WO2021136103A1 - 一种功率放大器 - Google Patents

一种功率放大器 Download PDF

Info

Publication number
WO2021136103A1
WO2021136103A1 PCT/CN2020/139580 CN2020139580W WO2021136103A1 WO 2021136103 A1 WO2021136103 A1 WO 2021136103A1 CN 2020139580 W CN2020139580 W CN 2020139580W WO 2021136103 A1 WO2021136103 A1 WO 2021136103A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
microstrip line
pcb board
power
circulator
Prior art date
Application number
PCT/CN2020/139580
Other languages
English (en)
French (fr)
Inventor
陈太蒙
樊奇彦
刘海涛
Original Assignee
京信网络系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信网络系统股份有限公司 filed Critical 京信网络系统股份有限公司
Priority to EP20910533.7A priority Critical patent/EP4087124A4/en
Publication of WO2021136103A1 publication Critical patent/WO2021136103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to the technical field of radio frequency amplification, and more specifically, to a power amplifier.
  • Power amplifiers are widely used in microwave heating, wireless communication, satellite communication, radar and other systems. Its function is to amplify the microwave signal and feed it into the device containing the body to be heated or transmit it to space via an antenna. Due to the long time working in high temperature and high power state, the probability of failure and failure of the power amplifier is much higher than that of other hardware of the system. Therefore, the reliability requirements of the power amplifier of the system are quite high. The most easily burnt-out place in a power amplifier is at its output end. In particular, when the output power of the power amplifier exceeds 100W or even 1000W, its shortcomings are particularly prominent. In addition to the design of the power amplifier tube to ensure its reliability, the more important thing is the power conduction method. PCB board as a physical transmission carrier, among which the power capacity of the transmission line, transmission loss, and the thermal conductivity of the transmission carrier are the key considerations.
  • the key parameters of high-frequency PCB sheets are tan ⁇ , thermal conductivity coe tc , and dielectric constant ⁇ r .
  • the dielectric constant ⁇ r The value of determines the width of the microstrip transmission line and plays a decisive role in the power capacity of the microstrip transmission line. The wider the microstrip line, the greater the power capacity.
  • the disadvantage of the prior art is that the power amplifier is only suitable for the output of medium and small power, and it is difficult or impossible to guarantee the reliable output of the high power of 100W and 1000W.
  • high-power amplifiers such as 1000W class equipment, generally use multiple modules to synthesize through an external connector, which has the disadvantages of complex structure, high cost, large loss, and large volume.
  • the technical problem to be solved by the present invention is to solve the problem that the existing power amplifier is difficult or unable to guarantee high-power reliable output and large loss.
  • an embodiment of the present invention provides a power amplifier, which includes a first PCB board, a second PCB board, a power amplifier tube circuit, and a circulator;
  • the power amplifier tube circuit is connected to the first end of the circulator through a first microstrip line, and a second microstrip line is connected to the second end of the circulator.
  • the first microstrip line, the power The amplifier tube circuit is arranged on the first PCB board, the second microstrip line is arranged on the second PCB board, and the circulator is arranged on the first PCB board or the second PCB board.
  • the first PCB board, the second PCB board and the first microstrip line is provided on the first PCB board, and the second microstrip line is provided on the second PCB board, only the microstrip line at the output end is burned out.
  • the second PCB board at the output end can be replaced, and the power capacity of the microstrip line can be improved by designing microstrip lines with different characteristic impedances.
  • the design characteristic impedance of the first microstrip line is less than or equal to the design characteristic impedance of the second microstrip line.
  • the first and second microstrip lines can have greater power capacity and improve the reliability of the power amplifier Sex.
  • the dielectric constant ⁇ r1 of the first PCB board is greater than or equal to the dielectric constant ⁇ r2 of the second PCB board;
  • the dielectric thickness d 1 of the first PCB board is smaller than the dielectric thickness d 2 of the second PCB board.
  • the overall loss value of the power amplifier is reduced.
  • a third microstrip line is also connected to the third end of the circulator, and the third microstrip line is provided on the first PCB board or the second PCB board.
  • the third microstrip line By setting the third microstrip line to be connected to the third end of the circulator, the third microstrip line can accommodate the power of the power amplifier when transmitting total reflection, so that the third port of the circulator can better judge the power amplifier of the output port. Wave situation.
  • design characteristic impedance of the third microstrip line is the same as the design characteristic impedance of the second microstrip line.
  • the third microstrip line can fully accommodate the power when the power amplifier is totally reflected.
  • the power amplifier tube circuit includes a plurality of power amplifier tubes, the plurality of power amplifier tubes are arranged on the first PCB board, and the plurality of power amplifier tubes are sequentially cascaded through a fourth microstrip line.
  • the power amplifier tube connected at the end is connected to the first end of the circulator through the first microstrip line.
  • the multiple power amplifier tubes are sequentially cascaded through the fourth microstrip line to perform multi-level power amplification on microwave signals, so that the power amplifier realizes high-power output.
  • the power amplifier tube circuit includes a power divider, a multi-stage power amplifier tube, and a power combiner.
  • the power divider, the multi-stage power amplifier tube, and the power combiner are arranged in the first A PCB board, the power amplifier tubes of multiple stages are sequentially cascaded through the fourth microstrip line, wherein the power amplifier tubes cascaded at the end include at least two, and the input ends of the at least two final power amplifier tubes are respectively
  • the fourth microstrip line after the power amplifier tube of the upper stage is connected through the power divider, the output ends of at least two final stage power amplifier tubes are respectively connected to the power combiner, and the power combiner passes
  • the first microstrip line is connected to the first end of the circulator.
  • the power divider is connected to at least two final power amplifier tubes, so that the received microwave signal can be divided into several channels for power amplification, and the power combiner combines the microwave signals passing through different channels of power amplifiers to output, thereby reducing microwave Signal loss.
  • the second ends of the multiple circulators are connected to the second microstrip line through a power combiner, and the power combiner is provided on the second PCB board;
  • the power amplifier tube circuit includes a power divider, a multi-stage power amplifier tube, the power divider and the multi-stage power amplifier tube are arranged on the first PCB board, and the multi-stage power amplifier tube passes through a fourth micro
  • the strip lines are cascaded sequentially, wherein the number of the power amplifier tubes cascaded at the end is multiple and the number is the same as the number of the circulators, and the input ends of the multiple final stage power amplifier tubes are respectively connected to the upper stage through the power divider
  • the output ends of a plurality of final power amplifier tubes are respectively connected to the first end of the corresponding circulator through the first microstrip line.
  • first end of the circulator is welded on the first microstrip line
  • second end of the circulator is welded on the second microstrip line.
  • the first end of the circulator is welded to the first microstrip line, and the second end is welded to the second microstrip line, so that the small-volume circulator is fixed between the first microstrip line and the second microstrip line .
  • the circulator also includes a radio frequency adapter, and the second end of the circulator is connected to the radio frequency adapter through the second microstrip line.
  • the radio frequency adapter By welding a radio frequency adapter on the second microstrip line, the radio frequency adapter can be used as the output port of the entire power amplifier.
  • microstrip lines By designing a power amplifier with multiple PCB boards and multiple microstrip lines for transmission, only the PCB board at the output end needs to be replaced when the microstrip line at the output end is burned; by designing microstrip lines with different characteristic impedances Improve the power capacity of the microstrip line, reduce the insertion loss and heat generation of the microstrip line, and increase the difficulty of electrical breakdown and thermal breakdown by increasing the ground spacing of the microstrip line, thereby greatly improving the reliability of the power amplifier of the present invention ⁇ ;
  • the present invention has a simple structure and low cost, and has strong practical application value.
  • FIG. 1 is a schematic diagram of the structure of a power amplifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial schematic diagram of a power amplifier according to Embodiment 2 of the present invention.
  • Fig. 3 is a partial schematic diagram of a power amplifier according to Embodiment 3 of the present invention.
  • Fig. 4 is a partial schematic diagram of a power amplifier according to Embodiment 4 of the present invention.
  • the power amplifier includes a first PCB board 1, a second PCB board 3, a power amplifier tube circuit, and a circulator 2;
  • the power amplifier tube circuit is connected to the first end of the circulator 2 through a first microstrip line 106, and the second end of the circulator 2 is connected to a second microstrip line 301.
  • the power amplifier tube circuit is provided on the first PCB board 1
  • the second microstrip line 301 is provided on the second PCB board 3
