angle of the two hemispheres by setting a single magnetic encoder through two hemispheres, but the design of the magnetic encoder easily causes the defect that the module unit is too large.
  • the present invention provides a module unit position servo system, a control method of the module unit position servo system, and a modular robot.
  • a modular unit position servo system for detecting the position change between two rotating parts in a modular unit of a modular robot, the modular unit including any A position sensor in a rotating part and a pair of circumferentially rotatable motion pairs for connecting the two rotating parts.
  • the position sensor senses the rotation angle information between the motion pairs and combines the target angle command control At least one rotating part rotates.
  • the modular unit position servo system Compared with the prior art, the modular unit position servo system, the control method of the modular unit position servo system and the modular robot provided by the present invention have the following beneficial effects:
  • a modular unit position servo system for detecting the position change between two rotating parts in a modular unit of a modular robot, the modular unit comprising a position sensor arranged in any rotating part and for connecting A pair of circumferentially rotatable motion pairs of the two rotating parts, the position sensor senses the rotation angle information between the motion pairs, and controls the rotation of at least one rotating part in combination with a target angle command.
  • the position sensor By sensing the rotation angle information between the motion pairs by the position sensor arranged in any rotating part, the angle (position) information between the two rotating parts can be obtained, so that the relative position can be accurately controlled.
  • the position sensor is matched with the motion pair, the volume of the module unit can be reduced, and the design is compact.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a modular robot in a first embodiment of the present invention
  • Figure 2-A is a front view of the module unit in the first embodiment of the present invention.
  • Figure 2-B is a schematic diagram of the connection of two module units in the first embodiment of the present invention.
  • FIG. 2-C is another schematic diagram of the connection of two module units in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the exploded structure of the module unit in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the exploded structure of the first rotating member in the first embodiment of the present invention.
  • Figure 5 is a three-dimensional schematic diagram of the connecting piece in the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the exploded structure of the surface buckle in the first embodiment of the present invention.
  • Fig. 7-A is a schematic diagram of the three-dimensional structure of the buckle connector in the first embodiment of the present invention.
  • Fig. 7-B is another three-dimensional structural diagram of the buckle connector in the first embodiment of the present invention.
  • Figure 8 is a front view of the buckle connector in the first embodiment of the present invention.
  • Figure 9-A is a rear view of the connection of two buckle connectors in the first embodiment of the present invention.
  • Figure 9-B is a cross-sectional view of Figure 9-A along the A-A direction;
  • Figure 10-A is a rear view of the connection of two buckle connectors in the first embodiment of the present invention.
  • Figure 10-B is a cross-sectional view of Figure 9-A along the C-C direction;
  • FIG. 11 is a schematic diagram of the exploded structure of the transmission assembly in the first embodiment of the present invention.
  • Figure 12 is a schematic diagram of the exploded structure of the rotating assembly in the first embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the three-dimensional structure of the magnetic element in the first embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the exploded structure of the connecting assembly in the first embodiment of the present invention.
  • Figure 15 is a top view of the connecting assembly in the first embodiment of the present invention.
  • Figure 16 is a cross-sectional view of Figure 15 along the B-B direction;
  • 17 is a schematic diagram of the three-dimensional structure of the modular robot in the second embodiment of the present invention.
  • FIG. 19 is a schematic diagram of the three-dimensional structure of the rotating connection part in the second embodiment of the present invention.
  • 20 is a schematic diagram of the three-dimensional structure of the first buckle portion in the second embodiment of the present invention.
  • 21 is another three-dimensional structural diagram of the first buckle part in the second embodiment of the present invention.
  • 22 is a schematic diagram of the three-dimensional structure of the connection between the module unit and the buckle assembly in the second embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the exploded structure of the module unit position servo system in the third embodiment of the present invention.
  • 24 is a schematic flowchart of a control method of the module unit position servo system in the fourth embodiment of the present invention.
  • Modular robot 10. Modular unit; 20. First rotating part; 22. Transmission assembly; 23. Protective cover; 24. Transmission part; 241. Drive motor; 242. Bevel gear; 243. Magnetic part; 244. Speed sensor; 245, mounting plate; 25, rotating component; 251, connecting plate; 252, gear ring; 253, mounting frame; 254, rotating frame; 255, ball; 30, second rotating part; 32, connecting component; 321 , Second PCB board; 322, conductive ring seat; 323, slip ring; 324, magnet; 325, position sensor; 40, first rotating part; 41, housing; 411, first through hole; 42, face card Buckle; 421, first PCB board; 4211, LED light source; 4212, first electrical connector; 4213, middle through hole; 422, snap connector; 4221, first connection block; 4222, first receiving hole; 4223 423.
  • Recessed hole; 120 accommodating space; 130, clamping member; 141, first connecting shaft; 142, second connecting shaft; 200, module unit position servo system; 201, rotating part; 202 , Position sensor; 203, magnet; 204, controller; 210, movement pair; 211, transmission assembly; 212, connection assembly.
  • the present invention provides a modular robot 01
  • the modular robot 01 includes at least one modular unit 10, any two of the modular units 10 can be directly or indirectly connected
  • different connection modes between the modular unit 10 and the modular unit 10 can be reconstructed into a modular robot 01 of different configurations.
  • the module unit 10 includes a first rotating part 20 and a second rotating part 30 rotatably connected with the first rotating part 20.
  • the first rotating part 20 and the second rotating part 30 are relatively rotatable to realize modularization.
  • the module unit 10 is a sphere
  • the first rotating part 20, the second rotating part 30 are hemispherical
  • a servo device (not shown) that can drive at least one of the rotating parts to rotate
  • the rotating part may be any one of the first rotating part 20 or the second rotating part 30, and the servo device includes a controller and at least two sensors for sensing the first rotating part 20 and the second rotating part.
  • the relative position, speed, and torque of the part 30 are controlled by the controller to control the position, speed, and torque.
  • the first rotating part 20 includes a first rotating part 40, and a transmission assembly 22 accommodated in the first rotating part 40.
  • the first rotating part 40 has a hemispherical structure.
  • the second rotating part 30 includes a second rotating part 50, and is accommodated in the connecting assembly 32 of the second rotating part 50.
  • the first rotating member 40 and the second rotating member 50 have the same structure.
  • the transmission assembly 22 is connected to the connecting assembly 32, and the first rotating part 40 and the second rotating part 50 are connected to form an accommodation space for accommodating the transmission assembly 22 and the connecting assembly 32.
  • the first rotating member 40 includes a hollow housing 41, a connecting member 43 accommodated in the housing 41, and a buckle 42 connected to at least one side of the connecting member 43.
  • the housing 41 has a hemispherical structure, and the housing 41 is provided with first through holes 411 for the surface buckle 42 to pass through.
  • the number of the first through holes 411 is equal to the number of the surface buckles.
  • the number of the buckles 42 corresponds to that of the surface buckle 42 through the first through hole 411 and connected to the connecting member 43, and the connecting member 43 is accommodated in the housing 41.
  • the connecting piece 43 corresponds to the shape and structure of the housing 41, and the connecting piece 43 is provided with a second through hole 431 at a position corresponding to the first through hole 411, and the surface buckle 42 in turn The first through hole 411 and the second through hole 431 are penetrated.
  • the inner wall of the second through hole 431 extends to form an annular receiving member 432, the receiving member 432 is provided with a plurality of receiving grooves 4321, and the plurality of receiving grooves 4321 are distributed in a ring shape and connected with the surface buckle 42 .
  • a resisting member 433 is provided between the two second through holes 431, and the resisting member 433 is formed to protrude toward the connecting component 32.
  • the resisting member 433 is resistingly connected to the connecting component 32.
  • the surface buckle 42 includes a buckle connection surface 426, a buckle mounting surface 427 disposed opposite to the buckle connection surface 426, and the surface buckle 42 includes a first surface connected to the receiving groove 4321
  • One end of the first PCB board 421 is detachably connected to the buckle connector 422, and the other end is electrically connected to the connection assembly 32, and the first PCB board 421 faces one side of the buckle connector 422
  • a plurality of LED light sources 4211 are arranged in the upper ring shape.
  • the plurality of LED light sources 4211 are correspondingly accommodated in the receiving groove 4321.
  • a plurality of LED light sources 4211 provide a light source display for the module unit 10 to intuitively display the working status of the module unit 10 to the user in real time.
  • the shielding sheet 423 is a hollow structure for the buckle connector 422 and the first PCB board 421 to pass through, and the shielding sheet 423 is placed on the LED light source 4211 to contact to prevent the LED light source 4211 from leaking light.
  • the edge of the buckle mounting surface 427 is provided with at least two side holes 429, and a fastener is inserted between the first PCB board 421 and the buckle mounting surface 427 through the side holes 429 to achieve fixation.
  • At least two first electrical connectors 4212 are provided at the center of the first PCB board 421, and one end of the first electrical connector 4212 passes through the first PCB board 421, the shielding piece 423, and is connected to the first electrical connector 4212 in sequence.
  • the buckle connector 422 is connected, the other end of the first electrical connector 4212 is electrically connected to the connection assembly 32, and the first electrical connector 4212 is used to provide signals between a plurality of spliced module units 10
  • the first electrical connector 4212 can be contacted with the corresponding electrical connector of the external module through the first electrical connector 4212, and signal communication can be realized.
  • the first electrical connector 4212 is a copper pillar and performs a conductive transmission function.
  • the first electrical connector 4212 is an electrical connector.
  • the first PCB board 421 is also provided with two middle through holes 4213. The middle through holes 4213 correspond to the buckle connector 422, and the middle through holes 4213 can be penetrated by fasteners (not marked).
  • Hole 4213 is used to realize the connection between the first PCB board 421 and the buckle connector 422.
  • the fastener By adjusting the fastener, the tightness of the connection between the first PCB board 421 and the buckle connector 422 can be adjusted.
  • the number of the first electrical connector 4212 is three.
  • the center of the buckle connector 422 extends toward the side away from the first PCB board 421 to form a cylindrical first connection block 4221.
  • a connecting block 4221 is provided with at least two first receiving holes 4222.
  • the number of the first receiving holes 4222 corresponds to the first electrical connector 4212 and accommodates the first electrical connector 4212.
  • the first electrical connection The member 4212 is exposed to the buckle connection surface 426 through the first receiving hole 4222.
  • the outer wall of the first connecting block 4221 extends along the "cross" direction to form four first bumps 4223, and a gap is left between the first bump 4223 and the buckle connector 422 to form a space.
  • the number of the first receiving holes 4222 is three.
  • the buckle connector 422 is provided with a first buckle block 424 and a second buckle block 424 on opposite sides corresponding to the extending direction of the first protrusion 4223.
