WO2021137656A1 - Novel formulation for local injection - Google Patents

Novel formulation for local injection Download PDF

Info

Publication number
WO2021137656A1
WO2021137656A1 PCT/KR2020/019487 KR2020019487W WO2021137656A1 WO 2021137656 A1 WO2021137656 A1 WO 2021137656A1 KR 2020019487 W KR2020019487 W KR 2020019487W WO 2021137656 A1 WO2021137656 A1 WO 2021137656A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
polymer
composition
cancer
grade
Prior art date
Application number
PCT/KR2020/019487
Other languages
French (fr)
Korean (ko)
Inventor
황성주
백승혁
박은정
김건주
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021137656A1 publication Critical patent/WO2021137656A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a formulation for local injection comprising a polyacrylate polymer, a polymethacrylate polymer, or a copolymer thereof, for example, a composite polymer in which EUDRAGIT E grade and EUDRAGIT RS or RL grade are mixed in a constant content ratio. It relates to a formulation for intratumoral injection comprising.
  • Some anticancer drugs have very low water solubility, which can be overcome by intratumoral injection because systemic circulation through veins is difficult in this case. Intratumoral injection can also reduce dosage and frequency of administration (Fakhari and Anand Subramony 2015).
  • 5-FU is an anticancer agent that has been used for over 40 years and has been used for solid cancers such as colorectal cancer, breast cancer and liver cancer (Lee, Beumer et al. 2016), but when administered systemically through intravenous injection, nausea, vomiting, hair loss, bone marrow Various side effects, including inhibition and hand-foot syndrome, appear (Nurgali, Jagoe et al. 2018). When 5-FU is converted to a specific nucleotide, an anticancer effect appears. Thymidine phosphorylase (TP) is an enzyme that converts 5-FU to fluorodioxyuridine, which in turn is converted to its active metabolite, fluorodioxyuridine monophosphate.
  • TP Thymidine phosphorylase
  • in situ gel drug delivery system was applied to the formulation design of intratumoral injections. Injection of a solution in which a drug is dissolved is easily released out of the tumor tissue and the drug is not delivered well. Therefore, for direct injection into the tumor tissue, the formulation must form a reservoir and general injection of low viscosity must be used.
  • a suitable system for this is an in situ gel drug delivery system.
  • In situ gel refers to a drug delivery system that forms a gel in situ when applied to the site of administration (Sarada K 2014). When applied to the site of administration, it becomes a gel by photopolymerization, chemical crosslinking, physical crosslinking, pH-sensitivity, temperature sensitivity and solvent exchange (Kempe and Mader 2012).
  • the formulation is designed using solvent exchange technology, which can be prepared simply by mixing an organic solvent, a polymer and a drug, and this simple process is one of the advantages.
  • solvent exchange technology can be prepared simply by mixing an organic solvent, a polymer and a drug, and this simple process is one of the advantages.
  • the organic solvent diffuses out of the injection site and body fluid flows into the formulation (Thakur, McMillan et al. 2014).
  • polymer precipitation occurs at the injection site, and the injected drug is captured by this polymer matrix and released when the polymer matrix is decomposed.
  • the most important thing in the solvent exchange-based situ gel is which polymer is used (Parent, Nouvel et al. 2013), which should be soluble in a specific organic solvent and insoluble in water, as well as biocompatible and biodegradable.
  • the present inventors have made intensive research efforts to develop an effective formulation for local injection that can more concentrate the pharmacological effect and reduce side effects by locally acting the drug specifically on the lesion when it is administered systemically through intravenous injection.
  • a drug delivery vehicle is prepared using the polymer of Formula 1 dissolved in an organic solvent, it exists in a solution of low viscosity that can be injected, and then rapidly sol-gel immediately after injection into the lesion site. transition) occurs, so that the release rate of the drug is appropriately controlled, and the formed gel exhibits excellent biodegradability that almost all of it disappears in the body within about 1 month, so it can be used as an efficient drug delivery system for local injection.
  • the present invention has been completed.
  • an object of the present invention is to provide a drug delivery composition for local injection.
  • a drug delivery composition for local injection comprising (a) an organic solvent and (b) a polymer represented by the following formula (1) dissolved in the organic solvent:
  • the present inventors have made intensive research efforts to develop an effective formulation for local injection that can more concentrate the pharmacological effect and reduce side effects by locally acting the drug specifically on the lesion when it is administered systemically through intravenous injection.
  • a drug delivery vehicle is prepared using the polymer of Formula 1 dissolved in an organic solvent, it exists in a solution of low viscosity that can be injected, and then rapidly sol-gel immediately after injection into the lesion site. transition) occurs so that the release rate of the drug is appropriately controlled, and the formed gel exhibits excellent biodegradability that almost all of it disappears in vivo within about 1 month, making it an efficient local injection drug delivery system. found that it can be used.
  • topical injection is a concept relative to systemic administration in which a pharmacological component affects the whole body through the circulatory system, and a subcutaneous injection or intramuscular injection in which the pharmacological component is applied only to a part of the body of a subject. , including ventricular injection, intratumoral injection, and all injection types except systemic administration.
  • polymer refers to a synthetic or natural high molecular compound in which the same or different types of monomers are continuously combined.
  • polymers include homopolymers (polymers in which one type of monomer is polymerized) and interpolymers prepared by the polymerization of at least two different monomers, and interpolymers include copolymers (polymers prepared from two different monomers). polymers) and polymers prepared from more than two different monomers.
  • R 1 to R 3 in Formula 1 are each independently hydrogen or C 1 alkyl, and R 5 is C 1 alkyl.
  • R 1 and R 2 are each independently hydrogen or C 1 alkyl
  • R 3 is C 1 or C 2 alkyl
  • R 5 is C 1 alkyl
  • organic solvent refers to an organic molecule capable of at least partially dissolving other molecules (solute) and existing in a liquid state at room temperature.
  • examples of the organic solvent include hydrocarbon solvents such as n-heptane, n-hexane, n-heptane, n-octane, paraffin, cyclohexane and methylcyclohexane; aromatic organic solvents such as benzene, toluene, o-xylene, m-xylene, and p-xylene; alcohol organic solvents such as methanol, ethanol, 1-propanol, 1-butanol, 1-octanol, benzyl alcohol, phenol, ethylene glycol and m-cresol;
  • Various organic solvents known in the art including, but not limited to, nitrogenous organic solvents such as N,N,-dimethylformamide, N,N,-dimethylacetamide, acetonitrile, and
  • the first polymer and the second polymer are present in a content ratio of 4:6 to 6:4.
  • the first polymer in which R 1 to R 3 is C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 2 is a polyacrylate polymer of EUDRAGIT E grade, R 1 and R 2 are C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 3 + , the second polymer is a polyacrylate polymer of EUDRAGIT RS grade.
  • the polymer of Formula 1 in the local injection drug delivery composition of the present invention, the polymer of Formula 1 is contained in an amount of about 30 w/w% in the total composition, and the polymer is mixed with EUDRAGIT E grade and EUDRAGIT RS grade at about 1:1.
  • Table 1 below is formulation No. 8, and it was confirmed that the formulation showed excellent properties in sol-gel transfer, gel biocompatibility and biodegradability, water diffusion, and drug release.
  • the first polymer and the third polymer are present in a content ratio of 4:6 to 6:4.
  • the third polymer in which R 1 is hydrogen, R 2 and R 3 are C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 3 + is a polyacrylate polymer of EUDRAGIT RL grade.
  • the formulation in which the polymer of Formula 1 is contained in an amount of about 30w/w% in the total composition, and EUDRAGIT E grade and EUDRAGIT RL grade are mixed in about 1:1 to the polymer is the formulation No. 9 in Table 1 below, No. 9
  • the formulation also shows excellent properties in terms of sol-gel transition, gel biocompatibility and biodegradability, water diffusion and drug release.
  • biocompatibility refers to a property that does not cause short-term or long-term side effects when administered in vivo and in contact with cells, tissues or body fluids of organs, specifically, causes tissue necrosis by contact with living tissues or blood. This includes not only tissue compatibility and blood compatibility that does not coagulate blood, but also biodegradability, which disappears after a certain period of time after administration in vivo.
  • biodegradability refers to the property of being naturally decomposed when exposed to a physiological solution of pH 6-8, specifically, the lapse of time by body fluids, degrading enzymes, microorganisms, etc. in vivo. It means a property that can be decomposed according to The polymer of the present invention showed excellent biodegradability, degrading up to about 80% of the initial injection weight 4 weeks after injection in vivo , which is a very important property as a formulation component regardless of whether EUDRAGIT is non-toxic.
  • the present invention provides a composition for preventing or treating solid cancer comprising the above-described local injection drug delivery composition and the anticancer composition for solid cancer as an active ingredient.
  • Intratumoral injection When the pharmacological component loaded by the drug delivery system of the present invention is an anticancer composition for solid cancer, "local injection” of the present invention becomes “intratumoral injection". Intratumoral injection has a disadvantage in that the target carcinoma is limited in that it is an invasive dosage form. However, by injecting an anticancer drug directly into a solid cancer, the systemic side effects of intravenous injection can be avoided as well as impeding drug arrival due to an immune response in the blood. There is an advantage that direct contact between the cancer tissue and the drug is possible without it.
  • prevention refers to inhibiting the occurrence of a disease or disease in a subject who has never been diagnosed with a disease or disease, but is likely to have the disease or disease.
  • the composition of the present invention may be expressed as “a composition for preventing cancer”.
  • administering refers to directly administering a therapeutically effective amount of the composition of the present invention to a subject so that the same amount is formed in the subject's body.
  • the term “therapeutically effective amount” refers to the content of the composition in which the pharmacological component in the composition is sufficient to provide a therapeutic or prophylactic effect to an individual to whom the pharmaceutical composition of the present invention is to be administered. prophylactically effective amount”.
  • the term “subject” includes, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cattle, pigs, monkeys, chimpanzees, baboons or rhesus monkeys. Specifically, the subject of the present invention is a human.
  • the solid cancer that can be prevented or treated with the composition of the present invention is colorectal cancer, esophageal cancer, stomach cancer, pancreatic cancer, breast cancer, cervical cancer, ovarian cancer, lung cancer, malignancy, tongue cancer and liver cancer from the group consisting of is chosen More specifically, the solid cancer is colorectal cancer.
  • the anti-cancer composition is 5-FU (5-fluorouracil) or a pharmaceutically acceptable salt thereof.
  • the term “pharmaceutically acceptable salt” includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases.
  • suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, trifluoroacetic acid, citric acid, methane sulfonic acid, formic acid, benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid, and the like.
  • Salts derived from suitable bases may include alkali metals such as sodium, alkaline earth metals such as magnesium, and ammonium and the like.
  • composition of the present invention is a pharmaceutical composition, and includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like. no.
  • the pharmaceutical composition of the present invention is administered intratumorally, in consideration of factors such as the administration mode, the nature and volume of the target tumor, the patient's age, weight, sex, pathological condition, food, administration time, excretion rate, and response sensitivity Dosage can be determined.
  • the dosage of the pharmaceutical composition of the present invention is, for example, in the range of 0.001-100 mg/kg on an adult basis.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or may be prepared by incorporation into a multi-dose container.
  • the formulation may additionally include a dispersing agent or a stabilizing agent.
  • the present invention provides for the prevention of solid cancer comprising administering to a subject a pharmaceutical composition comprising the above-described local injection drug delivery composition and anticancer composition for solid cancer as an active ingredient or a method of treatment.
  • the present invention provides a method for preparing a drug-loaded formulation for local injection, comprising the steps of:
  • R 1 to R 3 are each independently hydrogen or C 1 to C 3 alkyl, R 4 is or N(R 5 ) 2 or N(R 5 ) 3 + , and R 5 is C 1 to C 3 alkyl, n is an integer from 100 to 3,000;
  • the present invention provides a drug delivery composition for local injection and a method for preparing the same.
  • the present invention is a polyacrylate polymer, a polymethacrylate polymer or a copolymer thereof dissolved in an organic solvent, specifically, EUDRAGIT E grade and EUDRAGIT RS or RL grade by using a composite polymer mixed in a constant content ratio. maintenance of solution prior to injection; rapid sol-gel transition immediately after injection; and a high biodegradation rate of the gel formed, which efficiently achieves all the characteristics required for a formulation for topical injection.
  • the present invention is applicable to a sustained-release injection formulation that can sustain the drug effect for several days to several months by subcutaneous or intramuscular injection, and has a pharmacological effect by local action of an anticancer agent administered systemically through intravenous injection, specifically to the tumor site. It can be usefully used as an excellent intratumoral injection formulation that concentrates, reduces side effects, and greatly improves patient administration convenience.
  • 1 is a diagram showing the mechanism of the solvent exchange-based situ gel.
  • Figure 2 is a diagram showing a schematic diagram of a long-acting intratumoral injection.
  • 3 is a diagram showing the structure of EUDRAGIT E, RS, and RL grades.
  • FIG. 4 is a diagram showing a schematic schematic diagram of a water diffusion test.
  • 5 is a diagram showing the results of sol-gel transition according to EUDRAGIT grade and concentration.
  • 6 is a diagram showing the sol-gel transition results of formulations having two EUDRAGIT grades of L and S.
  • 9 is a diagram showing the release characteristics of 5-FU for 12 hours in an in situ gel.
  • 10 is a diagram showing the release characteristics of 5-FU for 10 days in an in situ gel.
  • 11 is a diagram showing the in vivo sol-gel transition in the designed formulation.
  • 12 is a diagram showing in vivo gel degradation with time.
  • a 20 mL vial was prepared and added to the vial after weighing the NMP.
  • EUDRAGIT polymer was weighed and added to the vial containing NMP.