  • the circulator is provided on the first PCB board 1 or The second PCB board 3 (shown in Figure 1).
  • the power amplifier circuit is connected to the first end of the circulator 2 through the first microstrip line 102, and the microwave signal is input from RF_IN, amplified by the power amplifier circuit, and then output to the ring via the first microstrip line 106
  • the second microstrip line 301 connected to the circulator 2 is then output to the second PCB board 3, and the signal is output by the second PCB board 3.
  • the second microstrip line 301 is set on the second PCB board 3.
  • the circulator 2 can be arranged on the second PCB board 3, in the specific implementation process, the circulator 2 can also be arranged on the first PCB board 1.
  • the characteristic impedance of the first microstrip line 106 is designed to be 25 ⁇
  • the characteristic impedance of the second microstrip line 301 is designed to be 50 ⁇
  • Z is the characteristic impedance of the microstrip line
  • L is the inductive reactance of the microstrip line
  • C is the capacitive reactance of the microstrip line
  • ⁇ r is the dielectric constant of the PCB board
  • s is the microstrip The area of the line
  • d is the dielectric thickness of the PCB.
  • the second microstrip line 301 with a characteristic impedance of 50 ⁇ on the second PCB 3 has a relatively large physical size and can accommodate higher transmission power. And since the characteristic impedance is 50 ⁇ , ideal matching can be achieved. In addition, the ground spacing of the second microstrip line 301 with a characteristic impedance of 50 ⁇ should be appropriately increased to increase the difficulty of air breakdown between the microstrip line and the ground. .
  • a first microstrip line 106 is provided on the first PCB board 1
  • a second microstrip line 301 is provided on the second PCB board 3, so that the microstrip at the output end When the strip line burns out, only the second PCB board at the output end needs to be replaced.
  • the power capacity of the microstrip line can be improved by designing microstrip lines with different characteristic impedances.
  • the design characteristic impedance of the first microstrip line 106 is less than or equal to the design characteristic impedance of the second microstrip line 301.
  • the characteristic impedance of the first microstrip line 106 is designed to be 25 ⁇ to increase the physical size and power of the first microstrip line 106.
  • the characteristic impedance of the second microstrip line 301 is designed to be greater than the characteristic impedance of the first microstrip line 106 , So that the second microstrip line 301 can accommodate higher transmission power.
  • the characteristic impedance of the second microstrip line 301 is designed to be 50 ⁇ , an ideal match can be achieved, so that the power capacity of the microstrip line can be optimized; a dielectric constant ⁇ r1 PCB board PCB board 1 is equal to the second dielectric constant ⁇ r2 3, the characteristic impedance of the second microstrip line 301 is designed to be equal to the characteristic impedance of the first microstrip line 106, so that The second microstrip line 301 can accommodate higher transmission power.
  • the characteristic impedance of the first microstrip line 106 By designing the characteristic impedance of the first microstrip line 106 to be less than or equal to the characteristic impedance of the second microstrip line 301, the first microstrip line 106 and the second microstrip line 301 can have greater power capacity and improve The reliability of the power amplifier.
  • the dielectric constant ⁇ r1 of the first PCB board 1 is greater than or equal to the dielectric constant ⁇ r2 of the second PCB board 3;
  • the first PCB dielectric thickness d of the dielectric plate 1 is less than the second PCB board 3 Thickness d 2 .
  • the dielectric constant ⁇ r1 of the first PCB board 1 may be greater than the dielectric constant ⁇ r2 of the second PCB board 3, and the dielectric constant ⁇ r1 of the first PCB board 1 may also be equal to the dielectric constant of the second PCB board 3.
  • the constant ⁇ r2 may be greater than the dielectric constant ⁇ r2 of the second PCB board 3, and the dielectric constant ⁇ r1 of the first PCB board 1 may also be equal to the dielectric constant of the second PCB board 3.
  • the dielectric constant ⁇ r1 of the first PCB board 1 is designed to be greater than the dielectric constant ⁇ r2 of the second PCB board 3, so that the characteristic impedance of the first microstrip line 106 is smaller than the characteristic impedance of the second microstrip line 301; a first dielectric constant ⁇ r1 PCB board PCB board 1 is equal to the second dielectric constant ⁇ r2 3, the first dielectric board PCB is less than the thickness D 1 is the thickness of the second PCB dielectric plate 3 d 2, so that the signal The insertion loss value of the first PCB board 1 is reduced, so that the second PCB board 3 can receive more accurate microwave signals.
  • the PCB by a first dielectric constant ⁇ r1 1, the dielectric thickness d 1 and a second board PCB of a dielectric constant ⁇ r2 3, associated dielectric thickness d 2 is formed, so that the overall loss of power amplifier is reduced.
  • the loss factor tan ⁇ of the PCB board directly affects the power transmission loss of the PCB board
  • the thermal conductivity coe tc of the PCB board directly affects the heat dissipation performance of the PCB board.
  • the loss factor tan ⁇ of the second PCB board 3 can be equal to or less than the loss factor tan ⁇ of the first PCB board 1, so that the first PCB board 1
  • the power transmission loss in the second PCB board 3 is equal to or compared with the power transmission loss of the first PCB board 1.
  • the former has less power transmission loss, which can increase the power capacity of the transmission line at the output end of the high-power amplifier; similarly, it can be the second thermal conductivity of the PCB coe tc 3 is equal to or greater than the thermal conductivity of the first PCB plate 1 coe tc, so that the heat dissipation performance can heat dissipation performance of the first 3 and the second PCB board PCB1 or both compared to comparable ,
  • the former has better heat dissipation performance, so that the output end of the high-power amplifier with large heat consumption has better heat dissipation performance, thereby improving the reliability of the high-power amplifier.
  • the power amplifier tube circuit includes a multi-stage power amplifier tube, the multi-stage power amplifier tube is provided on the first PCB board 1, and the multi-stage power amplifier tube
  • the amplifier tubes are sequentially cascaded through the fourth microstrip line 102, and the power amplifier tube cascaded at the end is connected to the first end of the circulator 2 through the first microstrip line 106.
  • the power amplifier tubes of each level and the correspondingly connected microstrip lines are separated by capacitors to achieve isolation between devices.
  • the power amplifier tube circuit includes an amplifier tube 101, a push stage power amplifier tube 103, and a final stage power amplifier tube 105; the microwave signal is input by RF_IN, pre-amplified by the amplifier tube 101 and passed
  • the capacitor is DC-blocked, and then connected to the booster-level power amplifier tube 103 through the first fourth microstrip line 102 and the DC-blocking capacitor.
  • the booster-level power amplifier tube 103 passes through the second fourth microstrip line 102 and is located on the fourth microstrip line 102.
  • the DC blocking capacitor at the end transmits the amplified signal to the final stage power amplifier tube 105, and the output of the final stage power amplifier tube 105 is connected to the first microstrip line 106 after passing through the DC blocking capacitor.
  • the characteristic impedance of the first microstrip line 106 can be designed to be 25 ⁇ , and the characteristic impedance of the two fourth microstrip lines 102 can be set to 50 ⁇ .
  • the characteristic impedance of the first microstrip line 106 can be less than The characteristic impedance of the fourth microstrip line 102 can make the size of the first microstrip line 106 relatively large, thereby increasing its power capacity.
  • the multi-level power amplifier tubes are sequentially cascaded through the fourth microstrip line 102 to perform multi-level power amplification on microwave signals, so that the power amplifier realizes high-power output.
  • the first end of the circulator 2 can be welded on the first microstrip line 106, and the second end of the circulator 2 can be welded on the second microstrip line 301 .
  • the first end of the circulator 2 is welded to the first microstrip line 106, and the second end is welded to the second microstrip line 301, so that the small-volume circulator 2 is fixed to the first microstrip line 106. And the second microstrip line 301.
  • the radio frequency adapter in another embodiment, it further includes a radio frequency adapter, and the second end of the circulator 2 is connected to the radio frequency adapter through the second microstrip line 301.
  • the radio frequency adapter can be installed on the second PCB board 3 by direct welding.
  • the power amplifier includes a first PCB board 1, a circulator 2, a second PCB board 3, and a radio frequency adapter.
  • the radio frequency adapter is welded on the second microstrip line 301 and passes through the second microstrip line 301 and the circulator. 2
  • the RF adapter can be selected according to the power capacity. If the power capacity is 100 ⁇ 300W, the N-type adapter can be used. If the power capacity is 300W and above, the D-type adapter with larger physical size should be used.
  • the radio frequency adapter can be used as the output port of the entire power amplifier.
  • the impedance of the microstrip line can improve the power capacity of the microstrip line and reduce the insertion loss and heat generation of the microstrip line; thereby, a high-power power amplifier can be realized.
  • embodiment 2 of the present invention provides a power amplifier with another structure, which is different from embodiment 1 in that a third microstrip line 302 is also connected to the third end of the circulator 2, and the first The three microstrip lines 302 are provided on the first PCB board 1 or the second PCB board 3 (shown in FIG. 2).
