WO2021136172A1 - 切相调光电路 - Google Patents

切相调光电路 Download PDF

Info

Publication number
WO2021136172A1
WO2021136172A1 PCT/CN2020/140161 CN2020140161W WO2021136172A1 WO 2021136172 A1 WO2021136172 A1 WO 2021136172A1 CN 2020140161 W CN2020140161 W CN 2020140161W WO 2021136172 A1 WO2021136172 A1 WO 2021136172A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
control signal
charging
voltage
phase
Prior art date
Application number
PCT/CN2020/140161
Other languages
English (en)
French (fr)
Inventor
高松
朱元
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922454610.XU external-priority patent/CN211580266U/zh
Priority claimed from CN201911398307.0A external-priority patent/CN111372360A/zh
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Publication of WO2021136172A1 publication Critical patent/WO2021136172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to the technical field of circuits, in particular to a phase-cut dimming circuit.
  • Lamps are indispensable tools in people's daily life. In practical applications, users often need to adjust the brightness of the lamp according to their own preferences or needs.
  • this circuit has an AC power supply for providing AC voltage, and sequentially connects the lamp, sliding rheostat, resistor and capacitor to the AC power supply in series.
  • This circuit also has a two-terminal AC device and a bidirectional thyristor. The first anode of the bidirectional thyristor is connected between the lamp and the sliding varistor, the second anode of the bidirectional thyristor is connected between the AC power supply and the capacitor, and one end of the two-terminal AC device Connected between the resistor and the capacitor, the other end of the two-terminal AC device is connected to the gate of the bidirectional thyristor.
  • the two-terminal AC device will be turned on according to the voltage across the capacitor to trigger the bidirectional thyristor to turn on.
  • the charging time for the capacitor to reach the conduction voltage of the two-terminal AC device will also change, so that the bidirectional thyristor can be turned on in different phases, thereby changing the brightness of the lamp.
  • this kind of circuit can only adjust the brightness of the lamp by manually adjusting the resistance of the sliding rheostat. It is not only complicated in operation and poor in accuracy, but also unable to conduct network adjustment and remote operation, etc., and it has not been able to meet the needs of digital and intelligent development. .
  • the present invention is proposed to provide a phase-cut dimming circuit that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • An object of the present invention is to provide a phase-cut dimming circuit in which the brightness of the light source load can be remotely adjusted.
  • a further object of the present invention is to reduce the cost of such circuits.
  • the present invention provides a phase-cut dimming circuit, which includes an AC power supply for providing AC voltage, a light source load, a charging unit and a capacitor, and a switch unit connected to the AC power supply in series;
  • the charging unit is configured to receive A PWM (Pulse Width Modulation, pulse width modulation) control signal, and is turned on according to the PWM control signal to charge the capacitor, so that the voltage across the capacitor changes according to the conduction of the charging unit;
  • the switch unit has a first end, a second end, and a third end.
  • the first end of the switch unit is connected to the connection point between the light source load and the charging unit, and the second end of the switch unit is connected to the The connection point between the charging unit and the capacitor, the third end of the switch unit is connected to the connection point between the capacitor and the AC power source, and the switch unit is configured to when the voltage across the capacitor reaches a threshold The voltage is turned on, so that the light source load, the AC power supply, and the first end and the third end of the switch unit form a loop, so as to realize the dimming of the light source load.
  • the PWM control signal includes a first PWM sub-control signal and a second PWM sub-control signal
  • the charging unit includes: a first charging sub-unit configured to perform according to the control signal during one half cycle of the AC voltage
  • the first PWM sub-control signal is turned on to charge the capacitor
  • a second charging sub-unit, connected in parallel with the first charging sub-unit is configured to be based on the AC voltage during another half cycle of the AC voltage.
  • the second PWM sub-control signal is turned on to charge the capacitor.
  • the first charging subunit includes: a first NMOS tube, and the gate of the first NMOS (N-Metal-Oxide-Semiconductor, N-type metal-oxide-semiconductor) tube is used to obtain the The first PWM sub-control signal, the drain of the first NMOS transistor is connected to the light source load, and the source of the first NMOS transistor is connected to the capacitor.
  • NMOS N-Metal-Oxide-Semiconductor, N-type metal-oxide-semiconductor
  • the first charging subunit further includes a first diode; the source of the first NMOS tube is connected to the capacitor through the first diode, and the first diode The negative pole of is connected to the capacitor.
  • the first charging subunit further includes: a first current limiting resistor connected between the source of the first NMOS transistor and the anode of the first diode.
  • the second charging subunit includes: a second NMOS tube, the gate of the second NMOS tube is used to obtain the second PWM sub-control signal, and the second NMOS tube
  • the source is connected to the light source load, and the drain of the second NMOS transistor is connected to the capacitor.
  • the second charging subunit further includes a second diode; the drain of the second NMOS transistor is connected to the capacitor through the second diode, and the second diode The positive terminal is connected to the capacitor.
  • the second charging subunit further includes: a second current limiting resistor connected between the drain of the second NMOS transistor and the cathode of the second diode.
  • the first PWM sub-control signal and the second PWM sub-control signal are the same control signal or different control signals.
  • the ratio of the frequency of the AC voltage provided by the AC power source to the frequency of the PWM control signal is 0.0005 to 0.006.
  • the switch unit includes: a triac, a first anode of which is connected between the light source load and the charging unit, and a second anode of which is connected between the capacitor and the AC power source; and a bidirectional One end of the trigger diode is connected between the charging unit and the capacitor, and the other end is connected to the gate of the triac.
  • the present invention provides a phase-cut dimming circuit.
  • the phase-cut dimming circuit includes an AC power supply for providing AC voltage, a light source load, a charging unit and a capacitor connected to the AC power supply in series in series, and a switch unit.
  • the charging unit is configured to receive the PWM control signal and turn on according to the PWM control signal to charge the capacitor, so that the voltage across the capacitor changes according to the turn-on of the charging unit.
  • the switch unit has a first end, a second end and a third end.
  • the first end of the switch unit is connected to the connection point between the light source load and the charging unit, and the second end of the switch unit is connected to the connection point between the charging unit and the capacitor,
  • the third terminal of the switch unit is connected to the connection point between the capacitor and the AC power source.
  • the switch unit is configured to be turned on when the voltage across the capacitor reaches the threshold voltage, so that the light source load, the AC power source, and the first terminal of the switch unit are connected to the third terminal.
  • a loop is formed between the terminals to realize the dimming of the light source load.
  • the user can change the on-duty cycle of the charging unit by controlling the duty cycle of the PWM control signal to change the time for the capacitor to be charged to the threshold voltage of the switching unit, thereby controlling the bidirectional trigger diode to conduct in different phases , And then trigger the bidirectional thyristor to turn on, so that the light source load can adjust the working time in a single cycle of the AC voltage, and realize the brightness adjustment of the light source load.
  • the PWM control signal can be provided remotely (for example, provided by a remote communication control circuit), network adjustment and remote operation can be carried out to meet the needs of digital and intelligent development.
  • the phase-cut dimming circuit is easy to operate, which is convenient for users to precisely adjust the brightness of the light source load.
  • the first charging sub-unit obtains the first PWM sub-control signal through the gate of the first NMOS tube
  • the second charging sub-unit obtains the second PWM sub-control signal through the gate of the second NMOS tube.
  • PMOS transistors positive channel Metal Oxide Semiconductor, and PMOS transistors are P-channel metal-oxide semiconductor field effect transistors
  • the structure is simpler and easier to manufacture. Therefore, the cost of this phase-cut dimming circuit is reduced. Lower.
  • Figure 1 is a circuit diagram of a circuit for adjusting the brightness of a lamp in the prior art
  • FIG. 2 is a structural block diagram of a phase-cut dimming circuit according to an embodiment of the present invention.
  • Fig. 3 is a circuit diagram of a phase-cut dimming circuit according to an embodiment of the present invention.
  • FIG. 4 is a related waveform diagram when a phase-cut dimming circuit according to an embodiment of the present invention receives a PWM control signal with a first duty cycle
  • Fig. 5 is a related waveform diagram when a phase-cut dimming circuit according to an embodiment of the present invention receives a PWM control signal of a second duty cycle.
  • FIG. 1 is a circuit diagram of a circuit 10 that can adjust the brightness of a lamp 120 in the prior art.
