WO2021135968A1 - 一种用于5g中传的高速收发模块 - Google Patents

一种用于5g中传的高速收发模块 Download PDF

Info

Publication number
WO2021135968A1
WO2021135968A1 PCT/CN2020/137110 CN2020137110W WO2021135968A1 WO 2021135968 A1 WO2021135968 A1 WO 2021135968A1 CN 2020137110 W CN2020137110 W CN 2020137110W WO 2021135968 A1 WO2021135968 A1 WO 2021135968A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
port
filter
chip
optical path
Prior art date
Application number
PCT/CN2020/137110
Other languages
English (en)
French (fr)
Inventor
蒋友山
陈辉龙
Original Assignee
福建天蕊光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建天蕊光电有限公司 filed Critical 福建天蕊光电有限公司
Publication of WO2021135968A1 publication Critical patent/WO2021135968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the invention relates to the technical field of optical fiber communication, in particular to a high-speed transceiver module for 5G mid-transmission.
  • the fronthaul network is the transmission from AAU (active antenna processing unit) to DU (distributed unit), and the midhaul network is the transmission from DU (distributed unit) to CU (centralized unit).
  • AAU active antenna processing unit
  • DU distributed unit
  • CU distributed unit
  • the amount of information processed is large, high speed is required, and 50G two-way is required; in addition, long-distance transmission is required, so wavelengths near 0 dispersion are used. The smaller the dispersion, the better, so the wavelength interval is narrow.
  • the wavelength of LAN WDM is used for high-speed, long-distance, and low-dispersion transmission. It has a mature application industry foundation.
  • the standard wavelength of LAN WDM is used in the 5G transmission network, and the two wavelengths of 1295.56nm and 1309.14nm are used as emission respectively.
  • the wavelength between the terminal and the receiving terminal, the wavelength interval is 13.58nm, and the wavelength interval is narrow. If the 1.3nm wavelength bandwidth is deducted, the actual wavelength interval is 12.28nm.
  • the single-fiber bidirectional components on the market are optical signals of two wavelengths with a wide wavelength interval.
  • FTTH Fiber to the Home
  • the wavelength interval is more than 100nm.
  • the wavelength of the transmitting and receiving ends needs to be wide enough, otherwise the transmitted wavelength signal or the reflected wavelength signal cannot be effectively separated.
  • the present invention provides a high-speed transceiver module for 5G transmission, which can use a small-angle filter to effectively separate or combine signals with narrow wavelength intervals, and obtain two optical signals with narrow wavelength intervals through a shorter optical path. Effective multiplexing and splitting of waves, while obtaining higher coupling efficiency.
  • the present invention adopts the following technical solutions.
  • a high-speed transceiver module for 5G transmission includes a receiving optical path for receiving signals and a transmitting optical path for sending signals; the receiving optical path and the transmitting optical path share the transceiver port (1) of the transceiver module;
  • the transceiving port is provided with a collimator to collimate the light entering the transceiving port into parallel light;
  • the transmitting end (2) of the transceiving module is provided with a laser chip (21) for sending signals, and the receiving end (3) is provided for receiving signals
  • the photoelectric receiving chip (31), the optical signal sent by the laser chip (21) is first converted into parallel light by the lens part (5) at the beginning of the emission optical path, and then reaches the transceiver port through the emission optical path and exits; the optical signal received by the transceiver port is After being collimated into parallel light, it reaches the photoelectric receiving chip through the receiving optical path.
  • the parallel light A first passes through the first filter After the light sheet (41) is transmitted, it enters the positive lens (32) in front of the photoelectric receiving chip (31), and then is condensed by the positive lens (32) into an optical signal incident on the receiving port of the photoelectric receiving chip (31);
  • the laser light emitted by the laser chip (21) is first converted into parallel light B through the lens portion (5), and then emitted to the first reflection sheet (42) through the free space isolator (6),
  • the parallel light B is first reflected by the first reflector (42) to the first filter (41), and then is reflected by the first filter (41) to the transceiver port to exit.
  • the first filter (41) is a small-angle filter that can separate or combine two optical signals with a narrow wavelength interval. sheet.
  • a second reflective sheet (44) can be added to the output end of the free space isolator (6), and the second reflective sheet (44) reflects the parallel light B to adjust the exit direction of the parallel light B.
  • the laser light emitted by the laser chip (21) is first converted into parallel light B through the lens portion (5), and then It is emitted to the first filter (41) through the free space isolator (6), and is transmitted through the first filter (41) to reach the transceiver port and exit;
  • the parallel light A first passes through the first filter (41) to the first reflector (42), and then After being reflected by the first reflector (42) to the second filter (43), it is transmitted through the second filter (43) to the positive lens (32) in front of the photoelectric receiving chip (31), and then by the positive lens ( 32) Converge the optical signal incident to the receiving port of the photoelectric receiving chip (31).
  • the first filter (41) is a small angle that can separate or combine two optical signals with a narrow wavelength interval.