  • the third microstrip line 302 is provided on the second PCB board 3, so that when the power amplifier is totally reflected, the third microstrip line 302 can accommodate the total reflected power, thereby The third port of the circulator 2 can better judge the standing wave condition of the output port power amplifier.
  • the third microstrip line 302 By setting the third microstrip line 302 to connect to the third end of the circulator 2, the third microstrip line 302 can accommodate the power when the power amplifier transmits total reflection, so that the third port of the circulator 2 can better determine the output port The standing wave of the power amplifier.
  • the designed characteristic impedance of the third microstrip line 302 is the same as the designed characteristic impedance of the second microstrip line 301.
  • the power that the third microstrip line 302 needs to accommodate is as large as the output power of the second microstrip line 301, and the characteristic impedance of the third microstrip line 302 is designed to be the same as that of the second microstrip line 301.
  • the characteristic impedance of the microstrip line 301 is the same, such as 50 ⁇ , so that the third microstrip line 302 can fully accommodate the power when the power amplifier is totally reflected.
  • the third microstrip line 302 can fully accommodate the power when the power amplifier is totally reflected.
  • the amplifier tube circuit of a power amplifier in this embodiment is realized by another structure.
  • the power amplifier tube circuit includes a power divider 107, a multi-stage power amplifier tube, and a power combiner. 108.
  • the power divider 107, the multi-stage power amplifier tube and the power combiner 108 are arranged on the first PCB board, and the multi-stage power amplifier tube is sequentially cascaded through the fourth microstrip line 102 , wherein the power amplifier tube cascaded at the end includes at least two, and the input ends of the at least two last-stage power amplifier tubes 105 are respectively connected to the power amplifier tubes of the previous stage through the power divider 107 On the fourth microstrip line 102, the output ends of at least two final power amplifier tubes 105 are respectively connected to the power combiner 108, and the power combiner 108 is connected to the circulator 2 through the first microstrip line 106 The first end of the connection.
  • the device isolation principle is the same as in Example 1, the at least two final power amplifiers can be connected to the power divider 107 and the power combiner 108 through a DC blocking capacitor to realize the device Isolation between.
  • FIG. 3 is a schematic diagram of another application example of a power amplifier according to Embodiment 2 of the present invention.
  • the microwave signal is input by RF_IN, pre-amplified by the amplifier tube 101 and blocked by a capacitor, and then passes through the first fourth microstrip line 102 and the DC blocking capacitor to connect to the driver stage power amplifier tube 103, and push The stage power amplifier tube 103 transmits the amplified signal to the final stage power amplifier tube 105 through the second fourth microstrip line 102 and the DC blocking capacitors located at both ends of the fourth microstrip line 102.
  • This embodiment 1 and embodiment 1 and implementation The difference of Example 2 is that, as shown in Figure 3, the final stage power amplifier tube 105 includes two.
  • the input ends of the two final stage power amplifier tubes 105 are respectively connected to the power splitter 107 through a DC blocking capacitor, and the power splitter 107 is connected to the second power splitter.
  • the output ends of the two final stage power amplifier tubes 105 are connected to the power combiner 108 after passing through the blocking capacitors.
  • the power combiner 108 is connected to the first end of the circulator 2.
  • the power combiner 108 is connected to the first end of the circulator 2 through the first microstrip line 106, and a second microstrip line 301 is connected to the second end of the circulator 2.
  • the multi-stage power amplifier tube, the fourth microstrip line 102, the power divider 107, the power combiner 108, and the first microstrip line 106 are all arranged on the first PCB board 1.
  • the second microstrip line 301 is provided on the second PCB board 3, and the circulator 2 is provided on the first PCB board 1 or the second PCB board 3 (shown in FIG. 3).
  • Embodiment 3 is connected to at least two final stage power amplifier tubes 105 through a power divider 107, so that the microwave signal received by the final stage power amplifier tube can be divided into several channels for power amplification, and the power is combined.
  • the router 108 synthesizes and outputs the microwave signals that have passed through different power amplifiers, thereby reducing the loss of the microwave signals.
  • this embodiment 3 can be combined with the solution of embodiment 2.
  • the third end of the circulator 2 is also connected to a third microstrip line 302, and the first The three microstrip lines 302 are provided on the first PCB board 1 or the second PCB board 3 (shown in FIG. 2).
  • the third microstrip line 302 is provided on the second PCB board 3, so that when the power amplifier undergoes total reflection, the third microstrip line 302 can accommodate the total reflected power, thereby The third port of the circulator 2 can better judge the standing wave condition of the output port power amplifier.
  • the third microstrip line 302 By setting the third microstrip line 302 to connect to the third end of the circulator 2, the third microstrip line 302 can accommodate the power when the power amplifier transmits total reflection, so that the third port of the circulator 2 can better determine the output port The standing wave of the power amplifier.
  • the design characteristic impedance of the third microstrip line 302 is the same as the design characteristic impedance of the second microstrip line 301.
  • the power that the third microstrip line 302 needs to accommodate is as large as the output power of the second microstrip line 301, and the characteristic impedance of the third microstrip line 302 is designed to be the same as that of the second microstrip line 301.
  • the characteristic impedance of the microstrip line 302 is the same, such as 50 ⁇ , so that the third microstrip line 302 can fully accommodate the power when the power amplifier is totally reflected.
  • the third microstrip line 302 can fully accommodate the power when the power amplifier is totally reflected.
  • Embodiment 4 The difference between Embodiment 4 and Embodiment 1 is that the amplifier tube circuit and circulator 2 of a power amplifier of this embodiment are realized by another structure. Specifically, there are multiple circulators 2 and multiple circulators.
  • the second end of 2 is connected to the second microstrip line 301 through a power combiner 108, the power combiner 108 is arranged on the second PCB board 3;
  • the power amplifier tube circuit includes a power divider 107, Multi-stage power amplifier tubes, the power divider 107 and the multi-stage power amplifier tubes are arranged on the first PCB board 1, and the multi-stage power amplifier tubes are sequentially cascaded through the fourth microstrip line 102, wherein
  • the number of the power amplifier tubes connected at the end is multiple and the number is the same as the number of the circulator 2, and the input ends of the multiple final-stage power amplifier tubes are respectively connected to the power amplifier tubes of the previous stage through the power divider 107
  • the output ends of a plurality of final power amplifier tubes are respectively connected to
  • the at least two final power amplifiers can be connected to the power divider 107 and the first microstrip line 106 through a DC blocking capacitor to achieve Isolation between devices.
  • FIG. 4 is a schematic diagram of another application example of a power amplifier in Embodiment 4 of the present invention.
  • the microwave signal is input from RF_IN, is pre-amplified by the amplifier tube 101 and blocked by a capacitor, and then passes through the first fourth microstrip line 102 and a DC blocking capacitor to connect the driver stage power amplifier tube 103, the driver stage
  • the power amplifier tube 103 transmits the amplified signal to the final stage power amplifier tube 105 through the second fourth microstrip line 102 and the DC blocking capacitors at both ends of the fourth microstrip line 102.
  • the final stage power amplifier tube 105 includes two, the input ends of the two final stage power amplifier tubes 105 are respectively connected to the power divider 107 through a DC blocking capacitor, and the power divider 107 is connected to the second fourth microstrip line 102.
  • the output ends of the two final stage power amplifier tubes 105 are connected to the first end of a circulator 2 through a first microstrip line 106 after passing through a DC blocking capacitor, and the second ends of the two circulators 2 are connected to a power combiner 108 ,
  • the power combiner 108 is connected with a second microstrip line 301.
  • the multi-stage power amplifier tube, the fourth microstrip line 102, the power divider 107, the first microstrip line 106, and the two circulators 2 are all arranged on the first PCB board 1, and the second microstrip line 301 ,
  • the power combiner 108 is arranged on the second PCB board 3.
  • this embodiment 4 is connected to at least two final stage power amplifier tubes 105 through a power divider 107, so that the microwave signal received by the final stage power amplifier tube can be divided into several channels for power amplification, and the power is combined.
  • the router 108 synthesizes and outputs the microwave signals that have passed through different power amplifiers, thereby reducing the loss of the microwave signals.
  • multiple circulators are connected to multiple final power amplifier tubes in a one-to-one correspondence, so that the output ends of the multiple final power amplifier tubes do not interfere with each other and are independent of each other.
  • the present invention provides a power amplifier, which includes a first PCB board, a second PCB board, a power amplifier tube circuit, and a circulator, so that when the output end of the power amplifier is burned out, only the PCB board at the output end can be replaced, and the power of the power amplifier is improved. Capacity, with strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

