WO2021136129A1 - Algorithm for predicting heating temperature of a moisture meter - Google Patents

Algorithm for predicting heating temperature of a moisture meter Download PDF

Info

Publication number
WO2021136129A1
WO2021136129A1 PCT/CN2020/139871 CN2020139871W WO2021136129A1 WO 2021136129 A1 WO2021136129 A1 WO 2021136129A1 CN 2020139871 W CN2020139871 W CN 2020139871W WO 2021136129 A1 WO2021136129 A1 WO 2021136129A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
temperature
algorithm
moisture value
target
Prior art date
Application number
PCT/CN2020/139871
Other languages
French (fr)
Inventor
Feng Shi
Tianyu CAI
Yuping CAO
Yixing CAO
Original Assignee
Ohaus Instruments (Changzhou) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohaus Instruments (Changzhou) Co., Ltd. filed Critical Ohaus Instruments (Changzhou) Co., Ltd.
Publication of WO2021136129A1 publication Critical patent/WO2021136129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • G01N5/045Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder for determining moisture content
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/32Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

An algorithm for predicting the heating temperature of a moisture meter, comprises steps of: selecting a temperature in a progressively increasing manner from an algorithm guide in order to heat a sample with a known or unknown target moisture value, calculating a predicted heating temperature based on heating data; and verifying the predicted heating temperature through heating until the prediction meets user requirements. The success rate of the prediction for samples with known or unknown target moisture values is increased greatly through the algorithm for a moisture meter test, based on weight change trend determination and heating temperature time conversion. An automated program of the algorithm is quick, convenient and efficient for users.