  • Filter; the second filter (43) is a 0 degree filter.
  • the lens part (5) is a lens group or a single aspheric lens.
  • the lens part is a lens group
  • the laser light emitted by the laser chip (21) is first converted to convergent light through the convex lens (22), and then the convergent light passes through the negative
  • the lens (7) turns into parallel light B.
  • the laser chip at the transmitting end of the transceiver module includes a laser diode, and the photoelectric receiving chip at the receiving end includes a photodiode.
  • the laser diode can be a laser diode with a refrigeration package, and the photodiode can be an avalanche photodiode.
  • the present invention uses a small-angle filter to realize the effective separation or synthesis of signals with narrow wavelength intervals.
  • the effective combination and demultiplexing of two optical signals with narrow wavelength intervals can be obtained through a shorter optical path, and at the same time, higher signals can be obtained. Coupling efficiency.
  • Figure 1 is a schematic diagram when the receiving port of the photoelectric receiving chip and the transmitting and receiving port are located on the same straight line;
  • Figure 2 is a schematic diagram when the receiving port of the photoelectric receiving chip and the transmitting and receiving port are on the same straight line, and the free space isolator is provided with a second reflector;
  • Fig. 3 is a schematic diagram when the optical signal transmitting end of the laser chip and the transceiver port are located on the same straight line;
  • Fig. 4 is a schematic diagram when the lens part is a lens group
  • a high-speed transceiver module for 5G transmission includes a receiving optical path for receiving signals and a transmitting optical path for sending signals; the receiving optical path and the transmitting optical path share the transceiver
  • the photoelectric receiving chip 31, the optical signal sent by the laser chip 21 is first converted into parallel light by the lens part 5 at the beginning of the emission optical path, and then reaches the transceiver port through the emission optical path to exit; the optical signal received by the transceiver port is collimated to be parallel After light, it reaches the photoelectric receiving chip through the receiving light path.
  • the receiving port of the photoelectric receiving chip 31 and the transceiver port are on the same straight line, in the receiving optical path, after the incident light is collimated into parallel light A by the transceiver port 1, the parallel light A is first transmitted through the first filter 41 It is incident on the positive lens 32 in front of the photoelectric receiving chip 31, and then condensed by the positive lens 32 into an optical signal incident on the receiving port of the photoelectric receiving chip 31;
  • the laser light emitted by the laser chip 21 is first converted into parallel light B through the lens portion 5, and then exits to the first reflective sheet 42 through the free space isolator 6.
  • the parallel light B first passes through the first reflection sheet 42.
  • a reflective sheet 42 is reflected to the first filter 41, and then reflected by the first filter 41 to the transmitting and receiving port to exit.
  • the first filter 41 is a small-angle filter that can separate or combine two optical signals with a narrow wavelength interval.
  • a second reflective sheet 44 can be added to the output end of the free space isolator 6, and the second reflective sheet 44 reflects the parallel light B so as to adjust the exit direction of the parallel light B.
  • the laser light emitted by the laser chip 21 is first converted into parallel light B through the lens portion 5, and then passed through the free space isolator 6 It is emitted to the first filter 41, and is transmitted through the first filter 41 to reach the transceiver port and exit;
  • the parallel light A first passes through the first filter 41 to the first reflection sheet 42, and is then passed by the first reflection sheet 42. After being reflected to the second filter 43, it is transmitted through the second filter 43 to the positive lens 32 in front of the photoelectric receiving chip 31, and then condensed by the positive lens 32 into an optical signal incident on the receiving port of the photoelectric receiving chip 31.
  • the first filter 41 is a small-angle filter that can separate or combine two optical signals with a narrow wavelength interval;
  • the second filter 43 is a 0 degree filter.
  • the lens part 5 is a lens group or a single aspheric lens.
  • the lens part is a lens group, the laser light emitted by the laser chip 21 is first converted into condensed light through the convex lens 22, and then the condensed light is converted into parallel light through the negative lens 7 B.
  • the laser chip at the transmitting end of the transceiver module includes a laser diode, and the photoelectric receiving chip at the receiving end includes a photodiode.
  • the laser diode can be a laser diode with a refrigeration package, and the photodiode can be an avalanche photodiode.
  • the transmitting end is on the side, and the receiving end is directly behind the input and output ends.
  • the isolation of the receiving end is sufficient to meet the requirements, and there is no need to add a 0-degree filter to increase the isolation.
  • This structure is simple and easy to debug.
  • the receiving port of the photoelectric receiving chip 31 and the receiving port are located on the same straight line, and the transmitting end and the receiving end are directly behind the input and output ends at the same time, the overall space of this structure is larger, and the receiving end There is no need to add a 0 degree filter to increase the isolation.