一种功率放大器,包括:包括第一PCB板、第二PCB板、功率放大管电路、环形器;所述功率放大管电路通过第一微带线与所述环形器的第一端连接,所述环形器的第二端连接有第二微带线,所述第一微带线、所述功率放大管电路设在所述第一PCB板,所述第二微带线设在所述第二PCB板,所述环形器设在所述第一PCB板或所述第二PCB板。通过设计第一PCB板和第二PCB板和在第一PCB板上设有第一微带线,第二PCB板上设有第二微带线,从而在输出端的微带线烧毁时只需对输出端的第二PCB板进行更换即可,另外可通过设计不同特征阻抗的微带线来提高微带线的功率容量。

Description

一种功率放大器
本发明要求于2019年12月31日提交中国专利局、申请号为201911413677.7、发明名称为“一种功率放大器”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及射频放大技术领域,更具体地,涉及一种功率放大器。
背景技术
功率放大器广泛应用于微波加热、无线通信、卫星通信,雷达等系统中。它的作用是将微波信号进行放大并馈入到盛有待加热体的装置或者经由天线向空间发射。由于长时间工作在高温、高功率状态,功率放大器出现故障而失效的概率远高于所属系统的其他硬件。因此,所属系统对功率放大器的可靠性要求是相当高的。功率放大器中最易烧毁的地方就在其输出端。特别地,当功率放大器输出功率超过100W甚至1000W时,其缺点尤为突出。除了功率放大管设计要保证其可靠性之外,更重要的便是功率传导方式了。PCB板材作为物理传输载体,其中传输线的功率容量、传输损耗、传输载体的导热能力等是重点考量对象。
高频PCB板材的关键参数由tanδ、导热系数coe tc、介电常数ε r,其中损耗因子tanδ越大那么功率传输损耗就越大,导热系数coe tc越大越有利于散热,介电常数ε r的值决定了微带传输线的宽度,并对微带传输线的功率容量起到决定性的作用,微带线越宽那么其功率容量就越大。
现有技术的缺陷是,功率放大器仅适合中小功率的输出,而很难或无法保证100W等级、1000W等级大功率可靠的输出。而目前大功 率放大器如1000W等级的设备一般采用多个模块通过外接合路器来合成,其具有结构复杂、成本高、损耗大、体积大等缺点。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是解决现有的功率放大器很难或无法保大功率可靠的输出且损耗大的问题。
(二)技术方案
为了解决上述技术问题,本发明实施例提供了一种功率放大器,包括第一PCB板、第二PCB板、功率放大管电路、环形器;
所述功率放大管电路通过第一微带线与所述环形器的第一端连接,所述环形器的第二端连接有第二微带线,所述第一微带线、所述功率放大管电路设在所述第一PCB板,所述第二微带线设在所述第二PCB板,所述环形器设在所述第一PCB板或所述第二PCB板。
通过设计第一PCB板、第二PCB板和在第一PCB板上设有第一微带线,第二PCB板上设有第二微带线,从而在输出端的微带线烧毁时只需对输出端的第二PCB板进行更换即可,另外可通过设计不同特征阻抗的微带线来提高微带线的功率容量。
进一步地,所述第一微带线的设计特征阻抗小于或等于所述第二微带线的设计特征阻抗。
通过将第一微带线的特征阻抗设计为小于或等于第二微带线的特征阻抗,从而使第一微带线和第二微带线能有更大的功率容量,提高功率放大器的可靠性。
进一步地,所述第一PCB板的介电常数ε r1大于或等于所述第二PCB板的介电常数ε r2
当所述第一PCB板的介电常数ε r1等于所述第二PCB板的介电常数ε r2时,所述第一PCB板的介质厚度d 1小于第二PCB板的介质厚度d 2
通过将第一PCB板的介电常数ε r1、介质厚度d 1、第二PCB板3的介电常数ε r2、介质厚度d 2形成关联,从而使功率放大器的整体损耗值减少。
进一步地,所述环形器的第三端还连接有第三微带线,所述第三微带线设在所述第一PCB板或所述第二PCB板。
通过设置第三微带线与环形器的第三端连接,第三微带线可以容纳功率放大器发送全反射时的功率,从而使环形器的第三端口更好地判断输出端口功率放大器的驻波情况。
进一步地,所述第三微带线的设计特征阻抗与所述第二微带线的设计特征阻抗相同。
通过将第三微带线的特征阻抗设计为与第二微带线相同,从而使第三微带线能完全容纳功率放大器发生全反射时的功率。
进一步地,所述功率放大管电路包括多个功率放大管,多个所述功率放大管设在所述第一PCB板,多个所述功率放大管通过第四微带线依次级联,级联在最末的所述功率放大管通过所述第一微带线与所述环形器的第一端连接。
通过在第一PCB板上设置多个功率放大管,多个功率放大管通过第四微带线依次级联,对微波信号进行多级功率放大,使该功率放大器实现大功率的输出。进一步地,所述功率放大管电路包括功率分配器、多级功率放大管、功率合路器,所述功率分配器、多级所述功率放大管和所述功率合路器设在所述第一PCB板,多级所述功率放大管通过第四微带线依次级联,其中级联在最末的所述功率放大管包括至少两个,至少两个末级功率放大管的输入端分别通过所述功率分配器连接上一级的所述功率放大管之后的第四微带线,至少两个末级功率放大管输出端分别连接所述功率合路器,所述功率合路器通过所述第一微带线与所述环形器的第一端连接。
通过功率分配器与至少两个末级功率放大管连接,使得接收到的微波信号能分为几路进行功率放大,功率合路器将经过不同路功放的 微波信号进行合成输出,从而使减少微波信号的损耗。
进一步地,所述环形器为多个,多个所述环形器的第二端通过一功率合路器与所述第二微带线连接,所述功率合路器设在第二PCB板;
所述功率放大管电路包括功率分配器、多级功率放大管,所述功率分配器和多级所述功率放大管设在所述第一PCB板,多级所述功率放大管通过第四微带线依次级联,其中级联在最末的所述功率放大管为多个且数量和环形器数量相同,多个末级功率放大管的输入端分别通过所述功率分配器连接上一级的所述功率放大管之后的第四微带线,多个末级功率放大管输出端分别通过所述第一微带线连接对应的所述环形器的第一端。
通过设置多个环形器与多个末级功率放大管一一对应连接,从而使多个末级功率放大管的输出端与负载之间互不干扰,各自独立。
进一步地,所述环形器的第一端焊接在所述第一微带线上,所述环形器的第二端焊接在所述第二微带线上。
将环形器的第一端焊接在第一微带线上,第二端焊接在第二微带线上,从而使小体积的环形器固定在第一微带线和第二微带线之间。
进一步地,还包括射频转接头,所述环形器的第二端通过所述第二微带线与所述射频转接头连接。
通过在第二微带线上焊接一个射频转接头,从而可以将该射频转接头作为整个功率放大器的输出端口。
(三)有益效果
本发明实施例提供的上述技术方案与现有技术相比具有如下优点:
通过设计有多个PCB板和多个微带线进行传输的功率放大器,从而在输出端的微带线烧毁时只需对输出端的PCB板进行更换即可;通过设计不同特征阻抗的微带线来提高微带线的功率容量,降低微带线插入损耗和发热量,通过增大微带线的包地间距来增大电击穿及热击穿的难度,从而大幅提升本发明功率放大器的可靠性;本发明结构简单且成本低,具有较强的实际应用价值。
附图说明
图1为本发明实施例1的一种功率放大器结构示意图。
图2为本发明实施例2的一种功率放大器局部示意图。
图3为本发明实施例3的功率放大器局部示意图。
图4为本发明实施例4的功率放大器局部示意图。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