  • a buckle block 425, the first buckle block 424, the second buckle block 425, and the first connection block 4221 are formed on the buckle connection surface 426, and the first buckle block 424 and the second buckle block
  • the block 425 is arranged around the first connecting block 4221, the first buckling block 424, the second buckling block 425 can be deformed to a certain extent after being stressed, and the middle through hole 4213 and the first buckling block 424 Correspondingly, the first buckling block 424 is received in the middle through hole 4213.
  • the first buckling block 424 and the second buckling block 425 respectively extend away from the first PCB board 421 and the first buckling block 424 and the second buckling block 425 are respectively connected to the first bump There is a gap space between 4223, and the first buckling block 424 and the second buckling block 425 are arranged around the first connecting block 4221.
  • the first buckling block 424 is formed with a connecting protrusion 4241 extending along a side away from the first connecting block 4221, and a side of the second buckling block 425 close to the first connecting block 4221 is recessed to form a recess.
  • the connecting protrusion 4241 corresponds to the groove 4251 and both are arc-shaped, and the connecting line between the opposite connecting protrusion 4241 and the groove 4251 is arranged in a cross direction.
  • the connecting protrusion 4241 is in contact with the groove 4251, the first connecting block 4221, the first A plane is defined between the buckling block 424 and the second buckling block 425, and a gap is formed between the first protrusion 4223 and the plane for the external buckle assembly (not shown) to be placed.
  • the buckle mounting surface 427 is provided with two buckle connection holes 430, the buckle connection hole 430 matches the position of the first buckle block 424, and the buckle connection hole 430 is correspondingly arranged on the connection protrusion Block 4241, and the buckle connection hole 430 extends into the first buckle block 424, and a fastener can be driven into the buckle connection hole 430.
  • the depth is used to control the buckling force between the two surface buckles 42.
  • the side of the first buckling block 424 away from the first connecting block 4221 protrudes to form a first buckling block 4242, and the second buckling block 425 is close to the first connecting block 4221
  • One side is recessed to form a second clamping block 4252, the first clamping block 4242, the second clamping block 4252 is disposed on the side away from the first PCB board, the first clamping block 4242, the second clamping block 4252
  • the clamping block 4252 and the connecting protrusion 4241 and the groove 4251 respectively form a "T" shape, and the first clamping block 4242 and the second clamping block 4252 are arranged in an arc shape.
  • FIGS. 10-A and 10-B in combination with FIGS. 7-A and 7-B.
  • the middle through hole 4213 and the snap connection hole 430 are inserted through the fastener 428 to realize the first PCB board 421 and
  • the fastener 428 penetrates the middle through hole 4213 and is received in the buckle connection hole 430, and the surface buckle 42 is driven in during the buckling process of the surface buckle 42
  • the first buckling block 424 of the fastener 428 is deformed toward the first connecting block 4221, so that the first buckling block 4242 and the second buckling block 4252 are buckled together;
  • the first buckling block 424 of the fastener 428 is driven into the arc due to the matching arc between the first buckling block 4242 and the second buckling block 4252 Deformation occurs again to the side away from the first connecting block 4221.
  • the first buckling block 424 is more difficult to deform. At this time, the two surface buckles 42 are difficult to separate.
  • the driven fastener 428 is loose, the The first buckle block 424 is easily deformed, and the two surface buckles 42 are easily separated at this time.
  • the surface buckles 42 connected to each other are easy to install and connect, and it is difficult to disassemble the surface buckles 42 connected to each other, which realizes the effect that the surface buckles 42 are easy to assemble and difficult to disassemble.
  • the first electrical connectors 4212 between the module units 10 are in contact with each other to realize signal transmission.
  • the transmission assembly 22 includes a transmission member 24, a rotating assembly 25, and a protective cover 23 connected to the rotating assembly 25, and the protective cover 23 is connected to the connecting member 43 of the first rotating member 40,
  • the rotating assembly 25 is connected with the protective cover 23 and forms an accommodating space that can accommodate the transmission member 24.
  • the protective cover 23 corresponds to the transmission member 24. When the protective cover 23 is connected to the transmission member 24, the transmission member 24 is accommodated in the protective cover 23.
  • the transmission member 24 further includes a driving motor 241, a bevel gear 242 coaxially connected to one end of the driving motor 241, and a cylindrical magnetic member 243 coaxially connected to the other end of the driving motor 241.
  • the bevel gear 242 is rotatably connected with the rotating assembly 25 and the bevel gear 242 drives the rotating assembly 25 to rotate. That is, the servo device further includes a driving motor 241, and the driving motor 241 is arranged between any of the rotating parts.
  • the transmission member 24 also includes a mounting plate 245, and at least one speed sensor 244 connected to the mounting plate 245.
  • the mounting plate 245 is fixedly connected to one end of the driving motor 241, and the speed The sensor 244 is arranged in the circumferential direction of the magnetic member 243, and the speed sensor 244 is electrically connected to the connecting assembly 32 (as shown in FIG. 3).
  • the speed sensor 244 is a Hall sensor and the number is two, the two speed sensors 244 are opposite to the magnetic member 243 and are inclined at a certain angle, and the two speed sensors The inclination angle between 244 is 100°-120°; and/or the distance between the speed sensor 244 and the magnetic member 243 is 1-2 mm.
  • the speed sensor 244 can calculate the rotation speed of the driving motor 241 and determine the forward and reverse rotation of the driving motor 241 according to the change of the magnetic pole of the magnetic member 243.
  • the inclination angle is 100°-120°.
  • the inclination angle may also be 100°, 110°, 115°, and so on.
  • the projection area of the two speed sensors 244 on the magnetic member 243 is the largest, which can more accurately measure the magnetic pole change on the magnetic member 243.
  • the rotating assembly 25 includes a hollow connecting plate 251 and a connecting plate 251 fixedly connected gear ring 252, the gear ring 252 is arranged on the side of the connecting plate 251 close to the transmission member 24, the ring surface of the gear ring 252 without gears is connected to the connecting plate 251, the gear The ring surface of the ring 252 provided with a gear is rotatably connected with the bevel gear 242.
  • the gear ring 252 and the bevel gear 242 are correspondingly connected to each other to realize the driving motor 241 to drive the rotation of the rotating assembly 25, and the connecting plate 251 is connected to the connecting member 43 on the second rotating member 50.
  • the rotating assembly 25 further includes a mounting frame 253 fixedly connected to the driving motor 241 and a rotating frame 254 rotatably connected to the mounting frame 253.
  • the mounting frame 253 is connected to the connecting assembly 32, and the mounting frame 253 and the rotating frame 254 are accommodated in the connecting plate 251.
  • the rotating frame 254 has a ring structure. Specifically, a plurality of balls 255 are provided on the rotating frame 254, and the plurality of balls 255 are distributed in a circle.
  • the rotating frame 254 is sleeved on the mounting frame 253, and the mounting frame 253 is connected to the connecting plate 251 through the balls 255 and rotates relatively.
  • the protective cover 23 corresponds to the driving motor 241, the speed sensor 244, the magnetic member 243, and the mounting frame 253 and the protective cover 23 accommodates the driving motor 241, the speed sensor 244, the magnetic member 243 and the mounting frame 253.
  • the magnetic member 243 is provided with a plurality of magnetic poles, and the magnetic poles include N-poles and S-poles, wherein the N-poles and S-poles can be arranged at intervals.
  • the driving motor 241 rotates to drive the magnetic element 243 and the bevel gear 242 to rotate
  • the bevel gear 242 drives the rotating assembly 25 to rotate.
  • the speed sensor 244 senses multiple magnetic poles on the magnetic element 243. The change is used to calculate the rotation speed of the drive motor 241 and determine the forward and reverse rotation of the drive motor 241.
  • the connecting assembly 32 further includes a second PCB board 321 connected to the mounting frame (not shown), a conductive ring seat 322 connected to the second PCB board 321, and a part
  • the slip ring 323 accommodated in the conductive ring seat 322, the magnet 324 accommodated in the slip ring 323, the slip ring 323 is sleeved on the periphery of the magnet 324, the magnet 324 and the resisting member 433
  • the second PCB board 321 is a controller.
  • the second PCB board 321 is electrically connected to the speed sensor 244 and the driving motor 241.
  • the second PCB board 321 is provided with a position sensor 325 at a position corresponding to the magnet 324, the position sensor 325 rotates synchronously with the slip ring 323, and the distance between the magnet 324 and the position sensor 325 is 1 mm- 2mm.
  • the first rotating member 40 drives the slip ring 323 and the position sensor 325 to rotate relative to the magnet 324.
  • the position sensor 325 is used to detect the position change signal of the magnet 324 to obtain the rotation angle of the magnet 324, and detect the rotation angle between the magnet 324 and the position sensor 325 to detect the difference between the two rotating parts.
  • the rotation information is transmitted to the second PCB board 321.
  • the controller is arranged on the second PCB board 321. The controller controls the drive motor based on the position sensor 325 detecting the rotation angle information and the target angle command. 241 runs at the set speed.
  • the driving motor 241 may first drive the connecting plate 251 to rotate, and then the connecting plate 251 drives the fixedly connected connecting plate 251
  • the second PCB board 321 rotates. Since the conductive ring seat 322 and the slip ring 323 are sequentially fixed on the second PCB board 321, the corresponding conductive ring seat 322 and the slip ring 323 will also rotate. That is, by driving the driving motor 241, the first rotating member 40 can be driven to rotate synchronously, and the conductive ring seat 322 drives the slip ring 323 to rotate relative to the magnet 324.
  • the first rotating member 40 and the second rotating member 50 can be relatively rotated, and the relative rotation between the position sensor 325 and the magnet 324 can be realized by the position sensor 325 to detect and The relative rotation angle between the first rotating member 40 and the second rotating member 50 is obtained.
  • the module unit 10 includes two relatively rotatable first rotating part 20, a second rotating part 30, the first rotating part 20, the second rotating part 30 is a hemispherical structure, two Each of the rotating parts rotates along the vertical line f of the hemispherical section; at least one buckle connector 422 is provided on one of the rotating parts, and the position of the buckle connector 422 on the two rotating parts is a mirror image based on the hemispherical section. Symmetrical, that is, the setting positions of the snap-fit connectors 422 of the two rotating parts are mirror-symmetrical based on the interface of the two rotating parts; the module units 10 are plugged and connected through a set of snap-fit connectors 422.
  • the snap connector 422 is circular, a vertical line e passing through the center of the snap connector 422 and perpendicular to the plane where the snap connector 422 is located intersects the rotation perpendicular line f of the rotating part, and The angle of intersection is D and is 30°-60°.
  • the module unit 10 sets the number of the buckle connectors 422 to be an even number.
  • the included angle D is 45°.