Description

ALGORITHM FOR PREDICTING HEATING TEMPERATURE OF A MOISTURE METER BACKGROUND OF THE INVENTION
Technical Field
The present invention relates to the field of moisture meters, and in particular to a algorithm for predicting the heating temperature of a moisture meter based on physical quantities such as weight change, heating temperature, and heating time of a sample.
Background Art
Traditionally, the moisture value is measured using the drying oven method. In this method, the drying oven temperature is set to 105℃. A specific method thereof is as follows. Firstly, a dry weight value of the vessel designated for receiving the sample is measured. After baking the sample in a drying oven for 1 hour, the vessel is removed and placed in a drying vessel for 0.5 hour. Then, a weight value is measured by weighing. The above steps are repeated once again. If the difference in measured weight values from the two successive tests is less than 2 mg, the weight value from the latest test is considered the dry weight of the vessel. Otherwise, the above steps are repeated until the condition is met.
After a sample is added to the vessel, a wet weight value is recorded by weighing. After baking in the drying oven for 4 hours, the vessel and the sample are removed and placed in the drying vessel for 0.5 hour. Then, a weight value of the vessel containing the sample is recorded by weighing. The vessel containing the sample is then baked in the drying oven for a duration 1 hour before removing and placing it in the drying vessel for 0.5 hour. Then, a weight value is recorded by weighing. If the weight difference between the two successive tests is less than 2 mg, the weight value from the latest test is considered the dry weight. Otherwise, the above steps are repeated until the following condition is met.
The moisture value of the sample is determined using the expression Moisture value = (Wet weight -Dry weight) / (Wet weight -Dry weight of the vessel) . The advantage of the traditional method is that the results are accurate. However, the method steps are laborious and cannot keep pace with the rapid production.
An electronic moisture meter is a precise moisture value measuring device that heats a test sample and evaporates moisture. The electronic moisture meter performs the test faster, but its accuracy is dependent on the extent of debugging. Compared to the traditional drying oven method, the heating temperature should be confirmed for samples with different components and moisture values.
The electronic moisture meter is used in variety of areas such as industrial, agricultural, commercial, academic, healthcare, scientific research and other such areas. That often need to perform rapid determination. Thus, there is a need for efficient, stable, and customizable heating test solutions.
The heating temperature and the heating termination condition affect the accuracy of test results determined using the moisture meter. The heating termination condition also affects the stability of the test results. Therefore, a fixed heating termination condition is generally selected. By adjusting the heating temperature, the test results can reach the target value, that is, the highest heating temperature we want to confirm.
Users either have a target moisture value, or no target moisture value. A target moisture value is usually obtained from using drying oven method, empirical data, or test values obtained using other moisture meters. A sample that doesn′t have a target moisture value, is treated as a new sample. Generally, the moisture value in the drying oven method is used as an absolute moisture value, while the moisture value determined using other test methods is a relative moisture value.
A user having a target moisture value needs to confirm only the heating temperature. A user not having a target moisture value, needs to confirm both the heating temperature as well as the recommended relative moisture value.
In the traditional method for determining the heating temperature of a moisture meter, the operating personnel selects a recommended heating temperature corresponding to a sample from a heating temperature reference table, and then perform a plurality of adjustments after conducting an actual heating test.
The above method has many disadvantages and prominent among them are enumerated here. Firstly, the heating temperature reference table is not comprehensive, and all target sample parameters cannot be found. Secondly, the moisture values for same heating temperature vary when the model of the moisture meter varies. However, the values in heating temperature reference table are specific to a corresponding model of the moisture meter. Therefore, using a recommended  temperature in the reference table for a different model of the moisture meter will likely create a deviation thus making the calculation error prone. 3. Another shortcoming is the lack of a reference to a sample that is not in the reference book or with different moisture. 4. A user requires good debugging skills without which it is difficult to determine the heating temperature correctly, besides even for a skilled user, debugging is a time-consuming and inefficient step.
Currently, there are several alternative methods in this field of technical endeavour for predicting a heating temperature, but they suffer from inaccurate prediction and poor stability. For example, a stepped heating method is used, in which a temperature of a section with the smallest moisture change rate is taken as a heating condition, and a prediction deviation is great. For example, a stepped heating method is used, in which a temperature of a section with the smallest moisture change rate is taken as a heating condition, and the prediction deviation is great; another way is relax the heating termination condition with constant heating temperature. However, this method generally results in poor repeatability of the moisture value; and a heating termination condition method is relaxed, that is, constant temperature heating is performed at a certain temperature, and characteristics used when the target moisture is reached are taken as a new heating termination determination condition. However, this method generally relaxes the heating termination determination condition, resulting in poor repeatability of the moisture value.
In view of these shortcomings, there is a strong felt need in the art to improve the existing methods for determining the heating temperature of moisture meter.
SUMMARY
The technical problem to be solved by the present invention is how to provide a algorithm for predicting a heating temperature of a moisture meter, in order to overcome the defects such as poor stability and low efficiency in prior art moisture meters.