Abstract

一种用于5G中传的高速收发模块,收发模块包括用于接收信号的接收光路和用于发送信号的发射光路;接收光路和发射光路共用收发模块的收发端口(1);收发端口(1)内设准直器使进入收发端口(1)的光准直成为平行光;收发模块发射端(2)设有用于发送信号的激光芯片(21),接收端(3)设有用于接收信号的光电接收芯片(31),激光芯片(21)发送的光信号先经发射光路始端的透镜部(5)转为平行光后,再经发射光路到达收发端口(1)出射;收发端口(1)接收的光信号则在被准直为平行光后,经接收光路到达光电接收芯片(31)处;能用小角度滤光片实现波长间隔窄的信号有效分开或者是合成,通过较短的光程,获得窄波长间隔的两路光信号的有效合波和分波,同时获得较高的耦合效率。

Description

一种用于5G中传的高速收发模块 技术领域
本发明涉及光纤通讯技术领域,尤其是一种用于5G中传的高速收发模块。
背景技术
随着光纤网络的应用越来越普及,尤其是当前5G网络的快速实施,以及点对点的数据传输,特别是5G中传和前传节点的大量布设,市场上对于波长间隔窄的单纤双向组件的需求也越来越大。
当前5G网络中,前传网络是AAU(有源天线处理单元)到DU(分布单元)之间的传输,中传网络是DU(分布单元)到CU(集中单元)之间的传输。中传网络,处理的信息量大,需要高速,还要用50G双向;另外还是长距离传输,因此要用0色散附近的波长,色散越小越好,所以波长间隔就窄了。LAN WDM的波长,用于高速,长距离,低色散的传输,已经有成熟应用的产业基础,所以在5G中传网络中采用LAN WDM的标准波长,用1295.56nm和1309.14nm两波长分别作为发射端和接收端的波长,波长间隔为13.58nm,波长间隔窄。如果再扣掉1.3nm的波长带宽,实际波长间隔是12.28nm。
目前市场上的单纤双向组件都是波长间隔很宽的两个波长的光信号,比如FTTH(光纤到户)使用的是1310nm和1490nm的波长信号,波长间隔是100nm以上。
传统的双波长单纤双向光收发模块组件结构中,需要发射和接收端的波长足够宽,否则就会导致透射波长信号或者反射波长信号无法有效分开。
发明内容
本发明提出一种用于5G中传的高速收发模块,能用小角度滤光片实现波长间隔窄的信号有效分开或者是合成,通过较短的光程,获得窄波长间隔的两路光信号的有效合波和分波,同时获得较高的耦合效率。
本发明采用以下技术方案。
一种用于5G中传的高速收发模块,所述收发模块包括用于接收信号的接收光路和用于发送信号的发射光路;所述接收光路和发射光路共用收发模块的收发端口(1);所述收发端口内设准直器使进入收发端口的光准直成为平行光;收发模块发射端(2)设有用于发送信号的激光芯片(21),接收端(3)设有用于接收信号的光电接收芯片(31),激光芯片(21)发送的光信号先经发射光路始端的透镜部(5)转为平行光后,再经发射光路到达收发端口出射;收发端口接收的光信号则在被准直为平行光后,经接收光路到达光电接收芯片处。