  • Figure 2-B and Figure 2-C At this time, when the intermediate shafts of the two module units 10 are parallel or vertical, please refer to Figure 2-B and Figure 2-C.
  • the splicing can be realized at any time, and the coupling of the degrees of freedom between the mutually spliced module units 10 can be reduced.
  • the second embodiment of the present invention provides a modular robot 01.
  • the modular robot 01 includes at least two modular units 10, which are used to connect the buckle assembly 100 with the modular units 10, any The two modular units 10 can be connected by the buckle assembly 100 to form a motion mechanism, and the modular unit 10 and the modular unit 10 can be spliced and combined to form modular robots of different structures through the different connection modes of the buckle assembly 100. 01.
  • the buckle assembly 100 includes a rotating connection portion 103, a first buckle portion 101 and a second buckle portion 102 respectively detachably connected to opposite sides of the rotation connection portion 103, and the first buckle portion 101 is respectively penetrated ,
  • the second buckle portion 102 at least two second electrical connectors 111 of the rotating connection portion 103.
  • the second electrical connection member 111 may be any one of electrical connections such as copper pillars, alloy pillars, etc., which perform a conductive transmission function.
  • the second electrical connection member 111 is an electrical connection member.
  • the structures of the first buckle portion 101 and the second buckle portion 102 are mirror images. Any one of the buckle connectors 422 of the two module units 10 is screwed and fixedly connected to the first buckle portion 101 and the second buckle portion 102 respectively.
  • the two module units 10 are joined by the buckle assembly 100, one of the module units is connected to the first buckle portion 101, and the other module unit is connected to the second buckle portion 102.
  • the rotating connecting portion 103 includes a connecting shell 104 and a fixed core 105 arranged in the connecting shell 104.
  • the fixed core 105 is a circular plate arranged in the connecting shell 104. ⁇ Like structure.
  • the fixed core 105 is recessed toward the opposite sides of the end faces of the first buckle portion 101 and the second buckle portion 102 to form a space for accommodating the first buckle portion 101 and the second buckle portion 102, so The outer peripheral walls of the first buckle portion 101 and the second buckle portion 102 are respectively sleeved with the inner wall of the connecting housing 104.
  • the fixed core 105 is provided with rotating holes 106 in any two mutually perpendicular diametric directions, the rotating holes 106 are waist-shaped holes and the rotating holes 106 are arranged on the inner wall of the fixed core 105 and the connecting housing 104 .
  • a second accommodating hole 107 is provided in the center of the fixed core 105.
  • the second accommodating hole 107 accommodates the first buckle portion 101 and the second buckle portion 102, and the second electrical connector 111 passes through the For the second receiving hole 107, in this embodiment, the number of the second electrical connector 111 is three.
  • the fixed core 105 is further provided with at least one locking member 112, and the locking member 112 is provided between the rotating hole 106 and the second receiving hole 107.
  • the locking member 112 extends in the direction of the first buckle portion 101 and the second buckle portion 102, respectively, and one end of the locking member 112 close to the first buckle portion 101 and the second buckle portion 102 extends along the direction of the first buckle portion 101 and the second buckle portion 102.
  • the central axis of the second receiving hole 107 protrudes to form a hook shape, and the locking member 112 is an elastic structure.
  • the locking member 112 and the first buckle portion 101 and the second buckle portion 102 are rotatably matched to realize the detachable connection of the first buckle portion 101, the second buckle portion 102 and the rotating connection portion 103.
  • the number of the locking members 112 is four, and the locking members 112 are distributed on two diameters that are perpendicular to each other.
  • the inner wall of the connecting housing 104 facing the first buckle portion 101 and the second buckle portion 102 is further provided with a card slot 108, and the card slot 108 is provided with a limiting protrusion 109, and the limiting protrusion 109 is connected to the The first buckle portion 101 and the second buckle portion 102 are connected.
  • the center of the first buckle portion 101 respectively extends toward the side close to and away from the rotating connecting portion 103 to form a columnar second connecting block 110, and the second connecting block 110 is provided with a receiving block 110.
  • the accommodating holes 113 of the second electrical connector 111 and the number of the accommodating holes 113 correspond to the number of the second electrical connector 111, and the second electrical connector 111 is removed from the accommodating hole 113 exposed.
  • the first buckle portion 101 is provided with a rotation limiting hole 114 at a position corresponding to the locking member 112.
  • the rotation limiting hole 114 includes a receiving end 1141 and a clamping end 1142 that are connected to each other, and the receiving end is larger than the The size of the locking member 112 is to accommodate the locking member 112, and the size of the clamping end 1142 corresponds to the size of the locking member 112, and the locking member 112 is matedly connected.
  • the locking member 112 and the clamping end 1142 are With interference fit, the locking member 112 is exposed through the rotation limiting hole 114, the rotation limiting hole 114 is arranged in an arc shape, please refer to FIG. 18, the rotating hole 106 is provided for the first buckle The portion 101 and the second connecting block 110 of the second buckle portion 102 pass through.
  • the first buckle portion 101 is further provided with a clamping plate 115 in the diameter direction, the clamping plate 115 is arranged around the second connecting block 110, and the clamping plate 115 faces away from the rotating connection portion One side of 103 extends.
  • the clamping plate 115 is close to the clamping end 1142 provided in the rotation limiting hole 114, and the clamping plate 115 protrudes toward the second connecting block 110 to form a third clamping block 116, the third clamping block
  • the protrusion 116 extends to the clamping end 1142.
  • the locking member 112 corresponds to the accommodating end 1141 of the rotation limiting hole 114, and the corresponding locking member 112 is realized by rotating the first buckle portion 101 or the rotary connection portion 103 Move to the clamping end 1142 of the rotation limiting hole 114, at this time, the locking member 112 and the third clamping block 116 are abutted and clamped, so as to realize the connection between the first clamping portion 101 and the rotation connecting portion 103.
  • the first buckle portion 101 is further provided with a buckle 117 in the diameter direction, the buckle 117 protrudes toward the side away from the rotation connecting portion 103, and the two buckles are engaged
  • the connecting diameter direction of the piece 117 is perpendicular to the connecting diameter direction of the clamping plate 115.
  • the fastener 117 has an elastic structure and the fastener 117 has the same structure as the second fastener 425 of the module unit 10, that is, the fastener 117 is engaged with the first fastener of the module unit 10
  • the structure of the block 424 corresponds to that, a side of the fastener 117 close to the second connecting block 110 is recessed to form a recessed hole 119, and the recessed hole 119 is arranged in an arc shape.
  • the first buckle portion 101 is provided with a detent 118 on the side facing the rotation connecting portion 103, the detent 118 corresponds to the limit protrusion 109, and the detent 118 is in the card slot
  • the 108 slides up to the collision limit protrusion 109 to realize the buckling connection between the first buckle portion 101 and the rotating connection portion 103.
  • the first buckle portion 101 protrudes toward one side of the rotary connection portion 103 to form a first connection shaft 141 and a second connection shaft 142, and the first connection shaft 141 and the second connection shaft 142 of the first buckle portion 101
  • the connecting shaft 142 is respectively connected to the second connecting shaft 142 and the first connecting shaft 141 of the second buckle portion 102 and is accommodated in the rotation hole 106, and the rotation hole 106 serves as the first buckle portion 101 It is connected to the second buckle portion 102 for guiding when it rotates.
  • the second electrical connector 111 penetrates the second accommodating hole 107 and is connected to the first buckle portion 101 and the second buckle portion 102, and the locking member 112 is respectively penetrated and accommodated in In the accommodating end 1141 of the rotation limiting hole 114 of the first buckle portion 101 and the second buckle portion 102, rotate the rotation connecting portion 103 or the first buckle portion 101 and the second buckle portion 102 to make the first buckle
  • the buckle portion 101, the second buckle portion 102, and the rotary connection portion 103 rotate relatively.
  • the locking member 112 rotates and moves from the receiving end 1141 to the clamping end 1142, and the locking member 112 is connected to the third of the clamping plate 115.
  • the clamping block 116 is resisted, and the clamping position 118 slides on the clamping slot 108 to abut the limiting protrusion 109 to form a rotation connecting portion 103, the first clamping portion 101, and the second clamping portion 102.
  • the locking structure is resisted, and the clamping position 118 slides on the clamping slot 108 to abut the limiting protrusion 109 to form a rotation connecting portion 103, the first clamping portion 101, and the second clamping portion 102.
  • the sequence of assembly and use described above can also be adjusted, that is, the first buckle portion 101 can be connected to the rotating connecting portion 103 first, and then the second buckling portion 102 can be connected to the rotating connecting portion 103.
  • the first buckle The locking part 101 and the locking part 112 of the second buckle part 102 are both contained in the receiving end 1141.
  • the rotating connecting part 103 is rotated, so that the locking part 112 rotates to the locking end 1142, and the locking position 118 Slide on the card slot 108 until it interferes with the limiting protrusion 109.
  • the design of the buckle assembly 100 is simple and convenient, and can improve the stability of the buckle connection at a lower cost, so that the rigidity of the buckle assembly 100 connection is improved, and it can withstand large external forces without changing the previous The way the buckles are connected to each other.
  • a buckle fastening component (not labeled) is provided, which includes the surface buckle 42 and the buckle component 100 that cooperates with the surface buckle 42.
  • a gap is left between the first protrusion 4223 on the surface buckle 42 and the buckle connecting member 422 to form an accommodating space 120, and the accommodating space 120 accommodates the locking member 112.
  • the first buckling block 424 protrudes toward the first protrusion 4223 to form a clamping member 130, and the clamping member 130 is used for resisting the locking member 112 to limit the movement of the locking member 112 and realize the clamping
  • the locking member 112 When the buckle assembly 100 is mated and connected with the module unit 10, the locking member 112 correspondingly extends into the first connecting block 4221, and the buckle assembly 100 and the module unit are realized by rotating the locking member 112 and/or the buckle assembly 100 10's relative rotation. At this time, the locking member 112 rotates into the accommodating space 120 and and the locking member 112 respectively resist the first protrusion 4223 and the clamping member 130, and the recessed hole 119 on the locking member 117 rotates to and When the connecting protrusion 4241 resists, the connection between the buckle assembly 100 and the module unit 10 can be locked. At this time, the first connection block 4221 is in contact with the second connection block 110, and the first electrical connection piece 4212 is in contact with the second electrical connection piece 111 to realize signal transmission.
  • the present invention further provides a modular robot, which includes the above-mentioned at least two modular units 10 spliced together, and includes the above-mentioned snap-fastening assembly.
  • a modular robot which includes the above-mentioned at least two modular units 10 spliced together, and includes the above-mentioned snap-fastening assembly.
  • the buckle fastening component can be used to connect any two or more of the module unit 10, wheels, mechanical arms, or bases.
