WO2021138888A1 - Communication resource reservation in vehicle-to-everything (v2x) communication network - Google Patents

Communication resource reservation in vehicle-to-everything (v2x) communication network Download PDF

Info

Publication number
WO2021138888A1
WO2021138888A1 PCT/CN2020/071311 CN2020071311W WO2021138888A1 WO 2021138888 A1 WO2021138888 A1 WO 2021138888A1 CN 2020071311 W CN2020071311 W CN 2020071311W WO 2021138888 A1 WO2021138888 A1 WO 2021138888A1
Authority
WO
WIPO (PCT)
Prior art keywords
message generation
generation period
current
resource allocation
period
Prior art date
Application number
PCT/CN2020/071311
Other languages
French (fr)
Inventor
Xiao Feng Wang
Shuping Chen
Yan Li
Sean Vincent MASCHUE
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/071311 priority Critical patent/WO2021138888A1/en
Publication of WO2021138888A1 publication Critical patent/WO2021138888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • V2X vehicle-to-everything
  • Wireless communication devices may communicate with a base station or may communicate directly with another UE.
  • UE user equipment
  • the communication is referred to as device-to-device (D2D) communication.
  • D2D device-to-device
  • a UE may be a wireless communication device, such as a portable cellular device, or may be a vehicle, such as an automobile, a drone, or may be any other connected devices.
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • V2P vehicle-to-pedestrian
  • Vehicle-to-everything communication and particularly, V2V communication may be used in various applications, for example, collision avoidance and autonomous driving.
  • V2X vehicle-to-everything
  • the V2X device communicates with one or more wireless devices in the V2X wireless network using a V2X resource allocation.
  • the V2X device determines a current V2X message generation period of the V2X device. If the V2X device has determined that the current V2X message generation period is different from a previous V2X message generation period, the V2X device updates the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. Then, the V2X device indicates the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  • V2X apparatus for a V2X wireless network.
  • the V2X apparatus includes means for communicating with one or more wireless devices in the V2X wireless network using a V2X resource allocation.
  • the V2X apparatus further includes means for determining a current V2X message generation period of the V2X apparatus.
  • the V2X apparatus further includes means for, if the current V2X message generation period is different from a previous V2X message generation period, updating the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period.
  • the V2X apparatus further includes means for indicating the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  • the V2X apparatus includes a transceiver configured for V2X communication in a V2X wireless network.
  • the V2X apparatus further includes a memory and a processor that is operatively coupled with the transceiver and the memory.
  • the processor and the memory are configured to communicate, via the transceiver, with one or more wireless devices in the V2X wireless network using a V2X resource allocation.
  • the processor and the memory are further configured to determine a current V2X message generation period of the V2X apparatus.
  • the processor and the memory are configured to update the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period.
  • the processor and the memory are further configured to indicate, via the transceiver, the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  • V2X vehicle-to-everything
  • the article includes a non-transitory computer-readable medium having stored therein instructions executable by a processor of the V2X apparatus.
  • the instructions when executed by the processor causes the V2X apparatus to communicate with one or more wireless devices in the V2X wireless network using a V2X resource allocation.
  • the instructions when executed by the processor further causes the V2X apparatus to determine a current V2X message generation period of the V2X device.
  • the instructions when executed by the processor further causes the V2X apparatus to update the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period.
  • the instructions when executed by the processor further causes the V2X apparatus to indicate, via the transceiver, the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  • FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the present disclosure.
  • FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects of the present disclosure.
  • FIG. 3 is a schematic illustration of an exemplary vehicle-to-everything (V2X) communication network according to some aspects of the present disclosure.
  • V2X vehicle-to-everything
  • FIG. 4 is a diagram illustrating an exemplary V2X protocol stack according to some aspects of the present disclosure.
  • FIG. 5 is a diagram illustrating an exemplary implementation of the V2X protocol stack of FIG. 4 according to some aspects of the present disclosure.
  • FIG. 6 is a schematic illustration of an exemplary V2X subframe according to some aspects of the present disclosure.
  • FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a V2X apparatus according to some aspects of the disclosure.
  • FIG. 8 is a timing diagram illustrating exemplary V2X communication timing according to some aspects of the disclosure.
  • FIG. 9 is a flow chart illustrating an exemplary process for V2X congestion control according to some aspects of the present disclosure.
  • FIG. 10 is a flow chart illustrating an exemplary process for V2X communication according to some aspects of the present disclosure.
  • FIG. 11 is a flow chart illustrating an exemplary process for reserving V2X resources according to some aspects of the present disclosure.
  • FIG. 12 is a flow chart illustrating another exemplary process for reserving V2X resources according to some aspects of the present disclosure.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes and constitution.
  • Vehicle-to-everything communication may include vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , vehicle-to-network (V2N) , and vehicle-to-pedestrian (V2P) communication.
  • V2I and V2V communication links can be used to disseminate safety messages among roadside units and on-board units.
  • a roadside unit (RSU) may be installed at the roadside and integrated with existing traffic equipment, such as traffic signal controller and backhaul connections to Traffic Management Centers (TMCs) .
  • TMCs Traffic Management Centers
  • An on-board unit may be installed on a connected vehicle or user equipment (UE) .
  • OBUs communicate between themselves (e.g., V2V communication) and with RSUs (e.g., V2I communication) .
  • V2V communication e.g., V2V communication
  • RSUs e.g., V2I communication
  • SPS semi-persistent scheduling
  • SPS is a scheduling scheme for allocating resources to a specific V2X device such that the allocated resources can be persistently maintained during a specific time interval (e.g., a predetermined number of subframes or slots) .
  • SPS may be used to reserve communication resources for semi-periodic V2X communication.
  • the various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards.
  • the wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE.
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • the 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • the RAN 104 may operate as a 4G network (e.g., LTE network) .
  • 4G network e.g., LTE network
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
  • BTS base transceiver station
  • BSS basic service set
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • the radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
  • a UE may be a vehicle or included in a vehicle.
  • a “mobile” apparatus need not necessarily have a capability to move, and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission.
  • DL downlink
  • the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) .
  • Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Uplink Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • UL uplink
  • the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106.
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108.
  • the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system.
  • the backhaul 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 is a conceptual illustration of an example of a radio access network (RAN) 200.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted from one access point or base station.
  • FIG. 2 illustrates macrocells 202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • two base stations 210 and 212 are shown in cells 202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206.
  • a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables.
  • the cells 202, 204, and 126 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells.
  • the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
  • the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network (e.g., core network 102 in FIG. 1) for any number of mobile apparatuses.
  • the base stations 210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
  • FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • a quadcopter or drone 220 may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210; UEs 226 and 228 may be in communication with base station 212; UEs 230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • a mobile network node e.g., quadcopter 220
  • quadcopter 220 may be configured to function as a UE.
  • the quadcopter 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) .
  • P2P peer to peer
  • UE 238 is illustrated communicating with UEs 240 and 242.
  • the UE 238 may function as a scheduling entity or a primary sidelink device
  • UEs 240 and 242 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device.
  • a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • UEs 240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238.
  • a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
  • the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum.
  • Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body.
  • Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access.
  • Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs.
  • the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
  • LSA licensed shared access
  • the air interface in the radio access network 200 may utilize one or more duplexing algorithms.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full duplex means both endpoints can simultaneously communicate with one another.
  • Half duplex means only one endpoint can send information to the other at a time.
  • a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • transmissions in different directions operate at different carrier frequencies.
  • TDD transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several
  • the air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices.
  • 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) .
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • SC-FDMA single-carrier FDMA
  • multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • channels or carriers described above and illustrated in FIGs. 1 and 2 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • Transport channels carry blocks of information called transport blocks (TB) .
  • TBS transport block size
  • MCS modulation and coding scheme
  • FIG. 3 illustrates an exemplary vehicle-to-everything (V2X) communication network 300.
  • a V2X network can connect vehicles 302a and 302b to each other (vehicle-to-vehicle (V2V) ) , to roadside infrastructure 304 (vehicle-to-infrastructure (V2I) ) , to pedestrians 306 (vehicle-to-pedestrian (V2P) ) , and/or to the network/base station 308 (vehicle-to-network (V2N) ) .
  • the network 300 may be a part of the network 200 described in relation to FIG. 2.
  • a vehicle may be a self-powered vehicle (e.g., electric or gas powered) .
  • a vehicle may be a manually powered vehicle (e.g., a bicycle) .