  • a transparent solution was obtained by uniformly mixing by stirring at room temperature for several hours using a magnetic bar. At this time, the polymer not dissolved during stirring was sonicated for 30 minutes with an ultrasonic grinder and stirred again to obtain a transparent solution. Through this process, the polymer was finally dissolved in an organic solvent, the drug was weighed, added, and stirred for several hours to prepare a transparent final formulation in which the drug particles were visible.
  • Table 1 The contents of the prepared formulations are summarized in Table 1.
  • the conical tube containing the formed gel was transferred directly to the shaking water bath. Shaking bath conditions were set at 25° C. in consideration of drug stability, and stirring rpm was set at 50. Sampling times were set to 30 minutes, 1 hour, 4 hours, 8 hours, 12 hours, 24 hours, 2 days, 4 days, 6 days, 8 days, and 10 days.
  • the HPLC system for analyzing 5-FU was a 1200 Infinity series (Agilent technology, Santa Clara, USA). Chromatographic conditions were as follows; C18 reversed phase column, 3.9 mm x 300 mm (Waters, Leinster, Ireland); Mobile phase, 70% 0.005 M S-1 HSA solution at a flow rate of 2 mL/min. All solutions used for analysis are HPLC grade. The injection volume was 20 ⁇ l and the UV detection wavelength was 254 nm. The retention time is about 1.73 min.
  • an in vivo gel degradation experiment was performed using 10-week-old male SD rats (Gao, Deng et al. 2013). After depilating the back of SD rats and injecting 0.7 mL of formulations 4 and 8 without drug loading into 4 rats, the rats were sacrificed 1 day, 1 week, 2 weeks and 4 weeks later and the gel was removed from the body. was collected. By measuring the weight of each gel, the amount of decomposition of the gel over time was investigated.
  • EUDRAGIT E grades unlike EUDRAGIT RS and RL grades, have dimethylamine functionality instead of trimethylammonium. This means that EUDRAGIT E grade is insoluble in water and more prone to gel formation. Compared to EUDRAGIT RS and EUDRAGIT RL grades, EUDRAGIT RS grades form a gel while retaining their appearance, whereas EUDRAGIT RL grades do not retain their shape over time.
  • the EUDRAGIT RS grade has an ethyl group and the EUDRAGIT RL grade has a methyl group, which appears to be more soluble in water because the EUDRAGIT RL grade is more hydrophilic. When the polymer concentration was 20%, only EUDRAGIT E grade formed a gel matrix that retained its shape.
  • EUDRAGIT RS and EUDRAGIT RL grades showed polymer precipitation but did not retain the morphology of the gel matrix. Based on these results, it was found that EUDRAGIT E grade had the highest gel-forming ability.
  • Each formulation was made in combination with EUDRAGIT E grade 15% based on EUDRAGIT RL grade 15% and EUDRAGIR RS grade 15%. In this formulation, the shape of the gel matrix was well maintained.
  • the EUDRAGIT L and S grade sol-gal transitions initially formed a thin precipitation layer but dissolved over time in PBS, pH 7.2. Of course, the L and S grades are soluble at pH 6 and above 7, respectively. However, at low pH they form gels that can be applied to pH-dependent systems.
  • the dissolution rates were 15% EUDRAGIT E grade and 15% RL grade; EUDRAGIT E grade 30%; It could be predicted that the order would be EUDRAGIT E grade 15% and RS grade 15%, and the dissolution test results were consistent with the prediction ( FIG. 7 ).
  • the present inventors attempted to compare the rate of gel barrier formation in the sol-gel transition by comparing the degree of water diffusion by the polymer. Assuming that the polymer barrier will be formed quickly if water diffusion is fast, drug entrapment will be good and the initial burst will be low. As soon as the pH 7.2 buffer was added dropwise, the water diffusion ranged from 1.8 mm to 2.3 mm, showing no significant difference ( FIG. 8 ). After 6 hours, there was a small change in Formulation 4 and a slight increase in Formulations 7, 8 and 9. Formulations 8 and 9 diffused moisture for 12 hours and significantly increased. There was no significant difference between the 24 hour observation and the 12 hour observation. Formulations 8 and 9 showed relatively high water diffusion, while Formulations 4 and 7 showed low water diffusion.
  • EUDRAGIT, E grades have an uncharged dimethylamine functional group, whereas RL and RS have a charged trimethylammonium functional group, showing a high affinity for water.
  • EUDRAGIT RL grades and RS grades exhibit relatively high water diffusion rates, while EUDRAGIT E grades exhibit low diffusion rates.
  • the difference between the EUDRAGIT RL grade and the RS grade is not large, but looking at the chemical structure, the EUDRAGIT RL grade has a methyl group and is more hydrophilic than the EUDRAGIT RS grade having an ethyl group.
  • the degree of hydrophilicity according to the chemical structure is predicted in the order of EUDRAGIT RL grade, RS grade and E grade, and moisture diffusion is also high in the same order.
  • EUDRAGIT E grade 15% and RL grade 15% showed the fastest dissolution pattern, and EUDRAGIT E grade 15% and RS grade 15% (formulation 8) had the most Dissolution was slow. Similar to the dissolution pattern according to the polymer concentration, the deviation was large during the first 4 hours and the pattern remained constant thereafter ( FIGS. 9 and 10 ).
  • the combination of EUDRAGIT RL grade resulted in fast dissolution and the combination of EUDRAGIT RS grade resulted in slow dissolution.
  • the degree of gel degradation was shown to be different in the order of EUDRAGIT RL grade, E grade and RS grade.
  • the main factor determining drug dissolution is how well the gel is decomposed after formation, and the ability of the drug to penetrate the formed gel matrix is not an important factor. Accordingly, when the polymer concentration is lowered, drug release is accelerated, and when it is increased, drug release is slowed. In addition, drug release is fast when EUDRAGIT RL grade is used in the formulation, whereas drug release is slow when EUDRAGIT RS grade is used.
  • This is the basis for the development of a system that can control the drug release pattern as desired. It can be applied not only to 5-FU intratumoral formulations, but also to other drugs applied to formulations for subcutaneous or intramuscular injection for systemic circulation. The drug release pattern can also be adjusted to suit the pharmacokinetic properties of each drug.
  • the biodegradability of the gel matrix was investigated through subcutaneous injection into SD rats, and EUDRAGIT E grade 30% formulations and EUDRAGIT E grade 15% and RS grade 15% formulations were used. After 1 week, the weight of the gel decreased by 20%, after 2 weeks the weight of the gel decreased by 50%, and after 4 weeks by 80% ( FIG. 12 ). This is the result showing the biodegradability of EUDRAGIT.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a drug delivery composition for local injection and a method of preparing same. By using a polyacrylate polymer, a polymethacrylate polymer, or a copolymer thereof, dissolved in an organic solvent, and more specifically, a composite polymer containing an Eudragit E grade and an Eudragit RS or RL grade mixed in a uniform ratio, the present invention efficiently achieves all of the features required in local injectable formulations, the features being: the ability to maintain a solution state pre-injection; a rapid sol-gel transition immediately after injection; and a high biodegradation rate of the gel thus formed. The present invention is applicable to sustained-release injection formulations capable of sustaining a drug effect for several days to several months by being administered by a subcutaneous or intramuscular route, and can be advantageously used as an excellent intratumoral injection formulation that concentrates pharmacological effects, reduces side effects, and greatly improves patient administration convenience by localizing anticancer drugs, which have been systemically administered through intravenous injection, specifically to a tumor site.

Description

신규한 국소 주사용 제형Novel topical injectable formulations
본 발명은 폴리아크릴레이트 중합체, 폴리메타크릴레이트 중합체 또는 이들의 공중합체를 포함하는 국소 주사용 제형에 관한 것으로, 구체적인 예로는 EUDRAGIT E 등급과 EUDRAGIT RS 또는 RL 등급이 일정한 함량비로 혼합된 복합 중합체를 포함하는 종양 내 주사용 제형에 관한 것이다.The present invention relates to a formulation for local injection comprising a polyacrylate polymer, a polymethacrylate polymer, or a copolymer thereof, for example, a composite polymer in which EUDRAGIT E grade and EUDRAGIT RS or RL grade are mixed in a constant content ratio. It relates to a formulation for intratumoral injection comprising.
지속형(Long-acting) 비경구제는 1회 투여로 1주에서 수개월간 지속되는 제형으로 환자 편의성 측면에서 유리하다. 지속형 비경구제를 구현하는 기술에는 미소구체, 리포좀, 프로드럭 및 인 시투 겔이 포함된다(Aijaz A. Sheikh 2016). Long-acting parenteral formulations last from one week to several months with a single administration, and are advantageous in terms of patient convenience. Technologies that enable long-acting parenterals include microspheres, liposomes, prodrugs and in situ gels (Aijaz A. Sheikh 2016).
항암제는 일반적으로 정맥주사를 통해 전신을 순환하지만, 탈모, 구역질, 구토, 피부 발진 및 골수기능 저하 등의 다양한 부작용을 수반한다. 또한 일부 항암제는 혈액에서 빠르게 소멸되어 종양병변으로 치료학적 유효량이 전달되는 못하는 경우가 있다. 이에, 암세포에 특이적으로 전달되는 표적 약물전달시스템과 국소적 약물전달시스템이 연구되었다. 국소 치료에서, 종양내(IT) 주사는 항암제를 고형암에 직접적으로 주입하는 방법이다(Zheng, Gao et al. 2017). 이는 전신적인 부작용을 피하고 약리성분이 종양에 직접적으로 전달되어 치료 효율을 높일 수 있는 이점이 있을 뿐 아니라, 외과적 절제술 전에 종양의 크기를 줄이는 데에도 이용될 수 있으며, 또한 외과수술이 불가능한 부위에서의 항암 치료에 이용될 수도 있다. 몇몇 항암제는 수용성이 매우 낮은데, 이 경우 정맥을 통한 전신 순환이 어렵기 때문에 종양내 주사로 이를 극복할 수 있다. 종양내 주사는 투여량 및 투여 빈도 또한 감소시킬 수 있다(Fakhari and Anand Subramony 2015).Anticancer drugs are generally circulated throughout the body through intravenous injection, but are accompanied by various side effects such as hair loss, nausea, vomiting, skin rash, and decreased bone marrow function. In addition, some anticancer drugs are rapidly eliminated from the blood, so there are cases where a therapeutically effective amount cannot be delivered to the tumor lesion. Therefore, targeted drug delivery systems and local drug delivery systems that are specifically delivered to cancer cells were studied. In topical treatment, intratumoral (IT) injection is a method of injecting anticancer drugs directly into solid tumors (Zheng, Gao et al. 2017). This has the advantage of avoiding systemic side effects and delivering pharmacological components directly to the tumor to increase treatment efficiency, and can be used to reduce the size of a tumor before surgical resection, and it can also be used in areas where surgery is impossible. It can also be used for anti-cancer treatment. Some anticancer drugs have very low water solubility, which can be overcome by intratumoral injection because systemic circulation through veins is difficult in this case. Intratumoral injection can also reduce dosage and frequency of administration (Fakhari and Anand Subramony 2015).
5-FU는 40여년 간 사용되어온 항암제로 대장암, 유방암 및 간암 등의 고형암에 사용되어 왔으나(Lee, Beumer et al. 2016), 정맥주사를 통해 전신 투여를 할 경우 구역질, 구토, 탈모, 골수억제, 수족증후군을 포함하는 다양한 부작용이 나타난다(Nurgali, Jagoe et al. 2018). 5-FU를 특정 뉴클레오타이드로 전환할 경우 항암효과가 나타난다. 티미딘 포스포릴라아제(TP)는 5-FU를 플루오로디옥시우리딘으로 전환하는 효소로서 이는 다시 활성 대사체인 플루오로디옥시우리딘 모노포스페이트로 전환된다. 5-FU의 작용 메카니즘은 피리미딘 뉴클레오타이드 합성에서의 속도제한 효소인 티미딜레이트 신타아제(TS)의 억제이다(Longley, Harkin et al. 2003). 디옥시우리딘 모노포스페이트는 TS를 거쳐 디옥시티미딘 모노포스페이트(dTMP)로 전환된다. TS의 억제는 궁극적으로 DNA 합성 및 복구의 억제로 이어진다.5-FU is an anticancer agent that has been used for over 40 years and has been used for solid cancers such as colorectal cancer, breast cancer and liver cancer (Lee, Beumer et al. 2016), but when administered systemically through intravenous injection, nausea, vomiting, hair loss, bone marrow Various side effects, including inhibition and hand-foot syndrome, appear (Nurgali, Jagoe et al. 2018). When 5-FU is converted to a specific nucleotide, an anticancer effect appears. Thymidine phosphorylase (TP) is an enzyme that converts 5-FU to fluorodioxyuridine, which in turn is converted to its active metabolite, fluorodioxyuridine monophosphate. The mechanism of action of 5-FU is inhibition of thymidylate synthase (TS), a rate limiting enzyme in pyrimidine nucleotide synthesis (Longley, Harkin et al. 2003). Deoxyuridine monophosphate is converted via TS to deoxythymidine monophosphate (dTMP). Inhibition of TS ultimately leads to inhibition of DNA synthesis and repair.
