WO2021135726A1 - 集成式消融针及消融系统 - Google Patents

集成式消融针及消融系统 Download PDF

Info

Publication number
WO2021135726A1
WO2021135726A1 PCT/CN2020/130917 CN2020130917W WO2021135726A1 WO 2021135726 A1 WO2021135726 A1 WO 2021135726A1 CN 2020130917 W CN2020130917 W CN 2020130917W WO 2021135726 A1 WO2021135726 A1 WO 2021135726A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
sleeve
ablation
sampling groove
cannula
Prior art date
Application number
PCT/CN2020/130917
Other languages
English (en)
French (fr)
Inventor
丘信炯
王柏栋
张庭超
彭波波
刘丽文
Original Assignee
杭州诺诚医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922501255.7U external-priority patent/CN211934280U/zh
Priority claimed from CN201911424501.1A external-priority patent/CN113116503A/zh
Application filed by 杭州诺诚医疗器械有限公司 filed Critical 杭州诺诚医疗器械有限公司
Priority to EP20910481.9A priority Critical patent/EP4085859A4/en
Publication of WO2021135726A1 publication Critical patent/WO2021135726A1/zh
Priority to US17/850,798 priority patent/US20220338919A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • A61B10/0275Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0283Pointed or sharp biopsy instruments with vacuum aspiration, e.g. caused by retractable plunger or by connected syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00017Cooling or heating of the probe or tissue immediately surrounding the probe with fluids with gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00529Liver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles

Definitions

  • This application relates to the technical field of medical devices, and in particular to an integrated ablation needle and ablation system.
  • ablation has been widely used in the treatment of tumors in liver, kidney, and soft tissue.
  • the principle of operation is to insert a radiofrequency ablation needle or a microwave ablation needle into the lesion, and then use radiofrequency energy.
  • microwave energy causes high temperature in the local tissue of the lesion, which causes coagulation and necrosis of the lesion tissue to achieve the purpose of treatment.
  • it is extremely necessary to take a tissue sample and perform pathological analysis after the ablation is completed, that is, to perform a biopsy.
  • the ablation needle and the biopsy needle are usually independent of each other.
  • the ablation needle first penetrates into the diseased tissue to perform ablation. After the ablation is completed, the ablation needle is withdrawn from the body, and the biopsy needle is punctured separately into the ablated tissue for sampling. . Therefore, ablation and biopsy after ablation require two punctures. Repeated punctures aggravate the damage to human tissues and organs, increase the potential risks of the surgical process, and prolong the operation time.
  • the present application provides an integrated ablation needle and ablation system.
  • the functions of ablation and biopsy are integrated on the same ablation needle without performing separate biopsy steps, avoiding repeated punctures, reducing damage to the human body, and saving operation time.
  • an integrated ablation needle including a sleeve and an electrode needle movably inserted in the sleeve.
  • the electrode needle includes a needle tip at the distal end and a proximal end connected to the needle tip
  • the needle shaft is provided with a sampling slot at least at a position close to the needle tip, and the distal end of the sleeve is provided with a cutting edge; the sleeve is moved axially relative to the needle shaft to expose or cover The sampling groove; when the sampling groove is exposed, the tissue around the needle bar enters the sampling groove; when the sampling groove is covered, the cutting edge cuts off the tissue inside and outside the sampling groove To obtain the tissue in the sampling tank as a biopsy sample.
  • the present application also provides an ablation system, including the aforementioned integrated ablation needle and an energy generating device electrically connected to the electrode needle of the integrated ablation needle.
  • the integrated ablation needle and ablation system include a sleeve and an electrode needle movably inserted in the sleeve.
  • the needle shaft of the electrode needle is provided with a sampling slot, and the distal end of the sleeve is provided with Cutting edge; the electrode needle is electrically connected to the energy generating device for ablation operation.
  • the cannula moves proximally to expose the sampling slot, so that the tissue around the needle shaft enters the sampling slot, and the cannula moves to the distal end. Cover the sampling slot, so that the cutting edge of the distal end of the cannula cuts the tissue inside and outside the sampling slot, so as to obtain the tissue in the sampling slot as a biopsy sample. Therefore, the ablation and biopsy functions are integrated on the integrated ablation needle, and no separate ablation needle is required. Performing biopsy steps avoids repeated punctures, which is beneficial to reduce damage to the human body and save operation time.