  • this circuit 10 has an AC power supply 110 for providing AC voltage, a lamp 120, a sliding varistor 130, a resistor 140, and a capacitor 150 connected in series to the AC power supply 110.
  • This circuit 10 also has Two-terminal AC device 160 (two-terminal AC device is also called a bidirectional trigger diode, in order to distinguish the prior art from the solution of this embodiment, it is called a two-terminal AC device in the prior art) and a bidirectional thyristor 170 ( The triac is also called a triac.
  • the first anode of the triac 170 is connected to the lamp 120 and sliding Between the varistors 130, the second anode of the bidirectional thyristor 170 is connected between the AC power supply 110 and the capacitor 150, one end of the two-terminal AC device 160 is connected between the resistor 140 and the capacitor 150, and the other end of the two-terminal AC device 160 is connected.
  • the gate of the bidirectional thyristor 170 and the two-terminal AC device 160 will be turned on according to the voltage across the capacitor 150, thereby triggering the bidirectional thyristor 170 to be turned on.
  • this circuit 10 can only adjust the brightness of the lamp 120 by manually adjusting the resistance of the sliding rheostat 130 by the user. It is not only complicated to operate and poor in accuracy, but also unable to carry out network adjustment and remote operation. It can no longer adapt to digitization and intelligence. Development needs.
  • FIG. 2 is a structural block diagram of a phase-cut dimming circuit 20 according to an embodiment of the present invention
  • FIG. 3 is a phase-cut dimming circuit 20 according to an embodiment of the present invention.
  • the phase-cut dimming circuit 20 includes an AC power supply 200 for providing AC voltage.
  • the phase-cut dimming circuit 20 also includes a light source load 300, a charging unit 400 and a capacitor 600 connected in series to the AC power supply 200, and a phase-cut dimming circuit 20
  • a switch unit 500 is also included.
  • the AC power source 200 may be a power frequency sinusoidal AC power source, such as a commercial power source.
  • the charging unit 400 is configured to receive a PWM (Pulse Width Modulation, pulse width modulation) control signal, and turn on according to the PWM control signal to charge the capacitor 600, so that the voltage across the capacitor 600 changes according to the turn-on of the charging unit 400.
  • the PWM control signal can be a high-frequency square wave control signal with an adjustable duty cycle, and its frequency can be much greater than the working frequency (50Hz or 60Hz) of the power frequency AC power supply.
  • the frequency of the PWM control signal can be from 10kHz to 10kHz. 100kHz.
  • the duty cycle refers to the ratio of the time occupied by the high level in a cycle of the PWM control signal to the cycle.
  • the switch unit 500 has a first end, a second end and a third end.
  • the first end of the switch unit 500 is connected to the connection point between the light source load 300 and the charging unit 400, and the second end of the switch unit 500 is connected to the charging unit 400 and the capacitor. 600, the third terminal of the switch unit 400 is connected to the connection point between the capacitor 600 and the AC power supply 200.
  • the switch unit 500 is configured to be turned on when the voltage across the capacitor 600 reaches the threshold voltage, so that the light source load 300
  • the AC power supply 200 and the first end and the third end of the switch unit 500 form a loop to realize the dimming of the light source load 300.
  • the switch unit 500 when the switch unit 500 is turned on, the first end of the switch unit 500 One end and the third end are both turned on, and when the AC voltage of the AC power source 200 crosses zero, the first and third ends of the switch unit 500 are both turned off.
  • the second terminal may be a control terminal, and the control terminal is used to control the first terminal and the third terminal to be turned on, or to control the first terminal and the third terminal to be turned off.
  • the threshold voltage refers to the turn-on trigger voltage of the switch unit 500, which is related to the selected constituent elements of the switch unit.
  • the on-duty cycle of the charging unit 400 in one cycle of the AC voltage can be changed, and the capacitor 600 is charged to the threshold voltage at which the switching unit 500 is turned on. The time of is changed accordingly, so that the switch unit 500 can be turned on at different phases of the AC voltage.
  • the user can change the on-duty ratio of the charging unit 400 by controlling the duty ratio of the PWM control signal to change the capacitor 600 being charged to the threshold value at which the switching unit 500 is turned on.
  • the voltage time can control the bidirectional trigger diode 550 to conduct in different phases, and then trigger the bidirectional thyristor 540 to conduct, so that the light source load 300 can adjust the working time within a single cycle of the AC voltage, and realize the brightness of the light source load 300 adjust.
  • the PWM control signal can be provided remotely (for example, provided by a remote communication control circuit), network adjustment and remote operation can be carried out to meet the needs of digital and intelligent development.
  • the phase-cut dimming circuit 10 is easy to operate, which is convenient for the user to accurately adjust the brightness of the light source load 300.
  • the PWM control signal may include a first PWM sub-control signal and a second PWM sub-control signal.
  • the charging unit 400 may include a first charging sub-unit 410 and a second charging sub-unit 420.
  • the first charging subunit 410 is configured to be turned on according to the first PWM sub-control signal to charge the capacitor 600 within one half cycle of the AC voltage.
  • the first PWM sub-control signal is at a high level
  • the first charging sub-unit 410 is turned on, and the capacitor 600 is reversely charged.
  • the first PWM sub-control signal is at a low level
  • the voltage across the capacitor 600 does not change.
  • the capacitor 600 will alternately be charged and the voltage remains unchanged.
  • the bidirectional trigger diode 550 will trigger the triac 540 to turn on, so that the light source load 300 is activated.
  • the capacitor 600 will rapidly discharge through the second terminal and the third terminal of the switch unit 500, and the light source load 300 will remain in the activated state until the AC voltage crosses zero.
  • the second charging sub-unit 420 is connected in parallel with the first charging sub-unit 410 and is configured to be turned on according to the second PWM sub-control signal to charge the capacitor 600 in another half cycle of the AC voltage.
  • the second PWM sub-control signal is at a high level
  • the second charging sub-unit 420 is turned on and the capacitor 600 is charged.
  • the second PWM sub-control signal is at a low level, Normally, the voltage across the capacitor 600 does not change. In this way, the capacitor 600 is alternately charged and the voltage remains unchanged.
  • the bidirectional trigger diode 550 When the voltage across the capacitor 600 reaches the threshold voltage, the bidirectional trigger diode 550 will be turned on, and the bidirectional trigger diode 550 will trigger the bidirectional thyristor 540 to turn on, thereby enabling the light source load 300 to start. At this time, the capacitor 600 will rapidly discharge through the second terminal and the third terminal of the switch unit 500, and the light source load 300 will remain in the activated state until the AC voltage crosses zero.
  • This arrangement makes it possible to adjust the charging or discharging speed of the capacitor 600 by controlling the PWM control signal during the entire cycle of the AC voltage.
  • the first charging subunit 410 may include a first NMOS (N-Metal-Oxide-Semiconductor, N-type metal-oxide-semiconductor) tube 411, and the gate of the first NMOS tube 411 is used to obtain the first PWM sub-control signal,
  • the drain of the first NMOS transistor 411 is connected to the light source load 300, and the source of the first NMOS transistor 411 is connected to the capacitor 600.
  • phase-cut dimming circuit 20 has a simpler structure. The cost is lower.
  • the first charging subunit 410 may further include a first diode 412, the source of the first NMOS tube 411 is connected to the capacitor 600 through the first diode 412, and the cathode of the first diode 412 is connected to the capacitor 600.
  • the first diode 412 can prevent the capacitor 600 from being directly charged by the first charging sub-unit 410 during the other half cycle of the AC voltage at which the first charging sub-unit 410 is not working, thereby ensuring the effectiveness of the second PWM sub-control signal.
  • the first charging subunit 410 may further include a first current-limiting resistor 413, and the first current-limiting resistor 413 is connected between the source of the first NMOS transistor 411 and the anode of the first diode 412.
  • the first current-limiting resistor 413 can play a role in limiting the current to prevent the capacitor 600 from charging or discharging too fast.
  • the resistance of the first current-limiting resistor 413 can be 10k ⁇ to 100k ⁇ , and the specific value can be based on actual conditions. Depends on application requirements.
  • the second charging subunit 420 may include a second NMOS tube 421, the gate of the second NMOS tube 421 is used to obtain the second PWM sub-control signal, the source of the second NMOS tube 421 is connected to the light source load 300, and the second NMOS tube 421 The drain is connected to the capacitor 600.
  • the NMOS tube Compared with the PMOS tube, the NMOS tube has a simpler structure and is easier to manufacture. Therefore, the cost of the phase-cut dimming circuit 20 is lower.
  • the second charging subunit 420 may further include a second diode 422, the drain of the second NMOS transistor 421 is connected to the capacitor 600 through the second diode 422, and the anode of the second diode 422 is connected to the capacitor 600.