  • the present invention further provides a modular robot, which includes a plurality of functional components and at least one buckle fastening component as described above, and the functional component includes at least one surface buckle 42 as described above,
  • the buckle fastening component includes the buckle component 100.
  • the buckle fastening component is used to connect any two functional components, and the two functional components are indirectly connected by the buckle fastening component, that is, the indirect connection of the two functional components is realized through the connection of the surface buckle 42 and the buckle component 100 connection.
  • the modular robot 01 includes any one or a combination of a position servo system, a speed servo system, and a torque servo system.
  • a third embodiment of the present invention provides a module unit position servo system 200.
  • the module unit 10 in the first embodiment of the present invention includes the module unit position servo system 200.
  • the module unit position servo system 200 uses To detect the position change between the two rotating parts 201 in the module unit 10, the two rotating parts 201 can rotate relative to each other, and the module unit position servo system 200 includes the position sensor 202 provided in any one of the rotating parts 201. And a pair of movement pairs 210 that can rotate in a circumferential direction.
  • the module unit position servo system 200 further includes a transmission assembly 211 and a connection assembly 212 that connect the two rotating parts 201, wherein the transmission assembly 211 and the connection assembly 212
  • the movement pair 210 is constituted.
  • the position sensor 202 senses the rotation angle information between the movement pairs 210, and controls the rotation of the transmission assembly 211 in combination with a target angle command.
  • the connecting assembly 212 also includes a magnet 203 corresponding to the position sensor 202.
  • the magnet 203 can rotate relative to the position sensor 202.
  • the rotation angle between the position sensors 202 is used to detect the rotation angle information between the two rotating parts 201.
  • the connecting component 212 also includes a controller 204 which is electrically connected to the position sensor 202.
  • the rotation angle information detected by the position sensor 202 is transmitted to the controller 204, and the controller 204 controls the corresponding rotation angle.
  • the information is transmitted to the transmission assembly 211.
  • the transmission assembly 211 includes a driving motor 241, the driving motor 241 is arranged in any one of the rotating parts 201, the controller 204 controls the driving motor based on the rotation angle information detected by the position sensor 202 and a target angle command 241 rotation speed.
  • the transmission assembly 211 further includes at least two speed sensors 244 and a magnetic member 243 coaxially connected with the driving motor 241, the speed sensor 244 is disposed opposite to the magnetic member 243 In the circumferential direction, the speed sensor 244 detects the magnetic pole change of the magnetic member 243 to calculate the rotation speed of the drive motor 241 and determine the forward and reverse rotation of the drive motor 241.
  • a fourth embodiment of the present invention provides a method 300 for controlling a position servo system of a module unit, which includes the following steps:
  • S1 Provide a drive motor, a pair of motion pairs that can rotate in a circumferential direction, and a position sensor;
  • S3 The controller combines the current rotation angle information and the target angle command to control the driving motor to set the rotation speed of the driving motor.
  • the modular unit position servo system Compared with the prior art, the modular unit position servo system, the control method of the modular unit position servo system and the modular robot provided by the present invention have the following beneficial effects:
  • a modular unit position servo system for detecting position changes between two rotating parts in a modular unit of a modular robot, characterized in that: the modular unit includes a position sensor arranged in any rotating part And a pair of circumferentially rotatable motion pairs for connecting the two rotating parts, the position sensor senses the rotation angle information between the motion pairs, and controls the rotation of at least one rotating part in combination with a target angle command.
  • the position sensor By sensing the rotation angle information between the motion pairs by the position sensor arranged in any rotating part, the angle (position) information between the two rotating parts can be obtained, so that the relative position can be accurately controlled.
  • the position sensor and the moving pair are matched with the rotating part, the volume of the module unit can be reduced and the design is compact.
  • the motion pair includes a transmission assembly and a connecting assembly for connecting two rotating parts.
  • the connecting assembly also includes a magnet corresponding to the position sensor. When the two rotating parts rotate, the magnet can be opposite to The position sensor rotates, and the rotation angle information between the two rotating parts is detected by detecting the rotation angle between the magnet and the position sensor.
  • the connecting component further includes a controller, and the rotation angle information detected by the position sensor is transmitted to the controller, and the controller transmits corresponding control information to the transmission component. The operation is convenient and the measurement accuracy is high, and the control between the two rotating parts can be realized.