The present invention solves the above technical problem through the following technical solution in which there is provided an algorithm for predicting a heating temperature of a moisture meter. The algorithm comprises the steps of: selecting a temperature in a progressively increasing manner from an algorithm guide (a software tool to predicted the heating temperature) in order to heat a sample with a known or  unknown target moisture value (a target moisture value is the actual moisture value tested in the traditional way) ; calculating a predicted heating temperature (the result of the algorithm guide) based on heating data (the moisture values during the heating process) , and verifying the predicted heating temperature through heating until it meets user requirements (the moisture error for the predicted heating temperature) .
According to an embodiment of the present invention, for the sample with a known target moisture value, the algorithm specifically comprises the following steps of:
S1: accessing the algorithm guide, and selecting an algorithm having a target value;
S2: heating by selecting the temperature in a progressively increasing manner;
S3: acquiring a plurality of target physical quantities through analysis of the heating data;
S4: calculating the predicted heating temperature based on the heating data;
S5: performing heating verification at the predicted heating temperature;
S6: analysing the heating data, and if the user requirements are met, terminating the prediction and automatically generating a heating method; otherwise, calculating a new predicted heating temperature based on the heating data, and entering step S7; and
S7: repeating step S5 and step S6, until it meets the user requirements.
According to an embodiment of the present invention, the target physical quantities in step S3 comprise weight, temperature, and time.
According to an embodiment of the present invention, step S5 further comprises: using the predicted heating temperature to perform a constant temperature heating test to verify the moisture accuracy in the predicted temperature, and collecting heating data during the heating process thereof.
According to an embodiment of the present invention, the heating data comprises temperature, time, and weight.
According to an embodiment of the present invention, step S6 comprises: otherwise, calculating the new predicted heating temperature based on the physical quantities: temperature, time, and weight.
According to an embodiment of the present invention, for a sample with a target moisture value, a moisture value is proportional to a product of a heating time and temperature in a small range during constant temperature heating, that is expressed as, if T1 × t1 = T2 × t2, and |t1 -t2| << t1, M1 ≈ M2, wherein if standard constant temperature heating is performed at the temperature T1, the moisture value after the time t1 is M1; and if standard constant temperature heating is performed at the temperature T2, the moisture value after the time t2 is M2, and the small range means abs (T1-T2) <5.
According to an embodiment of the present invention, for a sample with a target moisture value M and an error e, heating is performed at a ramp temperature starts at Ta, and ends at Tb. The heating time is t and the temperature changing speed is (Tb-Ta) /t. and data is collected, and a temperature at which the moisture value reaches the target moisture value is used as a target temperature T to calculate a heating temperature T1, where T1 = f1 (T, T0, M, t) ; performing standard constant temperature heating at a predictive heating temperature T1, considering an event A in which a standard constant temperature heating end condition is met and moisture value is MA; an event B in which the target moisture value M is attained and the moisture value MA = M; an event C which is a timeout; by setting n = 1, and using (A and B) or C as a heating termination condition; by checking if |MA -M| < e/2, the predictive heating temperature T1 is successfully predicted.
According to an embodiment of the present invention, the algorithm is for predicting a temperature adjustment in a small range, and for an original temperature T0, time t0, and moisture value M, considering that time t << t0, an adjusted time t1 = t0 + t or t1 = t0 -t, an adjusted temperature T1 = T0 × t0/t1, and the moisture value M remains unchanged, the small range means abs (T1-T2) <5.
According to an embodiment of the present invention, for a sample with unknown target moisture value, the algorithm specifically comprises the following steps of:
S11: accessing the algorithm guide, and selecting an algorithm having no target value;
S12: heating by selecting the temperature in a progressively increasing manner;
S13: acquiring a plurality of target physical quantities through analysis of the heating data;
S14: calculating the predicted heating temperature based on the heating data; and
S15: automatically generating a heating method.
According to an embodiment of the present invention, the target physical quantities in step S13 are weight, temperature, and time.
According to an embodiment of the present invention, in step S15, the heating method is automatically generated at the predicted heating temperature.
According to an embodiment of the present invention, performing heating at a ramp temperature, collecting a moisture value sequence Mn in real time at a fixed time interval, and obtaining T1, T2, and T3 in real time; and when T1, T2, and T3 meet condition X, a final heating temperature T for the sample is obtained using expressions:
T1 = f3 (M) ;
T2 = f4 (M) ;
T3 = f5 (M) ;
X (T1, T2, T3) is reached; and 
T = f6 (T1, T2, T3) .
According to an embodiment of the present invention, the algorithm is implemented by a device software with a programmable central processing unit.
The positive improvement effects of the present invention are as follows.
According to the algorithm for predicting a heating temperature of a moisture meter in the present invention, heating temperatures for common material samples (for which a moisture meter is used to test moisture) can be automatically, efficiently, and quickly predicted without manual intervention. In the present invention, using an algorithm for predicting a moisture meter test that is based on weight change trend determination and heating temperature time conversion with known or unknown target moisture value can greatly increase the success rate of prediction, provide users with an automated program algorithm, and is convenient and efficient.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a flowchart of an algorithm for predicting a heating temperature of a moisture meter according to the present invention
Fig. 2 is a diagram of a weight change trend in an algorithm for predicting a heating temperature of a moisture meter according to the present invention