  • the second diode 422 can prevent the capacitor 600 from being directly charged by the second charging sub-unit 420 during the half cycle of the AC voltage at which the second charging sub-unit 420 is not working, so as to ensure the effectiveness of the first PWM sub-control signal.
  • the second charging subunit 420 may further include a second current limiting resistor 423 connected between the drain of the second NMOS transistor 421 and the cathode of the second diode 422.
  • the second current-limiting resistor 423 can play a role in limiting the current to prevent the capacitor 600 from charging or discharging too fast.
  • the resistance of the second current-limiting resistor 423 can be 10k ⁇ to 100k ⁇ , and the specific value can be based on actual conditions. Depends on application requirements.
  • the first PWM sub-control signal and the second PWM sub-control signal may be the same control signal or different control signals. That is to say, the first PWM sub-control signal and the second PWM sub-control signal may be issued by the same device, or may be issued by different devices separately.
  • the switch unit 500 may include a triac 540 and a bidirectional trigger diode 550.
  • the triac 540 can be considered as the integration of a pair of anti-parallel connected ordinary thyristors. The working principle is the same as that of ordinary unidirectional thyristors.
  • the bidirectional thyristor 540 has a first anode, a second anode and a gate. Since the triac 540 itself is well known to those skilled in the art, it will not be repeated here.
  • the first anode of the triac 540 ie, the first end of the switch unit 500
  • the second anode is connected between the capacitor 600 and the AC power source 200.
  • the bidirectional trigger diode 550 has a three-layer structure and a symmetrical two-terminal semiconductor device, which can be used to trigger the triac 540. Since the bidirectional trigger diode 550 itself is well known to those skilled in the art, it will not be repeated here. . One end of the bidirectional trigger diode 550 is connected between the charging unit 400 and the capacitor 600, and the other end of the bidirectional trigger diode 550 is connected to the gate of the triac 540. One end of the bidirectional trigger diode 550 connected between the charging unit 400 and the capacitor 600 and the second anode of the triac 540 serve as the second end and the third end of the switch unit 500, respectively.
  • the AC power supply 200 of the phase-cutting voltage regulator circuit 10 is a commercial power supply that outputs a sinusoidal AC voltage, and its neutral end is connected to one end of the light source load 300, and the other end of the light source load 300 is connected to the charging
  • the unit 400 is connected, and the charging unit 400 is connected to the live terminal of the AC power source 200 through a capacitor 600.
  • the first charging sub-unit 410 is turned on according to the first PWM sub-control signal during the negative half cycle of the AC voltage to charge the capacitor 600
  • the second charging sub-unit 420 is turned on during the positive half cycle of the AC voltage.
  • the capacitor 600 is turned on according to the second PWM sub-control signal to charge the capacitor 600.
  • the ratio of the frequency of the AC voltage provided by the AC power supply 200 to the frequency of the PWM control signal is 0.0005 to 0.006.
  • the frequency of the PWM control signal It can be 10kHz, 20kHz, 60kHz, etc., that is, the frequency of the PWM control signal is much greater than the frequency of the AC voltage provided by the AC power supply 200.
  • FIG. 4 is a related waveform diagram when a phase-cut dimming circuit receives a PWM control signal of a first duty cycle according to an embodiment of the present invention
  • FIG. 5 is a phase-cut dimming circuit according to an embodiment of the present invention when receiving a second duty cycle
  • the relevant waveform diagram of the PWM control signal of the empty ratio is the waveform represented by A
  • the waveform represented by B is the waveform of the PWM control signal. Since the duty ratio and frequency of the first PWM sub-control signal and the second PWM sub-control signal are the same, Therefore, the first PWM sub-control signal and the second PWM sub-control signal are both represented by B.
  • the waveform represented by C is the waveform of the gate voltage of the triac 540, and its trend is basically the same as the voltage across the capacitor 600, and D represents The voltage waveform across the light source load 300.
  • the duty ratio of the PWM control signal selected in FIG. 4 is 75%
  • the duty ratio of the PWM control signal selected in FIG. 5 is 50%
  • FIGS. 4 and 5 The PWM control signal shown selects a smaller frequency.
  • the capacitor 600 will alternately be charged and the voltage remains unchanged.
  • the threshold voltage is the turning voltage of the bidirectional trigger diode 550
  • the bidirectional trigger diode 550 is turned on , The bidirectional trigger diode 550 will trigger the triac 540 to turn on, so that the light source load 300 will start.
  • the capacitor 600 will quickly discharge through the second terminal and the third terminal of the switch unit 500, and the light source load 300 will keep starting State until the AC voltage crosses zero (the time shown by b1 in Figure 4 and the time shown by b2 in Figure 5). Moreover, from the positions of a1 and a2 in Figures 4 and 5 (a2 is lagging behind a1), it can be seen that the larger the duty cycle of the second PWM sub-control signal, the larger the second charging sub-unit 420 will be turned on. The larger the idle ratio (when the second charging subunit 420 includes the second NMOS tube 421, the on-duty ratio of the second NMOS tube 421 is correspondingly larger), which causes the capacitor 600 to be at a smaller phase of the AC voltage.
  • the threshold voltage is reached, so that the bidirectional thyristor 540 can be turned on at a smaller phase of the AC voltage, and the longer the working time of the light source load 300 in a single half cycle, the greater the brightness.
  • the smaller the duty cycle of the second PWM sub-control signal the larger the phase when the triac 540 is turned on, and the shorter the working time of the light source load 300 in a single half cycle and the lower the brightness.
  • the current cannot pass through the second charging subunit 420, that is, the first diode 412 is In the on state, the second diode is in the off state) in the first half of the period (that is, the period when the voltage reaches the voltage valley from zero) and the PWM control signal is at a high level, the capacitor 600 is charged in the reverse direction, and the sine output of the AC power supply 200
  • the first half of the negative half cycle of the AC voltage and the PWM control signal is at a low level, the voltage across the capacitor 600 does not change.
  • the capacitor 600 will alternately be charged and the voltage remains unchanged.
  • the bidirectional trigger diode 550 will be turned on, and the bidirectional trigger diode 550 will trigger the triac 540 to turn on.
  • the light source load 300 is started.
  • the capacitor 600 will quickly discharge through the second terminal and the third terminal of the switch unit 500, and the light source load 300 will remain in the starting state until the AC voltage crosses zero (at the time d1 shown in FIG. 4, The time d2 shown in Figure 5).
  • the threshold voltage may include a positive threshold voltage and a negative threshold voltage, and the values of the two may be different based on the switch unit 500 used.
  • the forward threshold voltage and the negative threshold voltage may be the forward turning voltage and the reverse turning voltage of the bidirectional trigger diode 550, respectively.
  • the phase-cut dimming circuit 20 includes an AC power supply 200 for providing AC voltage, and a light source load 300, a charging unit 400, and a capacitor 600 connected to the AC power supply 200 in series in sequence. And switch unit 500.
  • the charging unit 400 is configured to receive the PWM control signal and turn on according to the PWM control signal to charge the capacitor 600 so that the voltage across the capacitor 600 changes according to the turn-on of the charging unit 400.
  • the switch unit 500 has a first end, a second end and a third end. The first end of the switch unit 500 is connected to the connection point between the light source load 300 and the charging unit 400, and the second end of the switch unit 500 is connected to the charging unit 400 and the capacitor.
  • the third terminal of the switch unit 400 is connected to the connection point between the capacitor 600 and the AC power supply 200.
  • the switch unit 500 is configured to be turned on when the voltage across the capacitor 600 reaches the threshold voltage, so that the light source load 300 A loop is formed between the AC power supply 200 and the first end and the third end of the switch unit 500, so as to realize the dimming of the light source load 300.
  • the user can change the on-duty cycle of the charging unit 400 by controlling the duty cycle of the PWM control signal to change the time for the capacitor 600 to be charged to the threshold voltage at which the switching unit 500 is turned on, so as to control the bidirectional trigger diode 550 in different conditions.
  • the phase of the light source is turned on, and then the triac 540 is triggered to turn on, so that the light source load 300 can adjust the working time within a single cycle of the AC voltage, and realize the brightness adjustment of the light source load 300.
  • the PWM control signal can be provided remotely (for example, provided by a remote communication control circuit), network adjustment and remote operation can be carried out to meet the needs of digital and intelligent development.
  • the phase-cut dimming circuit 10 is easy to operate, which is convenient for the user to accurately adjust the brightness of the light source load 300.
  • the first charging sub-unit 410 obtains the first PWM sub-control signal through the gate of the first NMOS transistor 411
  • the second charging sub-unit 420 obtains the second PWM sub-control signal through the gate of the second NMOS transistor 421.
  • the NMOS tube has a simpler structure and is easier to manufacture. Therefore, the cost of the phase-cut dimming circuit 20 is lower.