如图1所示,为本发明的实施例1一种功率放大器的结构示意图。参见图1,所述功率放大器包括第一PCB板1、第二PCB板3、功率放大管电路、环形器2;
所述功率放大管电路通过第一微带线106与所述环形器2的第一端连接,所述环形器2的第二端连接有第二微带线301,所述第一微带线106、所述功率放大管电路设在所述第一PCB板1,所述第二微带线301设在所述第二PCB板3,所述环形器设在所述第一PCB板1或所述第二PCB板3(图1所示)。
在具体实施过程中,功率放大电路通过第一微带线102与环形器2的第一端连接,微波信号由RF_IN输入,经功率放大电路进行放大后再经过第一微带线106输出到环形器2中,再由与环形器2连接的第二微带线301输出给第二PCB板3,由第二PCB板3输出信号,所述第二微带线301设在第二PCB板3上;环形器2可以设在第二PCB板3上,在具体实施过程中,环形器2也可以设置在第一PCB板1上。
示例性地,如将第一微带线106的特征阻抗设计为25Ω,将第二 微带线301的特征阻抗设计为50Ω时,根据公式
Figure PCTCN2020139580-appb-000001
C=ε r*S/d,Z为微带线的特性阻抗,L为微带线的感抗,C为微带线的容抗,ε r为PCB板的介电常数,s为微带线的面积,d为PCB板的介质厚度,根据公式可以计算得到第二PCB板3上设有的50Ω特征阻抗的第二微带线301有比较大的物理尺寸,可容纳更高的传输功率,且由于特征阻抗为50Ω可以达到理想的匹配,另外,还将特征阻抗为50Ω第二微带线301的包地间距应适当增大以增大微带线与地之间的空气击穿难度。
通过设计第一PCB板1和第二PCB板2和在第一PCB板1上设有第一微带线106,第二PCB板3上设有第二微带线301,从而在输出端的微带线烧毁时只需对输出端的第二PCB板进行更换即可,另外可通过设计不同特征阻抗的微带线来提高微带线的功率容量。
在一个可选的实施例中,所述第一微带线106的设计特征阻抗小于或等于所述第二微带线301的设计特征阻抗。
具体的,信号经过功率放大电路后第一微带线106需要承载的功率比较大,将第一微带线106的特征阻抗设计为25Ω,以增大第一微带线106的物理尺寸和功率容量,当第一PCB板1的介电常数ε r1小于第二PCB板3的介电常数ε r2时,将第二微带线301的特征阻抗设计为大于第一微带线106的特征阻抗,从而使第二微带线301能容纳更高的传输功率,将第二微带线301的特征阻抗设计为50Ω时可以达到理想匹配,从而使微带线的功率容量达到最优;当第一PCB板1的介电常数ε r1等于第二PCB板3的介电常数ε r2时,将第二微带线301的特征阻抗设计为与第一微带线106的特征阻抗相等,从而使第二微带线301能容纳更高的传输功率。
通过将第一微带线106的特征阻抗设计为小于或等于第二微带线301的特征阻抗,从而使第一微带线106和第二微带线301能有更大的功率容量,提高功率放大器的可靠性。
在一个可选的实施例中,所述第一PCB板1的介电常数ε r1大于或等于所述第二PCB板3的介电常数ε r2
当所述第一PCB板1的介电常数ε r1等于所述第二PCB板3的介电常数ε r2时,所述第一PCB板1的介质厚度d 1小于第二PCB板3的介质厚度d 2
具体的,第一PCB板1的介电常数ε r1可以大于第二PCB板3的介电常数ε r2,第一PCB板1的介电常数ε r1也可以等于第二PCB板3的介电常数ε r2。将第一PCB板1的介电常数ε r1设计为大于第二PCB板3的介电常数ε r2,以使第一微带线106的特征阻抗小于第二微带线301的特征阻抗;当第一PCB板1的介电常数ε r1等于第二PCB板3的介电常数ε r2时,第一PCB板1的介质厚度d 1小于第二PCB板3的介质厚度d 2,以使信号在第一PCB板1的插入损耗值减少,从而第二PCB板3能接收更准确的微波信号。
通过将第一PCB板1的介电常数ε r1、介质厚度d 1和第二PCB板3的介电常数ε r2、介质厚度d 2形成关联,从而使功率放大器的整体损耗值减少。
在一种可选的实施方式中,由于PCB板的损耗因子tanδ直接影响到PCB板的功率传输损耗,PCB板的导热系数coe tc直接影响到PCB板的散热性能,根据第一PCB板1和第二PCB板3之间的功率传导方式,具体实施本实施例的功率放大器时,可以使第二PCB板3的损耗因子tanδ等于或者小于第一PCB板1的损耗因子tanδ,这样可以使得第二PCB板3中的功率传输损耗与第一PCB板1的功率传输损耗相当或者两者相比,前者功率传输损耗少,这样可以提升大功率放大器输出端传输线的功率容量;同样地,可以是使第二PCB板3的导热系数coe tc大于或者等于第一PCB板1的导热系数coe tc,这样可以使得第二PCB板3中的散热性能和第一PCB1的散热性能相当或者两者相比,前者散热性能更好,从而使热耗大的大功率放大器输出端具有更好的散热性能,从而提升大功率放大器的可靠性。
在一个可选的实施例中,如图1所示,所述功率放大管电路包括多级功率放大管,多级所述功率放大管设在所述第一PCB板1,多级 所述功率放大管通过第四微带线102依次级联,级联在最末的所述功率放大管通过所述第一微带线106与所述环形器2的第一端连接。在一种优选的实施方式中,各级功率放大管与所对应连接的微带线之间通过电容隔直,以实现器件之间的隔离。
在一种应用实例中,如图1所示,功率放大管电路包括了放大管101、推动级功放管103、末级功放管105;微波信号由RF_IN输入,经放大管101进行预放大并通过电容隔直,再经过第一个第四微带线102以及隔直电容连接推动级功放管103,推动级功放管103通过第二个第四微带线102以及位于第四微带线102两端的隔直电容将放大后的信号传递给末级功放管105,末级功放管105输出经过隔直电容后连接到第一微带线106。基于本应用实例,所述第一微带线106的特征阻抗可以设计为25Ω,两个第四微带线102的特征阻抗设置为50Ω,通过将第一微带线106的特征阻抗设计为小于第四微带线102的特征阻抗,这样可以使第一微带线106的尺寸相对大,从而提升其功率容量。
通过在第一PCB板1上设置多级功率放大管,多级功率放大管通过第四微带线102依次级联,对微波信号进行多级功率放大,使该功率放大器实现大功率的输出。
在另一种实施方式中,所述环形器2的第一端可以焊接在所述第一微带线106上,所述环形器2的第二端焊接在所述第二微带线301上。
具体的,将环形器2的第一端焊接在第一微带线106上,第二端焊接在第二微带线301上,从而使小体积的环形器2固定在第一微带线106和第二微带线301之间。
在另一种实施方式中,还包括射频转接头,所述环形器2的第二端通过所述第二微带线301与所述射频转接头连接。具体实施过程中,射频转接头可以通过直接焊接的方式安装在第二PCB板3上。
具体的,该功率放大器包括第一PCB板1、环形器2、第二PCB板3和射频转接头,射频转接头焊接在第二微带线301上并通过第二 微带线301与环形器2连接,射频转接头可以根据功率容量进行选用,若功率容量100~300W可选用N型转接头,若功率容量300W及以上则要选用物理尺寸更大的丁型转接头。
通过在第二微带线301上焊接一个射频转接头,从而可以将该射频转接头作为整个功率放大器的输出端口。
本实施例1通过设计有多个PCB板和多级通过微带线进行传输的功率放大器,从而在输出端的微带线烧毁时只需对输出端的PCB板进行更换即可;以及通过设计不同特征阻抗的微带线来提高微带线的功率容量,降低微带线插入损耗和发热量;进而可以实现大功率的功率放大器。