  • FIG. 1 is a schematic diagram of the overall three-dimensional structure of the integrated ablation needle provided by the first embodiment of the present application.
  • Fig. 2 is an axial cross-sectional view of the sleeve in Fig. 1.
  • Fig. 3 is an enlarged schematic diagram of part III in Fig. 2.
  • Fig. 4 is a schematic diagram of the three-dimensional structure of the electrode needle in Fig. 1.
  • Fig. 5 is an axial cross-sectional view of the electrode needle in Fig. 4.
  • Fig. 6 is an axial cross-sectional view of the distal portion of the integrated ablation needle when the sampling slot in Fig. 1 is exposed.
  • Fig. 7 is an axial cross-sectional view of the distal part of the integrated ablation needle when the sampling slot in Fig. 1 is covered.
  • Fig. 8 is a schematic diagram of the overall structure of the ablation system provided by the present application.
  • FIG. 9 to 11 are schematic diagrams of the use process of the ablation system in FIG. 8.
  • Fig. 12 is a schematic diagram of a partial structure of an integrated ablation needle provided by a second embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of the distal end portion of the sleeve in FIG. 12.
  • Fig. 14 is an axial cross-sectional view of a partial structure of an integrated ablation needle provided by a third embodiment of the present application.
  • Fig. 15 is an axial cross-sectional view of the electrode needle in Fig. 14.
  • Fig. 16 is an enlarged schematic diagram of part XV in Fig. 14.
  • the proximal end refers to the end closer to the operator, and the distal end refers to the end farther from the operator;
  • the axial direction refers to the end parallel to the natural The direction of the connection between the distal center and the proximal center of the medical device in the state.
  • the present application provides an integrated ablation needle 100 for performing an ablation operation and obtaining a biopsy sample after the ablation operation is completed.
  • the integrated ablation needle 100 includes a cannula 10 and an electrode needle 20 movably installed in the cannula 10.
  • the electrode needle 20 includes a needle tip 21 located at the distal end and a needle shaft 23 connected to the proximal end of the needle tip 21.
  • the needle shaft 23 defines a sampling slot 231 at least at a position close to the needle tip 21.
  • a cutting edge 11 is provided at the distal end of the sleeve 10. The sleeve 10 moves axially relative to the needle 23 to expose or cover the sampling groove 231.
  • the electrode needle 20 may be electrically connected to an energy generating device such as a radio frequency generator or a microwave generator to perform an ablation operation.
  • an energy generating device such as a radio frequency generator or a microwave generator to perform an ablation operation.
  • the tissue around the needle bar 23 enters the sampling groove 231; when the sampling groove 231 is covered, the cutting edge 11 cuts off the The tissue inside and outside the sampling slot 231 is obtained, so as to obtain the tissue in the sampling slot 231 as a biopsy sample.
  • the integrated ablation needle 100 integrates ablation and biopsy functions into one, eliminating the need to perform separate biopsy steps, avoiding repeated punctures, reducing damage to the human body, and helping to reduce potential risks during the operation and save operation time. .
  • the sleeve 10 is a hollow round tube, which includes an inner cavity 12 extending in the axial direction and penetrating both ends, for movably wearing the electrode needle 20 (see picture 1).
  • the inner wall of the distal end of the sleeve 10 is provided with a ring of receiving grooves 13, and the connection between the receiving groove 13 and the inner cavity 12 forms a first annular step 14; the distal end of the sleeve 10 is also provided with
  • the aforementioned cutting edge 11 includes a cutting edge surface 113 inclined with respect to the axis of the sleeve 10, and the cutting edge surface 113 gradually approaches the axis of the sleeve 10 from its proximal end to its distal end.
  • the tangent line of the blade surface 113 and the axis of the sleeve 10 form a first included angle ⁇ .
  • the angle range of the first included angle ⁇ is preferably 9 in this embodiment. Degree to 17 degrees.
  • the plane on which the distal end of the cutting blade surface 113 is located is perpendicular to the axis of the sleeve 10, that is, the distal port of the sleeve 10 is a straight port.