Abstract

切相调光电路包括交流电源,顺序串联接入交流电源的光源负载、充电单元和电容,以及开关单元。充电单元配置为接收PWM控制信号,并根据PWM控制信号导通以对电容进行充电,使电容两端的电压根据充电单元的导通而变化。开关单元的第一端连接光源负载与充电单元之间的连接点,开关单元的第二端连接充电单元和电容之间的连接点,开关单元的第三端连接电容与交流电源之间的连接点,开关单元配置为当电容两端的电压达到阈值电压时导通,以使光源负载、交流电源以及开关单元的第一端与第三端间形成回路,从而实现对光源负载的调光。用户可以通过控制PWM控制信号的占空比就可以改变电容被充电达到开关单元导通的阈值电压的时间,实现光源负载的亮度调节。

Description

切相调光电路 技术领域
本发明涉及电路技术领域,特别涉及一种切相调光电路。
背景技术
灯具是人们日常生活中不可缺少的工具。在实际应用中,用户常常需要根据自己的喜好或需求去调整灯的亮度。
虽然,现在已经有了可以改变灯具亮度的电路,如图1所示,这种电路具有用于提供交流电压的交流供电电源,顺序串联接入交流供电电源的灯、滑动变阻器、电阻与电容器,这种电路还具有二端交流器件和双向晶闸管,双向晶闸管的第一阳极连接在灯与滑动变阻器之间,双向晶闸管的第二阳极连接在交流供电电源与电容器之间,二端交流器件的一端连接在电阻与电容器之间,二端交流器件的另一端连接双向晶闸管的门极,二端交流器件会根据电容器两端的电压导通,从而触发双向晶闸管导通。当改变滑动变阻器的阻值时,电容器达到二端交流器件的导通电压所用的充电时间也会变化,从而使得双向晶闸管可以在不同的相位导通,进而改变灯的亮度。
然而,这种电路只能通过用户手动地调节滑动变阻器的阻值来调节灯亮度,不仅操作复杂、精度较差,也不能进行联网调节和远程操作等,已经不能适应数字化、智能化的发展需求。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的切相调光电路。
本发明的一个目的是提供一种光源负载的亮度可远程调节的切相调光电路。
本发明的一个进一步的目的是减少这种电路的成本。
本发明提供了一种切相调光电路,包括用于提供交流电压的交流电源,顺序串联接入所述交流电源的光源负载、充电单元和电容,以及开关单元;所述充电单元配置为接收PWM(Pulse Width Modulation,脉冲宽度调制)控制信号,并根据所述PWM控制信号导通以对所述电容进行充电,使所 述电容两端的电压根据所述充电单元的导通而变化;所述开关单元具有第一端、第二端和第三端,所述开关单元的第一端连接所述光源负载与所述充电单元之间的连接点,所述开关单元的第二端连接所述充电单元和所述电容之间的连接点,所述开关单元的第三端连接所述电容与所述交流电源之间的连接点,所述开关单元配置为当所述电容两端的电压达到阈值电压时导通,以使所述光源负载、所述交流电源以及所述开关单元的第一端与第三端间形成回路,从而实现对所述光源负载的调光。
可选地,所述PWM控制信号包括第一PWM分控制信号和第二PWM分控制信号;所述充电单元包括:第一充电子单元,配置为在所述交流电压的一个半周期内根据所述第一PWM分控制信号导通以对所述电容进行充电;以及第二充电子单元,与所述第一充电子单元并联,配置为在所述交流电压的另一个半周期内根据所述第二PWM分控制信号导通以对所述电容进行充电。
可选地,所述第一充电子单元包括:第一NMOS管,所述第一NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)管的栅极用于获取所述第一PWM分控制信号,所述第一NMOS管的漏极连接所述光源负载,所述第一NMOS管的源极连接所述电容。
可选地,所述第一充电子单元还包括第一二极管;所述第一NMOS管的源极通过所述第一二极管与所述电容连接,且所述第一二极管的负极连接所述电容。
可选地,所述第一充电子单元还包括:第一限流电阻,连接在所述第一NMOS管的源极与所述第一二极管的正极之间。
可选地,其特征在于,所述第二充电子单元包括:第二NMOS管,所述第二NMOS管的栅极用于获取所述第二PWM分控制信号,所述第二NMOS管的源极连接所述光源负载,所述第二NMOS管的漏极连接所述电容。
可选地,所述第二充电子单元还包括第二二极管;所述第二NMOS管的漏极通过所述第二二极管连接所述电容,且所述第二二极管的正极连接所述电容。
可选地,所述第二充电子单元还包括:第二限流电阻,连接在所述第二NMOS管的漏极与所述第二二极管的负极之间。
可选地,所述第一PWM分控制信号和所述第二PWM分控制信号为 同一控制信号或不同控制信号。
可选地,所述交流电源提供的交流电压的频率与所述PWM控制信号的频率的比值为0.0005至0.006。
可选地,所述开关单元包括:双向可控硅,其第一阳极连接所述光源负载与所述充电单元之间,其第二阳极连接所述电容与所述交流电源之间;以及双向触发二极管,其一端连接于所述充电单元与所述电容之间,另一端连接所述双向可控硅的门极。
本发明提供了一种切相调光电路,切相调光电路包括用于提供交流电压的交流电源,顺序串联接入交流电源的光源负载、充电单元和电容,以及开关单元。充电单元配置为接收PWM控制信号,并根据PWM控制信号导通以对电容进行充电,使电容两端的电压根据充电单元的导通而变化。开关单元具有第一端、第二端和第三端,开关单元的第一端连接光源负载与充电单元之间的连接点,开关单元的第二端连接充电单元和电容之间的连接点,开关单元的第三端连接电容与交流电源之间的连接点,开关单元配置为当电容两端的电压达到阈值电压时导通,以使光源负载、交流电源以及开关单元的第一端与第三端间形成回路,从而实现对光源负载的调光。用户可以通过控制PWM控制信号的占空比就可以改变充电单元的导通占空比来改变电容被充电达到开关单元导通的阈值电压的时间,从而可以控制双向触发二极管在不同的相位导通,进而触发双向可控硅导通,使得光源负载在交流电压的单个周期内工作时间可调,实现光源负载的亮度调节。由于PWM控制信号可远程提供(如由远程通讯控制电路提供),可以进行联网调节和远程操作,以适应数字化、智能化的发展需求。并且,这种切相调光电路操作简单,便于用户精确调整光源负载的亮度。
进一步地,第一充电子单元通过第一NMOS管的栅极获取第一PWM分控制信号,第二充电子单元通过第二NMOS管的栅极获取第二PWM分控制信号。由于NMOS管相比于PMOS管(PMOS即positive channel Metal Oxide Semiconductor,PMOS管即P沟道金属-氧化物半导体场效应管)结构简单,容易制造,因此,使得这种切相调光电路的成本较低。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是现有技术中可调节灯具亮度的电路的电路图;
图2是根据本发明一个实施例的切相调光电路的结构框图;
图3是根据本发明一个实施例的切相调光电路的电路图;
图4是根据本发明一个实施例的切相调光电路接收第一占空比的PWM控制信号时的相关波形图;