  • the transmission assembly includes a drive motor, the drive motor is arranged in any one of the rotating parts, and the controller controls the rotation speed of the drive motor based on the rotation angle information detected by the position sensor and the target angle command.
  • the controller can control the rotation of the drive motor through the rotation angle information, which is simple to operate and saves costs.
  • a bevel gear is provided on the other end of the drive motor away from the magnetic member, the bevel gear is coaxially connected with the drive motor, and the transmission assembly further includes a connecting plate and a gear ring, wherein the The ring surface of the gear ring without gears is connected with the connecting plate, and the ring surface of the gear ring with gears is rotatably connected with the bevel gear.
  • the gear transmission has a large transmission ratio, which can be used for deceleration or increase, and the transmission efficiency is high.
  • connection assembly further includes a second PCB board, the controller and the position sensor are both provided on the second PCB board, and the side of the connection board away from the gear ring is connected to the second PCB board.
  • PCB board The second PCB board integrates a position sensor and a controller, which can reduce the gears of the module unit and has a compact design.
  • a drive motor a pair of circumferentially rotatable movement pairs and a position sensor; based on the position sensor, the rotation angle information of the movement pair is detected and transmitted to a controller; the controller combines the current rotation angle information with The target angle command is used to control the drive motor to set the rotational speed movement of the drive motor.
  • the structure of this step is simple, and the rotation angle information can be obtained through a simple process, and then the drive motor can be controlled to rotate.
  • a modular unit is provided, the modular unit is in the form of a sphere, the modular unit includes two hemispherical rotating parts, the rotating part is provided with at least one buckle, passing through the center of the buckle And the perpendicular line perpendicular to the connecting surface intersects the rotation axis of the rotating part, and the intersecting angle is 45°.
  • the rotation axes of the two module units are parallel or perpendicular, the splicing can be realized, and the coupling of the degrees of freedom between the mutually spliced module units can be reduced.
  • the number of the fasteners is an even number, and the setting positions of the fasteners of the two rotating parts are mirror-symmetrical based on the interface of the two rotating parts.
  • the buckle is provided with a first contact, and signal communication can be realized by contacting the first contact with the corresponding contact of the external module. It can realize the signal transmission between the module units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种模块单元位置伺服系统,用于检测模块化机器人(01)的模块单元(10)中两个转动部(20、30)之间的位置变化,模块单元(10)包括设于任一转动部(20、30)之内的位置传感器(202)以及用于连接两个转动部(20、30)的一对可周向旋转的运动副(210),位置传感器(202)感测运动副(210)之间的旋转角度信息,并结合目标角度指令控制至少一转动部(20、30)转动。提供一种模块单元位置伺服系统的控制方法及一种模块化机器人。模块单元位置伺服系统、模块单元位置伺服系统的控制方法及模块化机器人具有设计小巧、测量速度和角度精度高等优点。

Description

模块单元位置伺服系统及其控制方法、模块化机器人 【技术领域】
本发明涉及电子产品技术领域,尤其涉及一种模块单元位置伺服系统及其控制方法、模块化机器人。
【背景技术】
机械结构间的相对运动,通常使用传动结构来实现,如球状结构的两个半球之间的相对转动。现有的模块单元通过设置单一的磁编码器穿设两个半球来测量两个半球的相对转动角度,但是磁编码器的设计容易造成模块单元体积过大的缺陷。
【发明内容】
为克服现有的模块单元拼接时模块单元体积大的缺陷,本发明提供一种模块单元位置伺服系统、模块单元位置伺服系统的控制方法及模块化机器人。
为了解决上述技术问题,本发明提供一技术方案如下:一种模块单元位置伺服系统,用于检测模块化机器人的模块单元中两个转动部之间的位置变化,所述模块单元包括设于任一转动部之内的位置传感器以及用于连接两个所述转动部的一对可周向旋转的运动副,所述位置传感器感测运动副之间的旋转角度信息,并结合目标角度指令控制至少一转动部转动。
与现有技术相比,本发明提供的模块单元位置伺服系统、模块单元位置伺服系统的控制方法及模块化机器人具有以下有益效果:
1、一种模块单元位置伺服系统,用于检测模块化机器人的模块单元中两个转动部之间的位置变化,所述模块单元包括设于任一转动部之内的位置传感器以及用于连接两个所述转动部的一对可周向旋转的运动副,所述位置传感器感测运动副之间的旋转角度信息,并结合目标角度指令控制至少一转动部转动。通过设置在任意转动部之内的位置传感器感测运动副之间的旋转角度信息,可获得两个所述转动部之间的角度(位置)信息,从而可对其相关位置进行精准控制。此外,由于位置传感器与运动副配合,则可减小模块单元的体积,设计小巧。
【附图说明】
图1是本发明第一实施例中模块化机器人的立体结构示意图;
图2-A是本发明第一实施例中模块单元的正视图;
图2-B是本发明第一实施例中两个模块单元的连接示意图;
图2-C是本发明第一实施例中两个模块单元的另一连接示意图;
图3是本发明第一实施例中模块单元的爆炸结构示意图;
图4是本发明第一实施例中第一转动件的爆炸结构示意图;
图5是本发明第一实施例中连接件的立体结构示意图;
图6是本发明第一实施例中面卡扣的爆炸结构示意图;
图7-A是本发明第一实施例中卡扣连接件的立体结构示意图;
图7-B是本发明第一实施例中卡扣连接件的另一立体结构示意图;
图8是本发明第一实施例中卡扣连接件的正视图;
图9-A是本发明第一实施例中两个卡扣连接件连接的后视图;
图9-B是图9-A沿A-A方向的剖视图;
图10-A是本发明第一实施例中两个卡扣连接件连接的后视图;
图10-B是图9-A沿C-C方向的剖视图;
图11是本发明第一实施例中传动组件的爆炸结构示意图;
图12是本发明第一实施例中转动组件的爆炸结构示意图;
图13是本发明第一实施例中磁性件的立体结构示意图;
图14是本发明第一实施例中连接组件的爆炸结构示意图;
图15是本发明第一实施例中连接组件的俯视图;
图16是图15沿B-B方向的剖视图;
图17是本发明第二实施例中模块化机器人的立体结构示意图;
图18是本发明第二实施例中卡扣组件的爆炸结构示意图;
图19是本发明第二实施例中旋转连接部的立体结构示意图;
图20是本发明第二实施例中第一卡扣部的立体结构示意图;
图21是本发明第二实施例中第一卡扣部的另一立体结构示意图;
图22是本发明第二实施例中模块单元与卡扣组件连接的立体结构示意图;
图23是本发明第三实施例中模块单元位置伺服系统的爆炸结构示意图;
图24是本发明第四实施例中模块单元位置伺服系统的控制方法的流程示意图。
附图标记说明:
01、模块化机器人;10、模块单元;20、第一转动部;22、传动组件;23、保护罩;24、传动件;241、驱动电机;242、锥齿轮;243、磁性件;244、速度传感器;245、安装板;25、转动组件;251、连接板;252、齿轮环;253、安装架;254、转动架;255、滚珠;30、第二转动部;32、连接组件;321、第二PCB板;322、导电环座;323、滑环;324、磁铁;325、位置传感器;40、第一转动件;41、壳体;411、第一穿设孔;42、面卡扣;421、第一PCB板;4211、LED光源;4212、第一电连接件;4213、中间通孔;422、卡扣连接件;4221、第一连接块;4222、第一容纳孔;4223、第一凸块;423、遮挡片;424、第一扣合块;4241、连接凸块;4242、第一卡接块;425、第二扣合块;4251、凹槽;4252、第二卡接块;426、卡扣连接面;427、卡扣安装面;428、紧固件;429、边孔;430、卡扣连接孔;43、连接件;431、第二穿设孔;432、容纳件;4321、容纳槽;433、抵持件;50、第二转动件;100、卡扣组件;101、第一卡扣部;102、第二卡扣部;103、旋转连接部;104、连接壳体;105、固定芯;106、旋转孔;107、第二容纳孔;108、卡槽;109、限位凸起;110、第二连接块;111、第二电连接件;112、锁紧件;113、容置孔;114、旋转限位孔;1141、容纳端;1142、卡接端;115、卡接板;116、第三卡接块;117、扣合件;118、卡位;119、凹陷孔;120、容置空间;130、卡接件;141、第一连接轴;142、第二连接轴;200、模块单元位置伺服系统;201、转动部;202、位置传感器;203、磁铁;204、控制器;210、运动副;211、传动组件;212、连接组件。
【具体实施方式】
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实 施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
请参阅图1和图2-A,本发明提供一种模块化机器人01,所述模块化机器人01包括至少一个模块单元10,任意两个所述模块单元10之间可直接或间接地进行连接以形成运动机构,模块单元10与模块单元10之间的不同连接方式可重构出不同构型的模块化机器人01。所述模块单元10包括第一转动部20,可与第一转动部20转动连接的第二转动部30,所述第一转动部20与第二转动部30之间可相对转动以实现模块化机器人01的不同运动状态,所述模块单元10呈球体,第一转动部20、第二转动部30呈半球型,及可带动至少一所述转动部转动的伺服装置(未图示),所述转动部可以为第一转动部20或第二转动部30的任一种,所述伺服装置包括控制器及至少两个传感器,所述传感器用以感测第一转动部20、第二转动部30的相对位置、速度及力矩,所述控制器以对位置、速度、力矩进行控制。