  • the electrode needle 20 is roughly in the shape of a round rod.
  • the needle tip 21 includes a piercing section 211 at the distal end and a connecting section 213 connected to the proximal end of the piercing section 211, and the needle shaft 23 is connected to the proximal end of the connecting section 213.
  • the puncture section 211 has a sharp triangular pyramid shape or a conical tip shape, which is beneficial to ensure that the puncture section 211 has a good sharpness, so that the electrode needle 20 and the cannula After 10 combination, it is easier to puncture the skin and tissues.
  • the connecting section 213 has a cylindrical shape, and the diameter of the connecting section 213 is larger than the diameter of the needle bar 23.
  • the connection between the connecting section 213 and the needle bar 23 forms a second annular step 25.
  • the needle shaft 23 is provided with the sampling groove 231 at least at a position close to the needle tip 21.
  • the sampling groove 231 is a strip-shaped groove extending along the axial direction of the needle bar 23, and the cross section of the sampling groove 231 perpendicular to the axial direction of the needle bar 23 is Semi-circular, that is, the shaft of the needle bar 23 is cut in half along the axial direction at the position close to the needle tip 21 to form the sampling groove 231.
  • the sampling groove 231 has a larger sampling space, which is beneficial to the needle.
  • the tissue around the rod 23 enters the sampling groove 231.
  • the cross section of the sampling groove 231 perpendicular to the axial direction of the needle shaft 23 may be fan-shaped, rectangular, or other shapes, as long as it can accommodate the tissue around the needle shaft 23.
  • the sampling groove 231 may be a plurality of strip-shaped grooves extending along the axial direction of the needle bar 23, and the plurality of strip-shaped grooves are along the circumference or axis of the needle bar 23. To the interval setting.
  • the sampling groove 231 may also be one or several arc-shaped grooves extending along the circumference of the needle bar 23, and the several arc-shaped grooves are along the circumference of the needle bar 23. It can be set at intervals or axially.
  • the sampling groove 231 may also be one or more annular grooves extending one circle in the circumferential direction of the needle bar 23, and the plurality of annular grooves are spaced apart along the axial direction of the needle bar 23. Set up.
  • the integrated ablation needle 100 further includes a handle 30 connected to the proximal end of the cannula 10 and the proximal end of the electrode needle 20, and the handle 30 is used to drive the cannula 10 relative to The needle rod 23 moves along the axial direction to expose or cover the sampling groove 231.
  • the proximal end of the sleeve 10 is fixedly connected to the driving mechanism inside the handle 30 by integral injection molding or adhesive connection, and the proximal end of the sleeve 10 is self-aligned.
  • the proximal end of the handle 30 passes through; the needle tip 21 of the electrode needle 20 is located outside the sleeve 10, the needle shaft 23 of the electrode needle 20 is movably inserted into the sleeve 10, and the needle shaft
  • the proximal end of 23 passes through the proximal end of the handle 30 from the sleeve 10, and the proximal end of the needle shaft 23 passes through the proximal end of the sleeve 10, and the proximal end of the needle shaft 23
  • the electrode wire 27 is connected to an energy generating device (not shown in the figure) such as a radio frequency generator or a microwave generator, so that the needle tip 21 at the distal end of the electrode needle 20 outside the cannula 10 can be used for ablation operations.
  • the electrode needle 20 when the electrode needle 20 is electrically connected to the radio frequency generator, the electrode needle 20 transmits a high-frequency current to cause the charged positive and negative ions in the diseased tissue around the distal end of the electrode needle 20 to undergo high-speed oscillation movement and high-speed oscillation.
  • the microwave generator When the microwave generator is connected, the distal end of the electrode needle 20 forms a microwave field, and the dipole molecules such as water molecules in the diseased tissue generate heat due to movement, friction and violent collision under the action of the microwave field, so that the temperature in the diseased tissue increases In the end, the protein in the diseased cell is denatured, the water inside and outside the cell is lost, and the diseased tissue appears coagulative necrosis, so as to achieve microwave ablation.
  • the electrode needle 20 is preferably made of a biocompatible metal with excellent electrical conductivity such as stainless steel.