  • a vehicle may be autonomous, semi-autonomous, or manually operated.
  • a V2I transmission may be between a vehicle (e.g., vehicle 302a) and a roadside unit (RSU) 304, which may be coupled to various infrastructures, such as a traffic light, building, streetlight, traffic camera, tollbooth, or other stationary objects.
  • RSU 304 may act as a base station enabling communication between vehicles 302a and 302b, between vehicles 302a/302b and the RSU 304, and between vehicles 302a/302b and mobile devices 306 operated by pedestrians.
  • the RSU 304 may further exchange V2X data gathered from the surrounding environment, such as a connected traffic camera or traffic light controller, V2X connected vehicles 302a/302b, and mobile devices 306 of pedestrians, with other RSUs 304 and distribute that V2X data to V2X connected vehicles 302a/302b and pedestrians 306.
  • V2X data may include status information (e.g., position, speed, acceleration, trajectory, etc. ) or event information (e.g., traffic jam, icy road, fog, pedestrian crossing the road, collision, etc. ) , and may also include video data captured by a camera on a vehicle or coupled to an RSU 304.
  • V2X data may enable autonomous driving and improve road safety and traffic efficiency.
  • V2X connected vehicles e.g., vehicles 302a and 302b
  • V2X data or messages may exchange V2X data or messages to facilitate in-vehicle collision warnings, road hazard warnings, approaching emergency vehicle warnings, pre-/post-crash warnings and information, emergency brake warnings, traffic jam ahead warnings, lane change warnings, intelligent navigation services, and other similar information.
  • V2X communication may be used for ranging operations between V2X connected vehicles to determine a distance between the vehicles.
  • V2X data received by a V2X connected mobile device 306 carried by a pedestrian may be utilized to trigger a warning sound, vibration, flashing light, etc., in case of imminent danger (e.g., approaching vehicle) .
  • V2N communication may utilize traditional cellular links to provide cloud services to a V2X device (e.g., a vehicle 302a/302b, an RSU 304, or a mobile device operated by a pedestrian 306) for latency-tolerant use cases.
  • V2N communication may enable a V2X network server to broadcast messages (e.g., weather, traffic, or other information) to V2X devices over a wide area network and may enable V2X devices to send unicast messages to the V2X network server.
  • V2N communication may provide backhaul services for RSUs 304.
  • V2X communications based on D2D communications are defined in the 3rd Generation Partnership Project (3GPP) specifications (e.g., V2X standard) .
  • 3GPP 3rd Generation Partnership Project
  • a D2D interface (designated as PC5, also known as sidelink at the physical layer) was defined in the 3GPP specifications.
  • the 3GPP specifications also define the framework, rules, and details on how to select the communication resources and how to semi-persistently reserve the communication resources for V2X communication.
  • FIG. 4 is a diagram illustrating an exemplary V2X protocol stack 400.
  • the V2X protocol stack 400 includes an access layer 402, a network layer 404, a message layer 406, and an application layer 408.
  • the access layer 402 may handle various communication media and related protocols for the physical and data link layers.
  • the access layer 402 may be used for communication inside of a V2X device or OBU (among its internal components) and for external communication with other OBUs or RSUs.
  • the network 404 layer may handle protocols configured for data delivery among and from OBUs to other network nodes, such as network nodes in the core network (e.g., the Internet) .
  • the network layer 404 also may be responsible for end-to-end delivery of data and additional services, such as reliable data transfer, flow control and congestion avoidance.
  • One exemplary protocol used by the network layer 404 is the Internet protocol.
  • the message layer 406 may provide a collection of functions to support V2X applications.
  • the message layer may use data structures to store, aggregate, and maintain data of different types and sources (e.g., data from vehicle sensors and data received by V2X communication) .
  • the message layer may enable various types of addressing to applications, provide V2X specific message handling, and support establishment and maintenance of V2X communication sessions.
  • the application layer 408 may include applications for road safety applications (e.g., traffic information) and non-safety applications (e.g., infotainment and business) .
  • the application layer, message layer, and network layer may be collectively referred to as the upper layer of the protocol stack.
  • FIG. 5 is a diagram illustrating an exemplary V2X protocol stack 500.
  • the V2X protocol stack 500 may be one implementation of the V2X protocol stack 400 described above in relation to FIG. 4.
  • the access layer 502 of the protocol stack may be implemented in various networking layers, for example, including the PHY, MAC, RLC, PDCP, and non-IP layers.
  • the access layer 502 may further include a Proximity-based Services (ProSe) signaling component that can handle communication using V2X protocols.
  • ProSe Proximity-based Services
  • the upper layer 504 of the stack may be implemented in various service and application layers defined by various standards, for example, ETSI (European Telecommunications Standards Institute) and SAE International (Society of Automotive Engineers) .
  • the upper layer 504 generates various messages that may be transmitted to other OBUs using the access layer 502 using V2X communication.
  • FIG. 6 is a diagram illustrating an exemplary V2X subframe 600 according to some aspects of the disclosure.
  • the V2X subframe may be similar to a sidelink subframe used in an LTE network.
  • Each V2X subframe may have a length of 1 ms and contain 14 OFDM symbols.
  • One subframe may include 4 demodulation reference symbols (DMRS) and 9 data symbols.
  • DMRS demodulation reference symbols
  • the available V2X communication bandwidth is divided into a number of subchannels. While three subchannels (e.g., subchannel 1, subchannel 2, subchannel 3) are shown in FIG. 3, the V2X communication bandwidth may provide more than 3 subchannels in other examples.
  • Each subchannel may include a number of resource blocks (RB) (e.g., 12 subcarriers) .
  • RB resource blocks
  • Each V2X device may use one or more subchannels for V2X communication to transmit or receive V2X data.
  • V2X communication may utilize a physical sidelink shared channel (PSSCH) and a physical sidelink control channel (PSCCH) .
  • PSSCH is used for transmitting user data packets (V2X data)
  • PSCCH is used for transmitting control messages, for example, sidelink control information (SCI) .
  • SCI sidelink control information
  • the PSCCH and associated PSSCH are allocated to adjacent RBs. In this configuration, the PSCCH may partially overlap the PSSCH in resource allocation. In other examples, the PSCCH and associated PSSCH may be allocated to non-adjacent RBs.
  • the SCI contains scheduling information for the associated PSSCH. In one example, the SCI may indicate semi-persistent scheduling (SPS) resource reservation for V2X communication.
  • SPS semi-persistent scheduling
  • a V2X device may use SPS to reserve communication resources (e.g., subchannels and subframes) for V2X communication.
  • V2X communication may include semi-periodic messages between V2X devices.
  • a V2X device may transmit V2X messages or data packets having a periodicity of 100 ms. The periodicity refers to the period or interval that the V2X device performs V2X communication. To that end, the V2X device may semi-statically reserve communication resources with a 100 ms period for V2X communication.
  • the UE may transmit a basic safety message (BSM) every 100 ms, matching the periodicity of the SPS reserved resources.
  • BSM is a data packet that contains information about vehicle position, heading, speed, and other information relating to a vehicle’s state and predicted path.
  • V2X devices may be present at the same time in the same V2X network. Because the V2X devices share the communication resources, the V2X devices may use congestion control to coordinate the usage of the V2X channels or communication resources among the V2X devices.
  • the upper layer of the V2X protocol stack (e.g., FIGs. 5 and 6) may provide congestion control and V2X communication resources reservation functions. In the above-described example, the reservation of V2X resources with a periodicity of 100 ms may work well while there is no congestion in the V2X network.
  • the upper layer of the V2X protocol stack may reduce the V2X message generation rate, from every 100 ms to every 600 ms or more (e.g., 1000 ms) , to ease congestion.
  • the V2X message generation period may change on the fly according to the congestion situation in the V2X network, for example, represented or measured by a channel busy ratio (CBR) , a channel occupancy ratio (CR) , a vehicle density, etc.
  • CBR may be defined as the portion of subchannels in the V2X resource pool whose measured RSSI exceeds a pre-configured threshold. CBR provides an estimation of the total state or utilization state of the V2X network.
  • a V2X device determines the CR as an indication of the channel utilization by the V2X device itself.
  • the V2X device may update the CBR and CR measurements for each subframe or at any suitable frequency.
  • the V2X device needs to update its V2X resource reservation/allocation to match the new message generation period.
  • a mismatch between the message generation period and the V2X resource reservation can result in undesirable resource utilization (e.g., over utilized or under-utilized) during V2X transmission.
  • FIG. 7 is a block diagram illustrating an example of a hardware implementation for a V2X apparatus 700 employing a processing system 714.
  • the V2X apparatus 700 may be a user equipment (UE) , vehicle, or OBU, as illustrated in any one or more of FIGs. 1, 2, and/or 3.
  • UE user equipment
  • OBU OBU
  • the V2X apparatus 700 may be implemented with a processing system 714 that includes one or more processors 704.
  • processors 704 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the V2X apparatus 700 may be configured to perform any one or more of the functions described herein. That is, the processor 704, as utilized in a V2X apparatus 700, may be used to implement any one or more of the processes and procedures described and illustrated in relation to FIGs. 8–12.
  • the processing system 714 may be implemented with a bus architecture, represented generally by the bus 702.
  • the bus 702 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 714 and the overall design constraints.
  • the bus 702 communicatively couples together various circuits including one or more processors (represented generally by the processor 704) , a memory 705, and computer-readable media (represented generally by the computer-readable medium 706) .
  • the bus 702 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 708 provides an interface between the bus 702 and a transceiver 710.
  • the transceiver 710 provides a communication interface or means for communicating with various other apparatus over a transmission medium (e.g., V2X network) .
  • a transmission medium e.g., V2X network
  • a user interface 712 e.g., keypad, display, speaker, microphone, joystick, touchscreen
  • a user interface 712 is optional, and may be omitted in some examples.
  • the processor 704 may include circuitry configured for various functions, including, for example, V2X communication.
  • the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 8–12.
  • the processor 704 may include a processing circuit 740, a communication circuit 742, and a resource allocation circuit 744.
  • the processing circuit 740 may be configured to perform various data processing functions, including data processing functions used in wireless communication (e.g., V2X communication) .