请参阅图3,所述第一转动部20包括第一转动件40,容纳在所述第一转动件40的传动组件22,所述第一转动件40为半球形结构。所述第二转动部30包括第二转动件50,容纳在所述第二转动件50的连接组件32。所述第一转动件40与所述第二转动件50结构相同。所述传动组件22与所述连接组件32连接,所述第一转动件40与所述第二转动件50连接形成有容纳所述传动组件22、所述连接组件32的容纳空间。
请参阅图4和图5,所述第一转动件40包括中空的壳体41,容纳在所述壳体41内的连接件43,与连接件43连接的至少一面卡扣42。所述壳体41为半球形结构且所述壳体41上设置有供所述面卡扣42穿设的第一穿设孔411,所述第一穿设孔411的数量与所述面卡扣42的数量相对应,所述面卡扣42穿设所述第一穿设孔411且与所述连接件43连接,所述连接件43容纳在所述壳体41内。
所述连接件43与所述壳体41的形状结构相对应,所述连接件43对应所述第一穿设孔411的位置上设置有第二穿设孔431,所述面卡扣42依次穿设所述第一穿设孔411、第二穿设孔431。所述第二穿设孔431内壁延伸形成一环形容纳件432,所述容纳件432上开设有多个容纳槽4321,多个所述容纳槽4321呈环形分布且与所述面卡扣42连接。
两个所述第二穿设孔431之间设置有抵持件433,所述抵持件433朝所述连接组件32凸起形成,当连接组件32容纳在所述连接件43内时,所述抵持件433与所述连接组件32抵持连接。
请参阅图6,所述面卡扣42包括卡扣连接面426、与卡扣连接面426相对设置的卡扣安装面427,所述面卡扣42包括与所述容纳槽4321连接的第一PCB板421、与第一PCB板421连接的卡扣连接件422、套设在所述卡扣连接件422和第一PCB板421之间的遮挡片423,所述卡扣连接件422与另一所述卡扣连接件422连接。所述第一PCB板421一端与所述卡扣连接件422可拆卸连接,另一端与所述连接组件32电性连接,所述第一PCB板421朝所述卡扣连接件422的一侧上环形设置有多个LED光源4211,当面卡扣42与连接件43连接时,多个LED光源4211对应容纳在所述容纳槽4321内。多个LED光源4211以为模块单元10提供光源显示,以实时直观地向用户显示模块单元10的工作状态。所述 遮挡片423为中空结构以供所述卡扣连接件422、第一PCB板421穿设,所述遮挡片423放置在所述LED光源4211上接触以防止LED光源4211漏光。
所述卡扣安装面427上的边缘设有至少两个边孔429,所述第一PCB板421与所述卡扣安装面427之间通过所述边孔429打入紧固件实现固定。所述第一PCB板421的中心位置上设置有至少两个第一电连接件4212,所述第一电连接件4212的一端依次穿设所述第一PCB板421、遮挡片423并且与所述卡扣连接件422连接,所述第一电连接件4212的另一端与所述连接组件32电性连接,所述第一电连接件4212用于提供多个拼接的模块单元10之间信号的传输,即可通过所述第一电连接件4212与外接模块的对应电连接件接触,可实现信号通讯。所述第一电连接件4212为铜柱且起导电传输作用,在本实施例中,所述第一电连接件4212为电连接件。所述第一PCB板421上还设置有两个中间通孔4213,所述中间通孔4213与所述卡扣连接件422相对应,可通过紧固件(未标注)穿设所述中间通孔4213以实现第一PCB板421与所述卡扣连接件422的连接,通过调节所述紧固件进而调整第一PCB板421与卡扣连接件422连接的松紧程度,还能调节两个卡扣连接件422之间的扣合力度。在本实施例中,所述第一电连接件4212的数量为三个。
请参阅图6、图7-A和图7-B,所述卡扣连接件422的中心朝远离所述第一PCB板421的一侧延伸形成柱形的第一连接块4221,所述第一连接块4221设置有至少两个第一容纳孔4222,所述第一容纳孔4222的数量与第一电连接件4212相对应且容纳所述第一电连接件4212,所述第一电连接件4212通过所述第一容纳孔4222外露与所述卡扣连接面426。所述第一连接块4221的外壁沿“十”字方向延伸形成四个第一凸块4223,在所述第一凸块4223与所述卡扣连接件422之间还留有间隙以形成一空间。优选的,所述第一容纳孔4222的数量为三个。
请参阅图7-A、图7-B和图8,所述卡扣连接件422对应所述第一凸块4223延伸方向的相对的两侧上分别设有第一扣合块424、第二扣合块425,所述第一扣合块424、第二扣合块425以及第一连接块4221形成在所述卡扣连接面426上且所述第一扣合块424、第二扣合块425环绕所述第一连接块4221设置,所述第一扣合块424、第二扣合块425受力后可发生一定形变且所述中间通孔4213与所述第一扣合块424相对应,所述第一扣合块424容纳在所述中间通孔4213内。所述第一扣合块424、第二扣合块425分别朝远离所述第一PCB板421延伸且所述第一扣合块424、第二扣合块425分别与所述第一凸块4223之间留有间隙空间,所述第一扣合块424与所述第二扣合块425环绕所述第一连接块4221设置。所述第一扣合块424沿远离所述第一连接块4221的一侧延伸形成有连接凸块4241,所述第二扣合块425靠近所述第一连接块4221的一侧凹陷形成凹槽4251,所述连接凸块4241与所述凹槽4251相对应且两者呈弧形,相对的所述连接凸块4241与凹槽4251之间的连线呈“十”字方向设置。当两个模块单元10连接时,所述第一扣合块424与第二扣合块425对应配合连接,连接凸块4241与凹槽4251抵触,所述第一连接块4221、所述第一扣合块424与所述第二扣合块425之间界定一平面,所述第一凸块4223与所述平面之间形成间隙以供所述外设的卡扣组件(未图示)置入。
所述卡扣安装面427上设有两个卡扣连接孔430,所述卡扣连接孔430与所述第一扣合块424位置相匹配,卡扣连接孔430对应设置在所述连接凸块4241的位置上,且所述卡扣连接孔430伸入所述第一扣合块424内,所述卡扣连接孔430内可打入紧固件,根据所述紧固件打入的深度,以控制两个所述 面卡扣42之间的扣合力度。
请继续参阅图7-A,第一扣合块424远离所述第一连接块4221的一侧凸出形成第一卡接块4242,第二扣合块425靠近所述第一连接块4221的一侧凹陷形成第二卡接块4252,所述第一卡接块4242、第二卡接块4252设置在远离所述第一PCB板的一侧,所述第一卡接块4242、第二卡接块4252分别与所述连接凸块4241、凹槽4251形成“T”字型,所述第一卡接块4242、第二卡接块4252呈弧形设置。请参阅图8、图9-A和图9-B,以两个所述卡扣连接件配合连接为例,当所述连接凸块4241与对应的凹槽4251抵触配合时,所述第一卡接块4242与第二卡接块4252弹性抵触,以实现两个模块单元10之间的配合连接。
请参阅图10-A和图10-B并结合图7-A和图7-B,通过紧固件428穿设所述中间通孔4213、卡扣连接孔430以实现第一PCB板421与所述卡扣连接件422的连接,所述紧固件428穿设所述中间通孔4213且容纳在所述卡扣连接孔430内,所述面卡扣42的扣合过程中,打入紧固件428的第一扣合块424向所述第一连接块4221产生形变,以使所述第一卡接块4242与所述第二卡接块4252之间扣合;当需要将两个所述面卡扣42分离时,由于所述第一卡接块4242与所述第二卡接块4252之间相匹配的弧面,使打入紧固件428的第一扣合块424再次向远离所述第一连接块4221一侧产生形变。当打入的紧固件428较紧时,所述第一扣合块424较难形变,此时两个所述面卡扣42分离困难,当打入的紧固件428较松时,所述第一扣合块424容易形变,此时两个所述面卡扣42很容易分离。采用此设计,相互连接的面卡扣42安装连接时容易,相互连接的面卡扣42拆卸时困难,实现面卡扣42易装难拆的效果。当模块单元10之间拼接在一起时,模块单元10之间的第一电连接件4212相互接触以实现信号传输。
请参阅图11,所述传动组件22包括传动件24、转动组件25、与所述转动组件25连接的保护罩23,所述保护罩23与所述第一转动件40的连接件43连接,转动组件25与保护罩23连接并形成可以容纳所述传动件24的容置空间。所述保护罩23与所述传动件24相对应,所述保护罩23与所述传动件24连接时,传动件24容纳在所述保护罩23内。
继续如图11中所示,所述传动件24进一步包括驱动电机241、与驱动电机241一端同轴连接的锥齿轮242、与驱动电机241另一端同轴连接的柱形磁性件243,所述锥齿轮242与所述转动组件25转动连接且锥齿轮242驱动转动组件25旋转。即所述伺服装置进一步还包括驱动电机241,所述驱动电机241设于任一所述转动部之间。
所述传动件24上还包括安装板245,与安装板245连接的至少一速度传感器244,如图11中所示,所述安装板245与所述驱动电机241的一端固定连接,所述速度传感器244设置在所述磁性件243的圆周方向上,所述速度传感器244与所述连接组件32(如图3中所示)电性连接。在一些具体的实施例中,所述速度传感器244为霍尔传感器且数量为两个,两个所述速度传感器244与所述磁性件243相对且呈一定角度倾斜设置,两个所述速度传感器244之间倾斜角度为100°-120°;和/或所述速度传感器244与所述磁性件243之间的距离间隔为1-2mm。所述速度传感器244可根据磁性件243的磁极变化计算所述驱动电机241的转动速度以及判断所述驱动电机241的正反转。优选倾斜角度为100°-120°,具体地,所述倾斜角度还可为100°、110°、115°等。此时两个速度传感器244在磁性件243上的投影面积最大,能够更准确地测量磁性件243上的磁极变化情况。
请参阅图12,具体地,为了使所述锥齿轮242可更好地带动所述转动组件25转动,在一些具体的实施例中,所述转动组件25包括中空的连接板251、与连接板251固定连接的齿轮环252,齿轮环252设置在所述连接板251靠近传动件24的一侧上,所述齿轮环252未设有齿轮的环面与所述连接板251连接,所述齿轮环252设有齿轮的环面与所述锥齿轮242转动连接。所述齿轮环252与所述锥齿轮242对应配合连接以实现驱动电机241带动所述转动组件25的转动,所述连接板251与所述第二转动件50上的连接件43连接。
请参阅图12并结合图11,所述转动组件25还包括与驱动电机241固定连接的安装架253、与安装架253转动连接的转动架254。所述安装架253与所述连接组件32连接,所述安装架253、转动架254容纳在所述连接板251内。所述转动架254为环状结构,具体地,所述转动架254上设置有多个滚珠255,多个滚珠255呈圆周分布。所述转动架254套接在所述安装架253上,所述安装架253通过所述滚珠255与所述连接板251连接和相对转动。所述保护罩23与所述驱动电机241、速度传感器244、磁性件243、安装架253相对应且所述保护罩23容纳所述驱动电机241、速度传感器244、磁性件243和安装架253。采用此设计能够减小传动组件22的体积,进而减小整个模块单元10的体积,设计小巧。
采用此设计,当锥齿轮242与齿轮环252相对转动时,所述安装架253、驱动电机241、保护罩23与所述齿轮环252、连接板251相对转动,所述安装架253带动所述连接组件32转动,所述保护罩23带动所述第一转动件40转动,以实现第一转动件40与第二转动件50的相对转动。
请参阅图13,所述磁性件243上设置有多个磁极,所述磁极包括N极及S极,其中,N极磁极与S极磁极可间隔分布设置。当所述驱动电机241工作转动以带动所述磁性件243、锥齿轮242的转动,所述锥齿轮242带动所述转动组件25转动,此时速度传感器244感应磁性件243上的多个磁极的变化以计算所述驱动电机241的转动速度以及判断所述驱动电机241的正反转。
请参阅图14、图15和图16,所述连接组件32进一步包括与安装架(未图示)连接的第二PCB板321、与所述第二PCB板321连接的导电环座322、部分容纳于所述导电环座322的滑环323、容纳于所述滑环323的磁铁324,所述滑环323套设在所述磁铁324的外围,所述磁铁324与所述抵持件433抵持,所述第二PCB板321为控制器。所述第二PCB板321与所述速度传感器244、驱动电机241电性连接。所述第二PCB板321对应磁铁324的位置上设置有位置传感器325,所述位置传感器325与所述滑环323同步转动,所述磁铁324与所述位置传感器325之间的距离为1mm-2mm。所述第一转动件40带动所述滑环323、位置传感器325相对于所述磁铁324转动。所述位置传感器325用于检测磁铁324的位置变化信号,以获取所述磁铁324的转动角度,通过检测所述磁铁324与所述位置传感器325之间的旋转角度以检测两个转动部之间的转动信息并传送至第二PCB板321,所述控制器设置在所述第二PCB板321上,所述控制器基于位置传感器325检测所述旋转角度信息与目标角度指令控制所述驱动电机241以设定转速运行。
当所述第一转动件40与所述第二转动件50之间需要相互转动时,可先由所述驱动电机241带动所述连接板251转动,进而连接板251带动与其固定连接的所述第二PCB板321转动,由于所述导电环座322、滑环323依次固定在所述第二PCB板321之上,因此,对应的所述导电环座322、滑环323也会转动,也即,通过驱动电机241驱动,可同步带动第一转动件40转动,所述导电环 座322带动所述滑环323相对于所述磁铁324转动。
同时,由于所述磁铁324与所述第二转动件50连接,由于所述磁铁324与所述抵持件433抵持连接,因此,磁铁324与第二转动件50并不会随着所述第二PCB板321转动。
因此,基于上述的连接结构和连动关系,可使第一转动件40与第二转动件50可相对转动,通过位置传感器325与磁铁324之间相对的转动,以实现通过位置传感器325检测并获得所述第一转动件40与第二转动件50之间相对的转动角度。