当所述光电接收芯片(31)接收端口与收发端口位于同一直线上时,所述接收光路中,入射光经收发端口(1)准直为平行光A后,平行光A先经第一滤光片(41)透射后入射至光电接收芯片(31)前方的正透镜(32),再被正透镜(32)汇聚为入射至光电接收芯片(31)接收端口的光信号;
此结构下,所述发射光路中,激光芯片(21)发射的激光先经透镜部(5)转为平行光B,再经自由空间隔离器(6)向第一反射片(42)出射,所述平行光B先经第一反射片(42)反射至第一滤光片(41)处,再被第一滤光片(41)反射至收发端口出射。
当所述光电接收芯片(31)接收端口与收发端口位于同一直线上时,所述第一滤光片(41)为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片。
所述自由空间隔离器(6)的输出端处可增设第二反射片(44),所述第二反射片(44)对平行光B反射以调节平行光B的出射方向。
当所述激光芯片(21)的光信号发射端与收发端口位于同一直线上时,所述发射光路中,激光芯片(21)发射的激光先经透镜部(5)转为平行光B,再经自由空间隔离器(6)射至第一滤光片(41)处,经第一滤光片(41)透射后到达收发端口出射;
此结构下,所述接收光路中,入射光经收发端口(1)准直为平行光A后,平行光A先经第一滤光片(41)至第一反射片(42)处,再被第一反射片(42)反射至第二滤光片(43)后,经第二滤光片(43)透射至光电接收芯片(31)前方的正透镜(32),再被正透镜(32)汇聚为入射至光电接收芯片(31)接收端口的光信号。
当所述激光芯片(21)的光信号发射端与收发端口位于同一直线上时,所述第一滤光片(41)为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片;所述第二滤光片(43)为0度滤光片。
所述透镜部(5)为透镜组或单个非球透镜,当透镜部为透镜组时,所述激光芯片(21)发射的激光先经凸透镜(22)转为汇聚光,汇聚光再经负透镜(7)转为平行光B。
所述收发模块发射端的激光芯片包括激光二极管,接收端的光电接收芯片包括光电二极管。
所述激光二极管可选用带致冷封装的激光二极管,所述光电二极管可选用雪崩光电二极管。
本发明用小角度滤光片实现波长间隔窄的信号有效分开或者是合成,可通过较短的光程,获得窄波长间隔的两路光信号的有效合波和分波,同时获得较高的耦合效率。
附图说明
下面结合附图和具体实施方式对本发明进一步详细的说明:
附图1是光电接收芯片接收端口与收发端口位于同一直线上时的示意图;
附图2是光电接收芯片接收端口与收发端口位于同一直线上,且自由空间隔离器增设第二反射片时的示意图;
附图3是激光芯片的光信号发射端与收发端口位于同一直线上时的示意图;
附图4是透镜部为透镜组时的示意图;
图中:1-收发端口;2-发射端;3-接收端;5-透镜部;6-自由空间隔离器;7-负透镜;21-激光芯片;22-凸透镜;31-光电接收芯片;32-正透镜;41-第一滤光片;42-第一反射片;43-第二滤光片;44-第二反射片。
具体实施方式