  • the proximal end of the needle shaft 23 is electrically connected to a radio frequency generator through the electrode wire 27.
  • the needle tip 21 is used for radiofrequency ablation.
  • the proximal end of the cannula 10 is fixedly connected to the drive mechanism in the handle 30, and the needle rod 23 is movably inserted into the cannula 10, thereby moving the shaft in the axial direction.
  • the driving mechanism in the handle 30 can drive the sleeve 10 to move in the axial direction relative to the needle bar 23, so that the sampling groove 231 on the needle bar 23 can be exposed or covered as required.
  • the handle 30 drives the sleeve 10 to move proximally until the sampling groove 231 is exposed, such as Figure 6;
  • the handle 30 drives the sleeve 10 to move distally until the sampling groove 231 is sealed Cover, as shown in Figure 7.
  • a first positioning part is provided on the sleeve 10
  • a second positioning part is provided on the electrode needle 20
  • the first positioning part cooperates with the second positioning part to realize the electrode needle 20 and the second positioning part.
  • the sleeve 10 is positioned along the axial direction to indicate whether the sampling groove 231 is completely covered, so as to prevent the sampling groove 231 from being completely covered and the tissue inside and outside the sampling groove 231 is not completely cut.
  • the diameter of the inner cavity 12 of the sleeve 10 is larger than the diameter of the needle shaft 23 and smaller than the diameter of the needle tip 21, and the receiving groove of the sleeve 10
  • the diameter of 13 is greater than the diameter of the needle tip 21. Therefore, when the handle 30 drives the sleeve 10 to move distally relative to the needle shaft 23 continuously, the first annular step 14 on the sleeve 10 Eventually, it will abut against the second annular step 25 on the electrode needle 20.
  • the electrode needle 20 and the sleeve 10 are positioned along the axial direction, and the connecting section 213 at the proximal end of the needle tip 21 is partially received in In the receiving groove 13 of the sleeve 10, the sampling groove 231 on the needle rod 23 is completely covered.
  • the first annular step 14 is the first positioning portion
  • the second annular step 25 is the second positioning portion.
  • the first positioning portion and the second positioning portion may be a first developing point and a second developing point that can be developed under a medical imaging device, and the first developing point is disposed on the sleeve.
  • the second imaging point is set on the outer peripheral surface of the connecting section 213 of the needle tip 21 and Close to the position of the sampling slot 213, the operator observes the relative position of the first developing point and the second developing point under the medical imaging device to determine whether the sampling slot 231 is completely covered.
  • the first visualization point and the second visualization point can also help the operator to determine whether the distal end of the electrode needle 20 has reached or is at a predetermined ablation position.
  • the first developing point and the second developing point can adopt imaging methods such as ultrasonic imaging, X-ray fluoroscopy, etc., and ultrasonic imaging methods that are less harmful to the human body and relatively economical are preferred.
  • the drive mechanism in the handle 30 drives the sleeve 10 to move in the axial direction relative to the needle rod 23, which can be used not only to expose or cover the sampling groove 231, but also to The length of the distal end of the electrode needle 20 extending from the sleeve 10 is adjusted to change the effective ablation length of the integrated ablation needle 100 to meet the ablation requirements of different diseased parts or different patients.
  • the sleeve 10 sheathed outside the electrode needle 20 is at least partially insulated, that is, the sleeve 10 may be fully insulated or partially insulated.
  • the cannula 10 When the cannula 10 is fully insulated, the part of the electrode needle 20 that protrudes from the cannula 10 performs an ablation operation, and the length of the part of the electrode needle 20 that protrudes from the cannula 10 is equal to The effective ablation length of the integrated ablation needle 100; when the cannula 10 is partially insulated, the distal end of the electrode needle 20 extends out of the cannula 10 and the non-insulated portion of the cannula 10 is performed During an ablation operation, the sum of the length of the part where the distal end of the electrode needle 20 protrudes from the sleeve 10 and the non-insulated part of the sleeve 10 is the effective ablation length of the integrated ablation needle 100.
  • the sleeve 10 is completely insulated.