Fig. 3 is a schematic diagram of a moisture value being too low and temperature increasing adjustment being performed in an algorithm for predicting a heating temperature of a moisture meter according to the present invention
Fig. 4 is a schematic diagram of a moisture value being too high and temperature decreasing adjustment being performed in an algorithm for predicting a heating temperature of a moisture meter according to the present invention
Fig. 5 is a schematic diagram of a moisture change curve model of a sample without a target value in a heating process through progressive temperature increasing in an algorithm for predicting a heating temperature of a moisture meter according to the present invention
DETAILED DESCRIPTION OF EMBODIMENTS
To make the above objectives, features and advantages of the present invention more apparent and easier to understand, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. Reference will now be made in detail to preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The same reference numerals used in all the accompanying drawings denote identical or similar parts wherever possible.
Furthermore, although the terms used in the present invention are selected from well-known common terms, some of the terms mentioned in the description of the present invention may have been selected by the applicant according to his or her  determination, and the detailed meaning thereof is described in the relevant section described herein.
Furthermore, the present invention must be understood, not simply by the actual terms used but also by the meanings encompassed by each term.
As shown in Figs 1 to 5, the present invention provides an algorithm for predicting a heating temperature of a moisture meter, which selects the temperature in a progressively increasing manner by using an algorithm guide in order to heat a sample with a known or unknown target moisture value; calculating a predicted heating temperature based on heating data, and verifying the predicted heating temperature through heating until the prediction meets a user requirements. The algorithm is based on physical quantities such as weight change, heating temperature, and heating time of a sample.
Preferably, if the algorithm for predicting a heating temperature of a moisture meter is for a sample with a target moisture value, the algorithm specifically comprises the following steps:
S1: accessing the algorithm guide, and selecting an algorithm having a target value;
S2: heating by selecting the temperature in a progressively increasing manner;
S3: acquiring a plurality of target physical quantities through analysis of the heating data,
Wherein the target physical quantities in step S3 preferably comprise a weight, a temperature, and a time;
S4: calculating the predicted heating temperature based on the heating data;
S5: performing heating verification at the predicted heating temperature, wherein step S5 comprises: using the predicted heating temperature to perform a constant temperature heating test to verify accuracy of the moisture accuracy in the predicted temperature, and collecting heating data during the heating process thereof, wherein the heating data preferably comprises a temperature, a time, and a weight;
S6: analysing the heating data, and if the user requirements are met, terminating the prediction and automatically generating a heating method; otherwise, calculating a new predicted heating temperature based on the heating data, and entering step S7, wherein step S6 further comprises: otherwise, calculating the new predicted heating  temperature based on the physical quantities such as temperature, time, and weight; and
S7: repeating step S5 and step S6, until the prediction meets the user requirements.
According to the above description, if the algorithm is for a sample with a target moisture value, a moisture value is proportional to a product of a heating time and temperature in a small range during constant temperature heating, that is expressed as, if T1 × t1 = T2 × t2, and |t1 -t2| << t1, M1 ≈ M2, wherein if standard constant temperature heating is performed at the temperature T1, the moisture value after the time t1 is M1; and if standard constant temperature heating is performed at the temperature T2, the moisture value after the time t2 is M2, the small range means abs (T1-T2) <5.
The algorithm is for a sample with a target moisture value M and an error e, heating is performed at a ramp temperature starts at Ta, and ends at Tb. The heating time is t and the temperature changing speed is (Tb-Ta) /t. and data is collected, and a temperature at which the moisture value reaches the target moisture value is used as a target temperature T to calculate a heating temperature T1, where T1 = f1 (T, T0, M, t) ; performing standard constant temperature heating at a predictive heating temperature T1, considering an event A in which a standard constant temperature heating end condition is met, and moisture value is MA; an event B in which the target moisture value M is attained, and the moisture value MA = M; an event C which is a timeout; by setting n = 1, and using (A and B) or C as a heating termination condition; by checking if |MA -M| < e/2, the predictive heating temperature T1 is successfully predicted. This step can also be determined by the user. Otherwise, it will result in the following 3 cases:
First case: A moisture value is too low (as shown in FIG. 3) , and event A and event B successively occur at the end of heating or event A and event C successively occur at the end of heating. In this case, the heating temperature needs to be increased.
Second case: A moisture value is too high (as shown in FIG. 4) , and event B and event A successively occur at the end of heating or event A and event C successively occur at the end of heating. In this case, the heating temperature needs to be decreased.
Third case: A deviation of a selected temperature is too great, and only event C occurs at the end of heating. In this case, the heating temperature needs to be increased; and T2 = f2 (A, B, C, n) .
Standard constant temperature heating is performed at adjusted temperature T2, or the temperature adjustment is successful, or a new round of temperature adjustment and testing needs to be performed. If the error is less than e/2, the temperature adjustment is successful. Otherwise, a new round of temperature adjustment and testing needs to be performed.
For heating at a ramp temperature used in the present invention, a temperature at which moisture starts to significantly evaporate is used as a starting temperature T0 (for different moisture meters, this starting temperature may have a slight deviation) , an upper limit of a safe heating temperature of the meter is used as a terminating temperature, the heating time is t, and the heating temperature is increased at a uniform rate or at a variable rate until enough data is collected or the temperature reaches the ending temperature of the ramp temperature. Such a heating curve abandons the discontinuity of stepped heating, and can be close to an actual constant temperature heating curve in the best way.