  • the communication circuit 742 may be configured to perform various communication functions (e.g., uplink communication, downlink communication, sidelink communication, and V2X communication) .
  • the resource allocation circuit 744 may be configured to perform various functions used for communication resource allocation, scheduling, and reservation. In some examples, the resource allocation circuit 744 may perform SPS of communication resources in a V2X network.
  • the processor 704 is responsible for managing the bus 702 and general processing, including the execution of software stored on the computer-readable medium 706.
  • the software when executed by the processor 704, causes the processing system 714 to perform the various functions described below for any particular apparatus.
  • the computer-readable medium 706 and the memory 705 may also be used for storing data that is manipulated by the processor 704 when executing software.
  • One or more processors 704 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable medium 706.
  • the computer-readable medium 706 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g., a compact disc (CD) or a digital versatile disc (DVD)
  • the computer-readable medium 706 may reside in the processing system 714, external to the processing system 714, or distributed across multiple entities including the processing system 714.
  • the computer-readable medium 706 may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • the computer-readable storage medium 706 may include software configured for various functions, including, for example, V2X communication.
  • the software may be configured to implement one or more of the functions described in relation to FIGs. 8–12.
  • the software may include processing instructions 752, communication instructions 754, and resource allocation instructions 756.
  • the processing instructions 752 when executed by the processor 704 may cause the V2X apparatus 700 to perform various data processing functions including data processing functions used in wireless communication (e.g., V2X communication) .
  • the communication instructions 754 when executed by the processor 704 may cause the V2X apparatus 700 to perform various communication functions (e.g., uplink communication, downlink communication, sidelink communication, and V2X communication) .
  • Some examples of communication functions include data transmission, data reception, data decoding, data encoding, signaling processing, channel coding, channel quality estimation and measurement, etc.
  • the resource allocation instructions 756 when executed by the processor 704 may cause the V2X apparatus 700 to perform various functions used for communication resource allocation, scheduling, and reservation. In some examples, the resource allocation instructions may cause the V2X apparatus to perform SPS of communication resources in a V2X network.
  • FIG. 8 is a timing diagram illustrating exemplary V2X communication timing of a V2X device according to some aspects of the disclosure.
  • the V2X message generation period may be 100 ms initially, and the V2X device may have an SPS resource reservation pattern that has a period of 100 ms. Therefore, the V2X device may transmit V2X data every 100 ms matching the message generation period. During each V2X transmission, the V2X device may use the PSCCH to inform other V2X devices of the updated resource reservation pattern and periodicity (e.g., 100 ms) . When congestion occurs, the V2X device may increase the message generation period from 100 ms to 200 ms.
  • the V2X device updates or adjust the SPS resource reservation pattern with a period of 200 ms. Therefore, the V2X device may transmit V2X data every 200 ms matching the message generation period.
  • the V2X device may decrease the message generation period from 200 ms to 100 ms. In that case, the V2X device updates the SPS resource reservation pattern with a period of 100 ms. Therefore, the V2X device may transmit V2X data every 100 ms matching the message generation period.
  • the V2X device can improve communication resource utilization of V2X transmission.
  • FIG. 9 is a flow chart illustrating an exemplary process 900 for V2X congestion control in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments.
  • the process 900 may be carried out by the V2X device 700 illustrated in FIG. 7. In some examples, the process 900 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
  • a V2X device determines a current channel busy ratio (CBR) using any suitable methods.
  • the current CBR provides an estimation of the total state or utilization of the V2X network.
  • the V2X device may use the communication circuit 742 and/or processing circuit 740 to determine the CBR.
  • the V2X device may use the communication circuit 742 and/or the processing circuit 740 to determine a channel occupancy ratio (CR) limit based on current CBR.
  • the CR limit is defined as a threshold that the transmitter (V2X device) should not exceed.
  • the V2X device decides to transmit a packet, it uses its current CBR value to determine the corresponding CR limit.
  • the V2X device may use the communication circuit 742 and/or processing circuit 740 to determine the current CR using any suitable methods.
  • the CR provides an indication of the channel utilization by the transmitter (V2X device) itself.
  • the V2X device may use the communication circuit 742 and/or the processing circuit 740 to determine whether the current CR is greater than the CR limit or not. If the current CR is greater than the CR limit, at block 910, the V2X device may reduce the CR. The V2X device may use the communication circuit 742 to reduce the CR by increasing the V2X message generation period (e.g., from 100 ms to 200 ms) . Increasing the V2X message generation period results in more frequent V2X transmission. If the current CR is not greater than the CR limit, at block 912, the V2X device may maintain or increase the CR.
  • the V2X message generation period e.g., from 100 ms to 200 ms
  • the V2X device may use the communication circuit 742 to increase the CR by decreasing the V2X message generation period (e.g., from 200 ms to 100 ms) . Decreasing the V2X message generation period results in less frequent V2X transmission.
  • FIG. 10 is a flow chart illustrating an exemplary process 1000 for V2X communication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments.
  • the process 1000 may be carried out by the V2X device 700 illustrated in FIG. 7. In some examples, the process 1000 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
  • the V2X device communicates with one or more wireless devices in a V2X wireless network.
  • the V2X wireless network may be similar to the V2X network 300 described above in relation to FIG. 3.
  • the V2X device may use the communication circuit 742 to communicate with other V2X devices via the transceiver 710 (see FIG. 7) using a V2X communication protocol.
  • the V2X device determines a current V2X message generation period.
  • the V2X device may use the resource allocation circuit 744 to determine the current V2X message generation period (e.g., 100 ms) .
  • the current V2X message generation period indicates the time interval between V2X messages generated by the V2X device.
  • the V2X device may use the communication circuit 742 to determine whether the current message generation period has changed, for example, the current message generation period is different (e.g., longer or shorter) from a previous message generation period. If the V2X device determines that the current V2X message generation period is different from a previous V2X message generation period, at block 1008, the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation such that the periodicity of the reserved V2X resources matches the current V2X message generation period. If the V2X device determines that the current V2X message generation period has not changed, the V2X device may maintain the current message generation period.
  • the V2X device may indicate the updated V2X resource allocation to one or more wireless devices in the V2X wireless network.
  • the V2X device may use the communication circuit 742 to transmit a control message via the transceiver 710 in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation.
  • the control message may be sidelink control information (SCI) .
  • FIG. 11 is a flow chart illustrating an exemplary process 1100 for reserving V2X resources in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments.
  • the process 1100 may be carried out by the V2X device 700 during the process described in block 1008 of FIG. 10. In some examples, the process 1100 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
  • the V2X device may determine whether or not the V2X message generation period has increased (i.e., longer period) .
  • the V2X device may use the communication circuit 742 and/or the processing circuit 740 to compare the current message generation period and a pervious message generation period.
  • the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation by retaining a subset of currently reserved V2X resources (e.g., subframes and sidelink subchannels) such that a periodicity of the retained V2X resources matches the new message generation period.
  • the V2X device may use the resource allocation circuit 744 to perform a resource reselection procedure to select V2X resources, with or without retaining the currently reserved V2X resources, with a periodicity that matches the increased message generation period.
  • FIG. 12 is a flow chart illustrating an exemplary process 1200 for reserving V2X resources in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments.
  • the process 1200 may be carried out by the V2X device 700 during the process described in block 1008 of FIG. 10. In some examples, the process 1200 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
  • the V2X device may determine whether or not the V2X message generation period has decreased (i.e., shorter period) . For example, the V2X device may use the communication circuit 742 and/or the processing circuit 740 to compare the current message generation period and a pervious message generation period. At block 1204, if the message generation period has decreased, the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation by retaining all of the currently reserved V2X resources (e.g., subframes and sidelink subchannels) and, if needed, adjust the periodicity of the reserved V2X resources such that a periodicity of the retained V2X resources matches the new message generation period.
  • the V2X device may use the communication circuit 742 and/or the processing circuit 740 to compare the current message generation period and a pervious message generation period.
  • the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation by retaining all of the currently reserved V2X resources (e.g., subframes and sidelink sub
  • the reserved V2X resources may initially include subchannels in subframes that repeat every 200 ms.
  • the V2X device can retain the same subchannels and reserve additional subframes such that the reserved subframes repeat every 100 ms. That is, the periodicity of the updated V2X resource allocation has a shorter period that matches the decreased message generation period.
  • the V2X device may use the resource allocation circuit 744 to perform a resource reselection procedure to select V2X resources, with or without retaining the currently reserved V2X resources, with a periodicity that matches the decreased message generation period.
  • the apparatus 700 for wireless communication includes means for V2X communication as described in the present disclosure.
  • the aforementioned means may be the processor 704 shown in FIG. 7 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 704 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 706, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, and/or 3, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 8–12.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1–12 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1–12 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Abstract