实施例2
如图2所示,本发明实施例2提供另一种结构的功率放大器,其与实施例1不同在于,所述环形器2的第三端还连接有第三微带线302,所述第三微带线302设在所述第一PCB板1或所述第二PCB板3(图2所示)。
在具体实施过程中,如图2所示,第三微带线302设在第二PCB板3上,以使功率放大器发生全反射时,第三微带线302能够容纳全反射的功率,从而使环形器2的第三端口更好地判断输出端口功率放大器的驻波情况。
通过设置第三微带线302与环形器2的第三端连接,第三微带线302可以容纳功率放大器发送全反射时的功率,从而使环形器2的第三端口更好地判断输出端口功率放大器的驻波情况。
在一个可选的实施例中,所述第三微带线302的设计特征阻抗与所述第二微带线301的设计特征阻抗相同。
具体的,当功率放大器发生全反射时,第三微带线302所需容纳的功率与第二微带线301输出的功率一样大,将第三微带线302的特征阻抗设计为与第二微带线301的特征阻抗相同,如都为50Ω,从而使第三微带线302能完全容纳功率放大器发生全反射时的功率。
通过将第三微带线302的特征阻抗设计为与第二微带线301相同,从而使第三微带线302能完全容纳功率放大器发生全反射时的功率。
实施例3
与实施例1不同的是,本实施例一种功率放大器的放大管电路采用另一结构实现,具体地,所述功率放大管电路包括功率分配器107、多级功率放大管、功率合路器108,所述功率分配器107、多级所述功率放大管和所述功率合路器108设在所述第一PCB板,多级所述功率放大管通过第四微带线102依次级联,其中级联在最末的所述功率放大管包括至少两个,至少两个末级功率放大管105的输入端分别通过所述功率分配器107连接上一级的所述功率放大管之后的第四微带线102,至少两个末级功率放大管105输出端分别连接所述功率合路器108,所述功率合路器108通过所述第一微带线106与所述环形器2的第一端连接。
在一种可选的实施方式中,与实施例1的器件隔离原理一样,所述至少两个末级功率放大器可以通过隔直电容与功率分配器107、功率合路器108连接,以实现器件之间隔离。
如图3所示结合图1或图2,为本发明实施例2另一种功率放大器应用实例的示意图。
如图1或图2,微波信号由RF_IN输入,经放大管101进行预放大并通过电容隔直,,再经过第一个第四微带线102以及隔直电容连接推动级功放管103,推动级功放管103通过第二个第四微带线102以及位于第四微带线102两端的隔直电容将放大后的信号传递给末级功放管105,本实施例1与实施例1和实施例2不同的是,如图3所示,末级功放管105包括两个,两个末级功放管105的输入端分别通过隔直电容连接至功率分配器107,功率分配器107连接第二个第四微带线102,两个末级功放管105的输出端分别经过隔直电容后连接功率合路器108,功率合路器108连接至环形器2的第一端,功率合路器108通过所述第一微带线106与所述环形器2的第一端连接,所述环形器2 的第二端连接有第二微带线301。其中,多级的功率放大管、第四微带线102、功率分配器107、功率合路器108、第一微带线106均设置在第一PCB板1上,所述第二微带线301设在所述第二PCB板3,所述环形器2设在所述第一PCB板1或所述第二PCB板3(图3所示)。
与实施例1不同的是,本实施例3通过功率分配器107与至少两个末级功放管105连接,使得末级功率放大管接收到的微波信号能分为几路进行功率放大,功率合路器108将经过不同路功放的微波信号进行合成输出,从而使减少微波信号的损耗。
在一种可选的实施方式中,本实施例3可以结合实施例2的方案,如图3所示,所述环形器2的第三端还连接有第三微带线302,所述第三微带线302设在所述第一PCB板1或所述第二PCB板3(图2所示)。
在具体实施过程中,如图3所示,第三微带线302设在第二PCB板3上,以使功率放大器发生全反射时,第三微带线302能够容纳全反射的功率,从而使环形器2的第三端口更好地判断输出端口功率放大器的驻波情况。
通过设置第三微带线302与环形器2的第三端连接,第三微带线302可以容纳功率放大器发送全反射时的功率,从而使环形器2的第三端口更好地判断输出端口功率放大器的驻波情况。
进一步地,所述第三微带线302的设计特征阻抗与所述第二微带线301的设计特征阻抗相同。
具体的,当功率放大器发生全反射时,第三微带线302所需容纳的功率与第二微带线301输出的功率一样大,将第三微带线302的特征阻抗设计为与第二微带线302的特征阻抗相同,如都为50Ω,从而使第三微带线302能完全容纳功率放大器发生全反射时的功率。
通过将第三微带线302的特征阻抗设计为与第二微带线301相同,从而使第三微带线302能完全容纳功率放大器发生全反射时的功率。
实施例4
实施例4与实施例1不同的是,本实施例一种功率放大器的放大 管电路和环形器2采用另一结构实现,具体地,所述环形器2为多个,多个所述环形器2的第二端通过一功率合路器108与所述第二微带线301连接,所述功率合路器108设在第二PCB板3;所述功率放大管电路包括功率分配器107、多级功率放大管,所述功率分配器107、多级所述功率放大管设在所述第一PCB板1,多级所述功率放大管通过第四微带线102依次级联,其中级联在最末的所述功率放大管为多个且数量和环形器2数量相同,多个末级功率放大管的输入端分别通过所述功率分配器107连接上一级的所述功率放大管之后的第四微带线102,多个末级功率放大管输出端分别通过第一微带线106连接对应的所述环形器2的第一端。
在一种可选的实施方式中,与实施例1的器件隔离原理一样,所述至少两个末级功率放大器可以通过隔直电容与功率分配器107、第一微带线106连接,以实现器件之间隔离。
如图4所示结合图1,为本发明实施例4另一种功率放大器应用实例的示意图。
如图1或图2,微波信号由RF_IN输入,经放大管101进行预放大并通过电容隔直,再经过第一个第四微带线102以及隔直电容连接推动级功放管103,推动级功放管103通过第二个第四微带线102以及位于第四微带线102两端的隔直电容将放大后的信号传递给末级功放管105,本实施例1与实施例1不同的是,如图4所示,末级功放管105包括两个,两个末级功放管105的输入端分别通过隔直电容连接功率分配器107,功率分配器107连接第二个第四微带线102,两个末级功放管105的输出端经过隔直电容后各通过第一微带线106连接一个环形器2的第一端,两个环形器2的第二端连接功率合路器108,功率合路器108连接有第二微带线301。其中,多级的功放管、第四微带线102、功率分配器107、第一微带线106、两个环形器2均设置在第一PCB板1上,所述第二微带线301、功率合路器108设在所述第二PCB板3。
与实施例1不同的是,本实施例4通过功率分配器107与至少两个末级功放管105连接,使得末级功率放大管接收到的微波信号能分为几路进行功率放大,功率合路器108将经过不同路功放的微波信号进行合成输出,从而使减少微波信号的损耗。进一步的,本实施例4通过设置多个环形器与多个末级功率放大管一一对应连接,从而使多个末级功率放大管的输出端与负载之间互不干扰,各自独立。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
工业实用性
本发明提供一种功率放大器,包括第一PCB板、第二PCB板、功率放大管电路、环形器,使得功率放大器的输出端烧毁时只更换输出端的PCB板即可,同时提高功率放大器的功率容量,具有很强的工业实用性。