  • the sleeve 10 can be made entirely of insulating materials, such as plastic pipes such as PEEK, PI, or PA, which can meet the hardness requirements, and ceramic pipes such as high alumina porcelain, steatite porcelain, or boron nitride; the sleeve 10 can also be All are made of non-insulating material, and then the outer surface of the sleeve 10 is covered with an insulating coating.
  • the sleeve 10 is made of a metal material, and the outer surface of the tube body is coated with an insulating coating.
  • Metallic materials include but are not limited to 304 stainless steel, 321 stainless steel or 631 stainless steel, and the insulating coating includes but not limited to PTFE coating, titanium nitride coating, parylene coating and the like.
  • the metal material used to make the sleeve 10 should have sufficient hardness to penetrate human tissues, and should have excellent biocompatibility.
  • the insulating coating should have reliable insulation, excellent biocompatibility, and better biocompatibility. Small coefficient of friction, and tight bonding between the insulating coating and the outer surface of the casing 10 is required, and the insulating coating is not easy to fall off.
  • the thickness of various insulation coatings should be ⁇ 3 ⁇ m.
  • the sleeve 10 may be partially insulated, so that the non-insulated part of the sleeve 10 can also transmit high-frequency currents or microwaves, which is beneficial to increase the ablation area.
  • the electrode needle 20 is provided with a cooling channel 233.
  • the cooling channel 233 is used to transport a gaseous or liquid cooling medium (such as cooling water) for cooling, so as to control the temperature during the ablation operation.
  • the cooling channel 233 is a cylindrical channel, and the cooling channel 233 extends from the proximal surface of the needle shaft 23 to the inside of the needle tip 21.
  • the proximal end of the cannula 10 and the proximal end of the electrode needle 20 are both connected to a negative pressure device 40, so that the negative pressure device 40 communicates with the cooling channel 233, and the proximal end of the negative pressure device 40 is provided with a
  • a cooling medium supply device (not shown in the figure) is externally connected to the pair of circulation tubes 45 to provide sufficient cooling medium to ensure that the ablation temperature is maintained in an ideal state.
  • a temperature measuring element 50 extending into the needle tip 21 is installed in the cooling channel 233 to obtain the ablation temperature in real time.
  • the temperature measuring element 50 is a temperature measuring wire extending to the inside of the needle tip 21.
  • the cooling channel 233 is in communication with the sampling groove 231, so that the sleeve 10 covers the sampling groove 231 and the electrode needle 20 performs ablation.
  • the cooling medium can flow between the sleeve 10 and the electrode needle 20 through the sampling groove 231, so that the cooling effect is more uniform.
  • the diameter of the needle shaft 23 is smaller than that of the electrode needle 20. According to the diameter of the inner cavity 12 of the sleeve 10, a flow space outside the cooling channel 233 can be provided for the cooling medium, and the cooling effect is faster.
  • a sealing mechanism is provided on the sleeve 10 and/or the needle bar 23 to seal the radial gap between the sleeve 10 and the needle bar 23, and when the sampling groove 231 is covered by the sleeve 10, the sealing mechanism is located between the sampling groove 231 and the Between the needle tip 21. Specifically, please refer to FIGS. 5 and 7 together.
  • the needle bar 23 is provided with a ring of sealing grooves 235 near the needle tip 21, and the sealing grooves 235 are located between the sampling grooves 231 and Between the needle points 21, a sealing ring 60 is sleeved in the sealing groove 235, and the sealing groove 235 and the sealing ring 60 constitute the sealing mechanism.
  • the sealing ring 60 has elasticity and the outer diameter of the sealing ring 60 is slightly larger than the diameter of the inner cavity 12 of the sleeve 10, so that after the electrode needle 20 is matched with the sleeve 10, the The sealing ring 60 is elastically deformed, and thus can be closely attached to the inner peripheral surface of the sleeve 10, and has a better sealing effect.
  • the needle rod 23 may have a plurality of sealing grooves 235 along the axial direction at a position close to the needle tip 21, and each sealing groove 235 is provided with a sealing ring 60 to enhance the sealing effect.
  • the present application also provides an ablation system 1000, which includes the integrated ablation needle 100 and an energy generating device 200 electrically connected to the electrode needle 20 of the integrated ablation needle 100.