Aspects of the present disclosure provide a vehicle-to-everything (V2X) device for a V2X wireless network. The V2X device communicates with one or more wireless devices in the V2X wireless network using a V2X resource allocation. The V2X device determines a current V2X message generation period of the V2X device. If the current V2X message generation period is different from a previous V2X message generation period, the V2X device updates the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. Then, the V2X device indicates the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.

Description

[Rectified under Rule 91, 13.01.2020] COMMUNICATION RESOURCE RESERVATION IN VEHICLE-TO-EVERYTHING (V2X) COMMUNICATION NETWORK TECHNICAL FIELD
The technology discussed below relates generally to wireless communication systems, and more particularly, to methods, apparatuses, and system for vehicle-to-everything (V2X) communications.
INTRODUCTION
Wireless communication devices, sometimes referred to as user equipment (UE) , may communicate with a base station or may communicate directly with another UE. When a UE communicates directly with another UE, the communication is referred to as device-to-device (D2D) communication. In particular use cases, a UE may be a wireless communication device, such as a portable cellular device, or may be a vehicle, such as an automobile, a drone, or may be any other connected devices. When the UE is a vehicle, such as an automobile, the D2D communication may be referred to as vehicle-to-vehicle (V2V) communication. Other vehicle-based communications may include vehicle-to-everything (V2X) , which may include V2V, vehicle-to-infrastructure (V2I) , vehicle-to-network (V2N) , and vehicle-to-pedestrian (V2P) . Vehicle-to-everything communication and particularly, V2V communication may be used in various applications, for example, collision avoidance and autonomous driving.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a simplified summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
One aspect of the present disclosure provides a method of operating a vehicle-to-everything (V2X) device in a V2X wireless network. The V2X device communicates with one or more wireless devices in the V2X wireless network using a V2X resource  allocation. The V2X device determines a current V2X message generation period of the V2X device. If the V2X device has determined that the current V2X message generation period is different from a previous V2X message generation period, the V2X device updates the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. Then, the V2X device indicates the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
Another aspect of the present disclosure provides a vehicle-to-everything (V2X) apparatus for a V2X wireless network. The V2X apparatus includes means for communicating with one or more wireless devices in the V2X wireless network using a V2X resource allocation. The V2X apparatus further includes means for determining a current V2X message generation period of the V2X apparatus. The V2X apparatus further includes means for, if the current V2X message generation period is different from a previous V2X message generation period, updating the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. The V2X apparatus further includes means for indicating the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
Another aspect of the present disclosure provides a vehicle-to-everything (V2X) apparatus. The V2X apparatus includes a transceiver configured for V2X communication in a V2X wireless network. The V2X apparatus further includes a memory and a processor that is operatively coupled with the transceiver and the memory. The processor and the memory are configured to communicate, via the transceiver, with one or more wireless devices in the V2X wireless network using a V2X resource allocation. The processor and the memory are further configured to determine a current V2X message generation period of the V2X apparatus. If the current V2X message generation period is different from a previous V2X message generation period, the processor and the memory are configured to update the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. The processor and the memory are further configured to indicate, via the transceiver, the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
Another aspect of the present disclosure provides an article of manufacture for use by a vehicle-to-everything (V2X) apparatus in a V2X wireless network. The article  includes a non-transitory computer-readable medium having stored therein instructions executable by a processor of the V2X apparatus. The instructions when executed by the processor causes the V2X apparatus to communicate with one or more wireless devices in the V2X wireless network using a V2X resource allocation. The instructions when executed by the processor further causes the V2X apparatus to determine a current V2X message generation period of the V2X device. If the current V2X message generation period is different from a previous V2X message generation period, the instructions when executed by the processor further causes the V2X apparatus to update the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period. The instructions when executed by the processor further causes the V2X apparatus to indicate, via the transceiver, the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
These and other aspects of the invention will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain embodiments and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the present disclosure.
FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects of the present disclosure.
FIG. 3 is a schematic illustration of an exemplary vehicle-to-everything (V2X) communication network according to some aspects of the present disclosure.
FIG. 4 is a diagram illustrating an exemplary V2X protocol stack according to some aspects of the present disclosure.
FIG. 5 is a diagram illustrating an exemplary implementation of the V2X protocol stack of FIG. 4 according to some aspects of the present disclosure.
FIG. 6 is a schematic illustration of an exemplary V2X subframe according to some aspects of the present disclosure.
FIG. 7 is a block diagram conceptually illustrating an example of a hardware implementation for a V2X apparatus according to some aspects of the disclosure.
FIG. 8 is a timing diagram illustrating exemplary V2X communication timing according to some aspects of the disclosure.
FIG. 9 is a flow chart illustrating an exemplary process for V2X congestion control according to some aspects of the present disclosure.
FIG. 10 is a flow chart illustrating an exemplary process for V2X communication according to some aspects of the present disclosure.
FIG. 11 is a flow chart illustrating an exemplary process for reserving V2X resources according to some aspects of the present disclosure.
FIG. 12 is a flow chart illustrating another exemplary process for reserving V2X resources according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example,  embodiments and/or uses may come about via integrated chip embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes and constitution.
Aspects of the present disclosure are directed to vehicle-to-everything (V2X) communication and, more particularly, communication resource reservation in a V2X communication network. Vehicle-to-everything communication may include vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , vehicle-to-network (V2N) , and vehicle-to-pedestrian (V2P) communication. V2I and V2V communication links can be used to disseminate safety messages among roadside units and on-board units. A roadside unit (RSU) may be installed at the roadside and integrated with existing traffic equipment, such as traffic signal controller and backhaul connections to Traffic Management Centers (TMCs) . An on-board unit (OBU) may be installed on a connected vehicle or user equipment (UE) . OBUs communicate between themselves (e.g., V2V communication) and with RSUs (e.g., V2I communication) . In an exemplary V2X communication network, semi-persistent scheduling (SPS) may be used to allocate, assign, and reserve communication resources (e.g., time, frequency, and spatial resources) for various V2X communication (e.g., V2V or V2I communication) . SPS is a scheduling scheme for allocating resources to a specific V2X device such that the allocated resources can be persistently maintained during a specific time interval (e.g., a  predetermined number of subframes or slots) . For example, SPS may be used to reserve communication resources for semi-periodic V2X communication.
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, various aspects of the present disclosure are illustrated with reference to a wireless communication system 100. The wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G. As another example, the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE. The 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. In another example, the RAN 104 may operate as a 4G network (e.g., LTE network) . Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
The radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal  (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services. In some examples, a UE may be a vehicle or included in a vehicle.
Within the present document, a “mobile” apparatus need not necessarily have a capability to move, and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) . A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106. Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108. On the other hand, the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system. The backhaul 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between  the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
FIG. 2 is a conceptual illustration of an example of a radio access network (RAN) 200. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1. The geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted from one access point or base station. FIG. 2 illustrates  macrocells  202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
In FIG. 2, two  base stations  210 and 212 are shown in  cells  202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables. In the illustrated example, the  cells  202, 204, and 126 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
It is to be understood that the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network (e.g., core network 102 in FIG. 1) for any  number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example,  UEs  222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
In some examples, a mobile network node (e.g., quadcopter 220) may be configured to function as a UE. For example, the quadcopter 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. For example, two or more UEs (e.g., UEs 226 and 228) may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) . In a further example, UE 238 is illustrated communicating with  UEs  240 and 242. Here, the UE 238 may function as a scheduling entity or a primary sidelink device, and  UEs  240 and 242 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device. In still another example, a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network. In a mesh network example,  UEs  240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238. Thus, in a wireless communication system with scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, or a mesh configuration, a  scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
In various implementations, the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum. Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body. Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access. Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs. For example, the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
The air interface in the radio access network 200 may utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full duplex means both endpoints can simultaneously communicate with one another. Half duplex means only one endpoint can send information to the other at a time. In a wireless link, a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) . In FDD, transmissions in different directions operate at different carrier frequencies. In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot.
The air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices. For example, 5G NR specifications provide multiple access for UL transmissions from  UEs  222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or  more UEs  222 and 224, utilizing  orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for UL transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) . However, within the scope of the present disclosure, multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes. Further, multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
The channels or carriers described above and illustrated in FIGs. 1 and 2 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