如图1-4所示,一种用于5G中传的高速收发模块,所述收发模块包括用于接收信号的接收光路和用于发送信号的发射光路;所述接收光路和发射光路共用收发模块的收发端口1;所述收发端口内设准直器使进入收发端口的光准直成为平行光;收发模块发射端2设有用于发送信号的激光芯片21,接收端3设有用于接收信号的光电接收芯片31,激光芯片21发送的光信号先经发射光路始端的透镜部5转为平行光后,再经发射光路到达收发端口出射;收发端口接收的光信号则在被准直为平行光后,经接收光路到达光电接收芯片处。
当所述光电接收芯片31接收端口与收发端口位于同一直线上时,所述接收光路中,入射光经收发端口1准直为平行光A后,平行光A先经第一滤光片41透射后入射至光电接收芯片31前方的正透镜32,再被正透镜32汇聚为入射至光电接收芯片31接收端口的光信号;
此结构下,所述发射光路中,激光芯片21发射的激光先经透镜部5转为平行光B,再经自由空间隔离器6向第一反射片42出射,所述平行光B先经第一反射片42反射至第一滤光片41处,再被第一滤光片41反射至收发端口出射。
当所述光电接收芯片31接收端口与收发端口位于同一直线上时,所述第一滤光片41为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片。
所述自由空间隔离器6的输出端处可增设第二反射片44,所述第二反射片44对平行光B反射以调节平行光B的出射方向。
当所述激光芯片21的光信号发射端与收发端口位于同一直线上时,所述发射光路中,激光芯片21发射的激光先经透镜部5转为平行光B,再经自由空间隔离器6射至第一滤光片41处,经第一滤光片41透射后到达收发端口出射;
此结构下,所述接收光路中,入射光经收发端口1准直为平行光A后,平行光A先经第一滤光片41至第一反射片42处,再被第一反射片42反射至第二滤光片43后,经第二滤光片43透射至光电接收芯片31前方的正透镜32,再被正透镜32汇聚为入射至光电接收芯片31接收端口的光信号。
当所述激光芯片21的光信号发射端与收发端口位于同一直线上时,所述第一滤光片41为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片;所述第二滤光片43为0度滤光片。
所述透镜部5为透镜组或单个非球透镜,当透镜部为透镜组时,所述激光芯片21发射的激光先经凸透镜22转为汇聚光,汇聚光再经负透镜7转为平行光B。
所述收发模块发射端的激光芯片包括激光二极管,接收端的光电接收芯片包括光电二极管。
所述激光二极管可选用带致冷封装的激光二极管,所述光电二极管可选用雪崩光电二极管。
本例中,如图1所示,所述光电接收芯片31接收端口与收发端口位于同一直线上时,发射端在侧面,接收端在输入输出端的正后方。这种结构中接收端隔离度足够满足要求,不需要加0度滤光片来增加隔离度。这种结构简单,易于调试。
本例中,如图2所示,所述光电接收芯片31接收端口与收发端口位于同一直线上,发射端和接收端同时在输入输出端的正后方时,这种结构整体空间大些,接收端也不需要加0度滤光片来增加隔离度。
本例中,如图3所示,当所述激光芯片21的光信号发射端与收发端口位于同一直线上时,发射端在输入输出端的正后方,接收端在侧面。这种结构中为了增加接收端的隔离度,需在接收端前增加0度滤光片。这种结构在外型上完全与现有的光收发模块兼容,封装外形要求不变。