  • the energy generating device 200 includes, but is not limited to, a radio frequency generator or a microwave generator.
  • the energy generator 200 is a radio frequency generator, and the radio frequency generator is connected to the electrode needle through the electrode line 27. 20 is electrically connected to provide high-frequency current to the electrode needle 20 for radiofrequency ablation operation.
  • the ablation system 1000 further includes a cooling medium supply device 300, which communicates with the negative pressure device 40 of the integrated ablation needle 100 through a pair of circulating tubes 45, and further communicates with the electrode needle
  • the cooling channel 233 of 20 is connected to provide sufficient gaseous or liquid cooling medium in the cooling channel 233 for controlling the temperature of the integrated ablation needle 100 during ablation.
  • FIG. 1 and FIG. 9 to FIG. 11 Please refer to FIG. 1 and FIG. 9 to FIG. 11 together.
  • the following describes the use process of the ablation system 1000 provided in this application:
  • the first step as shown in Figure 9, first put the electrode needle 20 into the cannula 10, the electrode needle 20 and the cannula 10 are in a closed state, so that the cannula 10 completely covers the sampling slot 231 on the needle bar 23 , Under the action of the sealing ring, it is ensured that the sleeve 10 and the electrode needle 20 are completely sealed. Under the guidance of ultrasound imaging, the sleeve 10 and the electrode needle 20 in the closed state reach the diseased part of the human body through the puncture of the needle tip 21, and the high-frequency current is provided to the electrode needle 20 through the energy generating device 200 (see FIG. 8).
  • the electrode needle 20 The distal tip 21 discharges to perform radiofrequency ablation on the lesion, the temperature measuring element 50 (see Figure 7) monitors the ablation temperature in real time, and the cooling medium supply device 300 (see Figure 8) passes the cooling medium into the cooling channel 233 of the electrode needle 20 , Realize circulating cooling and cooling.
  • the second step after the ablation is completed, the cooling medium supply device 300 is turned off, and the negative pressure device 40 is turned on, so that the cooling medium is completely sucked and cleaned by the negative pressure effect.
  • the operating handle 30 drives the sleeve 10 connected to it to move proximally relative to the needle shaft 23 of the electrode needle 20, completely or partially exposing the sampling groove 231.
  • the needle shaft 23 The surrounding tissue after ablation will partially enter the sampling groove 231, and due to the continuous operation of the negative pressure device 40, a negative pressure will also be generated on the tissue, so that the tissue is sucked into the sampling groove 231, as shown in FIG. 10.
  • Step 3 Then the handle 30 drives the cannula 10 to move distally relative to the needle shaft 23 of the electrode needle 20 to completely cover the sampling slot 231, and the cutting edge 11 at the distal end of the cannula 10 cuts off the tissue inside and outside the sampling slot 231 , So that the tissue in the sampling groove 231 is cut and separated from other tissues and remains in the sampling groove 231, as shown in FIG. 11. Finally, the entire integrated ablation needle 100 is withdrawn from the human body, and the tissue in the sampling slot 231 is taken out to be used as a biopsy sample for inspection and analysis.
  • the integrated ablation needle 100 and the ablation system 1000 provided in the present application integrate the ablation and biopsy functions on the same ablation needle without performing a separate biopsy step, avoiding repeated punctures, reducing damage to the human body, and reducing surgical procedures Potential risks in the process, saving operation time.
  • the structure of the integrated ablation needle 100b provided by the second embodiment of the present application is similar to the structure of the integrated ablation needle 100 of the first embodiment, the difference is that: in the second embodiment Wherein, the plane on which the distal end of the cutting edge surface 113b is located forms a second included angle ⁇ with the axis of the sleeve 10b, that is, the distal port of the sleeve 10b is a beveled pointed port.
  • the contact area between the distal end of the cutting blade surface 113b and the tissue is smaller, and under the same trigger force, it is more The small contact area enables the cutting edge surface 113b to cut tissue more easily.
  • the angle range of the second included angle ⁇ is preferably 25 degrees to 35 degrees.