These physical channels described above are generally multiplexed and mapped to transport channels for handling at the medium access control (MAC) layer. Transport channels carry blocks of information called transport blocks (TB) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of resource blocks used in a given transmission.
V2X COMMUNICATION NETWORK
FIG. 3 illustrates an exemplary vehicle-to-everything (V2X) communication network 300. A V2X network can connect  vehicles  302a and 302b to each other (vehicle-to-vehicle (V2V) ) , to roadside infrastructure 304 (vehicle-to-infrastructure (V2I) ) , to pedestrians 306 (vehicle-to-pedestrian (V2P) ) , and/or to the network/base station 308 (vehicle-to-network (V2N) ) . The network 300 may be a part of the network 200 described in relation to FIG. 2. In some aspects of the disclosure, a vehicle may be a self-powered vehicle (e.g., electric or gas powered) . In some aspects of the disclosure, a  vehicle may be a manually powered vehicle (e.g., a bicycle) . In some aspects of the disclosure, a vehicle may be autonomous, semi-autonomous, or manually operated.
A V2I transmission may be between a vehicle (e.g., vehicle 302a) and a roadside unit (RSU) 304, which may be coupled to various infrastructures, such as a traffic light, building, streetlight, traffic camera, tollbooth, or other stationary objects. In some examples, the RSU 304 may act as a base station enabling communication between  vehicles  302a and 302b, between vehicles 302a/302b and the RSU 304, and between vehicles 302a/302b and mobile devices 306 operated by pedestrians. The RSU 304 may further exchange V2X data gathered from the surrounding environment, such as a connected traffic camera or traffic light controller, V2X connected vehicles 302a/302b, and mobile devices 306 of pedestrians, with other RSUs 304 and distribute that V2X data to V2X connected vehicles 302a/302b and pedestrians 306. Examples of V2X data may include status information (e.g., position, speed, acceleration, trajectory, etc. ) or event information (e.g., traffic jam, icy road, fog, pedestrian crossing the road, collision, etc. ) , and may also include video data captured by a camera on a vehicle or coupled to an RSU 304.
Such V2X data may enable autonomous driving and improve road safety and traffic efficiency. For example, V2X connected vehicles (e.g.,  vehicles  302a and 302b) may exchange V2X data or messages to facilitate in-vehicle collision warnings, road hazard warnings, approaching emergency vehicle warnings, pre-/post-crash warnings and information, emergency brake warnings, traffic jam ahead warnings, lane change warnings, intelligent navigation services, and other similar information. V2X communication may be used for ranging operations between V2X connected vehicles to determine a distance between the vehicles. In addition, V2X data received by a V2X connected mobile device 306 carried by a pedestrian may be utilized to trigger a warning sound, vibration, flashing light, etc., in case of imminent danger (e.g., approaching vehicle) .
V2N communication may utilize traditional cellular links to provide cloud services to a V2X device (e.g., a vehicle 302a/302b, an RSU 304, or a mobile device operated by a pedestrian 306) for latency-tolerant use cases. For example, V2N communication may enable a V2X network server to broadcast messages (e.g., weather, traffic, or other information) to V2X devices over a wide area network and may enable V2X devices to send unicast messages to the V2X network server. In addition, V2N communication may provide backhaul services for RSUs 304.
In one example, V2X communications based on D2D communications are defined in the 3rd Generation Partnership Project (3GPP) specifications (e.g., V2X standard) . A D2D interface (designated as PC5, also known as sidelink at the physical layer) was defined in the 3GPP specifications. The 3GPP specifications also define the framework, rules, and details on how to select the communication resources and how to semi-persistently reserve the communication resources for V2X communication.
FIG. 4 is a diagram illustrating an exemplary V2X protocol stack 400. The V2X protocol stack 400 includes an access layer 402, a network layer 404, a message layer 406, and an application layer 408. The access layer 402 may handle various communication media and related protocols for the physical and data link layers. The access layer 402 may be used for communication inside of a V2X device or OBU (among its internal components) and for external communication with other OBUs or RSUs. The network 404 layer may handle protocols configured for data delivery among and from OBUs to other network nodes, such as network nodes in the core network (e.g., the Internet) . The network layer 404 also may be responsible for end-to-end delivery of data and additional services, such as reliable data transfer, flow control and congestion avoidance. One exemplary protocol used by the network layer 404 is the Internet protocol.
The message layer 406 may provide a collection of functions to support V2X applications. The message layer may use data structures to store, aggregate, and maintain data of different types and sources (e.g., data from vehicle sensors and data received by V2X communication) . The message layer may enable various types of addressing to applications, provide V2X specific message handling, and support establishment and maintenance of V2X communication sessions. The application layer 408 may include applications for road safety applications (e.g., traffic information) and non-safety applications (e.g., infotainment and business) . The application layer, message layer, and network layer may be collectively referred to as the upper layer of the protocol stack.
FIG. 5 is a diagram illustrating an exemplary V2X protocol stack 500. The V2X protocol stack 500 may be one implementation of the V2X protocol stack 400 described above in relation to FIG. 4. The access layer 502 of the protocol stack may be implemented in various networking layers, for example, including the PHY, MAC, RLC, PDCP, and non-IP layers. The access layer 502 may further include a Proximity-based Services (ProSe) signaling component that can handle communication using V2X  protocols. The upper layer 504 of the stack may be implemented in various service and application layers defined by various standards, for example, ETSI (European Telecommunications Standards Institute) and SAE International (Society of Automotive Engineers) . The upper layer 504 generates various messages that may be transmitted to other OBUs using the access layer 502 using V2X communication.
FIG. 6 is a diagram illustrating an exemplary V2X subframe 600 according to some aspects of the disclosure. In one example, the V2X subframe may be similar to a sidelink subframe used in an LTE network. Each V2X subframe may have a length of 1 ms and contain 14 OFDM symbols. One subframe may include 4 demodulation reference symbols (DMRS) and 9 data symbols. In the frequency domain, the available V2X communication bandwidth is divided into a number of subchannels. While three subchannels (e.g., subchannel 1, subchannel 2, subchannel 3) are shown in FIG. 3, the V2X communication bandwidth may provide more than 3 subchannels in other examples. Each subchannel may include a number of resource blocks (RB) (e.g., 12 subcarriers) . Each V2X device (e.g., OBU) may use one or more subchannels for V2X communication to transmit or receive V2X data. V2X communication may utilize a physical sidelink shared channel (PSSCH) and a physical sidelink control channel (PSCCH) . The PSSCH is used for transmitting user data packets (V2X data) , and the PSCCH is used for transmitting control messages, for example, sidelink control information (SCI) . In the example shown in FIG. 6, the PSCCH and associated PSSCH are allocated to adjacent RBs. In this configuration, the PSCCH may partially overlap the PSSCH in resource allocation. In other examples, the PSCCH and associated PSSCH may be allocated to non-adjacent RBs. The SCI contains scheduling information for the associated PSSCH. In one example, the SCI may indicate semi-persistent scheduling (SPS) resource reservation for V2X communication.
In a V2X wireless network, a V2X device (e.g., UE or OBU) may use SPS to reserve communication resources (e.g., subchannels and subframes) for V2X communication. In some examples, V2X communication may include semi-periodic messages between V2X devices. In one example, a V2X device may transmit V2X messages or data packets having a periodicity of 100 ms. The periodicity refers to the period or interval that the V2X device performs V2X communication. To that end, the V2X device may semi-statically reserve communication resources with a 100 ms period for V2X communication. In one example, the UE may transmit a basic safety message (BSM) every 100 ms, matching the periodicity of the SPS reserved resources. A BSM is  a data packet that contains information about vehicle position, heading, speed, and other information relating to a vehicle’s state and predicted path.
In some situations, a large number of V2X devices may be present at the same time in the same V2X network. Because the V2X devices share the communication resources, the V2X devices may use congestion control to coordinate the usage of the V2X channels or communication resources among the V2X devices. The upper layer of the V2X protocol stack (e.g., FIGs. 5 and 6) may provide congestion control and V2X communication resources reservation functions. In the above-described example, the reservation of V2X resources with a periodicity of 100 ms may work well while there is no congestion in the V2X network. When a V2X device detects congestion, the upper layer of the V2X protocol stack may reduce the V2X message generation rate, from every 100 ms to every 600 ms or more (e.g., 1000 ms) , to ease congestion. The V2X message generation period may change on the fly according to the congestion situation in the V2X network, for example, represented or measured by a channel busy ratio (CBR) , a channel occupancy ratio (CR) , a vehicle density, etc. The CBR may be defined as the portion of subchannels in the V2X resource pool whose measured RSSI exceeds a pre-configured threshold. CBR provides an estimation of the total state or utilization state of the V2X network. A V2X device determines the CR as an indication of the channel utilization by the V2X device itself. The V2X device may update the CBR and CR measurements for each subframe or at any suitable frequency. When the V2X message generation period is changed, the V2X device needs to update its V2X resource reservation/allocation to match the new message generation period. A mismatch between the message generation period and the V2X resource reservation can result in undesirable resource utilization (e.g., over utilized or under-utilized) during V2X transmission.
FIG. 7 is a block diagram illustrating an example of a hardware implementation for a V2X apparatus 700 employing a processing system 714. For example, the V2X apparatus 700 may be a user equipment (UE) , vehicle, or OBU, as illustrated in any one or more of FIGs. 1, 2, and/or 3.
The V2X apparatus 700 may be implemented with a processing system 714 that includes one or more processors 704. Examples of processors 704 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the  various functionality described throughout this disclosure. In various examples, the V2X apparatus 700 may be configured to perform any one or more of the functions described herein. That is, the processor 704, as utilized in a V2X apparatus 700, may be used to implement any one or more of the processes and procedures described and illustrated in relation to FIGs. 8–12.
In this example, the processing system 714 may be implemented with a bus architecture, represented generally by the bus 702. The bus 702 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 714 and the overall design constraints. The bus 702 communicatively couples together various circuits including one or more processors (represented generally by the processor 704) , a memory 705, and computer-readable media (represented generally by the computer-readable medium 706) . The bus 702 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 708 provides an interface between the bus 702 and a transceiver 710. The transceiver 710 provides a communication interface or means for communicating with various other apparatus over a transmission medium (e.g., V2X network) . Depending upon the nature of the apparatus, a user interface 712 (e.g., keypad, display, speaker, microphone, joystick, touchscreen) may also be provided. Of course, such a user interface 712 is optional, and may be omitted in some examples.