Claims (10)

  1. 一种功率放大器,其特征在于,包括第一PCB板、第二PCB板、功率放大管电路、环形器;
    所述功率放大管电路通过第一微带线与所述环形器的第一端连接,所述环形器的第二端连接有第二微带线,所述第一微带线、所述功率放大管电路设在所述第一PCB板,所述第二微带线设在所述第二PCB板,所述环形器设在所述第一PCB板或所述第二PCB板。
  2. 根据权利要求1所述的功率放大器,其特征在于,所述第一微带线的设计特征阻抗小于或等于所述第二微带线的设计特征阻抗。
  3. 根据权利要求1所述的功率放大器,其特征在于,所述第一PCB板的介电常数ε r1大于或等于所述第二PCB板的介电常数ε r2
    当所述第一PCB板的介电常数ε r1等于所述第二PCB板的介电常数ε r2时,所述第一PCB板的介质厚度d 1小于第二PCB板的介质厚度d 2
  4. 根据权利要求1至3任一项所述的功率放大器,其特征在于,所述环形器的第三端还连接有第三微带线,所述第三微带线设在所述第一PCB板或所述第二PCB板。
  5. 根据权利要求4所述的功率放大器,其特征在于,所述第三微带线的设计特征阻抗与所述第二微带线的设计特征阻抗相同。
  6. 根据权利要求1至3任一项所述的功率放大器,其特征在于,所述功率放大管电路包括多级功率放大管,多级所述功率放大管设在所述第一PCB板,多级所述功率放大管通过第四微带线依次级联,级联在最末的所述功率放大管通过所述第一微带线与所述环形器的第一端连接。
  7. 根据权利要求1至3任一项所述的功率放大器,其特征在于,所述功率放大管电路包括功率分配器、多级功率放大管、功率合路器,所述功率分配器、多级所述功率放大管和所述功率合路器设在所述第一PCB板,多级所述功率放大管通过第四微带线依次级联,其中级联 在最末的所述功率放大管包括至少两个,至少两个末级功率放大管的输入端分别通过所述功率分配器连接上一级的所述功率放大管之后的第四微带线,至少两个末级功率放大管输出端分别连接所述功率合路器,所述功率合路器通过所述第一微带线与所述环形器的第一端连接。
  8. 根据权利要求1至3任一项所述的功率放大器,其特征在于,所述环形器为多个,多个所述环形器的第二端通过一功率合路器与所述第二微带线连接,所述功率合路器设在第二PCB板;
    所述功率放大管电路包括功率分配器和多级功率放大管,所述功率分配器和多级所述功率放大管设在所述第一PCB板,多级所述功率放大管通过第四微带线依次级联,其中级联在最末的所述功率放大管为多个且数量和环形器数量相同,多个末级功率放大管的输入端分别通过所述功率分配器连接上一级的所述功率放大管之后的第四微带线,多个末级功率放大管输出端分别通过所述第一微带线连接对应的所述环形器的第一端。
  9. 根据权利要求1所述的功率放大器,其特征在于,所述环形器的第一端焊接在所述第一微带线上,所述环形器的第二端焊接在所述第二微带线上。
  10. 根据权利要求1所述的功率放大器,其特征在于,还包括射频转接头,所述环形器的第二端通过所述第二微带线与所述射频转接头连接。
PCT/CN2020/139580 2019-12-31 2020-12-25 一种功率放大器 WO2021136103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20910533.7A EP4087124A4 (en) 2019-12-31 2020-12-25 POWER AMPLIFIER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911413677.7A CN111030617B (zh) 2019-12-31 2019-12-31 一种功率放大器
CN201911413677.7 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136103A1 true WO2021136103A1 (zh) 2021-07-08