  • the structure of the integrated ablation needle 100c provided by the third embodiment of the present application is similar to the structure of the integrated ablation needle 100 of the first embodiment. The difference is that: in the third embodiment In the above, the integrated ablation needle 100c further includes an outer tube 70 pierced outside the cannula 10, and the electrode needle 20 and the cannula 10 can move in the axial direction relative to the outer tube 70, so that The integrated ablation needle 100c can perform pre-ablation biopsy, ablation, and post-ablation biopsy through one puncture.
  • the outer tube 70 is sleeved outside the cannula 10 and punctured together with the cannula 10 and the electrode needle 20 that are put together.
  • the outer tube 70 is moved axially proximally relative to the cannula 10 and the electrode needle 20, so that the cannula 10 and all the cannula 10 that are put together
  • the distal part of the electrode needle 20 is exposed; then the cannula 10 is controlled to move in the axial direction relative to the electrode needle 20 to obtain a tissue sample before ablation, and the cannula 10 and all the cannula 10 that are put together
  • the electrode needle 20 is withdrawn from the body of the outer tube 70, the outer tube 70 is left in the tissue, and the tissue sample before ablation in the sampling groove 231 of the electrode needle 20 is taken out;
  • the cannula 10 and the electrode needle 20 then use the outer tube 70 placed in the tissue as a channel to enter the diseased tissue site
  • the proximal end of the needle tip 21 is provided with a circle in the circumferential direction.
  • the avoidance groove 237 The connection between the avoidance groove 237 and the sealing groove 235 on the needle bar 23 forms the aforementioned second annular step 25.
  • the first annular step 14 (not marked in the figure) of the sleeve 10 abuts against the second annular step 25, and the cutting edge 11 of the sleeve 10 is accommodated in the escape groove 237,
  • the outer diameter of the sleeve 10 is equal to or smaller than the diameter of the proximal end of the needle tip 21, so that after the outer tube 70 is sleeved on the sleeve 10, the overall outer diameter of the integrated ablation needle 100c does not increase.
  • the cutting edge 11 of the sleeve 10 is accommodated in the escape groove 237, which is also beneficial to protect the cutting edge 11 of the sleeve 10.
  • the distal end of the outer tube 70 is provided with an inclined surface 71, and the inclined surface 71 gradually approaches the axis of the outer tube 70 from the proximal end to the distal end thereof, and the inclined surface 71 can reduce the entry of the outer tube 70 into the tissue.
  • the resistance is encountered, it is easy to puncture.