In some aspects of the disclosure, the processor 704 may include circuitry configured for various functions, including, for example, V2X communication. For example, the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 8–12. The processor 704 may include a processing circuit 740, a communication circuit 742, and a resource allocation circuit 744. The processing circuit 740 may be configured to perform various data processing functions, including data processing functions used in wireless communication (e.g., V2X communication) . The communication circuit 742 may be configured to perform various communication functions (e.g., uplink communication, downlink communication, sidelink communication, and V2X communication) . Some examples of communication functions include data transmission, data reception, data decoding, data encoding, signaling processing, channel coding, channel quality estimation and measurement, etc. The resource allocation circuit 744 may be configured to perform various functions used for communication resource allocation, scheduling, and reservation. In some examples,  the resource allocation circuit 744 may perform SPS of communication resources in a V2X network.
The processor 704 is responsible for managing the bus 702 and general processing, including the execution of software stored on the computer-readable medium 706. The software, when executed by the processor 704, causes the processing system 714 to perform the various functions described below for any particular apparatus. The computer-readable medium 706 and the memory 705 may also be used for storing data that is manipulated by the processor 704 when executing software.
One or more processors 704 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 706. The computer-readable medium 706 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium 706 may reside in the processing system 714, external to the processing system 714, or distributed across multiple entities including the processing system 714. The computer-readable medium 706 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
In one or more examples, the computer-readable storage medium 706 may include software configured for various functions, including, for example, V2X communication. For example, the software may be configured to implement one or  more of the functions described in relation to FIGs. 8–12. The software may include processing instructions 752, communication instructions 754, and resource allocation instructions 756. The processing instructions 752 when executed by the processor 704 may cause the V2X apparatus 700 to perform various data processing functions including data processing functions used in wireless communication (e.g., V2X communication) . The communication instructions 754 when executed by the processor 704 may cause the V2X apparatus 700 to perform various communication functions (e.g., uplink communication, downlink communication, sidelink communication, and V2X communication) . Some examples of communication functions include data transmission, data reception, data decoding, data encoding, signaling processing, channel coding, channel quality estimation and measurement, etc. The resource allocation instructions 756 when executed by the processor 704 may cause the V2X apparatus 700 to perform various functions used for communication resource allocation, scheduling, and reservation. In some examples, the resource allocation instructions may cause the V2X apparatus to perform SPS of communication resources in a V2X network.
FIG. 8 is a timing diagram illustrating exemplary V2X communication timing of a V2X device according to some aspects of the disclosure. In one example, the V2X message generation period may be 100 ms initially, and the V2X device may have an SPS resource reservation pattern that has a period of 100 ms. Therefore, the V2X device may transmit V2X data every 100 ms matching the message generation period. During each V2X transmission, the V2X device may use the PSCCH to inform other V2X devices of the updated resource reservation pattern and periodicity (e.g., 100 ms) . When congestion occurs, the V2X device may increase the message generation period from 100 ms to 200 ms. In that case, the V2X device updates or adjust the SPS resource reservation pattern with a period of 200 ms. Therefore, the V2X device may transmit V2X data every 200 ms matching the message generation period. When network congestion eases, the V2X device may decrease the message generation period from 200 ms to 100 ms. In that case, the V2X device updates the SPS resource reservation pattern with a period of 100 ms. Therefore, the V2X device may transmit V2X data every 100 ms matching the message generation period. By matching the periodicity of V2X message generation and SPS resource reservation pattern, the V2X device can improve communication resource utilization of V2X transmission.
FIG. 9 is a flow chart illustrating an exemplary process 900 for V2X congestion control in accordance with some aspects of the present disclosure. As described below,  some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments. In some examples, the process 900 may be carried out by the V2X device 700 illustrated in FIG. 7. In some examples, the process 900 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
At block 902, a V2X device determines a current channel busy ratio (CBR) using any suitable methods. The current CBR provides an estimation of the total state or utilization of the V2X network. For example, the V2X device may use the communication circuit 742 and/or processing circuit 740 to determine the CBR. At block 904, the V2X device may use the communication circuit 742 and/or the processing circuit 740 to determine a channel occupancy ratio (CR) limit based on current CBR. The CR limit is defined as a threshold that the transmitter (V2X device) should not exceed. When a V2X device decides to transmit a packet, it uses its current CBR value to determine the corresponding CR limit. At block 906, the V2X device may use the communication circuit 742 and/or processing circuit 740 to determine the current CR using any suitable methods. The CR provides an indication of the channel utilization by the transmitter (V2X device) itself.
At decision block 908, the V2X device may use the communication circuit 742 and/or the processing circuit 740 to determine whether the current CR is greater than the CR limit or not. If the current CR is greater than the CR limit, at block 910, the V2X device may reduce the CR. The V2X device may use the communication circuit 742 to reduce the CR by increasing the V2X message generation period (e.g., from 100 ms to 200 ms) . Increasing the V2X message generation period results in more frequent V2X transmission. If the current CR is not greater than the CR limit, at block 912, the V2X device may maintain or increase the CR. The V2X device may use the communication circuit 742 to increase the CR by decreasing the V2X message generation period (e.g., from 200 ms to 100 ms) . Decreasing the V2X message generation period results in less frequent V2X transmission.
FIG. 10 is a flow chart illustrating an exemplary process 1000 for V2X communication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments. In some examples, the process  1000 may be carried out by the V2X device 700 illustrated in FIG. 7. In some examples, the process 1000 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
At block 1002, the V2X device communicates with one or more wireless devices in a V2X wireless network. For example, the V2X wireless network may be similar to the V2X network 300 described above in relation to FIG. 3. The V2X device may use the communication circuit 742 to communicate with other V2X devices via the transceiver 710 (see FIG. 7) using a V2X communication protocol.
At block 1004, the V2X device determines a current V2X message generation period. For example, the V2X device may use the resource allocation circuit 744 to determine the current V2X message generation period (e.g., 100 ms) . The current V2X message generation period indicates the time interval between V2X messages generated by the V2X device.
At decision block 1006, the V2X device may use the communication circuit 742 to determine whether the current message generation period has changed, for example, the current message generation period is different (e.g., longer or shorter) from a previous message generation period. If the V2X device determines that the current V2X message generation period is different from a previous V2X message generation period, at block 1008, the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation such that the periodicity of the reserved V2X resources matches the current V2X message generation period. If the V2X device determines that the current V2X message generation period has not changed, the V2X device may maintain the current message generation period.
At block 1010, the V2X device may indicate the updated V2X resource allocation to one or more wireless devices in the V2X wireless network. In one example, the V2X device may use the communication circuit 742 to transmit a control message via the transceiver 710 in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation. For example, the control message may be sidelink control information (SCI) .
FIG. 11 is a flow chart illustrating an exemplary process 1100 for reserving V2X resources in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments. In some examples, the process 1100 may be carried  out by the V2X device 700 during the process described in block 1008 of FIG. 10. In some examples, the process 1100 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
At decision block 1102, the V2X device may determine whether or not the V2X message generation period has increased (i.e., longer period) . For example, the V2X device may use the communication circuit 742 and/or the processing circuit 740 to compare the current message generation period and a pervious message generation period. At block 1104, if the message generation period has increased, the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation by retaining a subset of currently reserved V2X resources (e.g., subframes and sidelink subchannels) such that a periodicity of the retained V2X resources matches the new message generation period. In some examples, the V2X device may use the resource allocation circuit 744 to perform a resource reselection procedure to select V2X resources, with or without retaining the currently reserved V2X resources, with a periodicity that matches the increased message generation period.
FIG. 12 is a flow chart illustrating an exemplary process 1200 for reserving V2X resources in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for the implementation of all embodiments. In some examples, the process 1200 may be carried out by the V2X device 700 during the process described in block 1008 of FIG. 10. In some examples, the process 1200 may be carried out by any suitable apparatus or means for carrying out the functions or algorithms described below.
At decision block 1202, the V2X device may determine whether or not the V2X message generation period has decreased (i.e., shorter period) . For example, the V2X device may use the communication circuit 742 and/or the processing circuit 740 to compare the current message generation period and a pervious message generation period. At block 1204, if the message generation period has decreased, the V2X device may use the resource allocation circuit 744 to update the V2X resource allocation by retaining all of the currently reserved V2X resources (e.g., subframes and sidelink subchannels) and, if needed, adjust the periodicity of the reserved V2X resources such that a periodicity of the retained V2X resources matches the new message generation period. For example, the reserved V2X resources may initially include subchannels in subframes that repeat every 200 ms. The V2X device can retain the same subchannels  and reserve additional subframes such that the reserved subframes repeat every 100 ms. That is, the periodicity of the updated V2X resource allocation has a shorter period that matches the decreased message generation period. In some examples, the V2X device may use the resource allocation circuit 744 to perform a resource reselection procedure to select V2X resources, with or without retaining the currently reserved V2X resources, with a periodicity that matches the decreased message generation period.
In one configuration, the apparatus 700 for wireless communication includes means for V2X communication as described in the present disclosure. In one aspect, the aforementioned means may be the processor 704 shown in FIG. 7 configured to perform the functions recited by the aforementioned means. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 704 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 706, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, and/or 3, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 8–12.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1–12 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1–12 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to  the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (20)