인 시투 젤 약물전달시스템이 종양내 주사제의 제형 설계에 적용되었다. 약물이 용해된 용액을 주사하는 것은 종양 조직 밖으로 쉽게 방출되어 약물이 잘 전달되지 않으므로, 종양 조직으로의 직접적인 주입을 위해선 제형은 저장고를 형성해야 하며 낮은 점도의 일반적인 주사를 사용해야 한다. 이에 적당한 시스템은 인 시투 겔 약물전달시스템이다. 인 시투 겔은 투여 부위에 적용되었을 때 인 시투에서 겔을 형성하는 약물전달시스템을 의미한다(Sarada K 2014). 투여 부위에 적용되면 광중합화, 화학적 가교결합, 물리적 가교결합, pH-민감성, 온도 민감성 및 용매교환에 의해 겔 상태가 된다(Kempe and Mader 2012). 제형은 용매교환 기술을 이용하여 설계되었는데, 이는 유기용매, 폴리머 및 약물을 혼합함으로써 간단히 제작될 수 있으며, 이러한 간단한 공정도 이점 중의 하나이다. 주입되면, 유기용매가 주입 부위 밖으로 확산되어 체액이 제형 내로 유입된다(Thakur, McMillan et al. 2014). 이러한 용매교환 결과, 주입 부위에서 폴리머 침전이 일어나 주입된 약물이 이러한 폴리머 매트릭스에 의해 포집되고 폴리머 매트릭스가 분해될 때 방출된다. 용매교환 기반 인 시투 겔에서 가장 중요한 것은 어떠한 폴리머를 사용하느냐로서(Parent, Nouvel et al. 2013), 특정 유기용매에서는 용해되고 물에서는 불용성이어야 할 뿐 아니라 생체적합성이면서 생분해성이어야 한다. An in situ gel drug delivery system was applied to the formulation design of intratumoral injections. Injection of a solution in which a drug is dissolved is easily released out of the tumor tissue and the drug is not delivered well. Therefore, for direct injection into the tumor tissue, the formulation must form a reservoir and general injection of low viscosity must be used. A suitable system for this is an in situ gel drug delivery system. In situ gel refers to a drug delivery system that forms a gel in situ when applied to the site of administration (Sarada K 2014). When applied to the site of administration, it becomes a gel by photopolymerization, chemical crosslinking, physical crosslinking, pH-sensitivity, temperature sensitivity and solvent exchange (Kempe and Mader 2012). The formulation is designed using solvent exchange technology, which can be prepared simply by mixing an organic solvent, a polymer and a drug, and this simple process is one of the advantages. Upon injection, the organic solvent diffuses out of the injection site and body fluid flows into the formulation (Thakur, McMillan et al. 2014). As a result of this solvent exchange, polymer precipitation occurs at the injection site, and the injected drug is captured by this polymer matrix and released when the polymer matrix is decomposed. The most important thing in the solvent exchange-based situ gel is which polymer is used (Parent, Nouvel et al. 2013), which should be soluble in a specific organic solvent and insoluble in water, as well as biocompatible and biodegradable.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced throughout this specification and their citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly describe the level of the technical field to which the present invention pertains and the content of the present invention.
본 발명자들은 종래에 정맥주사를 통해 전신 투여되면 약물을 병변부에 특이적으로 국소 작용시킴으로써 약리효과를 보다 집중시키고 부작용을 감소시킬 수 있는 효율적인 국소 주사용 제형을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 유기 용매에 용해된 상기 화학식 1의 중합체를 이용하여 약물 전달체를 제작할 경우 주사가 가능한 낮은 점도의 용액(solution) 상태로 존재하다가 병변 부위에 주사 직후 신속하게 졸-겔 전이(sol-gel transition)가 발생하여 약물의 방출속도가 적절하게 조절될 뿐 아니라, 형성된 겔은 약 1개월 내에 거의 전량이 생체 내에서 소멸되는 우수한 생분해성(biodegradability)을 보여 효율적인 국소 주사용 약물 전달 시스템으로 이용될 수 있음을 발견함으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to develop an effective formulation for local injection that can more concentrate the pharmacological effect and reduce side effects by locally acting the drug specifically on the lesion when it is administered systemically through intravenous injection. As a result, when a drug delivery vehicle is prepared using the polymer of Formula 1 dissolved in an organic solvent, it exists in a solution of low viscosity that can be injected, and then rapidly sol-gel immediately after injection into the lesion site. transition) occurs, so that the release rate of the drug is appropriately controlled, and the formed gel exhibits excellent biodegradability that almost all of it disappears in the body within about 1 month, so it can be used as an efficient drug delivery system for local injection. By discovering that , the present invention has been completed.
따라서 본 발명의 목적은 국소 주사용 약물 전달체 조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a drug delivery composition for local injection.
본 발명의 다른 목적은 고형암의 예방 또는 치료용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for preventing or treating solid cancer.
본 발명의 또 다른 목적은 약물이 탑재된 국소 주사용 제형의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for preparing a drug-loaded formulation for local injection.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 (a) 유기용매 및 (b) 상기 유기용매에 용해된 하기 화학식 1로 표시되는 중합체를 포함하는 국소 주사용 약물 전달체 조성물을 제공한다: According to one aspect of the present invention, there is provided a drug delivery composition for local injection comprising (a) an organic solvent and (b) a polymer represented by the following formula (1) dissolved in the organic solvent:
화학식 1 Formula 1
Figure PCTKR2020019487-appb-I000001
Figure PCTKR2020019487-appb-I000001
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소 또는 C1 내지 C3 알킬이고, R4는 또는 N(R5)2 또는 N(R5)3 +이며, R5는 C1 내지 C3 알킬이고, n은 100 내지 3,000의 정수이다. In Formula 1, R 1 to R 3 are each independently hydrogen or C 1 to C 3 alkyl, R 4 is or N(R 5 ) 2 or N(R 5 ) 3 + , and R 5 is C 1 to C 3 alkyl, and n is an integer from 100 to 3,000.
본 발명자들은 종래에 정맥주사를 통해 전신 투여되면 약물을 병변부에 특이적으로 국소 작용시킴으로써 약리효과를 보다 집중시키고 부작용을 감소시킬 수 있는 효율적인 국소 주사용 제형을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 유기 용매에 용해된 상기 화학식 1의 중합체를 이용하여 약물 전달체를 제작할 경우 주사가 가능한 낮은 점도의 용액(solution) 상태로 존재하다가 병변 부위에 주사 직후 신속하게 졸-겔 전이(sol-gel transition)가 발생하여 약물의 방출속도가 적절하게 조절될 뿐 아니라, 형성된 겔은 약 1개월 내에 거의 전량이 생체 내에서 소멸되는 우수한 생분해성(biodegradability)을 보임으로써, 효율적인 국소 주사용 약물 전달 시스템으로 이용될 수 있음을 발견하였다. The present inventors have made intensive research efforts to develop an effective formulation for local injection that can more concentrate the pharmacological effect and reduce side effects by locally acting the drug specifically on the lesion when it is administered systemically through intravenous injection. As a result, when a drug delivery vehicle is prepared using the polymer of Formula 1 dissolved in an organic solvent, it exists in a solution of low viscosity that can be injected, and then rapidly sol-gel immediately after injection into the lesion site. transition) occurs so that the release rate of the drug is appropriately controlled, and the formed gel exhibits excellent biodegradability that almost all of it disappears in vivo within about 1 month, making it an efficient local injection drug delivery system. found that it can be used.
본 명세서에서 용어“국소 주사(topical injection)”는 약리성분이 순환계를 통해 전신에 영향을 미치는 전신 투여(Systemic administration)에 상대적인 개념으로, 대상체의 신체 일부분에만 약리성분이 적용되는 피하주사, 근육주사, 뇌실주사, 종양내 주사를 비롯하여 전신 투여를 제외한 모든 주사 형태를 포괄하는 의미이다.As used herein, the term “topical injection” is a concept relative to systemic administration in which a pharmacological component affects the whole body through the circulatory system, and a subcutaneous injection or intramuscular injection in which the pharmacological component is applied only to a part of the body of a subject. , including ventricular injection, intratumoral injection, and all injection types except systemic administration.
본 명세서에서 용어“중합체”는 동일하거나 상이한 종류의 단량체가 연속적으로 결합된 합성 또는 천연 고분자 화합물을 지칭한다. 따라서, 중합체에는 단독 중합체(한 종류의 단량체가 중합화된 중합체)와 적어도 2종의 상이한 단량체의 중합에 의해 제조된 혼성중합체를 포함되며, 혼성중합체에는 공중합체(2종의 상이한 단량체로부터 제조된 중합체)와 2종 초과의 상이한 단량체로부터 제조된 중합체를 모두 포함한다.As used herein, the term “polymer” refers to a synthetic or natural high molecular compound in which the same or different types of monomers are continuously combined. Thus, polymers include homopolymers (polymers in which one type of monomer is polymerized) and interpolymers prepared by the polymerization of at least two different monomers, and interpolymers include copolymers (polymers prepared from two different monomers). polymers) and polymers prepared from more than two different monomers.
본 명세서에서 용어“알킬”은 직쇄 또는 분쇄의 포화 탄화수소기를 의미하며, C1-C3 알킬은 탄소수 1 내지 3의 알킬 유니트를 가지는 알킬기를 의미하며, C1-C3 알킬이 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다. As used herein, the term “alkyl” refers to a straight-chain or pulverized saturated hydrocarbon group, C 1 -C 3 alkyl refers to an alkyl group having an alkyl unit having 1 to 3 carbon atoms, and when C 1 -C 3 alkyl is substituted, a substituent carbon number is not included.
본 발명의 구체적인 구현예에 따르면, 상기 일반식 1의 R1 내지 R3는 각각 독립적으로 수소 또는 C1 알킬이고, R5는 C1 알킬이다. According to a specific embodiment of the present invention, R 1 to R 3 in Formula 1 are each independently hydrogen or C 1 alkyl, and R 5 is C 1 alkyl.
보다 구체적으로는, 상기 R1 및 R2는 각각 독립적으로 수소 또는 C1 알킬이고, R3는 C1 또는 C2 알킬이며, R5는 C1 알킬이다. More specifically, R 1 and R 2 are each independently hydrogen or C 1 alkyl, R 3 is C 1 or C 2 alkyl, and R 5 is C 1 alkyl.
본 명세서에서 용어 "유기 용매"는 다른 분자(용질)를 적어도 부분적으로 용해시킬 수 있고 상온에서 액체 상태로 존재하는 유기 분자를 의미한다. 유기 용매는 예를 들어 n-헵탄, n-헥산, n-헵탄, n-옥탄, 파라핀, 사이클로헥산, 메틸사이클로헥산 등의 탄화수소 용매; 벤젠, 톨루엔, o-자일렌, m-자일렌, p-자일렌 등의 방향성 유기용매; 메탄올, 에탄올, 1-프로판올, 1-부탄올, 1-옥탄올, 벤질알콜, 페놀, 에틸렌글리콜, m-크레졸 등의 알콜 유기용매; N,N,-디메틸포름아마이드, N,N,-디메틸아세트아마이드, 아세토니트릴, N-메틸-2-피롤리돈 등의 질소성 유기용매를 포함하나 이에 제한되지 않고 당업계에 공지된 다양한 유기용매가 사용될 수 있다. 구체적으로는, 본 발명에서 사용되는 유기용매는 에탄올, 메탄올 및 NMP(N-methyl pyrrolidone)로 구성된 군으로부터 선택되는 하나 이상의 용매이며, 보다 구체적으로는 NMP이다.As used herein, the term “organic solvent” refers to an organic molecule capable of at least partially dissolving other molecules (solute) and existing in a liquid state at room temperature. Examples of the organic solvent include hydrocarbon solvents such as n-heptane, n-hexane, n-heptane, n-octane, paraffin, cyclohexane and methylcyclohexane; aromatic organic solvents such as benzene, toluene, o-xylene, m-xylene, and p-xylene; alcohol organic solvents such as methanol, ethanol, 1-propanol, 1-butanol, 1-octanol, benzyl alcohol, phenol, ethylene glycol and m-cresol; Various organic solvents known in the art including, but not limited to, nitrogenous organic solvents such as N,N,-dimethylformamide, N,N,-dimethylacetamide, acetonitrile, and N-methyl-2-pyrrolidone Solvents may be used. Specifically, the organic solvent used in the present invention is at least one solvent selected from the group consisting of ethanol, methanol, and N-methyl pyrrolidone (NMP), and more specifically, NMP.
본 발명의 구체적인 구현예에 따르면, 상기 조성물 내에 상기 중합체는 전체 조성물에 대해 25 내지 35 w/w%로 포함되어 있다. 보다 구체적으로는 27 내지 33 w/w%로 포함되어 있으며, 가장 체적으로는 29 내지 31 w/w%로 포함되어 있다.According to a specific embodiment of the present invention, the polymer is included in the composition in an amount of 25 to 35 w/w% based on the total composition. More specifically, it is included in 27 to 33 w/w%, and most in volume it is included in 29 to 31 w/w%.
본 발명의 구체적인 구현예에 따르면, 상기 화학식 1로 표시되는 중합체는 (i) R1 내지 R3는 C1 알킬이고, R4는 -N(R5)2이며, R5는 C1 알킬인 제1 중합체와; (ii) R1 및 R2는 C1 알킬이고, R3는 C2 알킬이며, R4는 -N(R5)3 +이고, R5는 C1 알킬인 제2 중합체의 혼합물이다.According to a specific embodiment of the present invention, the polymer represented by Formula 1 is (i) R 1 to R 3 are C 1 alkyl, R 4 is —N(R 5 ) 2 , and R 5 is C 1 alkyl. a first polymer; (ii) R 1 and R 2 is a C 1 alkyl, R 3 is a C 2 alkyl, R 4 is -N (R 5) 3 +, R 5 is a mixture of the second polymer is C 1 alkyl.
보다 구체적으로는, 상기 조성물 내에 상기 제1 중합체와 상기 제2 중합체는 4:6 내지 6:4의 함량비로 존재한다. More specifically, in the composition, the first polymer and the second polymer are present in a content ratio of 4:6 to 6:4.