Claims (9)

  1. 一种用于5G中传的高速收发模块,其特征在于:所述收发模块包括用于接收信号的接收光路和用于发送信号的发射光路;所述接收光路和发射光路共用收发模块的收发端口(1);所述收发端口内设准直器使进入收发端口的光准直成为平行光;收发模块发射端(2)设有用于发送信号的激光芯片(21),接收端(3)设有用于接收信号的光电接收芯片(31),激光芯片(21)发送的光信号先经发射光路始端的透镜部(5)转为平行光后,再经发射光路到达收发端口出射;收发端口接收的光信号则在被准直为平行光后,经接收光路到达光电接收芯片处。
  2. 根据权利要求1所述的一种用于5G中传的高速收发模块,其特征在于:当所述光电接收芯片(31)接收端口与收发端口位于同一直线上时,所述接收光路中,入射光经收发端口(1)准直为平行光A后,平行光A先经第一滤光片(41)透射后入射至光电接收芯片(31)前方的正透镜(32),再被正透镜(32)汇聚为入射至光电接收芯片(31)接收端口的光信号;
    此结构下,所述发射光路中,激光芯片(21)发射的激光先经透镜部(5)转为平行光B,再经自由空间隔离器(6)向第一反射片(42)出射,所述平行光B先经第一反射片(42)反射至第一滤光片(41)处,再被第一滤光片(41)反射至收发端口出射。
  3. 根据权利要求2所述的一种用于5G中传的高速收发模块,其特征在于:当所述光电接收芯片(31)接收端口与收发端口位于同一直线上时,所述第一滤光片(41)为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片。
  4. 根据权利要求2所述的一种用于5G中传的高速收发模块,其特征在于:所述自由空间隔离器(6)的输出端处可增设第二反射片(44),所述第二反射片(44)对平行光B反射以调节平行光B的出射方向。
  5. 根据权利要求1所述的一种用于5G中传的高速收发模块,其特征在于:当所述激光芯片(21)的光信号发射端与收发端口位于同一直线上时,所述发射光路中,激光芯片(21)发射的激光先经透镜部(5)转为平行光B,再经自由空间隔离器(6)射至第一滤光片(41)处,经第一滤光片(41)透射后到达收发端口出射;
    此结构下,所述接收光路中,入射光经收发端口(1)准直为平行光A后,平行光A先经第一滤光片(41)至第一反射片(42)处,再被第一反射片(42)反射至第二滤光片(43)后,经第二滤光片(43)透射至光电接收芯片(31)前方的正透镜(32),再被正透镜(32)汇聚为入射至光电接收芯片(31)接收端口的光信号。
  6. 根据权利要求5所述的一种用于5G中传的高速收发模块,其特征在于:当所述激光芯片(21)的光信号发射端与收发端口位于同一直线上时,所述第一滤光片(41)为可对波长间隔窄的两路光信号进行分离或者合成的小角度滤光片;所述第二滤光片(43)为0度滤光片。
  7. 根据权利要求1所述的一种用于5G中传的高速收发模块,其特征在于:所述透镜部(5)为透镜组或单个非球透镜,当透镜部为透镜组时,所述激光芯片(21)发射的激光先经凸透镜(22)转为汇聚光,汇聚光再经负透镜(7)转为平行光B。
  8. 根据权利要求1所述的一种用于5G中传的高速收发模块,其特征在于:所述收发模块发射端的激光芯片包括激光二极管,接收端的光电接收芯片包括光电二极管。
  9. 根据权利要求8所述的一种用于5G中传的高速收发模块,其特征在于:所述激光二极管可选用带致冷封装的激光二极管,所述光电二极管可选用雪崩光电二极管。
PCT/CN2020/137110 2020-01-02 2020-12-17 一种用于5g中传的高速收发模块 WO2021135968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010002523.5 2020-01-02
CN202010002523.5A CN110989106A (zh) 2020-01-02 2020-01-02 一种用于5g中传的高速收发模块

Publications (1)

Publication Number Publication Date
WO2021135968A1 true WO2021135968A1 (zh) 2021-07-08

Family

ID=70080629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137110 WO2021135968A1 (zh) 2020-01-02 2020-12-17 一种用于5g中传的高速收发模块

Country Status (2)