  1. A method of operating a vehicle-to-everything (V2X) device in a V2X wireless network, comprising:
    communicating with one or more wireless devices in the V2X wireless network using a V2X resource allocation;
    determining a current V2X message generation period of the V2X device;
    if the current V2X message generation period is different from a previous V2X message generation period, updating the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period; and
    indicating the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  2. The method of claim 1, wherein indicating the updated V2X resource allocation comprises:
    transmitting a control message in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation.
  3. The method of claim 1, wherein determining the current V2X message generation period comprises:
    determining a channel busy ratio (CBR) that indicates a utilization state of the V2X wireless network;
    determining a channel occupancy ratio (CR) that indicates a channel utilization of the V2X wireless network by the V2X device; and
    controlling the current V2X message generation period based on the CBR and the CR.
  4. The method of claim 1, wherein updating the V2X resource allocation comprises:
    if the current V2X message generation period is longer than the previous V2X message generation period, retaining a subset of communication resources included in  the V2X resource allocation such that a repeating period of the subset of communication resources matches the current V2X message generation period; and
    if the current V2X message generation period is shorter than the previous V2X message generation period, retaining all communication resources included in the V2X resource allocation such that a repeating period of the retained communication resources matches the current V2X message generation period.
  5. The method of claim 1, wherein updating the V2X resource allocation comprises:
    performing a resource reselection procedure to select communication resources that have a repeating period matching the current V2X message generation period.
  6. A vehicle-to-everything (V2X) apparatus for a V2X wireless network, comprising:
    means for communicating with one or more wireless devices in the V2X wireless network using a V2X resource allocation;
    means for determining a current V2X message generation period of the V2X apparatus;
    means for, if the current V2X message generation period is different from a previous V2X message generation period, updating the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period; and
    means for indicating the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  7. The V2X apparatus of claim 6, wherein the means for indicating the updated V2X resource allocation is configured to:
    transmit a control message in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation.
  8. The V2X apparatus of claim 6, wherein the means for determining the current V2X message generation period is configured to:
    determine a channel busy ratio (CBR) that indicates a utilization state of the V2X wireless network;
    determine a channel occupancy ratio (CR) that indicates a channel utilization of the V2X wireless network by the V2X apparatus; and
    control the current V2X message generation period based on the CBR and the CR.
  9. The V2X apparatus of claim 6, wherein the means for updating the V2X resource allocation is configured to:
    if the current V2X message generation period is longer than the previous V2X message generation period, retain a subset of communication resources included in the V2X resource allocation such that a repeating period of the subset of communication resources matches the current V2X message generation period; and
    if the current V2X message generation period is shorter than the previous V2X message generation period, retaining all communication resources included in the V2X resource allocation such that a repeating period of the retained communication resources matches the current V2X message generation period.
  10. The V2X apparatus of claim 6, wherein the means for updating the V2X resource allocation is configured to:
    perform a resource reselection procedure to select communication resources that have a repeating period matching the current V2X message generation period.
  11. A vehicle-to-everything (V2X) apparatus comprising:
    a transceiver configured for V2X communication in a V2X wireless network;
    a memory; and
    a processor operatively coupled with the transceiver and the memory,
    wherein the processor and the memory are configured to:
    communicate, via the transceiver, with one or more wireless devices in the V2X wireless network using a V2X resource allocation;
    determine a current V2X message generation period of the V2X apparatus;
    if the current V2X message generation period is different from a previous V2X message generation period, update the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period; and
    indicate, via the transceiver, the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  12. The V2X apparatus of claim 11, wherein the processor and the memory are further configured to:
    transmit, via the transceiver, a control message in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation.
  13. The V2X apparatus of claim 11, wherein the processor and the memory are further configured to:
    determine a channel busy ratio (CBR) that indicates a utilization state of the V2X wireless network;
    determine a channel occupancy ratio (CR) that indicates a channel utilization of the V2X wireless network by the V2X apparatus; and
    control the current V2X message generation period based on the CBR and the CR.
  14. The V2X apparatus of claim 11, wherein the processor and the memory are further configured to:
    if the current V2X message generation period is longer than the previous V2X message generation period, retain a subset of communication resources included in the V2X resource allocation such that a repeating period of the subset of communication resources matches the current V2X message generation period; and
    if the current V2X message generation period is shorter than the previous V2X message generation period, retaining all communication resources included in the V2X resource allocation such that a repeating period of the retained communication resources matches the current V2X message generation period.
  15. The V2X apparatus of claim 11, wherein the processor and the memory are further configured to:
    perform a resource reselection procedure to select communication resources that have a repeating period matching the current V2X message generation period.
  16. An article of manufacture for use by a vehicle-to-everything (V2X) apparatus in a V2X wireless network, the article comprising:
    a non-transitory computer-readable medium having stored therein instructions executable by a processor of the V2X apparatus to:
    communicate with one or more wireless devices in the V2X wireless network using a V2X resource allocation;
    determine a current V2X message generation period of the V2X device;
    if the current V2X message generation period is different from a previous V2X message generation period, updating the V2X resource allocation such that a periodicity of the V2X resource allocation matches the current V2X message generation period; and
    indicate the updated V2X resource allocation to the one or more wireless devices in the V2X wireless network.
  17. The article of claim 16, wherein the instructions further executable by the processor of the V2X apparatus to:
    transmit a control message in a physical sidelink control channel (PSCCH) that indicates the updated V2X resource allocation.
  18. The article of claim 16, wherein the instructions further executable by the processor of the V2X apparatus to:
    determine a channel busy ratio (CBR) that indicates a utilization state of the V2X wireless network;
    determine a channel occupancy ratio (CR) that indicates a channel utilization of the V2X wireless network by the V2X apparatus; and
    control the current V2X message generation period based on the CBR and the CR.
  19. The article of claim 16, wherein the instructions further executable by the processor of the V2X apparatus to:
    if the current V2X message generation period is longer than the previous V2X message generation period, retain a subset of communication resources included in the V2X resource allocation such that a repeating period of the subset of communication resources matches the current V2X message generation period; and
    if the current V2X message generation period is shorter than the previous V2X message generation period, retain all communication resources included in the V2X resource allocation such that a repeating period of the retained communication resources matches the current V2X message generation period.
  20. The article of claim 16, wherein the instructions further executable by the processor of the V2X apparatus to:
    perform a resource reselection procedure to select communication resources that have a repeating period matching the current V2X message generation period.
PCT/CN2020/071311 2020-01-10 2020-01-10 Communication resource reservation in vehicle-to-everything (v2x) communication network WO2021138888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071311 WO2021138888A1 (en) 2020-01-10 2020-01-10 Communication resource reservation in vehicle-to-everything (v2x) communication network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071311 WO2021138888A1 (en) 2020-01-10 2020-01-10 Communication resource reservation in vehicle-to-everything (v2x) communication network