R1 내지 R3가 C1 알킬(메틸)이며 R4가 -N(CH3)2인 제1 중합체는 EUDRAGIT E 등급의 폴리아크릴레이트 중합체이며, R1 및 R2가 C1 알킬(메틸)이며, R4가 -N(CH3)3 +인 제2 중합체는 EUDRAGIT RS 등급의 폴리아크릴레이트 중합체이다. 본 발명에 따르면, 본 발명의 국소 주사용 약물 전달체 조성물은 전체 조성물 내에 화학식 1의 중합체가 약 30w/w% 함량으로 포함되고, 상기 중합체는 EUDRAGIT E 등급 및 EUDRAGIT RS 등급이 약 1:1로 혼합되어 있는 제형은 하기 표 1의 8번 제형이며, 해당 제형은 졸-겔 전이, 겔의 생체적합성 및 생분해성, 수분확산 및 약물 방출에 있어 모두 우수한 특성을 보임을 확인하였다.The first polymer in which R 1 to R 3 is C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 2 is a polyacrylate polymer of EUDRAGIT E grade, R 1 and R 2 are C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 3 + , the second polymer is a polyacrylate polymer of EUDRAGIT RS grade. According to the present invention, in the local injection drug delivery composition of the present invention, the polymer of Formula 1 is contained in an amount of about 30 w/w% in the total composition, and the polymer is mixed with EUDRAGIT E grade and EUDRAGIT RS grade at about 1:1. The formulation in Table 1 below is formulation No. 8, and it was confirmed that the formulation showed excellent properties in sol-gel transfer, gel biocompatibility and biodegradability, water diffusion, and drug release.
본 발명의 구체적인 구현예에 따르면, 상기 화학식 1로 표시되는 중합체는 (i) R1 내지 R3는 C1 알킬이고, R4는 -N(R5)2이며, R5는 C1 알킬인 제1 중합체와; (ii) R1은 수소이고, R2 및 R3는 C1 알킬이며, R4는 -N(R5)3 +이고, R5는 C1 알킬인 제3 중합체의 혼합물이다.According to a specific embodiment of the present invention, the polymer represented by Formula 1 is (i) R 1 to R 3 are C 1 alkyl, R 4 is —N(R 5 ) 2 , and R 5 is C 1 alkyl. a first polymer; (ii) R 1 is hydrogen, R 2 and R 3 are C 1 alkyl, R 4 is -N (R 5) 3 +, R 5 is a mixture of a third polymer of C 1 alkyl.
보다 구체적으로는, 상기 조성물 내에 상기 제1 중합체와 상기 제3 중합체는 4:6 내지 6:4의 함량비로 존재한다.More specifically, in the composition, the first polymer and the third polymer are present in a content ratio of 4:6 to 6:4.
R1은 수소이고 R2 및 R3가 C1 알킬(메틸)이며, R4가 -N(CH3)3 +인 제3 중합체는 EUDRAGIT RL 등급의 폴리아크릴레이트 중합체이다. 전체 조성물 내에 화학식 1의 중합체가 약 30w/w% 함량으로 포함되면서, 상기 중합체에 EUDRAGIT E 등급 및 EUDRAGIT RL 등급이 약 1:1로 혼합되어 있는 제형은 하기 표 1의 9번 제형으로, 9번 제형 역시 졸-겔 전이, 겔의 생체적합성 및 생분해성, 수분확산 및 약물 방출에 있어 모두 우수한 특성을 보인다.The third polymer in which R 1 is hydrogen, R 2 and R 3 are C 1 alkyl(methyl) and R 4 is —N(CH 3 ) 3 + is a polyacrylate polymer of EUDRAGIT RL grade. The formulation in which the polymer of Formula 1 is contained in an amount of about 30w/w% in the total composition, and EUDRAGIT E grade and EUDRAGIT RL grade are mixed in about 1:1 to the polymer is the formulation No. 9 in Table 1 below, No. 9 The formulation also shows excellent properties in terms of sol-gel transition, gel biocompatibility and biodegradability, water diffusion and drug release.
본 명세서에서 용어“생체 적합성”은 생체 내에 투여되어 기관의 세포, 조직 또는 체액과 접촉하는 경우 단기적 혹은 장기적 부작용을 일으키지 않는 성질을 의미하며, 구체적으로는 생체조직 또는 혈액과 접촉하여 조직을 괴사시키거나 혈액을 응고시키지 않는 조직적합성(tissue compatibility) 및 항응혈성(blood compatibility) 뿐 아니라 생체 투여 후 일정 기간이 경과한 뒤 소멸되는 생분해성(biodegradability)을 포함하는 의미이다.As used herein, the term “biocompatibility” refers to a property that does not cause short-term or long-term side effects when administered in vivo and in contact with cells, tissues or body fluids of organs, specifically, causes tissue necrosis by contact with living tissues or blood. This includes not only tissue compatibility and blood compatibility that does not coagulate blood, but also biodegradability, which disappears after a certain period of time after administration in vivo.
본 명세서에서 용어“생분해성”은 pH 6-8의 생리적 용액(physiological solution)에 노출되었을 때 자연적으로 분해되는 성질을 의미하며, 구체적으로는 생체 내에서 체액, 분해 효소 또는 미생물 등에 의해서 시간의 경과에 따라 분해될 수 있는 성질을 의미한다. 본 발명의 중합체는 인 비보에서 주사 후 4주 뒤에 최초 주입 중량의 약 80%까지 분해되는 우수한 생분해성을 보였으며 이는 EUDRAGIT의 비독성 여부와 무관하게 제형 성분으로서의 매우 중요한 특성이다. As used herein, the term “biodegradability” refers to the property of being naturally decomposed when exposed to a physiological solution of pH 6-8, specifically, the lapse of time by body fluids, degrading enzymes, microorganisms, etc. in vivo. It means a property that can be decomposed according to The polymer of the present invention showed excellent biodegradability, degrading up to about 80% of the initial injection weight 4 weeks after injection in vivo , which is a very important property as a formulation component regardless of whether EUDRAGIT is non-toxic.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 국소 주사용 약물 전달체 조성물 및 고형암에 대한 항암 조성물을 유효성분으로 포함하는 고형암의 예방 또는 치료용 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition for preventing or treating solid cancer comprising the above-described local injection drug delivery composition and the anticancer composition for solid cancer as an active ingredient.
본 발명의 약물 전달체가 탑재하는 약리성분이 고형암에 대한 항암 조성물일 경우, 본 발명의“국소 주사”는“종양내 주사(intratumoral injection)”가 된다. 종양내 주사는 침습적인 투여 형태라는 점에서 대상 암종이 제한된다는 단점이 있으나, 고형암에 직접 항암 약물을 주입함으로써 정맥주사의 전신적인 부작용을 회피할 수 있을 뿐 아니라 혈액 내 면역반응으로 인한 약물 도달 방해 없이 암조직과 약물의 직접적인 접촉이 가능하다는 이점이 있다.When the pharmacological component loaded by the drug delivery system of the present invention is an anticancer composition for solid cancer, "local injection" of the present invention becomes "intratumoral injection". Intratumoral injection has a disadvantage in that the target carcinoma is limited in that it is an invasive dosage form. However, by injecting an anticancer drug directly into a solid cancer, the systemic side effects of intravenous injection can be avoided as well as impeding drug arrival due to an immune response in the blood. There is an advantage that direct contact between the cancer tissue and the drug is possible without it.
본 명세서에서 용어“예방”은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다. 본 발명이 양성 종양(benign tumor) 조직 또는 악성인지 양성인지 여부가 불명확한 조직에 대해 적용될 경우, 본 발명의 조성물은“암의 예방용 조성물”로 표현될 수 있다.As used herein, the term “prevention” refers to inhibiting the occurrence of a disease or disease in a subject who has never been diagnosed with a disease or disease, but is likely to have the disease or disease. When the present invention is applied to a benign tumor tissue or a tissue in which whether it is malignant or benign, the composition of the present invention may be expressed as “a composition for preventing cancer”.
본 명세서에서 용어“치료”는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 조성물을 대상체의 고형암 부위에 종양내 주사하면 항암 성분의 직접 전달에 의해 종양의 성장 및 증식을 억제하거나, 종양으로 인한 증상을 제거하거나 또는 경감시키는 역할을 한다. 따라서, 본 발명의 조성물은 그 자체로 암 치료 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 암에 대한 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어“치료”또는“치료제”는“치료 보조”또는“치료 보조제”의 의미를 포함한다. As used herein, the term “treatment” refers to (a) inhibiting the development of a disease, disorder or condition; (b) alleviation of the disease, condition or condition; or (c) eliminating the disease, condition or symptom. When the composition of the present invention is injected intratumorally into a solid cancer site of a subject, it serves to inhibit the growth and proliferation of a tumor by direct delivery of an anticancer component, or to eliminate or alleviate symptoms caused by a tumor. Accordingly, the composition of the present invention may be a cancer treatment composition by itself, or may be administered together with other pharmacological ingredients to be applied as a therapeutic adjuvant for cancer. Accordingly, as used herein, the term “treatment” or “therapeutic agent” includes the meaning of “therapeutic adjuvant” or “therapeutic adjuvant”.
본 명세서에서 용어“투여”또는“투여하다”는 본 발명의 조성물의 치료적 유효량을 대상체에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다.As used herein, the term “administration” or “administering” refers to directly administering a therapeutically effective amount of the composition of the present invention to a subject so that the same amount is formed in the subject's body.
본 발명에서 용어“치료적 유효량”은 본 발명의 약제학적 조성물을 투여하고자 하는 개체에게 조성물 내의 약리성분이 치료적 또는 예방적 효과를 제공하기에 충분한 정도로 함유된 조성물의 함량을 의미하며, 이에“예방적 유효량”을 포함하는 의미이다. In the present invention, the term “therapeutically effective amount” refers to the content of the composition in which the pharmacological component in the composition is sufficient to provide a therapeutic or prophylactic effect to an individual to whom the pharmaceutical composition of the present invention is to be administered. prophylactically effective amount”.
본 명세서에서 용어“대상체”는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다. As used herein, the term “subject” includes, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cattle, pigs, monkeys, chimpanzees, baboons or rhesus monkeys. Specifically, the subject of the present invention is a human.
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료될 수 있는 고형암은 대장암, 식도암, 위암, 췌장암, 유방암, 자궁경부암, 난소암, 폐암, 악암, 설암 및 간암으로 구성된 군으로부터 선택된다. 보다 구체적으로는, 상기 고형암은 대장암이다.According to a specific embodiment of the present invention, the solid cancer that can be prevented or treated with the composition of the present invention is colorectal cancer, esophageal cancer, stomach cancer, pancreatic cancer, breast cancer, cervical cancer, ovarian cancer, lung cancer, malignancy, tongue cancer and liver cancer from the group consisting of is chosen More specifically, the solid cancer is colorectal cancer.
본 발명의 구체적인 구현예에 따르면, 상기 항암 조성물은 5-FU(5-플루오로우라실) 또는 이의 약제학적으로 허용되는 염이다.According to a specific embodiment of the present invention, the anti-cancer composition is 5-FU (5-fluorouracil) or a pharmaceutically acceptable salt thereof.
본 명세서에서 용어“약제학적으로 허용되는 염”은 약학적으로 허용되는 무기산, 유기산, 또는 염기로부터 유도된 염을 포함한다. 적합한 산의 예로는 염산, 브롬산, 황산, 질산, 과염소산, 푸마르산, 말레산, 인산, 글리콜산, 락트산, 살리실산, 숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산, 트리플루로초산, 시트르산, 메탄설폰산, 포름산, 벤조산, 말론산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 들 수 있다. 적합한 염기로부터 유도된 염은 나트륨 등의 알칼리 금속, 마그네슘 등의 알칼리 토금속, 및 암모늄 등을 포함할 수 있다. As used herein, the term “pharmaceutically acceptable salt” includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases. Examples of suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, trifluoroacetic acid, citric acid, methane sulfonic acid, formic acid, benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid, and the like. Salts derived from suitable bases may include alkali metals such as sodium, alkaline earth metals such as magnesium, and ammonium and the like.
본 발명의 조성물은 약제학적 조성물로서, 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.The composition of the present invention is a pharmaceutical composition, and includes a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like. no. The pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, an emulsifier, a suspending agent, a preservative, and the like, in addition to the above components. Suitable pharmaceutically acceptable carriers and agents are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약제학적 조성물은 종양내 투여되므로, 이러한 투여 방식, 대상 종양의 성격 및 부피, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 배설 속도 및 반응 감응성과 같은 요인들을 고려하여 투여량을 결정할 수 있다. 본 발명의 약제학적 조성물의 투여량은 예를 들어 성인 기준으로 0.001-100 ㎎/kg 범위 내이다. Since the pharmaceutical composition of the present invention is administered intratumorally, in consideration of factors such as the administration mode, the nature and volume of the target tumor, the patient's age, weight, sex, pathological condition, food, administration time, excretion rate, and response sensitivity Dosage can be determined. The dosage of the pharmaceutical composition of the present invention is, for example, in the range of 0.001-100 mg/kg on an adult basis.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or may be prepared by incorporation into a multi-dose container. In this case, the formulation may additionally include a dispersing agent or a stabilizing agent.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 국소 주사용 약물 전달체 조성물 및 고형암에 대한 항암 조성물을 유효성분으로 포함하는 약제학적 조성물을 대상체에 투여하는 단계를 포함하는 고형암의 예방 또는 치료방법을 제공한다.According to another aspect of the present invention, the present invention provides for the prevention of solid cancer comprising administering to a subject a pharmaceutical composition comprising the above-described local injection drug delivery composition and anticancer composition for solid cancer as an active ingredient or a method of treatment.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 약물이 탑재된 국소 주사용 제형의 제조방법을 제공한다: According to another aspect of the present invention, the present invention provides a method for preparing a drug-loaded formulation for local injection, comprising the steps of:
(a) 유기용매에 화학식 1로 표시되는 중합체를 첨가하는 단계: (a) adding a polymer represented by Formula 1 to an organic solvent:
화학식 1 Formula 1
Figure PCTKR2020019487-appb-I000002
Figure PCTKR2020019487-appb-I000002
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소 또는 C1 내지 C3 알킬이고, R4는 또는 N(R5)2 또는 N(R5)3 +이며, R5는 C1 내지 C3 알킬이고, n은 100 내지 3,000의 정수이다; In Formula 1, R 1 to R 3 are each independently hydrogen or C 1 to C 3 alkyl, R 4 is or N(R 5 ) 2 or N(R 5 ) 3 + , and R 5 is C 1 to C 3 alkyl, n is an integer from 100 to 3,000;
(b) 상기 화학식 1로 표시되는 중합체가 첨가된 유기용매가 투명해질 때까지 교반하는 단계;(b) stirring until the organic solvent to which the polymer represented by Formula 1 is added becomes transparent;
(c) 상기 교반된 혼합물에 약물을 첨가하는 단계.(c) adding the drug to the stirred mixture.