The prediction algorithm is for a temperature adjustment in a small range, and for an original temperature T0, time t0, and moisture value M, considering that time t << t0, an adjusted time t1 = t0 + t or t1 = t0 -t, an adjusted temperature T1 = T0 × t0/t1, and the moisture value M remains unchanged, the small range means abs (T1-T2) <5.
Preferably, if the algorithm for predicting a heating temperature of a moisture meter is for a sample with an unknown target moisture value, the algorithm specifically comprises the following steps of:
S11: accessing the algorithm guide, and selecting an algorithm having no target value;
S12: heating by selecting the temperature in a progressively increasing manner;
S13: acquiring a plurality of target physical quantities through analysis of the heating data,
Wherein the target physical quantities in step S13 are preferably a weight, a temperature, and a time;
S14: calculating the predicted heating temperature based on the heating data; and 
S15: automatically generating a heating method.
In step S15, the heating method is automatically generated at the predicted heating temperature.
According to the above description, the algorithm is for any sample without a target moisture value, in which heating is performed at a ramp temperature, a moisture value sequence Mn is collected in real time at a fixed time interval, and T1, T2, and T3 are obtained in real time; and when T1, T2, and T3 meet a condition X, a final heating temperature T for the sample is obtained using the expressions:
T1 = f3 (M) ;
T2 = f4 (M) ;
T3 = f5 (M) ;
X (T1, T2, T3) is reached; and
T = f6 (T1, T2, T3) .
In the present invention, the algorithm is implemented by a device software with a programmable central processing unit.
According to the above description, using the algorithm for predicting the heating temperature of a moisture meter is based on physical quantities such as weight change, heating temperature, and heating time of a sample. The algorithm greatly increases the success rate of prediction, provide users with an automated program algorithm, and is convenient and efficient.
In the present invention, heating is performed by selecting the temperature in a progressively increasing manner from temperature T1 to temperature T2, for a duration of time t, where T1 is the temperature at which moisture of a sample just starts to significantly evaporate, and T2 is an upper limit of a safe temperature (at which temperature the sample does not burn) of the moisture meter. The manner of temperature change is uniform temperature rise, and the temperature change rate is (T1-T2) /t.
Herein, the advantages of heating using a ramp mode are as follows: 1. the temperature change is uniform. 2. It has the highest similarity with a target curve and is easy to infer. Similarly, if T1, T2, and t are appropriately changed, or a stepped temperature increasing manner or a certain variable rate temperature increasing  manner is used to obtain Tn, the target curve can also be inferred, but the difficulty of inferring is more.
As shown in FIG. 2, for the algorithm having a target value, in the present invention, a diagram of a weight change trend is formed by collecting data such as temperature, weight, and time in a heating process in real time. The diagram of a weight change trend is mainly composed of two curves: a moisture value change curve and a moisture value change rate histogram. The moisture value change curve helps to observe a real-time moisture value change situation and find a target moisture value.
The moisture value change rate histogram is convenient to intuitively analyse the inflection point of the moisture value change. By observing the distribution of moisture value change rate, a target temperature can be predicted more accurately. A point on the moisture value curve that is equal to the target moisture value is considered for a sample with a target moisture value. Then, a heating temperature point is predicted based on the change situation of the moisture value.
As shown in Figs 3 to 5, for an algorithm having a target value, in the present invention, a moisture value is proportional to a product of a heating time and temperature in a small range during constant temperature heating. If standard constant temperature heating is performed at temperature T1, the moisture value after time t1 is M1. If standard constant temperature heating is performed at temperature T2, the moisture value after time t2 is M2. If T1 *t1 = T2 *t2, and |t1 -t2| << t1, then M1 ≈ M2, and the small range means abs (T1-T2) <5. The smaller the time changes, the closer the moisture values are.
For an algorithm having no known target value of a sample, in a heating process that increases temperature in a progressive manner, in the present invention, a heating temperature at which the inflection point of the moisture value change per unit time occurs is closely related to a suitable heating temperature of the sample. Through analysis of the weight data collected in real time in the temperature increasing process, the moisture change curve model of the sample and the heating temperature at which the inflection point of the moisture value change amount occurs are obtained, thereby obtaining the heating temperature suitable for the sample.
In conclusion, according to the algorithm for predicting a heating temperature of a moisture meter in the present invention, heating temperatures for common material samples (for which a moisture meter is used to test moisture) can be automatically, efficiently, and quickly predicted without manual intervention. In the present invention,  using an algorithm for predicting a moisture meter test that is based on weight change trend determination and heating temperature time conversion in case of known or unknown target moisture value can greatly increase the success rate of prediction, provide users with an automated program algorithm, and is convenient and efficient.
Although specific implementations of the present invention have been described above, those skilled in the art should understand that these are merely examples, and the scope of protection of the present invention is defined by the appended claims. Various alterations or modifications to these implementations can be made by those skilled in the art without departing from the principle and essence of the present invention. However, these alterations and modifications all fall within the scope of protection of the present invention.