Publications (1)

Publication Number Publication Date
WO2021138888A1 true WO2021138888A1 (en) 2021-07-15

Family

ID=76787712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071311 WO2021138888A1 (en) 2020-01-10 2020-01-10 Communication resource reservation in vehicle-to-everything (v2x) communication network

Country Status (1)

Country Link
WO (1) WO2021138888A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171904A1 (en) * 2014-05-09 2015-11-12 Cisco Technology, Inc. Dynamic adjustment of wireless communication transmission rates
WO2017133501A1 (en) * 2016-02-04 2017-08-10 中兴通讯股份有限公司 Method and device for congestion control of internet of vehicles service
CN108769948A (en) * 2018-05-11 2018-11-06 雷恩友力数据科技南京有限公司 A kind of resource allocation methods of isomery In-vehicle networking
WO2019156266A1 (en) * 2018-02-09 2019-08-15 엘지전자(주) V2x communication device and v2x communication method of v2x communication device
EP3554172A1 (en) * 2017-01-12 2019-10-16 LG Electronics Inc. -1- V2x communication method executed by v2x terminal in wireless communication system, and terminal using same
WO2019199140A1 (en) * 2018-04-13 2019-10-17 삼성전자 주식회사 Resource allocation method and device for supporting vehicle communication in next generation mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171904A1 (en) * 2014-05-09 2015-11-12 Cisco Technology, Inc. Dynamic adjustment of wireless communication transmission rates
WO2017133501A1 (en) * 2016-02-04 2017-08-10 中兴通讯股份有限公司 Method and device for congestion control of internet of vehicles service
EP3554172A1 (en) * 2017-01-12 2019-10-16 LG Electronics Inc. -1- V2x communication method executed by v2x terminal in wireless communication system, and terminal using same
WO2019156266A1 (en) * 2018-02-09 2019-08-15 엘지전자(주) V2x communication device and v2x communication method of v2x communication device
WO2019199140A1 (en) * 2018-04-13 2019-10-17 삼성전자 주식회사 Resource allocation method and device for supporting vehicle communication in next generation mobile communication system
CN108769948A (en) * 2018-05-11 2018-11-06 雷恩友力数据科技南京有限公司 A kind of resource allocation methods of isomery In-vehicle networking

Similar Documents

Publication Publication Date Title
EP3857529B1 (en) A vehicle-initiated approach to joining a group
US20200059813A1 (en) V2x packet prioritization and control techniques
WO2021203326A1 (en) Resource allocation for new radio -unlicensed (nr-u) sidelink
US20230171815A1 (en) Fbe-based licensed assisted sidelink access
US20210153168A1 (en) Initializing sequence generators to facilitate sidelink communications
US20210051737A1 (en) Communication resource selection in sidelink communication
EP4189989A1 (en) Group-based prs broadcast for sidelink positioning
CN112514426A (en) Communicating sidelink transmission patterns to a Wireless Wide Area Network (WWAN)
WO2020034052A1 (en) Rsu-assisted joinder of vehicle platooning groups
WO2021197987A1 (en) Energy-efficient adaptive partial sensing for sidelink communication
US11758405B2 (en) Proximity service authorization and provisioning
CN114402638A (en) Method and apparatus for signaling information related to TDD time slot configuration in NR V2X
US11503616B2 (en) Missed reservation limit in wireless networks
CN114503752A (en) Method and apparatus for setting resource pool in NR V2X
WO2021226906A1 (en) Selecting a start time for channel sensing
EP4169314A1 (en) Energy-efficient autonomous resource selection for nr v2x sidelink communication
US11937211B2 (en) Sidelink communication resource set configuration and management
US20220110124A1 (en) Direct current (dc) tone indication in sidelink
US11778642B2 (en) Facilitating device-to-device communications
US11606740B2 (en) Reserving resources for subsequent sidelink transmissions via an initial sidelink control information communication
US11758578B2 (en) Releasing reserved resources for sidelink resource allocations
WO2021138888A1 (en) Communication resource reservation in vehicle-to-everything (v2x) communication network
CN114788385A (en) Method and apparatus for supporting simultaneous transmission of sidelink transmission and uplink transmission of terminal in NR V2X
WO2021142698A1 (en) Transmitter resource conflict avoidance in c-v2x
CN113994755A (en) Method and apparatus for scheduling multiple resources in NR V2X

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912795

Country of ref document: EP

Kind code of ref document: A1