본 발명에서 이용되는 유기용매 및 화학식 1 중합체에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.Since the organic solvent and the polymer of Formula 1 used in the present invention have already been described above, description thereof will be omitted to avoid excessive overlap.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 국소 주사용 약물 전달체 조성물 및 이의 제조 방법을 제공한다.(a) The present invention provides a drug delivery composition for local injection and a method for preparing the same.
(b) 본 발명은 유기용매에 용해된 폴리아크릴레이트 중합체, 폴리메타크릴레이트 중합체 또는 이들의 공중합체, 구체적으로는 EUDRAGIT E 등급과 EUDRAGIT RS 또는 RL 등급이 일정한 함량비로 혼합된 복합 중합체를 이용함으로써 주사 전 용액 상태의 유지; 주사 직후의 신속한 졸-겔 전이; 및 형성된 겔의 높은 생분해율이라는, 국소 주사용 제형에 요구되는 모든 특징을 효율적으로 달성한다. (b) the present invention is a polyacrylate polymer, a polymethacrylate polymer or a copolymer thereof dissolved in an organic solvent, specifically, EUDRAGIT E grade and EUDRAGIT RS or RL grade by using a composite polymer mixed in a constant content ratio. maintenance of solution prior to injection; rapid sol-gel transition immediately after injection; and a high biodegradation rate of the gel formed, which efficiently achieves all the characteristics required for a formulation for topical injection.
(c) 본 발명은 피하 또는 근육주사하여 수일내지 수개월 동안 약효를 지속시킬 수 있는 서방형 주사 제형에 적용가능하며, 정맥주사를 통해 전신 투여되던 항암제를 종양 부위 특이적으로 국소 작용시킴으로써 약리효과를 집중시키고 부작용을 감소시키며 환자 투약 편의성을 크게 향상시킨 우수한 종양내(intratumoral) 주사 제형으로 유용하게 이용될 수 있다.(c) The present invention is applicable to a sustained-release injection formulation that can sustain the drug effect for several days to several months by subcutaneous or intramuscular injection, and has a pharmacological effect by local action of an anticancer agent administered systemically through intravenous injection, specifically to the tumor site. It can be usefully used as an excellent intratumoral injection formulation that concentrates, reduces side effects, and greatly improves patient administration convenience.
도 1은 용매교환 기반 인 시투 겔의 메카니즘을 보여주는 그림이다.1 is a diagram showing the mechanism of the solvent exchange-based situ gel.
도 2는 지속형 종양내 주사의 모식도를 보여주는 그림이다.Figure 2 is a diagram showing a schematic diagram of a long-acting intratumoral injection.
도 3은 EUDRAGIT E, RS, RL 등급의 구조를 나타낸 그림이다.3 is a diagram showing the structure of EUDRAGIT E, RS, and RL grades.
도 4는 수분확산 시험의 개략적인 모식도를 나타낸 그림이다.4 is a diagram showing a schematic schematic diagram of a water diffusion test.
도 5는 EUDRAGIT 등급 및 농도에 따른 졸-겔 전이 결과를 보여주는 그림이다.5 is a diagram showing the results of sol-gel transition according to EUDRAGIT grade and concentration.
도 6은 L, S의 두가지 EUDRAGIT 등급을 가지는 제형의 졸-겔 전이 결과를 보여주는 그림이다.6 is a diagram showing the sol-gel transition results of formulations having two EUDRAGIT grades of L and S.
도 7은 인 비트로 겔 분해에서의 중량 감소율을 나타낸 그림이다.7 is a diagram showing the weight reduction rate in in vitro gel decomposition.
도 8은 EUDRAGIT 등급 및 농도에 따른 각 제형의 수분 확산 특성을 나타낸 그림이다. 8 is a diagram showing the moisture diffusion characteristics of each formulation according to EUDRAGIT grade and concentration.
도 9는 인 시투 겔에서 12시간 동안의 5-FU의 방출 특성을 보여주는 그림이다.9 is a diagram showing the release characteristics of 5-FU for 12 hours in an in situ gel.
도 10은 인 시투 겔에서의 10일 간의 5-FU의 방출 특성을 보여주는 그림이다.10 is a diagram showing the release characteristics of 5-FU for 10 days in an in situ gel.
도 11은 설계된 제형에서의 인 비보 졸-겔 전이를 보여주는 그림이다.11 is a diagram showing the in vivo sol-gel transition in the designed formulation.
도 12는 시간에 따른 인 비보 겔 분해를 보여주는 그림이다. 12 is a diagram showing in vivo gel degradation with time.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예Example
실험방법Experimental method
실험재료 experimental material
5-FU는 Sigma Aldrich(Saint Louis, MO, USA)에서 구입하였다. EUDRAGIT E 100, E PO, RL 100, RL PO, RS 100, RS PO, L100, S100은 Evonik industries® (Essen, Germany)에서 공여받았다. NMP(N-methyl pyrrolidone)는 DC Chemical Co.,Ltd(Seoul, South Korea)에서 구입하였다. 인산나트륨 이염기, 무수물 및 인산나트륨 일염기는 Samchun Chemicals (Gyeonggi-do, South Korea)에서 구입하였다. 소듐 1-헵탄설포네이트는 Tokyo Chemical Industry Co.,Ltd(Tokyo, Japan)에서 구입하였다. 정제수는 Milli-Q (Milli-Q Reference, Millipore®, Molsheim, France) 품질이며 그 밖의 시약은 분석용 등급(analytical grade)을 사용하였다. 5-FU was purchased from Sigma Aldrich (Saint Louis, MO, USA). EUDRAGIT E 100, E PO, RL 100, RL PO, RS 100, RS PO, L100 and S100 are from Evonik industries® (Essen, Germany). NMP (N-methyl pyrrolidone) was purchased from DC Chemical Co., Ltd (Seoul, South Korea). Sodium phosphate dibasic, anhydrous and sodium phosphate monobasic were purchased from Samchun Chemicals (Gyeonggi-do, South Korea). Sodium 1-heptanesulfonate was purchased from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan). Purified water was Milli-Q (Milli-Q Reference, Millipore®, Molsheim, France) quality, and other reagents were of analytical grade.
약물 탑재 졸(sol)의 제작Preparation of drug-loaded sols
20mL 바이알을 준비하고, NMP의 중량 측정 후 바이알에 첨가하였다. EUDRAGIT 폴리머의 중량 측정 후 NMP 함유 바이알에 첨가하였다. 자석 막대를 이용하여 상온에서 수 시간 교반함으로써 균일하게 혼합하여 투명한 용액을 수득하였다. 이때, 교반시에 용해되지 않는 폴리머는 초음파 분쇄기로 30분간 초음파 처리 후 다시 교반하여 투명한 용액을 얻었다. 이러한 과정을 통해 폴리머를 최종적으로 유기 용매에 용해시키고, 약물을 중량 측정 후 첨가한 뒤 수 시간 교반하여 약물의 입자가 보이는 투명한 최종 제형을 제작하였다. 제작된 제형의 함량은 표 1에 요약하였다.A 20 mL vial was prepared and added to the vial after weighing the NMP. EUDRAGIT polymer was weighed and added to the vial containing NMP. A transparent solution was obtained by uniformly mixing by stirring at room temperature for several hours using a magnetic bar. At this time, the polymer not dissolved during stirring was sonicated for 30 minutes with an ultrasonic grinder and stirred again to obtain a transparent solution. Through this process, the polymer was finally dissolved in an organic solvent, the drug was weighed, added, and stirred for several hours to prepare a transparent final formulation in which the drug particles were visible. The contents of the prepared formulations are summarized in Table 1.
5-FU 지속형 종양내 주사 제형의 함량Content of 5-FU long-acting intratumoral injection formulation
번호number 1One 22 33 44 55 66 77 88 99 1010 1111
NMP NMP 88 88 88 77 77 77 8.58.5 77 77 8.58.5 8.58.5
E 100 E 100 22 33 1.51.5 1.51.5 1.51.5
RS 100 RS 100 22 33 1.51.5
RL 100 RL 100 22 33 1.51.5
L 100 L 100 1.51.5
S 100 S 100 1.51.5
합계 Sum 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010
5-FU5-FU 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2
총합total 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2 10.210.2
졸-겔 전이(sol-gel transition)의 평가Evaluation of sol-gel transition
종양 내부의 pH는 약 7.2이기 때문에(Zhang, Lin et al. 2010), pH 7.2 PBS를 졸-겔 전이의 배지로서 제작하였다. 인산나트륨 일염기 및 인산나트륨 이염기를 중량 측정 후 증류수에 용해시켜 pH 7.2 완충액을 제작하였다(pH는 pH 미터로 측정). 파이펫을 이용하여 pH 7.2 PBS 10 mL를 20 mL 바이알에 첨가하였다. 상술한 졸-겔 전이 과정에 이용될 제형을 제작하고 1 mL 주사기 및 20게이지 바늘을 준비하였다. pH 7.2 PBS를 함유하는 20 mL바이알 내로 제작한 제형 0.5 mL를 주사기로 주입하였으며, 주입 직후 겔 형성이 관잘되었다. 주입된 용액 주변에서 용매교환 반응이 관찰되었으며, 겔이 얼마나 잘, 그리고 신속하게 형성되는지에 대한 제형-특이적 차이를 확인하였다.Since the pH inside the tumor is about 7.2 (Zhang, Lin et al. 2010), pH 7.2 PBS was prepared as a medium for sol-gel transfer. Sodium phosphate monobasic and sodium phosphate dibasic were weighed and dissolved in distilled water to prepare a pH 7.2 buffer (pH was measured with a pH meter). 10 mL of pH 7.2 PBS was added to a 20 mL vial using a pipette. The formulation to be used in the above-described sol-gel transfer process was prepared, and a 1 mL syringe and 20 gauge needle were prepared. 0.5 mL of the prepared formulation into a 20 mL vial containing pH 7.2 PBS was injected with a syringe, and gel formation was observed immediately after injection. A solvent exchange reaction was observed around the injected solution, confirming formulation-specific differences in how well and rapidly the gel was formed.
겔 분해 측정Gel degradation measurement
4가지 제형(4, 7, 8 및 9번)의 용액을 각각 제작하였다(n=3). 빈 주사기와 제작된 졸이 채워진 주사기의 중량 측정 후 주입된 중량을 계산하였다. pH 7.2 PBS 45 mL를 50 mL 원뿔 튜브에 첨가하였다. 제작된 겔의 인 비트로 분해는 시료를 45mL pH7.2 PBS에 주입함으로써 측정하였다. 배지 완충액은 매일 새로 교체하였다. 각 시료는 진탕 수조(shaking bath)에서 37℃, 50 rpm으로 2주간 배양하였다. 이후 시료를 70℃ 이상의 뜨거운 공기로 72시간 동안 건조시킨 후 중량 감소율을 계산하였다(n=3).Solutions of 4 formulations (No. 4, 7, 8 and 9) were prepared, respectively (n=3). After weighing the empty syringe and the prepared sol-filled syringe, the injected weight was calculated. 45 mL of pH 7.2 PBS was added to a 50 mL conical tube. In vitro degradation of the prepared gel was measured by injecting the sample into 45 mL pH7.2 PBS. The medium buffer was refreshed daily. Each sample was incubated in a shaking bath at 37°C and 50 rpm for 2 weeks. Then, the weight loss rate was calculated after drying the sample with hot air of 70° C. or higher for 72 hours (n=3).
수분 확산 시험moisture diffusion test
용매교환 반응 동안의 수분 확산 속도가 겔 형성 속도와 관련되었을 것으로 가정하고 실험을 설계하였다. 직경 5.6 mm의 유리관에 제작된 제형 4, 7, 8, 및 9를 동일한 높이로 채워넣었다. 제형이 채워진 유리관이 기울어지지 않도록 고정하고, pH 7.2 PBS 1 mL를 파이펫으로 떨어뜨렸다(도 4). 투명한 상태에서 불투명 상태로의 투명도 변화를 통해 수분 확산 거리를 관찰하였다. 수분 확산 속도는 pH 7.2 PBS 1 mL를 떨어뜨린 직후 및 6, 12, 24시간 뒤에 측정하였다.The experiments were designed assuming that the rate of water diffusion during the solvent exchange reaction was related to the rate of gel formation. Formulations 4, 7, 8, and 9 prepared in a glass tube having a diameter of 5.6 mm were filled at the same height. The glass tube filled with the formulation was fixed so as not to be tilted, and 1 mL of pH 7.2 PBS was dropped with a pipette ( FIG. 4 ). The moisture diffusion distance was observed by changing the transparency from the transparent state to the opaque state. The water diffusion rate was measured immediately after dropping 1 mL of pH 7.2 PBS and after 6, 12, and 24 hours.