请继续参阅图2-A,所述模块单元10包括两个可相对旋转的第一转动部20、第二转动部30,所述第一转动部20、第二转动部30为半球结构,两个转动部均沿半球截面的中垂线f旋转运动;在一所述转动部上设置至少一个卡扣连接件422,两个转动部上卡扣连接件422的位置以半球截面为基准呈镜像对称,即两个所述转动部的卡扣连接件422设置位置以两个转动部交界面为基准呈镜像对称;所述模块单元10之间通过一组卡扣连接件422实现插拔对接。
所述卡扣连接件422呈圆形,过所述卡扣连接件422圆心且垂直于所述卡扣连接件422所在平面的垂线e与所述转动部的旋转中垂线f相交,且相交的夹角为D且为30°-60°。所述模块单元10设置所述卡扣连接件422的数量为偶数。可选的,在一些具体的实施例中,所述夹角D为45°,请参阅图2-B和图2-C,此时当两个所述模块单元10的中间转轴无论平行或者垂直时都能实现拼接,并且能够减小相互拼接的模块单元10之间自由度的耦合。
请参阅图17,本发明第二实施例提供一种模块化机器人01,所述模块化机器人01包括至少两个模块单元10,用于与模块单元10之间相互连接的卡扣组件100,任意两个所述模块单元10之间可通过卡扣组件100进行连接以形成运动机构,模块单元10与模块单元10之间通过卡扣组件100的不同连接方式可拼接组合出不同结构的模块化机器人01。
所述卡扣组件100包括旋转连接部103,分别与旋转连接部103相对两侧可拆卸连接的第一卡扣部101、第二卡扣部102,分别穿设所述第一卡扣部101、第二卡扣部102、旋转连接部103的至少两个第二电连接件111。所述第二电连接件111可以为铜柱、合金柱等起导电传输作用的电连接件中的任一种,在本实施例中,所述第二电连接件111为电连接件。所述第一卡扣部101与第二卡扣部102的结构呈镜像对应。两个所述模块单元10的任一卡扣连接件422分别与所述第一卡扣部101、所述第二卡扣部102旋拧固定连接。
两个所述模块单元10之间通过所述卡扣组件100拼接,其中一模块单元连接至所述第一卡扣部101,另一模块单元连接至所述第二卡扣部102。
请参阅图18和图19,所述旋转连接部103包括连接壳体104以及设置在所述连接壳体104内的固定芯105,所述固定芯105为设置在连接壳体104内的圆板状结构。固定芯105朝所述第一卡扣部101、第二卡扣部102端面相对的两侧凹陷,以形成用于容纳所述第一卡扣部101、第二卡扣部102的空间,所述第一卡扣部101、第二卡扣部102的外周壁分别与所述连接壳体104的内壁套接。
所述固定芯105上任意两个相互垂直的直径方向设置有旋转孔106,所述旋转孔106为腰形孔且所述旋转孔106设置在所述固定芯105与连接壳体104的内壁上。所述固定芯105的中心上设置有第二容纳孔107,所述第二容纳孔107容纳所述第一卡扣部101、第二卡扣部102且第二电连接件111穿设所述第二容纳孔107,在本实施例中,所述第二电连接件111数量为三个。
请继续参阅图19,所述固定芯105还设置有至少一锁紧件112,所述锁紧件112设置在所述旋转孔106与所述第二容纳孔107之间。所述锁紧件112分别朝所述第一卡扣部101、第二卡扣部102方向延伸,所述锁紧件112靠近第一卡扣部101、第二卡扣部102的一端沿所述第二容纳孔107的中心轴凸出以形成弯钩状,锁紧件112为弹性结构。所述锁紧件112与所述第一卡扣部101、第二卡扣部102旋转配合实现第一卡扣部101、第二卡扣部102与旋转连接部103的可拆卸连接。在本实施例中,所述锁紧件112数量为四个且锁紧件112分布在相互垂直的两直径上。所述连接壳体104朝第一卡扣部101、第二卡扣部102的内壁上还设置有卡槽108,卡槽108上设置有限位凸起109,所述限位凸起109与所述第一卡扣部101、第二卡扣部102连接。
请参阅图20,所述第一卡扣部101的中心分别朝靠近、远离所述旋转连接部103的一侧延伸形成柱形的第二连接块110,所述第二连接块110设置有容纳所述第二电连接件111的容置孔113且所述容置孔113的数量与所述第二电连接件111的数量相对应,所述第二电连接件111从所述容置孔113中露出。第一卡扣部101对应所述锁紧件112的位置上设置有旋转限位孔114,所述旋转限位孔114的包括相互连接的容纳端1141和卡接端1142,容纳端大于所述锁紧件112的尺寸以容纳所述锁紧件112,卡接端1142与锁紧件112的尺寸相对应以锁紧件112配合连接,所述锁紧件112与所述卡接端1142为过盈配合,所述锁紧件112通过所述旋转限位孔114外露,所述旋转限位孔114呈圆弧状设置,请结合图18,所述旋转孔106供所述第一卡扣部101、第二卡扣部102的第二连接块110穿设。
请继续参阅图20,所述第一卡扣部101直径方向上还设置有卡接板115,所述卡接板115环绕所述第二连接块110设置,卡接板115朝远离旋转连接部103的一侧延伸。所述卡接板115靠近设置在所述旋转限位孔114的卡接端1142,卡接板115朝第二连接块110的凸出形成第三卡接块116,所述第三卡接块116凸出延伸至所述卡接端1142。第一卡扣部101与旋转连接部103连接时,锁紧件112对应穿设旋转限位孔114的容纳端1141,通过旋转第一卡扣部101或旋转连接部103实现锁紧件112对应移动至旋转限位孔114的卡接端1142,此时锁紧件112与所述第三卡接块116抵持卡接,以实现第一卡扣部101与旋转连接部103的连接。
请继续参阅图20,所述第一卡扣部101直径方向上还设置有扣合件117,所述扣合件117朝远离所述旋转连接部103一侧凸起,两个所述扣合件117的相连的直径方向与卡接板115相连的直径方向垂直。所述扣合件117为弹性结构且所述扣合件117与所述模块单元10的第二扣合块425结构相同,即所述扣合件117与所述模块单元10的第一扣合块424结构相对应,所述扣合件117靠近所述第二连接块110的一侧凹陷形成凹陷孔119,所述凹陷孔119呈弧形设置。
请参阅图21,所述第一卡扣部101朝旋转连接部103的一侧上设置有卡位118,所述卡位118与限位凸起109相对应,所述卡位118在卡槽108上滑动至抵触限位凸起109,以实现所述第一卡扣部101与旋转连接部103扣合连接。
所述第一卡扣部101朝所述旋转连接部103的一侧凸出形成第一连接轴141以及第二连接轴142,所述第一卡扣部101的第一连接轴141、第二连接轴142分别对应与所述第二卡扣部102的第二连接轴142、第一连接轴141连接并容纳在所述旋转孔106内,所述旋转孔106起到第一卡扣部101与第二卡扣部102连接转动时的导向作用。
装配使用时,第二电连接件111穿设所述第二容纳孔107且与第一卡扣部 101、第二卡扣部102卡接连接,所述锁紧件112分别穿设并容纳在第一卡扣部101、第二卡扣部102的旋转限位孔114的容纳端1141内,转动所述旋转连接部103或第一卡扣部101、第二卡扣部102使第一卡扣部101、第二卡扣部102与旋转连接部103相对转动,此时锁紧件112从容纳端1141旋转移动至卡接端1142,锁紧件112与所述卡接板115的第三卡接块116抵持,所述卡位118在卡槽108上滑动至抵触限位凸起109,以形成旋转连接部103、第一卡扣部101、第二卡扣部102三者之间的锁紧结构。
上述装配使用的顺序也可调整,即也可先将第一卡扣部101与所述旋转连接部103连接,再将第二卡扣部102与所述旋转连接部103连接,第一卡扣部101、第二卡扣部102的锁紧件112都容纳在所述容纳端1141内,此时转动所述旋转连接部103,使得锁紧件112旋转移动至卡接端1142,卡位118在卡槽108上滑动至抵触限位凸起109。
采用此卡扣组件100的设计,简单方便,能够用较低的成本以提高卡扣连接的稳定性,使得卡扣组件100连接的刚度提高,能够承受外界较大的受力,同时不改变之前卡扣之间相互连接的方式。
请参阅图22,提供一种卡扣紧固组件(未标注),其包括所述面卡扣42及与所述面卡扣42配合的卡扣组件100。所述面卡扣42上第一凸块4223与所述卡扣连接件422之间留有间隙以形成一容置空间120,所述容置空间120容纳所述锁紧件112。所述第一扣合块424朝所述第一凸块4223凸出形成卡接件130,所述卡接件130用于与锁紧件112抵持以限制锁紧件112的移动,实现卡扣组件100与模块单元10之间的配合连接。
所述卡扣组件100与模块单元10配合连接时,锁紧件112对应伸入所述第一连接块4221,通过转动锁紧件112和\或卡扣组件100实现卡扣组件100与模块单元10的相对转动。此时锁紧件112旋转至容置空间120内且与锁紧件112分别与所述第一凸块4223、卡接件130抵持,所述扣合件117上的凹陷孔119旋转至与连接凸块4241抵持,即可实现卡扣组件100与模块单元10之间连接的锁紧。此时第一连接块4221与第二连接块110相接触,第一电连接件4212与第二电连接件111接触以实现信号的传输。
本发明还进一步提供一种模块化机器人,其包括上述至少两个模块单元10拼接而成,其包括上述卡扣紧固组件,具体可参照前述的卡扣紧固组件说明,在此不再阐述。所述卡扣紧固组件可用于连接模块单元10、轮子、机械臂或底座中任两种或多种。
本发明还进一步提供一种模块化机器人,所述模块化机器人包括多个功能组件及至少一如上述的卡扣紧固组件,所述功能组件包括至少一个如上述的所述面卡扣42,所述卡扣紧固组件包括卡扣组件100内。所述卡扣紧固组件用于连接任意两个功能组件,两个功能组件通过卡扣紧固组件实现间接连接,即通过面卡扣42与卡扣组件100的连接实现两个功能组件的间接连接。
所述模块化机器人01包括位置伺服系统、速度伺服系统及力矩伺服系统中任一种或几种的组合。
请参阅图23,本发明提供第三实施例提供一种模块单元位置伺服系统200,本发明第一实施例中的模块单元10包括所述模块单元位置伺服系统200,模块单元位置伺服系统200用于检测模块单元10中两个转动部201之间的位置变化,两个所述转动部201可相对转动,模块单元位置伺服系统200包括所述设于任一转动部201之内的位置传感器202以及一对可周向旋转的运动副210,所述模块单元位置伺服系统200还包括连接两个转动部201的传动组件 211和连接组件212,其中,所述传动组件211和所述连接组件212构成所述运动副210。所述位置传感器202感测运动副210之间的旋转角度信息,并结合目标角度指令控制传动组件211转动。
所述连接组件212还包括与所述位置传感器202对应的磁铁203,当两个转动部201相对转动时,所述磁铁203可相对于所述位置传感器202转动,通过检测所述磁铁203与所述位置传感器202之间的旋转角度以检测两个转动部201之间的旋转角度信息。
所述连接组件212还包括控制器204,所述控制器204与所述位置传感器202电性连接,所述位置传感器202所检测旋转角度信息传送至控制器204,并由控制器204将对应控制信息传送至所述传动组件211。
所述传动组件211包括驱动电机241,所述驱动电机241设于任一所述转动部201之内,所述控制器204基于位置传感器202检测的所述旋转角度信息与目标角度指令控制驱动电机241的转动速度。
请结合图11和图13,所述传动组件211进一步包括至少两个速度传感器244及与所述驱动电机241同轴连接的磁性件243,所述速度传感器244相对设于所述磁性件243的圆周方向上,通过所述速度传感器244检测所述磁性件243的磁极变化以计算所述驱动电机241的转速、以及判断所述驱动电机241的正反转。
请参阅图24,本发明第四实施例提供一种模块单元位置伺服系统的控制方法300,其包括如下步骤:
S1:提供驱动电机、一对可周向旋转的运动副及位置传感器;
S2:基于所述位置传感器检测所述运动副的旋转角度信息并传送至一控制器;
S3:所述控制器结合当前旋转角度信息与目标角度指令以对所述驱动电机进行控制,以设定驱动电机的转速运动。
与现有技术相比,本发明提供的模块单元位置伺服系统、模块单元位置伺服系统的控制方法及模块化机器人具有以下有益效果:
1、一种模块单元位置伺服系统,用于检测模块化机器人的模块单元中两个转动部之间的位置变化,其特征在于:所述模块单元包括设于任一转动部之内的位置传感器以及用于连接两个所述转动部的一对可周向旋转的运动副,所述位置传感器感测运动副之间的旋转角度信息,并结合目标角度指令控制至少一转动部转动。通过设置在任意转动部之内的位置传感器感测运动副之间的旋转角度信息,可获得两个所述转动部之间的角度(位置)信息,从而可对其相关位置进行精准控制。此外,由于位置传感器与运动副与均与所述转动部相配合,则可减小模块单元的体积,设计小巧。
2、所述运动副包括用于连接两个转动部的传动组件和连接组件,所述连接组件还包括与所述位置传感器对应的磁铁,当两个转动部转动时,所述磁铁可相对于所述位置传感器转动,通过检测所述磁铁与所述位置传感器之间的旋转角度以检测两个转动部之间的旋转角度信息。所述连接组件还包括控制器,所述位置传感器所检测旋转角度信息传送至控制器,并由控制器将对应控制信息传送至所述传动组件。操作方便且测量精度高,可实现两个转动部之间的控制。
3、所述传动组件包括驱动电机,所述驱动电机设于任一所述转动部之内,所述控制器基于位置传感器检测的所述旋转角度信息与目标角度指令控制驱动电机的转动速度。控制器通过旋转角度信息即可控制驱动电机的转动, 操作简单,节约成本。
4、在所述驱动电机远离所述磁性件的另一端上设置有锥齿轮,所述锥齿轮与所述驱动电机同轴连接,所述传动组件还包括连接板与齿轮环,其中,所述齿轮环未设有齿轮的环面与所述连接板连接,所述齿轮环设有齿轮的环面与所述锥齿轮转动连接。采用齿轮传动的传动比大,可用于减速或增速,传动效率高。
5、所述连接组件还包括第二PCB板,所述控制器与所述位置传感器均设于所述第二PCB板上,所述连接板远离所述齿轮环的一面连接至所述第二PCB板。第二PCB板集成有位置传感器和控制器,可减小模块单元的齿轮,设计小巧。
6、提供驱动电机、一对可周向旋转的运动副及位置传感器;基于所述位置传感器检测所述运动副的旋转角度信息并传送至一控制器;所述控制器结合当前旋转角度信息与目标角度指令以对所述驱动电机进行控制,以设定驱动电机的转速运动。采用此步骤结构简单,通过简单的流程即可获得旋转角度信息,进而控制驱动电机转动。