Claims (14)

  1. A algorithm for predicting a heating temperature of a moisture meter, said algorithm comprises the steps of:
    - selecting a temperature in a progressively increasing manner from an algorithm guide in order to heat a sample with a known or unknown target moisture value;
    - calculating a predicted heating temperature based on heating data; and
    - verifying the predicted heating temperature through heating until the meets user requirements.
  2. The algorithm of claim 1, characterized in that for the sample with known target moisture value, the algorithm specifically comprises the following steps of:
    - S1: accessing the algorithm guide, and selecting an algorithm having a target value;
    - S2: heating by selecting the temperature in a progressively increasing manner;
    - S3: acquiring a plurality of target physical quantities through analysis of the heating data;
    - S4: calculating the predicted heating temperature based on the heating data;
    - S5: performing heating verification at the predicted heating temperature;
    - S6: analysing the heating data, and if the user requirements are met, terminating the prediction and automatically generating a heating method; otherwise, calculating a new predicted heating temperature based on the heating data, and entering step S7; and
    - S7: repeating step S5 and step S6, until the prediction meets the user requirements.
  3. The algorithm of claim 2, characterized in that the target physical quantities in step S3 comprise weight of the sample, temperature, and time.
  4. The algorithm of claim 2, characterized in that step S5 further comprises: using the predicted heating temperature to perform a constant temperature heating test to verify accuracy of the predicted heating temperature, and collecting heating data during the process thereof.
  5. The algorithm of claim 4, characterized in that the heating data comprises temperature, time, and weight of the sample.
  6. The algorithm of claim 2, characterized in that step S6 comprises: otherwise, calculating the new predicted heating temperature based on the physical quantities: the temperature, the time, and the weight of the sample.
  7. The algorithm of claim 2, characterized in that for the sample with a target moisture value, a moisture value is proportional to a product of a heating time and temperature in a small range during constant temperature heating, expressed as, if T1 × t1 = T2 × t2, and |t1 -t2| << t1, then M1 ≈ M2, wherein if standard constant temperature heating is performed at the temperature T1, the moisture value after the time t1 is M1; and if standard constant temperature heating is performed at the temperature T2, the moisture value after the time t2 is M2.
  8. The algorithm of claim 2, characterized in that for a sample with a target moisture value M and an error e, heating is performed at a ramp mode and data is collected, and a temperature at which the moisture value reaches the target moisture value is used as a target temperature T to calculate a heating temperature T1, where T1 = f1 (T, T0, M, t) ; performing standard constant temperature heating at a predictive heating temperature T1, considering an event A in which a standard constant temperature heating end condition is met and moisture value is MA; an event B in which the target moisture value M is attained and the moisture value is MA = M; an event C which is a timeout; setting n = 1, and using (A and B) or C as a heating termination condition; by checking if |MA -M| < e/2, the predictive heating temperature T1 is successfully predicted.
  9. The algorithm of claim 2, characterized in that the algorithm is for a temperature adjustment in a small range, and for an original temperature T0, time t0, and moisture value M, considering that time t << t0, an adjusted time t1 = t0 + t or t1 = t0 -t, an adjusted temperature T1 = T0 × t0/t1, and the moisture value M remains unchanged, and the small range means abs (T1-T2) <5.
  10. The algorithm of claim 1, characterized in that for a sample without a target moisture value, the algorithm specifically comprises the following steps of:
    - S11: accessing the algorithm guide, and selecting an algorithm having no target value;
    - S12: heating by selecting the temperature in a progressively increasing manner;
    - S13: acquiring a plurality of target physical quantities through analysis of the heating data;
    - S14: calculating the predicted heating temperature based on the heating data; and
    - S15: automatically generating a heating method.
  11. The algorithm of claim 10, characterized in that the target physical quantities in step S13 are weight, temperature, and time.
  12. The algorithm for a heating temperature of a moisture meter of claim 10, characterized in that in step S15, the heating method is automatically generated at the predicted heating temperature.
  13. The algorithm of claim 10, characterized in that performing heating at a ramp temperature, collecting a moisture value sequence Mn in real time at a fixed time interval, and obtaining T1, T2, and T3 in real time; and when T1, T2, and T3 meet condition X, a final heating temperature T for the sample is obtained using expressions:
    - T1 = f3 (M) ;
    - T2 = f4 (M) ;
    - T3 = f5 (M) ;
    - X (T1, T2, T3) is reached; and
    - T = f6 (T1, T2, T3) .
  14. The algorithm of claim 1, characterized in that the algorithm is implemented by device software with a programmable central processing unit.
PCT/CN2020/139871 2019-12-30 2020-12-28 Algorithm for predicting heating temperature of a moisture meter WO2021136129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911400272.X 2019-12-30
CN201911400272.XA CN113126671A (en) 2019-12-30 2019-12-30 Prediction algorithm for heating temperature of moisture meter