图5是根据本发明一个实施例的切相调光电路接收第二占空比的PWM控制信号时的相关波形图。
具体实施方式
图1是现有技术中可调节灯120亮度的电路10的电路图。如图1所示,这种电路10具有用于提供交流电压的交流供电电源110,顺序串联接入交流供电电源110的灯120、滑动变阻器130、电阻140与电容器150,这种电路10还具有二端交流器件160(二端交流器件又被称为双向触发二极管,为了将现有技术与本实施例的方案区分,将其在现有技术中称为二端交流器件)和双向晶闸管170(双向晶闸管又被称为双向可控硅,为了将现有技术与本实施例的方案区分,将其在现有技术中称为双向晶闸管),双向晶闸管170的第一阳极连接在灯120与滑动变阻器130之间,双向晶闸管170的第二阳极连接在交流供电电源110与电容器150之间,二端交流器件160的一端连接在电阻140与电容器150之间,二端交流器件160的另一端连接双向晶闸管170的门极,二端交流器件160会根据电容器150两端的电压导通,从而触发双向晶闸管170导通。当改变滑动变阻器130的阻值时,电容器150达到二端交流器件160的导通电压所用的充电时间也会变化,从而使得双向晶闸管170可以在不同的相位导通,进而改变灯120的亮度。然而,这种电路10只能通过用户手动地调节滑动变阻器130的阻值来调节灯120亮度,不仅操作复杂、精度较差,同时不能进行联网调节和远程操作等,已经不能适应数字化、智能化的发展需求。
本实施例提供了一种切相调光电路20,图2是根据本发明一个实施例的切相调光电路20的结构框图,图3是根据本发明一个实施例的切相调光电路20的电路图。切相调光电路20包括用于提供交流电压的交流电 源200,切相调光电路20还包括顺序串联接入交流电源200的光源负载300、充电单元400和电容600,切相调光电路20还包括开关单元500。
交流电源200可以采用工频正弦交流电源,例如市电。充电单元400配置为接收PWM(Pulse Width Modulation,脉冲宽度调制)控制信号,并根据PWM控制信号导通以对电容600进行充电,使电容600两端的电压根据充电单元400的导通而变化。具体地,PWM控制信号可以为占空比可调的高频方波控制信号,其频率可远大于工频交流电源的工作频率(50Hz或60Hz),例如,PWM控制信号的频率可以为10kHz至100kHz。本领域技术人员可以理解,当PWM控制信号处于高电平时会导通充电单元400,以使电容600充电,当PWM控制信号处于低电平时,会使得充电单元400关断,则电容600无法充电。占空比是指在PWM控制信号的一个周期内高电平所占时间占该周期的比例。
开关单元500具有第一端、第二端和第三端,开关单元500的第一端连接光源负载300与充电单元400之间的连接点,开关单元500的第二端连接充电单元400和电容600之间的连接点,开关单元400的第三端连接电容600与交流电源200之间的连接点,开关单元500配置为当电容600两端的电压达到阈值电压时导通,以使光源负载300、交流电源200以及开关单元500的第一端与第三端间形成回路,从而实现对光源负载300的调光,本领域技术人员可以理解地,开关单元500导通时,开关单元500的第一端以及第三端均导通,在交流电源200的交流电压过零时,开关单元500的第一端以及第三端均关断。本领域技术人员可以理解地,第二端可以为控制端,控制端用于控制第一端与第三端导通,或控制第一端与第三端关断。阈值电压指开关单元500的导通触发电压,其与所选取的开关单元的组成元件有关。本领域技术人员可以理解地,改变PWM控制信号的占空比,就可以改变充电单元400在交流电压的一个周期内的导通占空比,电容600被充电达到开关单元500导通的阈值电压的时间随之改变,从而使开关单元500可以在交流电压的不同相位导通。
本实施例的这种切相调光电路20,用户可以通过控制PWM控制信号的占空比就可以改变充电单元400的导通占空比来改变电容600被充电达到开关单元500导通的阈值电压的时间,从而可以控制双向触发二极管550在不同的相位导通,进而触发双向可控硅540导通,使得光源负载300在交流电压的单个周期内工作时间可调,实现光源负载300的亮度调节。 由于PWM控制信号可远程提供(如由远程通讯控制电路提供),可以进行联网调节和远程操作,以适应数字化、智能化的发展需求。并且,这种切相调光电路10操作简单,便于用户精确调整光源负载300的亮度。
PWM控制信号可以包括第一PWM分控制信号和第二PWM分控制信号。充电单元400可以包括第一充电子单元410以及第二充电子单元420。
第一充电子单元410配置为在交流电压的一个半周期内根据第一PWM分控制信号导通以对电容600进行充电。本领域技术人员可以理解地,在该半周期内,当第一PWM分控制信号处于高电平时,第一充电子单元410导通,电容600反向充电,当第一PWM分控制信号处于低电平时,电容600两端电压不变,在该半周期内,电容600会交替地处于充电和电压保持不变的状态。当电容600两端的电压达到阈值电压时,会使双向触发二极管550会触发双向可控硅540导通,从而使得光源负载300启动。此时,电容600会通过开关单元500的第二端以及第三端迅速进行放电,光源负载300会保持启动状态直至交流电压过零。
第二充电子单元420与第一充电子单元410并联,配置为在交流电压的另一个半周期内根据第二PWM分控制信号导通以对电容600进行充电。本领域技术人员可以理解地,在该另一个半周期内,第二PWM分控制信号处于高电平时,第二充电子单元420导通,电容600充电,当第二PWM分控制信号处于低电平时,电容600两端的电压不变。如此,电容600会交替地处于充电和电压保持不变的状态。当电容600两端的电压达到阈值电压时,会导通双向触发二极管550,双向触发二极管550会触发双向可控硅540导通,从而使得光源负载300启动。此时,电容600会通过开关单元500的第二端以及第三端迅速进行放电,光源负载300会保持启动状态直至交流电压过零。
这种设置方式使得在交流电压的整个周期内,都可以通过控制PWM控制信号来调节电容600的充电或放电速度。
第一充电子单元410可以包括第一NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)管411,第一NMOS管411的栅极用于获取第一PWM分控制信号,第一NMOS管411的漏极连接光源负载300,第一NMOS管411的源极连接电容600。
由于NMOS管相比于PMOS管(PMOS即positive channel Metal Oxide  Semiconductor,PMOS管即P沟道金属-氧化物半导体场效应管)结构简单,容易制造,因此,使得这种切相调光电路20的成本较低。
第一充电子单元410还可以包括第一二极管412,第一NMOS管411的源极通过第一二极管412与电容600连接,且第一二极管412的负极连接电容600。第一二极管412可以避免在非第一充电子单元410工作的交流电压的另一个半周期内电容600直接通过第一充电子单元410进行充电,保证第二PWM分控制信号的有效性。