7、提供一种模块单元,所述模块单元呈球体,所述模块单元包括两个呈半球型的转动部,所述转动部上设有至少一卡扣件,经过所述卡扣件的中心且垂直于连接面的垂线与所述转动部的转动轴相交,且相交的夹角为45°。当两个所述模块单元转轴平行或者垂直时都能实现拼接,并且能够减小相互拼接的模块单元之间自由度的耦合。
8、所述卡扣件的数量为偶数,两个所述转动部的卡扣件设置位置以两个转动部交界面为基准呈镜像对称。所述卡扣件上设有第一触点,通过所述第一触点与外接模块的对应触点接触,可实现信号通讯。可实现模块单元之间信号的传输。
以上所述仅为本发明较佳实施例而已,并不用以限制本发明,凡在本发明原则之内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。

Claims (12)

  1. 一种模块单元位置伺服系统,用于检测模块化机器人的模块单元中两个转动部之间的位置变化,其特征在于:所述模块单元包括设于任一转动部之内的位置传感器以及用于连接两个所述转动部的一对可周向旋转的运动副,所述位置传感器感测运动副之间的旋转角度信息,并结合目标角度指令控制至少一转动部转动。
  2. 如权利要求1中所述模块单元位置伺服系统,其特征在于:所述运动副包括用于连接两个转动部的传动组件和连接组件,所述连接组件还包括与所述位置传感器对应的磁铁,当两个转动部转动时,所述磁铁可相对于所述位置传感器转动,通过检测所述磁铁与所述位置传感器之间的旋转角度以检测两个转动部之间的旋转角度信息。
  3. 如权利要求2中所述模块单元位置伺服系统,其特征在于:所述连接组件还包括控制器,所述位置传感器所检测旋转角度信息传送至控制器,并由控制器将对应控制信息传送至所述传动组件。
  4. 如权利要求3中所述模块单元位置伺服系统,其特征在于:所述传动组件包括驱动电机,所述驱动电机设于任一所述转动部之内,所述控制器基于位置传感器检测的所述旋转角度信息与目标角度指令控制驱动电机的转动速度。
  5. 如权利要求4所述的模块单元位置伺服系统,其特征在于:所述传动组件进一步包括至少两个速度传感器及与所述驱动电机同轴连接的磁性件,所述速度传感器相对设于所述磁性件的圆周方向上,通过所述传感器检测所述磁性件的磁极变化以计算所述驱动电机的转速、以及判断所述驱动电机的正反转。
  6. 如权利要求5所述的模块单元位置伺服系统,其特征在于:在所述驱动电机远离所述磁性件的另一端上设置有锥齿轮,所述锥齿轮与所述驱动电机同轴连接,所述传动组件还包括连接板与齿轮环,其中,所述齿轮环未设有齿轮的环面与所述连接板连接,所述齿轮环设有齿轮的环面与所述锥齿轮转动连接。
  7. 如权利要求6所述的模块单元位置伺服系统,其特征在于:所述连接组件还包括第二PCB板,所述控制器与所述位置传感器均设于所述第二PCB板上,所述连接板远离所述齿轮环的一面连接至所述第二PCB板。
  8. 如权利要求7中所述模块单元位置伺服系统,其特征在于:所述连接组件还包括滑环,所述滑环套设在所述磁铁的外围,所述滑环与所述位置传感器同步转动;所述第二PCB板上还设有导电环座,所述滑环部分卡固在所述导电环座内,所述导电环座带动所述滑环相对于所述磁铁转动。
  9. 一种模块化机器人,其特征在于:所述模块化机器人包括至少两个可拼接的模块单元,所述模块单元包括一种模块单元位置伺服系统,用于检测模块单元中两个转动部之间的位置变化,所 述模块单元位置伺服系统包括设于任一转动部之内的位置传感器以及用于连接两个所述转动部的一对可周向旋转的运动副,所述位置传感器感测运动副之间的旋转角度信息,并结合目标角度指令控制至少一转动部转动。
  10. 如权利要求9所述的模块化机器人,其特征在于:两个所述转动部呈半球型,所述转动部上设有至少一卡扣件,经过所述卡扣件的中心且垂直于连接面的垂线与所述转动部的转动轴相交,且相交的夹角为45°。
  11. 如权利要求10所述的模块化机器人,其特征在于:所述卡扣件的数量为偶数,两个所述转动部的卡扣件设置位置以两个转动部交界面为基准呈镜像对称。
  12. 一种模块单元位置伺服系统的控制方法,用于检测模块单元中两个转动部之间的位置变化,其特征在于:其包括设于任一转动部之内的位置传感器、驱动电机、控制器以及用于连接两个所述转动部的一对可周向旋转的运动副,其包括如下步骤:基于所述位置传感器检测所述运动副的旋转角度信息并传送至一控制器;所述控制器结合当前旋转角度信息与目标角度指令以对所述驱动电机进行控制,以设定驱动电机的转速运动进而控制至少一转动部转动。
PCT/CN2020/106303 2020-01-07 2020-07-31 模块单元位置伺服系统及其控制方法、模块化机器人 WO2021139143A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022542099A JP7507509B2 (ja) 2020-01-07 2020-07-31 モジュラーユニット位置の自動制御装置、制御方法及びモジュラーロボット
EP20912780.2A EP4088879A4 (en) 2020-01-07 2020-07-31 POSITION SERVO SYSTEM FOR MODULAR UNIT AND CONTROL METHOD THEREOF AND MODULAR ROBOT
US17/900,882 US20220410405A1 (en) 2020-01-07 2022-09-01 Module-unit-position servo system and a control method therefor, and a modular robot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020031987.4U CN211806148U (zh) 2020-01-07 2020-01-07 一种模块单元位置伺服系统及模块化机器人
CN202010017093.4A CN111216103A (zh) 2020-01-07 2020-01-07 模块单元位置伺服系统及其控制方法、模块机器人
CN202020031987.4 2020-01-07
CN202010017093.4 2020-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/900,882 Continuation US20220410405A1 (en) 2020-01-07 2022-09-01 Module-unit-position servo system and a control method therefor, and a modular robot

Publications (1)

Publication Number Publication Date
WO2021139143A1 true WO2021139143A1 (zh) 2021-07-15

Family

ID=76787729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106303 WO2021139143A1 (zh) 2020-01-07 2020-07-31 模块单元位置伺服系统及其控制方法、模块化机器人

Country Status (3)

Country Link
US (1) US20220410405A1 (zh)
EP (1) EP4088879A4 (zh)
WO (1) WO2021139143A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108274458A (zh) * 2017-12-19 2018-07-13 北京可以科技有限公司 用于构建模块化机器人的子单元模块
CN108326841A (zh) * 2017-12-19 2018-07-27 北京可以科技有限公司 模块化机器人及其系统、控制方法、构建提示方法及构建模块化机器人的校正方法
CN208451644U (zh) * 2018-07-13 2019-02-01 深圳市创客工场科技有限公司 示教器及其转动编码器
WO2019120148A1 (zh) * 2017-12-19 2019-06-27 北京可以科技有限公司 模块化机器人的控制系统、模块化机器人系统及控制模块化机器人的方法
CN110154013A (zh) * 2019-04-09 2019-08-23 北京可以科技有限公司 一种转动连接结构、运动单元模块及机器人
CN111216103A (zh) * 2020-01-07 2020-06-02 北京可以科技有限公司 模块单元位置伺服系统及其控制方法、模块机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686717B2 (en) * 1997-04-01 2004-02-03 Charles Khairallah Modular articulated structure
KR101286423B1 (ko) * 2011-09-20 2013-07-18 유인환 모듈러 로봇
CN102672727B (zh) * 2012-04-01 2014-07-30 北京航空航天大学 一种用于实现可变形机器人的机器人单体
CA2903782A1 (en) * 2013-03-04 2014-09-12 Barobo, Inc. Modular robot system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108274458A (zh) * 2017-12-19 2018-07-13 北京可以科技有限公司 用于构建模块化机器人的子单元模块
CN108326841A (zh) * 2017-12-19 2018-07-27 北京可以科技有限公司 模块化机器人及其系统、控制方法、构建提示方法及构建模块化机器人的校正方法
WO2019120148A1 (zh) * 2017-12-19 2019-06-27 北京可以科技有限公司 模块化机器人的控制系统、模块化机器人系统及控制模块化机器人的方法
CN208451644U (zh) * 2018-07-13 2019-02-01 深圳市创客工场科技有限公司 示教器及其转动编码器
CN110154013A (zh) * 2019-04-09 2019-08-23 北京可以科技有限公司 一种转动连接结构、运动单元模块及机器人
CN111216103A (zh) * 2020-01-07 2020-06-02 北京可以科技有限公司 模块单元位置伺服系统及其控制方法、模块机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4088879A4 *

Also Published As

Publication number Publication date
US20220410405A1 (en) 2022-12-29
EP4088879A4 (en) 2024-01-24
JP2023509089A (ja) 2023-03-06
EP4088879A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
EP4088881A1 (en) Buckle fastening assembly and modular robot
CN111216111B (zh) 一种模块单元及模块化机器人
CN111216110A (zh) 一种卡扣紧固组件及机器人
CN108780612B (zh) 模块化机电实体
US7445451B2 (en) Rotary connector device equipped with built-in steering angle sensor
CN111216103A (zh) 模块单元位置伺服系统及其控制方法、模块机器人
WO2021139143A1 (zh) 模块单元位置伺服系统及其控制方法、模块化机器人
CN211806149U (zh) 一种模块单元及模块化机器人
CN111251271B (zh) 一种旋转激光雷达及室内地图构建和定位的slam机器人
CN111230926B (zh) 一种面卡扣、卡扣紧固组件及机器人
CN211806148U (zh) 一种模块单元位置伺服系统及模块化机器人
CN212497832U (zh) 一种面卡扣、卡扣紧固组件及机器人
CN212497761U (zh) 一种卡扣紧固组件及机器人
JP7507509B2 (ja) モジュラーユニット位置の自動制御装置、制御方法及びモジュラーロボット
CN115123414A (zh) 一种基于陀螺稳定原理的混合驱动模式球形机器人
US9713872B2 (en) Multi-input reduction gear having input/output position feedback
CN109822543A (zh) 一种基于机器人行走的定位导航装置
CN213005386U (zh) 关节模组及机械臂
CN212112234U (zh) 麦克纳姆轮智能小车
CN208880728U (zh) 机械臂和执法机器人
CN220972388U (zh) 一种位置检测装置及机器人
CN117506944B (zh) 一种基于圆柱坐标系的机械臂及一种助餐机器人
CN219705185U (zh) 一种球体转动结构
CN108656136A (zh) 机械臂和执法机器人
CN221043083U (zh) 摄像设备及监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020912780

Country of ref document: EP

Effective date: 20220808