Country Link
CN (1) CN110989106A (zh)
WO (1) WO2021135968A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989106A (zh) * 2020-01-02 2020-04-10 福建天蕊光电有限公司 一种用于5g中传的高速收发模块
CN112180521A (zh) * 2020-09-17 2021-01-05 武汉联特科技有限公司 一种单纤双向多通道传输光模块系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052125A1 (en) * 2009-08-25 2011-03-03 Electronics And Telecommunications Research Institute Bidirectional optical transceiver module
CN105652395A (zh) * 2016-04-01 2016-06-08 成都聚芯光科通信设备有限责任公司 一种多波长光收发组件
CN205317984U (zh) * 2015-12-01 2016-06-15 福州腾景光电科技有限公司 一种密集波长单纤三向组件
CN105739032A (zh) * 2016-04-27 2016-07-06 成都聚芯光科通信设备有限责任公司 一种单接口多波长发射接收组件
CN205656355U (zh) * 2016-04-08 2016-10-19 福建天蕊光电有限公司 一种多波长光收发装置
CN208188414U (zh) * 2018-05-25 2018-12-04 福建天蕊光电有限公司 一种单纤单波长双向收发模块组件
CN110989106A (zh) * 2020-01-02 2020-04-10 福建天蕊光电有限公司 一种用于5g中传的高速收发模块
CN211180312U (zh) * 2020-01-02 2020-08-04 福建天蕊光电有限公司 一种用于5g中传的高速收发模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052125A1 (en) * 2009-08-25 2011-03-03 Electronics And Telecommunications Research Institute Bidirectional optical transceiver module
CN205317984U (zh) * 2015-12-01 2016-06-15 福州腾景光电科技有限公司 一种密集波长单纤三向组件
CN105652395A (zh) * 2016-04-01 2016-06-08 成都聚芯光科通信设备有限责任公司 一种多波长光收发组件
CN205656355U (zh) * 2016-04-08 2016-10-19 福建天蕊光电有限公司 一种多波长光收发装置
CN105739032A (zh) * 2016-04-27 2016-07-06 成都聚芯光科通信设备有限责任公司 一种单接口多波长发射接收组件
CN208188414U (zh) * 2018-05-25 2018-12-04 福建天蕊光电有限公司 一种单纤单波长双向收发模块组件
CN110989106A (zh) * 2020-01-02 2020-04-10 福建天蕊光电有限公司 一种用于5g中传的高速收发模块
CN211180312U (zh) * 2020-01-02 2020-08-04 福建天蕊光电有限公司 一种用于5g中传的高速收发模块

Also Published As

Publication number Publication date
CN110989106A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021135968A1 (zh) 一种用于5g中传的高速收发模块
CN205656355U (zh) 一种多波长光收发装置
CN110058362B (zh) 一种基于五边形棱镜和干涉滤光片的单纤双向收发器件
WO2022057352A1 (zh) 一种单纤双向多通道传输光模块系统
CN105717589A (zh) 一种单光口多路并行光发射组件
WO2018098858A1 (zh) 一种用于高速光模块的光分波合波器光口装置
CN105652395A (zh) 一种多波长光收发组件
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
CN109917523A (zh) 一种波长间隔小于20nm的50G单纤双向光模块
CN208314275U (zh) 一种粗波分复用定焦平行光路的光接收系统
CN211180309U (zh) 一种5g前传的高速收发模块
CN104808299A (zh) 一种用于光纤通讯的多波长组件
CN213957685U (zh) 光收发器件
CN211180312U (zh) 一种用于5g中传的高速收发模块
CN202077033U (zh) 用于10g pon的单纤双向光收发模块光组件
CN210243908U (zh) 一种单纤双向光模块
KR101771161B1 (ko) 양방향 광 송수신 모듈
CN204694885U (zh) 一种用于光纤通讯的多波长组件
CN208506305U (zh) 一种多波长合波光学模块
CN116346238A (zh) 一种50g无源光纤网络接收端组件
WO2023040536A1 (zh) 一种单纤多向光收发装置及光模块
CN102183827A (zh) 用于10g pon的单纤双向光收发模块光组件
CN205317979U (zh) 一种相邻波长收发模组
WO2021203359A1 (zh) 一种光通信器件及光信号处理方法
WO2021114986A1 (zh) 一种5g前传的高速收发模块及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910174

Country of ref document: EP

Kind code of ref document: A1