第一充电子单元410还可以包括第一限流电阻413,第一限流电阻413连接在第一NMOS管411的源极与第一二极管412的正极之间。第一限流电阻413可以起到限制电流的作用,避免电容600的充电或放电速度过快,具体地,第一限流电阻413的阻值可以为10kΩ至100kΩ,具体的数值大小可以根据实际应用需求而定。
第二充电子单元420可以包括第二NMOS管421,第二NMOS管421的栅极用于获取第二PWM分控制信号,第二NMOS管421的源极连接光源负载300,第二NMOS管421的漏极连接电容600。
由于NMOS管相比于PMOS管结构简单,容易制造,因此,使得这种切相调光电路20的成本较低。
第二充电子单元420还可以包括第二二极管422,第二NMOS管421的漏极通过第二二极管422连接电容600,且第二二极管422的正极连接电容600。第二二极管422可以避免在非第二充电子单元420工作的交流电压的那一个半周期内电容600直接通过第二充电子单元420进行充电,保证第一PWM分控制信号的有效性。
第二充电子单元420还可以包括第二限流电阻423,第二限流电阻423连接在第二NMOS管421的漏极与第二二极管422的负极之间。第二限流电阻423可以起到限制电流的作用,避免电容600的充电或放电速度过快,具体地,第二限流电阻423的阻值可以为10kΩ至100kΩ,具体的数值大小可以根据实际应用需求而定。
第一PWM分控制信号和第二PWM分控制信号可为同一控制信号或不同控制信号。也就是说第一PWM分控制信号和第二PWM分控制信号可以是同一个设备发出的,也可以是不同的设备分别发出的。
开关单元500可以包括双向可控硅540以及双向触发二极管550。双向可控硅540可被认为是一对反并联连接的普通可控硅的集成,工作原理 与普通单向可控硅相同,双向可控硅540有第一阳极、第二阳极以及门极,由于双向可控硅540本身是本领域技术人员所习知的,在此不做赘述。双向可控硅540其第一阳极(即开关单元500的第一端)连接光源负载300与充电单元400之间,其第二阳极连接电容600与交流电源200之间。
双向触发二极管550属三层结构,具有对称性的二端半导体器材,可以用来触发双向可控硅540,由于双向触发二极管550本身是本领域技术人员所习知的,在此,不做赘述。双向触发二极管550的一端连接于充电单元400与电容600之间,双向触发二极管550的另一端连接双向可控硅540的门极。双向触发二极管550的连接于充电单元400与电容600之间的一端和双向可控硅540的第二阳极分别作为开关单元500的第二端和第三端。
在一种具体的实施方案中,切相调压电路10的交流电源200为输出正弦交流电压的工频市电,其零线端与光源负载300的一端连接,光源负载300的另一端与充电单元400连接,充电单元400通过电容600与交流电源200的火线端连接。在这种情况下,第一充电子单元410在交流电压的负半周期内根据第一PWM分控制信号导通以对电容600进行充电,第二充电子单元420在交流电压的正半周期内根据第二PWM分控制信号导通以对电容600进行充电。
在一些实施例中,交流电源200提供的交流电压的频率与PWM控制信号的频率的比值为0.0005至0.006,例如,当交流电源200提供的交流电压的频率为50Hz时,则PWM控制信号的频率可以为10kHz、20kHz、60kHz等,也就是说,PWM控制信号的频率远大于交流电源200提供的交流电压的频率,PWM控制信号的频率越大,电容600两端的电压在开关单元500未导通时,电容600间隔地充电、两端电压保持不变的次数也越多,电容600两端电压变化地就越缓慢,从而便于精确地通过控制PWM控制信号的占空比以改变电容600两端电压达到阈值电压时交流电压的相位。
图4是根据本发明一个实施例的切相调光电路接收第一占空比的PWM控制信号时的相关波形图;图5是根据本发明一个实施例的切相调光电路接收第二占空比的PWM控制信号时的相关波形图。其中,A表示的波形为交流电源200输出的交流电压的波形,B表示的波形为PWM控制信号的波形,由于第一PWM分控制信号以及第二PWM分控制信号的 占空比以及频率一致,因此,第一PWM分控制信号以及第二PWM分控制信号均用B表示,C表示的波形为双向可控硅540的门极电压的波形,其趋势与电容600两端的电压基本一致,D表示光源负载300两端的电压波形。其中,图4中所选用的PWM控制信号的占空比为75%,图5所选用的PWM控制信号的占空比为50%,并且,为了清楚地展示本实施例,图4以及图5所示的PWM控制信号选用较小的频率。
如图4、5所示,在交流电源200输出的正弦交流电压的正半周期(在正半周期,由于第一二极管412的作用,电流无法通过第一充电子单元410,也就是说,第一二极管412是处于截止状态,第二二极管处于导通状态)的前半时期(即电压从零点到达电压波峰的期间)且第二PWM分控制信号处于高电平时,第二充电子单元420导通,电容600充电,在交流电源200输出的正弦交流电压的正半周期的前半时期且PWM控制信号处于低电平时,电容600两端的电压不变。如此,在交流电源200输出的正弦交流电压的正半周期,电容600会交替地处于充电和电压保持不变的状态。当电容600两端的电压达到阈值电压(此时,阈值电压为双向触发二极管550的转折电压)时(图4中a1表示的时刻,图5中a2表示的时刻),会导通双向触发二极管550,双向触发二极管550会触发双向可控硅540导通,从而使得光源负载300启动,此时,电容600会通过开关单元500的第二端以及第三端迅速进行放电,光源负载300会保持启动状态直至交流电压过零(图4中b1所示时刻、图5中b2所示时刻)。并且,从图4以及图5中a1、a2的位置(a2相比于a1要滞后)可以看出,第二PWM分控制信号的占空比越大,则第二充电子单元420导通占空比越大(当第二充电子单元420包括第二NMOS管421时,相应地,第二NMOS管421的导通占空比越大),引致电容600在交流电压的较小相位时就达到阈值电压,从而使得在交流电压的较小相位就可以实现双向可控硅540的导通,则光源负载300在单个半周期的工作时间越长,亮度也越大。反之,第二PWM分控制信号的占空比越小,则双向可控硅540导通时的相位越大,光源负载300在单个半周期的工作时间越短,亮度越低。