약물 방출 시험drug release test
주사제의 용해 방법에는 투석낭(dialysis sac) 방법, 역투석낭 방법, 기구 2를 이용하는 방법, 기구 4를 이용하는 방법, 막 없는(membraneless) 방법 등 다양한 방법이 있다(Gray, Cady et al. 2018). 본 발명에서 설계된 제형은 주입 후 즉각적으로 용이하게 겔이 형성되므로 막 없는 용해 방법이 인 시투 겔 기반 지속형 비경구제의 용해 방법으로써 이용될 수 있다(Janagam, Wang et al. 2016). 지속형 비경구제의 용해 시험에서, 약물 안정성, 방출 배지의 손실, 미생물 증식 및 장기간의 실험으로 인한 문제점들로 인해 가속 조건을 적용하였다. pH, 뱅출 배지 및 교반과 같은 다양한 변수가 있다(Shen and Burgess 2012). 제형의 약물 방출 메카니즘을 고려하여 가속 조건을 확립하였다. 제형에 사용된 폴리머는 EtOH에 용해되므로, 방출 배지는 EtOH를 이용하여 제작하였다. 인산나트륨 일염기 및 인산나트륨 이염기로 pH 7.2 PBS를 제작하고, 상기 PBS와 EtOH를 8:2 비율로 혼합하여 방출 배지를 제작하였다. 최종 방출 배지가 준비되면 45 mL를 50 mL 원뿔 튜브에 첨가하였다. 이후 0.25 mL의 제형 4, 7, 8 및 9를 20 게이지 바늘로 주입하여 겔을 형성하였다. 형성된 겔을 포함하는 원뿔 튜브를 바로 진탕 수조로 옮겼다. 진탕 수조 조건은 약물 안정성을 고려하여 25℃로 세팅하고 교반 rpm은 50으로 맞추었다. 샘플링 시간은 30분, 1시간, 4시간, 8시간, 12시간, 24시간, 2일, 4일, 6일, 8일 및 10일로 설정하였다. 5-FU을 분석하기 위한 HPLC 시스템은 1200 Infinity 시리즈(Agilent technology, Santa Clara, USA)를 이용하였다. 크로마토그래피 조건은 다음과 같다; C18 역상 컬럼, 3.9 mm × 300 mm(Waters, Leinster, Ireland); 이동상, 유속 2 mL/min의 70% 0.005 M S-1 HSA 용액. 분석에 사용된 모든 용액은 HPLC 등급이다. 주사 부피 was 20μl이고 자외선 검출 파장은 254 nm이다. 머무름 시간은 약 1.73 분이다. There are various methods for dissolving the injection, such as the dialysis sac method, the reverse dialysis bag method, the method using the device 2, the method using the device 4, the membraneless method, etc. (Gray, Cady et al. 2018) . Since the formulation designed in the present invention easily forms a gel immediately after injection, a membrane-free dissolution method can be used as a dissolution method for an in situ gel-based long-acting parenteral agent (Janagam, Wang et al. 2016). In the dissolution test of long-acting parenteral preparations, accelerated conditions were applied due to problems due to drug stability, loss of release medium, microbial growth and long-term experiments. There are a number of variables such as pH, aeration medium and agitation (Shen and Burgess 2012). Accelerated conditions were established taking into account the drug release mechanism of the formulation. Since the polymer used in the formulation is dissolved in EtOH, the release medium was prepared using EtOH. A pH 7.2 PBS was prepared using sodium phosphate monobasic and sodium phosphate dibasic, and the PBS and EtOH were mixed in a ratio of 8:2 to prepare a release medium. When the final release medium was ready, 45 mL was added to a 50 mL conical tube. Then 0.25 mL of formulations 4, 7, 8 and 9 were injected with a 20 gauge needle to form a gel. The conical tube containing the formed gel was transferred directly to the shaking water bath. Shaking bath conditions were set at 25° C. in consideration of drug stability, and stirring rpm was set at 50. Sampling times were set to 30 minutes, 1 hour, 4 hours, 8 hours, 12 hours, 24 hours, 2 days, 4 days, 6 days, 8 days, and 10 days. The HPLC system for analyzing 5-FU was a 1200 Infinity series (Agilent technology, Santa Clara, USA). Chromatographic conditions were as follows; C18 reversed phase column, 3.9 mm x 300 mm (Waters, Leinster, Ireland); Mobile phase, 70% 0.005 M S-1 HSA solution at a flow rate of 2 mL/min. All solutions used for analysis are HPLC grade. The injection volume was 20 μl and the UV detection wavelength was 254 nm. The retention time is about 1.73 min.
인 비보 시험in vivo test
인 비보in vivo 겔 형성 gel formation
설계된 제형이 생체 내에서도 겔을 형성하는지를 확인하고자, 10주령 수컷 SD 랫트를 준비하였다. SD 랫트의 등을 제모하고 약물이 탑재되지 않은 0.7 mL의 제형 4 및 8을 주사한 뒤 인 비보 겔 형성을 관찰하였다. To confirm whether the designed formulation forms a gel in vivo, 10-week-old male SD rats were prepared. After removing the hair from the back of SD rats and injecting 0.7 mL of formulations 4 and 8 without drug loading , gel formation in vivo was observed.
인 비보in vivo 겔 분해 Gel degradation
본 발명에서 설계된 제형이 생분해성을 가지는지를 확인하기 위해 10주령 수컷 SD 랫트를 이용하여 인 비보 겔 분해 실험을 수행하였다(Gao, Deng et al. 2013). SD 랫트의 등을 제모하고 약물이 탑재되지 않은 0.7 mL의 제형 4 및 8을 4마리의 랫트에 주사한 뒤 1일 뒤, 1주 뒤, 2주 뒤 및 4주 뒤에 랫트를 희생시키고 체외로 겔을 수집하였다. 각 겔의 중량 측정하여 시간에 따른 겔의 분해량을 조사하였다.In order to confirm whether the formulation designed in the present invention has biodegradability, an in vivo gel degradation experiment was performed using 10-week-old male SD rats (Gao, Deng et al. 2013). After depilating the back of SD rats and injecting 0.7 mL of formulations 4 and 8 without drug loading into 4 rats, the rats were sacrificed 1 day, 1 week, 2 weeks and 4 weeks later and the gel was removed from the body. was collected. By measuring the weight of each gel, the amount of decomposition of the gel over time was investigated.
실험결과 Experiment result
졸-겔 전이(sol-gel transition)의 평가Evaluation of sol-gel transition
제형을 pH 7.2 PBS에 주입하고 졸-겔 전이를 측정한 결과, EUDRAGIT E 등급 30%(w/w) 및 EUDRAGIT RS 등급 30%(w/w)의 제형에서 즉각적인 겔 형성이 확인되었다. 그러나, EUDRAGIT RL 30%(w/w) 제형에서도 겔이 형성되었으나 빠르게 붕괴되었다(도 5). 등급에 따른 겔 형성 능력을 비교하면 EUDRAGIT E 등급이 가장 우수하고 EUDRAGIT RS 등급 및 EUDRAGIT RL 등급이 각각 뒤를 이었다. 20%(w/w) 폴리머 비율을 가지는 제형 중, EUDRAGIT E 등급 20% 만이 겔을 형성하였다. EUDRAGIT E 등급 15% 및 RS 등급 15%의 제형과 EUDRAGIT E 등급 15% 및 RL 등급 15%의 제형은 즉각적으로 겔을 형성하였다(도 6). 지속형 비경구제에서 신속한 졸-겔 전이는 매우 중요한 특징이다. 초기의 버스트(burst)는 겔 형성이 즉각적으로 이루어지지 않은 경우 일어나는 것으로 보인다. 그러나, 겔화가 더 빠르고 잘 일어나도록 다량의 폴리머가 사용될 경우 이에 의해 주사 가능한 점도가 초과되는 문제가 생긴다. 본 실험에서, 폴리머 등급, 농도 및 두 개 등급의 조합에 따른 졸-겔 전이를 조사하였다. 겔은 폴리머 농도가 30%(w/w)일 때 잘 형성되었다. EUDRAGIT E 등급은 EUDRAGIT RS 및 RL 등급과 달리 트리메틸암모늄 대신 디메틸아민 작용기를 가진다. 이는 EUDRAGIT E 등급이 물에서 불용성이며 겔 형성이 더 잘 일어남을 의미한다. EUDRAGIT RS 및 EUDRAGIT RL 등급과 비교할 때, EUDRAGIT RS 등급은 외형을 유지한 채로 겔을 형성하지만 EUDRAGIT RL 등급은 시간 경과에 따라 형태가 유지되지 않는다. EUDRAGIT RS 등급은 에틸기를, EUDRAGIT RL 등급은 메틸기를 가지는데, 이에 EUDRAGIT RL 등급이 보다 친수성이기 때문에 물에서 용해가 더 잘되는 것으로 보인다. 폴리머 농도가 20%일 때, EUDRAGIT E 등급만이 형태를 유지하는 겔 매트릭스를 형성하였다. EUDRAGIT RS 및 EUDRAGIT RL 등급은 폴리머 침전을 보였으나 겔 매트릭스의 형태를 유지하지 못했다. 이들 결과에 기반하여 EUDRAGIT E 등급이 가장 높은 겔 형성 능력을 가졌음을 알 수 있었다. 각 제형은 EUDRAGIT E 등급 15%를 기초로 EUDRAGIT RL 등급 15% 및 EUDRAGIR RS 등급 15%와 조합하여 제작하였다. 이 제형에서, 겔 매트릭스의 형상을 잘 유지되었다. EUDRAGIT L 및 S 등급의 졸-갤 전이는 초기에 얇은 침전층을 형성하지만 시간이 지남에 따라 pH 7.2 PBS에 용해되었다. 물론, L 및 S 등급은 각각 pH 6 및 7 이상에서 가용성이다. 그러나, 낮은 pH에서 이들은 pH-의존적 시스템에 적용될 수 있는 겔을 형성한다.As a result of injecting the formulation into pH 7.2 PBS and measuring the sol-gel transition, immediate gel formation was confirmed in the formulations of EUDRAGIT E grade 30% (w/w) and EUDRAGIT RS grade 30% (w/w). However, even in the EUDRAGIT RL 30% (w/w) formulation, a gel was formed but rapidly disintegrated ( FIG. 5 ). Comparing the gel-forming ability according to grade, EUDRAGIT E grade was the best, followed by EUDRAGIT RS grade and EUDRAGIT RL grade, respectively. Of the formulations with 20% (w/w) polymer ratio, only 20% of EUDRAGIT E grade formed a gel. The formulations of EUDRAGIT E grade 15% and RS grade 15% and EUDRAGIT E grade 15% and RL grade 15% formulations immediately formed a gel ( FIG. 6 ). In long-acting parenteral formulations, rapid sol-gel transition is a very important feature. The initial burst appears to occur when gel formation is not instantaneous. However, when a large amount of polymer is used so that gelation occurs faster and better, there is a problem that the injectable viscosity is exceeded. In this experiment, the sol-gel transition according to polymer grade, concentration and combination of the two grades was investigated. The gel formed well when the polymer concentration was 30% (w/w). EUDRAGIT E grades, unlike EUDRAGIT RS and RL grades, have dimethylamine functionality instead of trimethylammonium. This means that EUDRAGIT E grade is insoluble in water and more prone to gel formation. Compared to EUDRAGIT RS and EUDRAGIT RL grades, EUDRAGIT RS grades form a gel while retaining their appearance, whereas EUDRAGIT RL grades do not retain their shape over time. The EUDRAGIT RS grade has an ethyl group and the EUDRAGIT RL grade has a methyl group, which appears to be more soluble in water because the EUDRAGIT RL grade is more hydrophilic. When the polymer concentration was 20%, only EUDRAGIT E grade formed a gel matrix that retained its shape. EUDRAGIT RS and EUDRAGIT RL grades showed polymer precipitation but did not retain the morphology of the gel matrix. Based on these results, it was found that EUDRAGIT E grade had the highest gel-forming ability. Each formulation was made in combination with EUDRAGIT E grade 15% based on EUDRAGIT RL grade 15% and EUDRAGIR RS grade 15%. In this formulation, the shape of the gel matrix was well maintained. The EUDRAGIT L and S grade sol-gal transitions initially formed a thin precipitation layer but dissolved over time in PBS, pH 7.2. Of course, the L and S grades are soluble at pH 6 and above 7, respectively. However, at low pH they form gels that can be applied to pH-dependent systems.
겔 분해 측정Gel degradation measurement
형성된 겔의 인 비트로 조건에서의 분해 정도를 측정하였다. 분해의 정도는 용해 경향에 영향을 미칠 것으로 예상되었기 때문에, 본 발명자들은 제형에 따른 상이한 분해 진행을 조사하고자 하였다. EUDRAGIT E 등급 30%(제형 4) 및 EUDRAGIT E 등급 15%(제형 7)을 비교한 결과 EUDRAGIT E 등급 15% 제형이 더 높은 분해 정도를 보였다. EUDRAGIT E 등급 30%, EUDRAGIT E 등급 15% 및 RS 등급 15%(제형 8)과 EUDRAGIT E 등급 15% 및 RL 등급 15% (제형 9)를 비교한 결과 EUDRAGIT E 등급 15% 및 RL 등급 15%가 93.4%로 가장 높았고 EUDRAGIT E 등급 30%이 81.5%로 두 번째였으며, EUDRAGIT E 등급 15% 및 RS 등급 15%가 70.6%로 세 번째였다. 이러한 결과에 기반하여, 용해 속도는 EUDRAGIT E 등급 15% 및 RL 등급 15%; EUDRAGIT E 등급 30%; EUDRAGIT E 등급 15% 및 RS 등급 15%의 순서일 것임을 예측할 수 있었으며, 용해 실험 결과는 예측과 일치했다(도 7). The degree of degradation of the formed gel under in vitro conditions was measured. Since the degree of degradation was expected to affect the dissolution tendency, we sought to investigate the different degradation progressions depending on the formulation. A comparison of EUDRAGIT E grade 30% (formulation 4) and EUDRAGIT E grade 15% (formulation 7) showed that the EUDRAGIT E grade 15% formulation showed a higher degree of degradation. Comparing EUDRAGIT E grade 30%, EUDRAGIT E grade 15% and RS grade 15% (formulation 8) with EUDRAGIT E grade 15% and RL grade 15% (formulation 9), EUDRAGIT E grade 15% and RL grade 15% It was the highest with 93.4%, followed by EUDRAGIT E grade 30% with 81.5%, and EUDRAGIT E grade 15% and RS grade 15% with 70.6%. Based on these results, the dissolution rates were 15% EUDRAGIT E grade and 15% RL grade; EUDRAGIT E grade 30%; It could be predicted that the order would be EUDRAGIT E grade 15% and RS grade 15%, and the dissolution test results were consistent with the prediction ( FIG. 7 ).