Publications (1)

Publication Number Publication Date
WO2021136129A1 true WO2021136129A1 (en) 2021-07-08

Family

ID=76687354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139871 WO2021136129A1 (en) 2019-12-30 2020-12-28 Algorithm for predicting heating temperature of a moisture meter

Country Status (2)

Country Link
CN (1) CN113126671A (en)
WO (1) WO2021136129A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286609A (en) * 2001-03-26 2002-10-03 A & D Co Ltd Method and program for controlling moisture meter, recording medium recording the program, and moisture meter
JP2004163337A (en) * 2002-11-15 2004-06-10 A & D Co Ltd Drying-by-heating type moisture meter
US20050049800A1 (en) * 2003-09-03 2005-03-03 Naoto Izumo Control method for moisture meter, control program for moisture meter, record medium recording control program for moisture meter and moisture meter
CN102129263A (en) * 2010-12-16 2011-07-20 上海精密科学仪器有限公司 Method for heating measured material for moisture instrument
CN102395869A (en) * 2009-04-16 2012-03-28 梅特勒-托利多公开股份有限公司 Method and sample for testing a measuring instrument for gravimetric moisture determination
CN102466665A (en) * 2010-11-18 2012-05-23 西安扩力机电科技有限公司 Moisture tester for drying equipment
JP2019152572A (en) * 2018-03-05 2019-09-12 株式会社島津製作所 Moisture percentage measurement device
CN110596314A (en) * 2019-09-09 2019-12-20 深圳冠亚水分仪科技有限公司 Operation method and control system of moisture meter control software