在交流电源200输出的正弦交流电压的负半周期(在负半周期,由于第二二极管422的作用,电流无法通过第二充电子单元420,也就是说,第一二极管412是处于导通状态,第二二极管处于截止状态)的前半时期(即电压从零点达到电压波谷的期间)且PWM控制信号处于高电平时, 电容600反向充电,在交流电源200输出的正弦交流电压的负半周期的前半时期且PWM控制信号处于低电平时,电容600两端的电压不变。如此,在交流电源200输出的正弦交流电压的负半周期,电容600会交替地处于充电和电压保持不变的状态。当电容600两端的电压达到阈值电压时(图4中c1表示的时刻,图5中c2表示的时刻),会导通双向触发二极管550,双向触发二极管550会触发双向可控硅540导通,从而使得光源负载300启动,此时,电容600会通过开关单元500的第二端以及第三端迅速进行放电,光源负载300会保持启动状态直至交流电压过零(图4中d1所示时刻、图5中d2所示时刻)。并且,从图4以及图5中c1、c2的位置(c2相比于c1要滞后)可以看出,第一PWM分控制信号的占空比越大,则第一充电子单元410导通占空比越大(当第一充电子单元410包括第一NMOS管411时,相应地,第一NMOS管411的导通占空比越大),引致电容600在交流电压的较小相位时就达到阈值电压,从而使得在交流电压的较小相位就可以实现双向可控硅540的导通,则光源负载300在单个半周期的工作时间越长,亮度也越大。反之,第一PWM分控制信号的占空比越小,则双向可控硅540导通时的相位越大,光源负载300在单个半周期的工作时间越短,亮度越低。
阈值电压可以包括正向阈值电压以及负向阈值电压,两者的数值基于所采用的开关单元500的不同会有所不同。例如,在开关单元500包含双向触发二极管550和双向可控硅540的情况下,正向阈值电压和负向阈值电压可分别为双向触发二极管550的正向转折电压和反向转折电压。
本实施例提供了一种切相调光电路20,切相调光电路20包括用于提供交流电压的交流电源200,顺序串联接入交流电源200的光源负载300、充电单元400和电容600,以及开关单元500。充电单元400配置为接收PWM控制信号,并根据PWM控制信号导通以对电容600进行充电,使电容600两端的电压根据充电单元400的导通而变化。开关单元500具有第一端、第二端和第三端,开关单元500的第一端连接光源负载300与充电单元400之间的连接点,开关单元500的第二端连接充电单元400和电容600之间的连接点,开关单元400的第三端连接电容600与交流电源200之间的连接点,开关单元500配置为当电容600两端的电压达到阈值电压时导通,以使光源负载300、交流电源200以及开关单元500的第一端与第三端间形成回路,从而实现对光源负载300的调光。用户可以通过 控制PWM控制信号的占空比就可以改变充电单元400的导通占空比来改变电容600被充电达到开关单元500导通的阈值电压的时间,从而可以控制双向触发二极管550在不同的相位导通,进而触发双向可控硅540导通,使得光源负载300在交流电压的单个周期内工作时间可调,实现光源负载300的亮度调节。由于PWM控制信号可远程提供(如由远程通讯控制电路提供),可以进行联网调节和远程操作,以适应数字化、智能化的发展需求。并且,这种切相调光电路10操作简单,便于用户精确调整光源负载300的亮度。
第一充电子单元410通过第一NMOS管411的栅极获取第一PWM分控制信号,第二充电子单元420通过第二NMOS管421的栅极获取第二PWM分控制信号。由于NMOS管相比于PMOS管结构简单,容易制造,因此,使得这种切相调光电路20的成本较低。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种切相调光电路,其中,包括用于提供交流电压的交流电源,顺序串联接入所述交流电源的光源负载、充电单元和电容,以及开关单元;
    所述充电单元配置为接收PWM控制信号,并根据所述PWM控制信号导通以对所述电容进行充电,使所述电容两端的电压根据所述充电单元的导通而变化;
    所述开关单元具有第一端、第二端和第三端,所述开关单元的第一端连接所述光源负载与所述充电单元之间的连接点,所述开关单元的第二端连接所述充电单元和所述电容之间的连接点,所述开关单元的第三端连接所述电容与所述交流电源之间的连接点,所述开关单元配置为当所述电容两端的电压达到阈值电压时导通,以使所述光源负载、所述交流电源以及所述开关单元的第一端与第三端间形成回路,从而实现对所述光源负载的调光。
  2. 根据权利要求1所述的切相调光电路,其中,所述PWM控制信号包括第一PWM分控制信号和第二PWM分控制信号;
    所述充电单元包括:
    第一充电子单元,配置为在所述交流电压的一个半周期内根据所述第一PWM分控制信号导通以对所述电容进行充电;以及
    第二充电子单元,与所述第一充电子单元并联,配置为在所述交流电压的另一个半周期内根据所述第二PWM分控制信号导通以对所述电容进行充电。
  3. 根据权利要求2所述的切相调光电路,其中,所述第一充电子单元包括:
    第一NMOS管,所述第一NMOS管的栅极用于获取所述第一PWM分控制信号,所述第一NMOS管的漏极连接所述光源负载,所述第一NMOS管的源极连接所述电容。
  4. 根据权利要求3所述的切相调光电路,其中,所述第一充电子单元还包括第一二极管;
    所述第一NMOS管的源极通过所述第一二极管与所述电容连接,且所述第一二极管的负极连接所述电容。
  5. 根据权利要求4所述的切相调光电路,其中,所述第一充电子单 元还包括:
    第一限流电阻,连接在所述第一NMOS管的源极与所述第一二极管的正极之间。
  6. 根据权利要求2所述的切相调光电路,其中,所述第二充电子单元包括:
    第二NMOS管,所述第二NMOS管的栅极用于获取所述第二PWM分控制信号,所述第二NMOS管的源极连接所述光源负载,所述第二NMOS管的漏极连接所述电容。
  7. 根据权利要求6所述的切相调光电路,其中,所述第二充电子单元还包括第二二极管;
    所述第二NMOS管的漏极通过所述第二二极管连接所述电容,且所述第二二极管的正极连接所述电容。
  8. 根据权利要求7所述的切相调光电路,其中,所述第二充电子单元还包括:
    第二限流电阻,连接在所述第二NMOS管的漏极与所述第二二极管的负极之间。
  9. 根据权利要求2所述的切相调光电路,其中,
    所述第一PWM分控制信号和所述第二PWM分控制信号为同一控制信号或不同控制信号。
  10. 根据权利要求1所述的切相调光电路,其中,
    所述交流电源提供的交流电压的频率与所述PWM控制信号的频率的比值为0.0005至0.006。
  11. 根据权利要求1所述的切相调光电路,其中,所述开关单元包括:
    双向可控硅,其第一阳极连接所述光源负载与所述充电单元之间,其第二阳极连接所述电容与所述交流电源之间;以及
    双向触发二极管,其一端连接于所述充电单元与所述电容之间,另一端连接所述双向可控硅的门极。
PCT/CN2020/140161 2019-12-30 2020-12-28 切相调光电路 WO2021136172A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922454610.X 2019-12-30
CN201922454610.XU CN211580266U (zh) 2019-12-30 2019-12-30 切相调光电路
CN201911398307.0 2019-12-30
CN201911398307.0A CN111372360A (zh) 2019-12-30 2019-12-30 切相调光电路