수분 확산 시험moisture diffusion test
본 발명자들은 폴리머에 의한 수분 확산 정도를 비교함으로써 졸-겔 전이에서의 겔 장벽 형성 속도를 비교하고자 하였다. 수분 확산이 빠를 경우 폴리머 장벽이 빨리 형성되리라고 가정한다면, 약물의 포획은 잘 되고 초기의 버스트(burst)는 낮아질 것이다. pH 7.2 완충액을 적하하자 마자, 수분 확산은 1.8mm에서 2.3mm로 나타나 유의적 차이가 보이지 않았다(도 8). 6시간 뒤에, 제형 4는 작은 변화가 있었고 제형 7, 8 및 9는 다소 증가하였다. 제형 8 및 9는 12시간 동안 수분이 확산되었으며 유의하게 증가하였다. 24시간 관찰 결과 12시간 결과와 비교하여 유의한 차이는 없었다. 제형 8, 9는 상대적으로 높은 수분 확산을 보인 반면, 제형 4, 7은 낮은 수분 확산을 보였다. EUDRAGIT, E 등급은 전하가 없는 디메틸아민 작용기를 가지는데 반해 RL 및 RS는 전하를 띄는 트리메틸암모늄 작용기를 가져 물과 높은 친화도를 보인다. EUDRAGIT RL 등급 및 RS 등급은 상대적으로 높은 수분 확산 속도를 보이고 EUDRAGIT E 등급은 낮은 확산 속도를 나타낸다. EUDRAGIT RL 등급 및 RS 등급 간의 차이는 크지 않으나, 화학적 구조를 보면 EUDRAGIT RL 등급은 에틸기를 가지는 EUDRAGIT RS 등급과 달리 메틸기를 가져 보다 친수성이다. 화학구조에 따른 친수성 정도는 EUDRAGIT RL 등급, RS 등급 및 E 등급의 순서로 예측되며, 수분 확산 역시 동일한 순서로 높다. 논리적으로 추론할 경우 높은 수분 확산으로 인해 폴리머 장벽이 신속히 형성되면, 최초 버스트(burst) 방출이 억제되고 용해 순서는 EUDRAGIT E 등급, RS 등급, RL 등급의 순서가 될 것이다. 그러나, 용해 시험 결과 최초 12시간 동안 EUDRAGIT RL 등급, E 등급, RS 등급의 순서로 용해가 빨리 일어났다. 이러한 결과를 설명하는 두 가지 방법 중 첫째는 장벽 침투이다. 즉, 폴리머의 높은 친수성으로 인해 약물이 폴리머 장벽 밖으로 흘러나갈 수 있으나 EUDRAGIT RL 등급 뿐 아니라 EUDRAGIT RS 등급도 친수성을 가지므로 이러한 가정은 용해 속도가 EUDRAGIT E 등급보다 느린 상황에서 합리적이지 않다. 두 번째로, 물과 접촉하는 부분의 분해가 가속화되어 약물이 흘러나왔을 수 있다. The present inventors attempted to compare the rate of gel barrier formation in the sol-gel transition by comparing the degree of water diffusion by the polymer. Assuming that the polymer barrier will be formed quickly if water diffusion is fast, drug entrapment will be good and the initial burst will be low. As soon as the pH 7.2 buffer was added dropwise, the water diffusion ranged from 1.8 mm to 2.3 mm, showing no significant difference ( FIG. 8 ). After 6 hours, there was a small change in Formulation 4 and a slight increase in Formulations 7, 8 and 9. Formulations 8 and 9 diffused moisture for 12 hours and significantly increased. There was no significant difference between the 24 hour observation and the 12 hour observation. Formulations 8 and 9 showed relatively high water diffusion, while Formulations 4 and 7 showed low water diffusion. EUDRAGIT, E grades have an uncharged dimethylamine functional group, whereas RL and RS have a charged trimethylammonium functional group, showing a high affinity for water. EUDRAGIT RL grades and RS grades exhibit relatively high water diffusion rates, while EUDRAGIT E grades exhibit low diffusion rates. The difference between the EUDRAGIT RL grade and the RS grade is not large, but looking at the chemical structure, the EUDRAGIT RL grade has a methyl group and is more hydrophilic than the EUDRAGIT RS grade having an ethyl group. The degree of hydrophilicity according to the chemical structure is predicted in the order of EUDRAGIT RL grade, RS grade and E grade, and moisture diffusion is also high in the same order. A logical inference is that if the polymer barrier is rapidly formed due to high moisture diffusion, the first burst release will be suppressed and the dissolution sequence will be EUDRAGIT E grade, RS grade, RL grade. However, as a result of the dissolution test, the dissolution occurred rapidly in the order of EUDRAGIT RL grade, E grade, and RS grade during the first 12 hours. The first of two ways to explain these results is barrier penetration. In other words, the high hydrophilicity of the polymer allows the drug to flow out of the polymer barrier, but EUDRAGIT RL grade as well as EUDRAGIT RS grade have hydrophilicity, so this assumption is not reasonable in situations where the dissolution rate is slower than EUDRAGIT E grade. Second, the decomposition of the part in contact with the water may have accelerated and the drug may have flowed out.
약물 방출 시험drug release test
약물 안정성, 방출 배지의 손실 및 박테리아 증식 등으로 인해, 가속 조건 하에서 인 비트로 방출 실험을 수행하였다. 온도, pH, 방출 배지 및 교반과 같은 몇몇 변수가 있다. 본 실험에서는 방출 배지가 약물 방출에 있어 가장 중요한 요소로서, 가속 조건이 확립되었다. 제형에서 사용된 폴리머는 물에 불용성이고 특정 유기용매에서 용해된다. EtOH의 경우 폴리머가 잘 용해되었으므로, EtOH의 비율을 조절하면서 방출 배지를 제작하였다. EtOH의 양이 너무 적으면 가속 효과가 낮고, 너무 많으면 최초 버스트(burst) 방출이 너무 다량이거나 겔 형성 자체가 크게 영향을 받는다. 이에, 최적 조건을 확립하기 위해 EtOH로 만들어진 용매에서 예비적으로 용해 실험을 진행함으로써 방출 배지의 조성을 결정하고자 하였다. 20% EtOH가 사용된 경우, 겔 형성에 특별한 문제가 없었으며 7일 뒤 70% 약물이 용해되었다. 조건을 확립 후 실험을 진행한 결과, 각 등급 별로 중요한 차이가 나타남이 확인되었다. 첫째, EUDRAGIT E 등급의 15% 비율 제형(제형 7)과 30% 비율 제형(제형 4)을 비교한 결과, 용해 패턴은 30% 비율 제형에서 낮고 15% 비율 제형에서 더 높았다. 이러한 결과를 시간대에 따라 고찰하면, 용해 결과는 첫 4시간 동안 약 2배이며, 이후 시간 경과에 따라 격차가 줄어들었으나, 용해는 10일간의 최종 샘플링 시간까지 30% 제형에서 보다 느렸다. 다음으로 폴리머 등급에 따른 영해 패턴을 비교한 결과, EUDRAGIT E 등급 15% 및 RL 등급 15%(제형 9)가 가장 빠른 용해 패턴을 보였고 EUDRAGIT E 등급 15% 및 RS 등급 15%(제형8)이 가장 용해가 느렸다. 폴리머 농도에 따른 용해 패턴과 유사하게, 최초 4시간 동안 편차가 컸으며 이후 패턴이 일정하게 유지되었다(도 9 및 10). EUDRAGIT RL 등급을 조합할 경우 빠른 용해로 나타났고 EUDRAGIT RS 등급의 조합은 느린 용해로 이어졌다. 앞선 인 비트로 겔 분해 실험에서, 겔 분해 정도는 EUDRAGIT RL 등급, E 등급 및 RS 등급의 순서로 상이하게 나타났다. 나아가, 약물 용해를 결정하는 주요 요인은 겔 형성 후 얼마나 잘 분해되느냐이며, 형성된 겔 매트릭스를 약물이 침투하는 능력은 중요한 요인이 아니다. 이에, 폴리머 농도를 낮추면 약물 방출이 빨라지고, 이를 증가시키면 약물 방출이 느려진다. 또한, 제형에 EUDRAGIT RL 등급이 사용될 경우 약물 방출이 빠른 반면 EUDRAGIT RS 등급이 사용될 경우 약물 방출이 느리다. 이는 약물 방출 패턴을 원하는 대로 조절할 수 있는 시스템 개발의 기반이 된다. 5-FU 종양내 제형 뿐 아니라, 전신 순환을 위한 피하 또는 근육주사용 제형에 적용되는 다른 약물에도 적용될 수 있다. 약물 방출 패턴은 각 약물의 약동학적 특성에 맞게 조절될 수도 있다.Due to drug stability, loss of release medium and bacterial growth, etc., in vitro release experiments were performed under accelerated conditions. There are several variables such as temperature, pH, release medium and agitation. In this experiment, the release medium was the most important factor in drug release, and the accelerated conditions were established. The polymer used in the formulation is insoluble in water and is soluble in certain organic solvents. In the case of EtOH, since the polymer was well dissolved, a release medium was prepared while controlling the ratio of EtOH. If the amount of EtOH is too small, the accelerating effect is low, and if it is too high, the initial burst release is too large or the gel formation itself is greatly affected. Therefore, in order to establish optimal conditions, it was attempted to determine the composition of the release medium by preliminarily conducting a dissolution experiment in a solvent made of EtOH. When 20% EtOH was used, there was no problem in gel formation and 70% of the drug was dissolved after 7 days. As a result of the experiment after establishing the conditions, it was confirmed that significant differences appeared for each grade. First, comparing the EUDRAGIT E grade 15% rate formulation (Formulation 7) and 30% rate formulation (Formulation 4), the dissolution pattern was lower in the 30% rate formulation and higher in the 15% rate formulation. When these results are reviewed over time, the dissolution results approximately doubled during the first 4 hours, and then the gap narrowed over time, but dissolution was slower than in the 30% formulation until the final sampling time of 10 days. Next, as a result of comparing territorial water patterns according to polymer grades, EUDRAGIT E grade 15% and RL grade 15% (formulation 9) showed the fastest dissolution pattern, and EUDRAGIT E grade 15% and RS grade 15% (formulation 8) had the most Dissolution was slow. Similar to the dissolution pattern according to the polymer concentration, the deviation was large during the first 4 hours and the pattern remained constant thereafter ( FIGS. 9 and 10 ). The combination of EUDRAGIT RL grade resulted in fast dissolution and the combination of EUDRAGIT RS grade resulted in slow dissolution. In the previous in vitro gel degradation experiment, the degree of gel degradation was shown to be different in the order of EUDRAGIT RL grade, E grade and RS grade. Furthermore, the main factor determining drug dissolution is how well the gel is decomposed after formation, and the ability of the drug to penetrate the formed gel matrix is not an important factor. Accordingly, when the polymer concentration is lowered, drug release is accelerated, and when it is increased, drug release is slowed. In addition, drug release is fast when EUDRAGIT RL grade is used in the formulation, whereas drug release is slow when EUDRAGIT RS grade is used. This is the basis for the development of a system that can control the drug release pattern as desired. It can be applied not only to 5-FU intratumoral formulations, but also to other drugs applied to formulations for subcutaneous or intramuscular injection for systemic circulation. The drug release pattern can also be adjusted to suit the pharmacokinetic properties of each drug.
인 비보 시험 in vivo test
인 비보in vivo 겔 형성 gel formation
각 제형의 인 비보 졸-겔 전이실험 결과, 제형의 주사 시 생체 내에서 단시간 동안 형태를 유지함을 확인하였고, 주사 수초 뒤 겔의 외형이 드러났다(도 11). As a result of the in vivo sol-gel transfer experiment of each formulation, it was confirmed that the formulation maintained its shape for a short time in vivo upon injection, and the appearance of the gel was revealed a few seconds after injection ( FIG. 11 ).