Family

ID=70198036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139580 WO2021136103A1 (zh) 2019-12-31 2020-12-25 一种功率放大器

Country Status (3)

Country Link
EP (1) EP4087124A4 (zh)
CN (1) CN111030617B (zh)
WO (1) WO2021136103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030617B (zh) * 2019-12-31 2024-02-23 京信网络系统股份有限公司 一种功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904764U (zh) * 2010-12-24 2011-07-20 北京北广科技股份有限公司 1.3GHz 350W固态功率放大器
CN203632622U (zh) * 2013-12-11 2014-06-04 深圳国人通信股份有限公司 一种功放电路及其印刷电路板
CN206517393U (zh) * 2017-01-13 2017-09-22 北京七星华创微波电子技术有限公司 X波段连续固态收发组件
CN107846830A (zh) * 2017-12-19 2018-03-27 成都芯通软件有限公司 一种功能模块散热结构及机箱
CN111030617A (zh) * 2019-12-31 2020-04-17 京信通信系统(中国)有限公司 一种功率放大器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367443A (en) * 1980-01-17 1983-01-04 Motorola, Inc. Radio frequency signal power amplifier
US5264860A (en) * 1991-10-28 1993-11-23 Hughes Aircraft Company Metal flared radiator with separate isolated transmit and receive ports
JPH10327003A (ja) * 1997-03-21 1998-12-08 Murata Mfg Co Ltd 非可逆回路素子及び複合電子部品
JP2005210521A (ja) * 2004-01-23 2005-08-04 Sony Corp アンテナ装置
KR100780419B1 (ko) * 2006-09-27 2007-11-29 주식회사 케이엠더블유 고주파 스위치
CN101534093B (zh) * 2009-04-14 2011-08-10 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
JP2011114633A (ja) * 2009-11-27 2011-06-09 Fujitsu Ltd アンテナ装置、及びアンテナ装置を含むシステム
CN102623779B (zh) * 2012-04-18 2015-09-30 华为技术有限公司 一种集成的环形器
CN104917468A (zh) * 2014-03-11 2015-09-16 中兴通讯股份有限公司 一种三路反型Doherty功率放大器及实现方法
US9438191B2 (en) * 2014-05-15 2016-09-06 Freescale Semiconductor, Inc. Radio frequency power amplifier circuit
JP7027891B2 (ja) * 2015-06-03 2022-03-02 ワールプール コーポレイション 電磁調理のための方法および装置
TWI590580B (zh) * 2016-05-26 2017-07-01 Nat Chi Nan Univ Multi-channel RF power amplifier
US11569866B2 (en) * 2017-09-27 2023-01-31 L3Harris Technologies, Inc. Magnet-less ring circulators for full duplex division wireless communication
CN107809218A (zh) * 2017-10-26 2018-03-16 天津大学 用于GaN功率器件的双频窄带功率放大器级间匹配电路
CN110380691A (zh) * 2018-04-12 2019-10-25 中兴通讯股份有限公司 一种基于Doherty功放的功率放大电路及装置
CN109167582B (zh) * 2018-07-23 2021-09-03 华南理工大学 基于频率选择性耦合的宽带带通滤波功率放大器
CN209134361U (zh) * 2018-10-18 2019-07-19 成都嘉纳海威科技有限责任公司 一种Doherty驱动Doherty功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904764U (zh) * 2010-12-24 2011-07-20 北京北广科技股份有限公司 1.3GHz 350W固态功率放大器
CN203632622U (zh) * 2013-12-11 2014-06-04 深圳国人通信股份有限公司 一种功放电路及其印刷电路板
CN206517393U (zh) * 2017-01-13 2017-09-22 北京七星华创微波电子技术有限公司 X波段连续固态收发组件
CN107846830A (zh) * 2017-12-19 2018-03-27 成都芯通软件有限公司 一种功能模块散热结构及机箱
CN111030617A (zh) * 2019-12-31 2020-04-17 京信通信系统(中国)有限公司 一种功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087124A4 *

Also Published As

Publication number Publication date
EP4087124A4 (en) 2024-02-21
CN111030617B (zh) 2024-02-23
CN111030617A (zh) 2020-04-17
EP4087124A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US11431294B2 (en) Antenna waveguide transitions for solid state power amplifiers
CN104037497B (zh) Ku波段收发共口径多层印制天线
CN109239672A (zh) 一种四通道微波t/r组件
CN103346376B (zh) 渐变鳍线扩展波导空间功率分配合成器
CN108470665B (zh) 一种平面多通道慢波结构
CN110350882B (zh) 一种l频段微型片式大功率限幅器
WO2021136103A1 (zh) 一种功率放大器
CN113517527A (zh) 单面双脊双探针波导功率分配器、功率合成器及合成方法
CN208999557U (zh) 一种四通道微波t/r组件
CN108346845B (zh) 一种超宽带高功率小型化功分器
Zhu et al. A 1V 32.1 dBm 92-to-102GHz power amplifier with a scalable 128-to-1 power combiner achieving 15% peak PAE in a 65nm bulk CMOS process
CN112838840B (zh) 一种具有宽带深隔离度的宽带等功率分配/合成电路拓扑
WO2022105075A1 (zh) 一种阻抗匹配装置及天线
CN210168019U (zh) 一种l频段微型片式大功率限幅器
CN218071453U (zh) 一种大功率pin限幅器芯片
CN107425251B (zh) 一种基于平面电路板的镜像功率合成方法
CN105024125A (zh) 三等分奇数结构功分/合路器
CN208045690U (zh) 一种平面共结构的两端口超宽带复合天线
CN107547051B (zh) 基于分布式宽带阻抗变换结构的Doherty功率放大器
WO2018214426A1 (zh) 一种Ka波段同轴波导内空间功率分配/合成器
CN113645814B (zh) 一种小型发射系统的散热结构、功放模块、方法
CN103354301A (zh) 一种扩展同轴功率分配合成器及功率分配、合成方法
KR101473647B1 (ko) 동축도파관 공간결합기
CN204333200U (zh) 一种波导-双对极鳍线-微带线形式的空间功率合成器
CN202268467U (zh) 一种基于GYSEL网络的3kW调频三路合成器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910533

Country of ref document: EP

Effective date: 20220801