Publications (1)

Publication Number Publication Date
WO2021136172A1 true WO2021136172A1 (zh) 2021-07-08

Family

ID=76686502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140161 WO2021136172A1 (zh) 2019-12-30 2020-12-28 切相调光电路

Country Status (1)

Country Link
WO (1) WO2021136172A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060181A1 (en) * 2008-09-05 2010-03-11 Seoul Semiconductor Co., Ltd. Ac led dimmer and dimming method thereby
TWM391244U (en) * 2009-06-02 2010-10-21 Richtek Technology Corp Tail-less LED control circuit
CN102802310A (zh) * 2012-08-08 2012-11-28 英飞特电子(杭州)股份有限公司 一种调光器、调光系统和调光方法
CN104038029A (zh) * 2014-06-24 2014-09-10 矽力杰半导体技术(杭州)有限公司 占空比转换电路及转换方法
CN106793293A (zh) * 2016-12-22 2017-05-31 惠州Tcl照明电器有限公司 调光装置及led调光驱动电源
CN109548226A (zh) * 2017-09-22 2019-03-29 凌力尔特科技控股有限责任公司 Led调光
CN209419952U (zh) * 2018-11-23 2019-09-20 常州市武进区半导体照明应用技术研究院 一种基于pwm的恒流调光驱动电路
CN111372360A (zh) * 2019-12-30 2020-07-03 欧普照明股份有限公司 切相调光电路
CN211580266U (zh) * 2019-12-30 2020-09-25 欧普照明股份有限公司 切相调光电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060181A1 (en) * 2008-09-05 2010-03-11 Seoul Semiconductor Co., Ltd. Ac led dimmer and dimming method thereby
TWM391244U (en) * 2009-06-02 2010-10-21 Richtek Technology Corp Tail-less LED control circuit
CN102802310A (zh) * 2012-08-08 2012-11-28 英飞特电子(杭州)股份有限公司 一种调光器、调光系统和调光方法
CN104038029A (zh) * 2014-06-24 2014-09-10 矽力杰半导体技术(杭州)有限公司 占空比转换电路及转换方法
CN106793293A (zh) * 2016-12-22 2017-05-31 惠州Tcl照明电器有限公司 调光装置及led调光驱动电源
CN109548226A (zh) * 2017-09-22 2019-03-29 凌力尔特科技控股有限责任公司 Led调光
CN209419952U (zh) * 2018-11-23 2019-09-20 常州市武进区半导体照明应用技术研究院 一种基于pwm的恒流调光驱动电路
CN111372360A (zh) * 2019-12-30 2020-07-03 欧普照明股份有限公司 切相调光电路
CN211580266U (zh) * 2019-12-30 2020-09-25 欧普照明股份有限公司 切相调光电路

Similar Documents

Publication Publication Date Title
US11729874B2 (en) Load control device for high-efficiency loads
US10530268B2 (en) Load control device for high-efficiency loads
US9136699B2 (en) Dynamic damper and lighting driving circuit comprising the dynamic damper
CA2589464A1 (en) Load control circuit and method for achieving reduced acoustic noise
AU2016200365B2 (en) Control apparatus using variations in conduction angle as control command
TW200806084A (en) Current zero crossing detector in a dimmer circuit
WO2012136042A1 (zh) 一种两线调光器的辅助电源电路
US11870334B2 (en) Load control device for high-efficiency loads
CN211580266U (zh) 切相调光电路
CN111372360A (zh) 切相调光电路
WO2021136172A1 (zh) 切相调光电路
EP3095182B1 (en) Two-wire load control device for low-power loads
CN210042294U (zh) Led色温调节电路及装置
US5463307A (en) High efficiency, low voltage adapter apparatus and method
AU2003292284B2 (en) Power controller
CN107396503B (zh) 一种单火线发送led灯亮度控制信号的方法
CN108880522B (zh) 一种可控硅触发电路
US10390392B2 (en) Method for controlling an output of an electrical AC voltage
JP2022151888A (ja) 調光装置
JPS6341309B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909889

Country of ref document: EP

Kind code of ref document: A1