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284783B2 (en) * 1994-09-30 2002-05-20 三菱化学株式会社 Moisture measurement method
JP4247093B2 (en) * 2003-11-05 2009-04-02 京都電子工業株式会社 Moisture measuring method and moisture measuring device
RU2492398C1 (en) * 2012-03-27 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный университет инженерных технологий (ФГБОУ ВПО ВГУИТ) Method of predicting temperature of fines containing free and bound moisture, in convective drying process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286609A (en) * 2001-03-26 2002-10-03 A & D Co Ltd Method and program for controlling moisture meter, recording medium recording the program, and moisture meter
JP2004163337A (en) * 2002-11-15 2004-06-10 A & D Co Ltd Drying-by-heating type moisture meter
US20050049800A1 (en) * 2003-09-03 2005-03-03 Naoto Izumo Control method for moisture meter, control program for moisture meter, record medium recording control program for moisture meter and moisture meter
CN102395869A (en) * 2009-04-16 2012-03-28 梅特勒-托利多公开股份有限公司 Method and sample for testing a measuring instrument for gravimetric moisture determination
CN102466665A (en) * 2010-11-18 2012-05-23 西安扩力机电科技有限公司 Moisture tester for drying equipment
CN102129263A (en) * 2010-12-16 2011-07-20 上海精密科学仪器有限公司 Method for heating measured material for moisture instrument
JP2019152572A (en) * 2018-03-05 2019-09-12 株式会社島津製作所 Moisture percentage measurement device
CN110596314A (en) * 2019-09-09 2019-12-20 深圳冠亚水分仪科技有限公司 Operation method and control system of moisture meter control software

Also Published As

Publication number Publication date
CN113126671A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN110687072B (en) Calibration set and verification set selection and modeling method based on spectral similarity
CN109740293B (en) Method for calculating corrected value of water content of flue-cured tobacco shreds after baking
JPWO2020022124A1 (en) Analysis processing method using impedance spectrum data, impedance spectrum data analysis processing system, and impedance spectrum analysis processing program
CN109030548B (en) Polymer material thermal aging life evaluation method based on activation energy variation
CN113820642B (en) Online self-calibration system of synchronous multi-channel voltage acquisition device
CN103471957A (en) Tobacco moisture-retaining performance test method
CN116678489B (en) Quality control method, system, equipment and medium for force sensor
CN109115692A (en) A kind of spectral data analysis method and device
WO2021136129A1 (en) Algorithm for predicting heating temperature of a moisture meter
CN117150386B (en) Assessment method and device for measurement uncertainty of humidity sensor based on self-adaption
WO1999002965A1 (en) A method of analyzing a sample of a product having a starch content, and an apparatus for such analyze
RU2492398C1 (en) Method of predicting temperature of fines containing free and bound moisture, in convective drying process
CN111122189B (en) Method for measuring uncertainty of test table position of gas equipment and method for measuring thermal efficiency
CN115290165A (en) Detection method, system and device of ultrasonic water meter
CN110286198B (en) Method for evaluating consistency of cut tobacco processing strength in drum drying process based on cut tobacco heating process
CN113970502A (en) Tobacco leaf water content prediction model construction method based on rapid oven method
CN104964889B (en) Filter stick hardness quick determination method
CN117851960B (en) Temperature test data management method based on electronic cigarette atomizer
CN117851960A (en) Temperature test data management method based on electronic cigarette atomizer
CN117249922B (en) Temperature calibration method and system for temperature tester
CN108226082A (en) A kind of calibration method of Moisture Meter damping response time
RU2439543C1 (en) Method for complex determination of thermophysical characteristics of materials
CN117572910A (en) Intelligent humidifying therapeutic instrument adjusting method and system based on temperature control
CN110568006B (en) Heat storage density testing method and system for heat storage material
CN117825454A (en) Sensor rapid calibration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908529

Country of ref document: EP

Kind code of ref document: A1