인 비보in vivo 겔 분해 Gel degradation
EUDRAGIT은 경구 제형에 널리 사용된다. L 및 S 등급은 경구용 알약의 장용(enteric) 코팅에 주로 이용되고 E 등급은 필름 코팅에 주로 이용되며 RL 및 RS는 서방출을 위해 적용된다. 그러나, 이것이 주사제에 사용된 적은 없으며 주사제 용도로 FDA에 승인받은 적도 없다. EUDRAGIT이 비독성임을 알려졌으나, 이의 생분해성에 관해서는 알려지지 않았다. 따라서, EUDRAGIT을 이용한 지속형 비경구제 제형의 개발에서 폴리머의 생분해성 확인은 매우 중요한 문제이다. 나아가, 생분해성은 전신 순환을 위한 IM 및 SC 주사 개발에 있어 필수적인 조건이다. SD 랫트에 대한 피하주사를 통해 겔 매트릭스의 생분해성을 조사하였으며, EUDRAGIT E 등급 30% 제형과 EUDRAGIT E 등급 15% 및 RS 등급 15% 제형이 사용되었다. 1주 뒤 겔의 중량은 20% 감소하였으며, 2 주 뒤 겔의 중량은 50%까지 감소하고, 4주 뒤엔 80%까지 감소하였다(도 12). 이는 EUDRAGIT의 생분해성을 보여주는 결과이다.EUDRAGIT is widely used in oral formulations. L and S grades are mainly used for enteric coating of oral tablets, E grades are mainly used for film coating and RL and RS are applied for sustained release. However, it has never been used in injectables and has never been approved by the FDA for injectable use. EUDRAGIT is known to be non-toxic, but its biodegradability is unknown. Therefore, in the development of long-acting parenteral formulations using EUDRAGIT, confirmation of biodegradability of polymers is a very important issue. Furthermore, biodegradability is an essential condition for the development of IM and SC injections for systemic circulation. The biodegradability of the gel matrix was investigated through subcutaneous injection into SD rats, and EUDRAGIT E grade 30% formulations and EUDRAGIT E grade 15% and RS grade 15% formulations were used. After 1 week, the weight of the gel decreased by 20%, after 2 weeks the weight of the gel decreased by 50%, and after 4 weeks by 80% ( FIG. 12 ). This is the result showing the biodegradability of EUDRAGIT.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. (a) 유기용매 및 (b) 상기 유기용매에 용해된 하기 화학식 1로 표시되는 중합체를 포함하는 국소 주사용 약물 전달체 조성물: A drug delivery system composition for local injection comprising (a) an organic solvent and (b) a polymer represented by the following formula (1) dissolved in the organic solvent:
    화학식 1Formula 1
    Figure PCTKR2020019487-appb-I000003
    Figure PCTKR2020019487-appb-I000003
    상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소 또는 C1 내지 C3 알킬이고, R4는 또는 N(R5)2 또는 N(R5)3 +이며, R5는 C1 내지 C3 알킬이고, n은 100 내지 3,000의 정수이다. In Formula 1, R 1 to R 3 are each independently hydrogen or C 1 to C 3 alkyl, R 4 is or N(R 5 ) 2 or N(R 5 ) 3 + , and R 5 is C 1 to C 3 alkyl, and n is an integer from 100 to 3,000.
  2. 제 1 항에 있어서, 상기 R1 내지 R3는 각각 독립적으로 수소, C1 알킬 또는 C2 알킬이고, R5는 C1 알킬인 것을 특징으로 하는 조성물. The composition of claim 1, wherein R 1 to R 3 are each independently hydrogen, C 1 alkyl, or C 2 alkyl, and R 5 is C 1 alkyl.
  3. 제 2 항에 있어서, 상기 R1 및 R2는 각각 독립적으로 수소 또는 C1 알킬이고, R3는 C1 또는 C2 알킬이며, R5는 C1 알킬인 것을 특징으로 하는 조성물. The composition of claim 2, wherein R 1 and R 2 are each independently hydrogen or C 1 alkyl, R 3 is C 1 or C 2 alkyl, and R 5 is C 1 alkyl.
  4. 제 1 항에 있어서, 상기 유기용매는 에탄올, 메탄올 및 NMP(N-methyl pyrrolidone)로 구성된 군으로부터 선택되는 하나 이상의 용매인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the organic solvent is at least one solvent selected from the group consisting of ethanol, methanol, and N-methyl pyrrolidone (NMP).
  5. 제 1 항에 있어서, 상기 조성물 내에 상기 중합체는 전체 조성물에 대해 25 내지 35 w/w%로 포함되어 있는 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the polymer is contained in an amount of 25 to 35 w/w% based on the total composition.
  6. 제 1 항에 있어서, 상기 화학식 1로 표시되는 중합체는 (i) R1 내지 R3는 C1 알킬이고, R4는 -N(R5)2이며, R5는 C1 알킬인 제1 중합체와; (ii) R1 및 R2는 C1 알킬이고, R3는 C2 알킬이며, R4는 -N(R5)3 +이고, R5는 C1 알킬인 제2 중합체의 혼합물인 것을 특징으로 하는 조성물.The first polymer according to claim 1, wherein the polymer represented by Formula 1 is (i) R 1 to R 3 are C 1 alkyl, R 4 is —N(R 5 ) 2 , and R 5 is C 1 alkyl. Wow; (ii) R 1 and R 2 is a C 1 alkyl, R 3 is a C 2 alkyl, R 4 is -N (R 5) 3 + a, R 5 is characterized in that the mixture of the second polymer is C 1 alkyl A composition comprising
  7. 제 6 항에 있어서, 상기 조성물 내에 상기 제1 중합체와 상기 제2 중합체는 4:6 내지 6:4의 함량비로 존재하는 것을 특징으로 하는 조성물.The composition according to claim 6, wherein the first polymer and the second polymer are present in a content ratio of 4:6 to 6:4 in the composition.
  8. 제 1 항에 있어서, 상기 화학식 1로 표시되는 중합체는 (i) R1 내지 R3는 C1 알킬이고, R4는 -N(R5)2이며, R5는 C1 알킬인 제1 중합체와; (ii) R1은 수소이고, R2 및 R3는 C1 알킬이며, R4는 -N(R5)3 +이고, R5는 C1 알킬인 제3 중합체의 혼합물인 것을 특징으로 하는 조성물.The first polymer according to claim 1, wherein the polymer represented by Formula 1 is (i) R 1 to R 3 are C 1 alkyl, R 4 is —N(R 5 ) 2 , and R 5 is C 1 alkyl. Wow; (ii) and R 1 is hydrogen, R 2 and R 3 is a C 1 alkyl, R 4 is -N (R 5) 3 +, R 5 is characterized in that the mixture of a third polymer of C 1 alkyl composition.
  9. 제 8 항에 있어서, 상기 조성물 내에 상기 제1 중합체와 상기 제3 중합체는 4:6 내지 6:4의 함량비로 존재하는 것을 특징으로 하는 조성물.The composition according to claim 8, wherein the first polymer and the third polymer are present in a content ratio of 4:6 to 6:4 in the composition.
  10. 제 1 항 내지 제 9항 중 어느 하나의 국소 주사용 약물 전달체 조성물 및 고형암에 대한 항암 조성물을 유효성분으로 포함하는 고형암의 예방 또는 치료용 조성물.10. A composition for preventing or treating solid cancer, comprising the drug delivery composition for local injection of any one of claims 1 to 9 and the anticancer composition for solid cancer as an active ingredient.
  11. 제 10 항에 있어서, 상기 고형암은 대장암, 식도암, 위암, 췌장암, 유방암, 자궁경부암, 난소암, 폐암, 악암, 설암 및 간암으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.11. The composition of claim 10, wherein the solid cancer is selected from the group consisting of colon cancer, esophageal cancer, stomach cancer, pancreatic cancer, breast cancer, cervical cancer, ovarian cancer, lung cancer, jaw cancer, tongue cancer and liver cancer.
  12. 제 10 항에 있어서, 상기 항암 조성물은 5-FU(5-플루오로우라실) 또는 이의 약제학적으로 허용되는 염인 것을 특징으로 하는 조성물.The composition of claim 10, wherein the anticancer composition is 5-FU (5-fluorouracil) or a pharmaceutically acceptable salt thereof.
  13. 다음의 단계를 포함하는 약물이 탑재된 국소 주사용 제형의 제조방법: A method for preparing a drug-loaded formulation for local injection comprising the steps of:
    (a) 유기용매에 화학식 1로 표시되는 중합체를 첨가하는 단계: (a) adding a polymer represented by Formula 1 to an organic solvent:
    화학식 1Formula 1
    Figure PCTKR2020019487-appb-I000004
    Figure PCTKR2020019487-appb-I000004
    상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소 또는 C1 내지 C3 알킬이고, R4는 또는 N(R5)2 또는 N(R5)3 +이며, R5는 C1 내지 C3 알킬이고, n은 100 내지 3,000의 정수이다; In Formula 1, R 1 to R 3 are each independently hydrogen or C 1 to C 3 alkyl, R 4 is or N(R 5 ) 2 or N(R 5 ) 3 + , and R 5 is C 1 to C 3 alkyl, n is an integer from 100 to 3,000;
    (b) 상기 화학식 1로 표시되는 중합체가 첨가된 유기용매가 투명해질 때까지 교반하는 단계;(b) stirring until the organic solvent to which the polymer represented by Formula 1 is added becomes transparent;
    (c) 상기 교반된 혼합물에 약물을 첨가하는 단계.(c) adding the drug to the stirred mixture.
  14. 제 13 항에 있어서, 상기 유기용매는 에탄올, 메탄올 및 NMP(N-methyl pyrrolidone)로 구성된 군으로부터 선택되는 하나 이상의 용매인 것을 특징으로 하는 방법.The method of claim 13, wherein the organic solvent is at least one solvent selected from the group consisting of ethanol, methanol, and N-methyl pyrrolidone (NMP).
  15. 제 13 항에 있어서, 상기 단계 (a)는 상기 중합체가 전체 조성물에 대해 25 내지 35 w/w%로 포함되도록 상기 중합체를 첨가함으로써 수행되는 것을 특징으로 하는 방법.14. The method according to claim 13, wherein step (a) is carried out by adding the polymer such that the polymer is included in an amount of 25 to 35 w/w% with respect to the total composition.
PCT/KR2020/019487 2019-12-31 2020-12-31 Novel formulation for local injection WO2021137656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190178826A KR102401008B1 (en) 2019-12-31 2019-12-31 A Novel Formulation for Topical Injection
KR10-2019-0178826 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021137656A1 true WO2021137656A1 (en) 2021-07-08

Family

ID=76686907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019487 WO2021137656A1 (en) 2019-12-31 2020-12-31 Novel formulation for local injection

Country Status (2)

Country Link
KR (1) KR102401008B1 (en)
WO (1) WO2021137656A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049573A2 (en) * 2000-12-18 2002-06-27 Wockhardt Limited Novel in-situ forming controlled release microcarrier delivery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050042293A (en) 2005-04-16 2005-05-06 정진섭 Construction method for corner protection unit of parking lot pillar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049573A2 (en) * 2000-12-18 2002-06-27 Wockhardt Limited Novel in-situ forming controlled release microcarrier delivery system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HYO WON SEO, DA YEON KIM, DOO YEON KWON, JIN SEON KWON, LING MEI JIN, BONG LEE, JAE HO KIM, BYOUNG HYUN MIN, MOON SUK KIM: "Injectable intratumoral hydrogel as 5-fluorouracil drug depot", BIOMATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 34, no. 11, 1 April 2013 (2013-04-01), AMSTERDAM, NL, pages 2748 - 2757, XP055599902, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2013.01.006 *
JONGJAN MAHADLEK, THAWATCHAI PHAECHAMUD: "Metrodidazole <i>In Situ</i> Forming Eudragit RS Gel Comprising Different Solvents", KEY ENGINEERING MATERIALS, vol. 659, pages 13 - 18, XP055709780, DOI: 10.4028/www.scientific.net/KEM.659.13 *
PHAECHAMUD THAWATCHAI, TUNTARAWONGSA SARUN: "Capsaicin Injectable <i>In-Situ</i> Forming Gels", ADVANCED MATERIALS RESEARCH, vol. 528, pages 103 - 106, XP055826407, DOI: 10.4028/www.scientific.net/AMR.528.103 *
PHAECHAMUD THAWATCHAI; JANTADEE TAKRON; MAHADLEK JONGJAN; CHAROENSUKSAI PURIN; PICHAYAKORN WIWAT: "Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-InducedIn SituForming Gels for Periodontitis Treatment", AAPS PHARMSCITECH, SPRINGER US, NEW YORK, vol. 18, no. 2, 26 April 2016 (2016-04-26), New York, pages 494 - 508, XP036139454, DOI: 10.1208/s12249-016-0534-y *

Also Published As

Publication number Publication date
KR20210085600A (en) 2021-07-08
KR102401008B1 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
FI81591C (en) Biodegradable amphipathic copolymers, process for their preparation and process for the preparation of drugs containing them
EP0467389B1 (en) Drug delivery system comprising interaction between calcitonin and a hydrophobic biodegradable polymer
JP3955759B2 (en) Biodegradable block copolymer of poly (alkylene oxide) and poly (p-dioxanone) soluble in an organic solvent and drug delivery composition containing the same
ES2855349T3 (en) Risperidone Composition of Controlled Release Microspheres
WO2010074379A1 (en) Preparation method of polymeric micelles composition containing a poorly water-soluble drug
US20040185104A1 (en) Mixtures of various triblock polyester polyethylene glycol copolymers having improved gel properties
RU2310450C2 (en) Novel depot-preparations for injection
KR20010006041A (en) Biodegradable polymers chain-extended by phosphates, compositions, articles and methods for making and using the same
WO2021010719A1 (en) Long-lasting formulation containing rivastigmine, and method for preparing same
EP1809274B1 (en) Pharmaceutical composition for rectal or vaginal application comprising a platinum complex
CN102869254A (en) Polymeric conjugates of adenine nucleoside analogs
WO2015020240A1 (en) Entecavir microspheres and pharmaceutical composition for parenteral administration containing same
US20080241260A1 (en) Compositions for Enhanced Absorption of Biologically Active Agents
WO2021137656A1 (en) Novel formulation for local injection
WO2014182101A1 (en) Low-molecular-weight methylcellulose-based parenteral drug delivery system
US20090258071A1 (en) Compositions and methods for ph targeted drug delivery
WO2023116517A1 (en) Continuous delivery preparation capable of being stably released and preparation method therefor
WO2019216744A2 (en) Injection formulation composition for use as filler or drug carrier through click chemistry reaction
WO2019125014A1 (en) Pharmaceutical composition containing anticancer drug-supported nanostructure as active ingredient for treatment of liver cancer
CN113616620B (en) An Luoti nix albumin nano-particles, preparation method and application thereof and preparation containing same
WO2016072748A1 (en) Pharmaceutical compositions comprising lobeglitazone for oral administration
WO2023121271A1 (en) Nanocomposite for drug delivery
WO2018012829A1 (en) Continuous manufacturing method of polymer microspheres and apparatus therefor
WO2021137610A1 (en) Method for producing nanoparticles comprising low-molecular-weight amphiphilic block copolymer
WO2023204380A1 (en) Physiologically active substance carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908517

Country of ref document: EP

Kind code of ref document: A1