  • the outer tube 70 is additionally provided on the outside of the cannula 10, and the outer tube 70 can be pierced into the tissue together with the cannula 10 and the electrode needle 20 that are pierced together,
  • the outer tube 70 is left in the tissue and can be used as a channel for pre-ablation, ablation, and post-ablation biopsy, avoiding repeated punctures, reducing damage to human tissues, and helping to reduce potential risks and savings during surgery operation time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种集成式消融针(100),包括套管(10)及活动穿装于套管(10)内的电极针(20),电极针(20)包括位于远端的针尖(21)及连接于针尖(21)近端的针杆(23),针杆(23)至少在靠近针尖(21)的部位开设取样槽(231),套管(10)的远端设置刃口(11)。套管(10)相对于针杆(23)沿轴向移动以暴露或封盖取样槽;当取样槽(231)被暴露时,针杆(23)周围的组织部分进入取样槽(231);当取样槽(231)被封盖时,刃口(11)切断取样槽(231)内外的组织,以获取取样槽(231)内的组织作为活检样品。提供一种包括集成式消融针(100)的消融系统(1000)。集成式消融针(100)及消融系统(1000)将消融、活检功能集成于同一消融针(100)上,无需单独执行活检步骤,避免了重复穿刺,减少对人体的损伤,节省手术时间。

Description

集成式消融针及消融系统 技术领域
本申请涉及医疗器械技术领域,尤其涉及一种集成式消融针及消融系统。
背景技术
随着微创医疗技术的发展,消融术已被广泛地应用于肝脏、肾脏、软组织等部位的肿瘤等疾病的治疗,其手术原理是将射频消融针或者微波消融针插入病灶,然后通过射频能量或者微波能量导致病灶局部组织产生高温,使得病灶组织凝固性坏死而达到治疗目的。为了获知消融治疗的效果,在消融完成后取出组织样本并做病理分析,即进行活检,是极其必要的。
现有技术中,消融针、活检针通常是各自独立的,消融针先穿刺进入病变组织执行消融,消融完成后,消融针从人体内撤出,活检针再单独穿刺进入经消融的组织执行取样。因此,消融与消融后的活检需要两次穿刺,重复穿刺加剧了对人体组织器官的损伤,也增加了手术过程的潜在风险,而且会延长手术时间。
发明内容
有鉴于此,本申请提供一种集成式消融针及消融系统,消融、活检功能集成于同一消融针上,无需单独执行活检步骤,避免了重复穿刺,减少对人体的损伤,节省手术时间。
为解决上述技术问题,本申请提供一种集成式消融针,包括套管及活动穿装于所述套管内的电极针,所述电极针包括位于远端的针尖及连接于所述针尖近端的针杆,所述针杆至少在靠近所述针尖的部位开设取样槽,所述套管的远端设置刃口;所述套管相对于所述针杆沿轴向移动以暴露或封盖所述取样槽;当所述取样槽被暴露时,所述针杆周围的组织部分进入所述取样槽;当所述取样槽被封盖时,所述刃口切断所述取样槽内外的组织,以获取所述取样槽内的组织作为活检样品。
本申请还提供一种消融系统,包括前述的集成式消融针及与所述集成式消 融针的电极针电连接的能量发生装置。
本申请提供的集成式消融针及消融系统,所述集成式消融针包括套管及活动穿装于套管内的电极针,电极针的针杆上开设有取样槽,套管的远端设置有刃口;电极针电连接能量发生装置以进行消融操作,在完成消融操作后,套管向近端移动可以暴露取样槽,使得针杆周围的组织部分进入取样槽,套管向远端移动可以封盖取样槽,使套管远端的刃口切断取样槽内外的组织,从而获取取样槽内的组织作为活检样品,由此,消融、活检功能集成于所述集成式消融针上,无需单独执行活检步骤,避免了重复穿刺,有利于减少对人体的损伤、节省手术时间。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的集成式消融针的整体立体结构示意图。
图2是图1中的套管的轴向剖视图。
图3是图2中III部分的放大示意图。
图4是图1中的电极针的立体结构示意图。
图5是图4中的电极针的轴向剖视图。
图6是图1中的取样槽被暴露时集成式消融针的远端部分的轴向剖视图。
图7是图1中的取样槽被封盖时集成式消融针的远端部分的轴向剖视图。
图8是本申请提供的消融系统的整体结构示意图。
图9至图11是图8中的消融系统的使用过程的示意图。
图12是本申请第二实施例提供的集成式消融针的局部结构示意图。
图13是图12中的套管的远端部分的结构示意图。
图14是本申请第三实施例提供的集成式消融针的局部结构的轴向剖视图。
图15是图14中的电极针的轴向剖视图。
图16是图14中XV部分的放大示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,在介入医疗器械领域,近端是指距离操作者较近的一端,而远端是指距离操作者较远的一端;轴向是指平行于自然状态下的医疗器械远端中心和近端中心连线的方向。上述定义只是为了表述方便,并不能理解为对本申请的限制。
请参阅图1,本申请提供一种集成式消融针100,用于进行消融操作并在消融操作完成后获取活检样本。所述集成式消融针100包括套管10及活动穿装于所述套管10内的电极针20。所述电极针20包括位于远端的针尖21及连接于所述针尖21近端的针杆23,所述针杆23至少在靠近所述针尖21的部位开设取样槽231。所述套管10的远端设置刃口11。所述套管10相对于所述针杆23沿轴向移动以暴露或者封盖所述取样槽231。本申请中,所述电极针20可以电连接射频发生器或者微波发生器等能量发生装置,以进行消融操作。在消融操作完成后,当所述取样槽231被暴露时,所述针杆23周围的组织部分进入所述取样槽231;当所述取样槽231被封盖时,所述刃口11切断所述取样槽231内外的组织,从而获取所述取样槽231内的组织作为活检样品。由此,所述集成式消融针100将消融、活检功能集成于一体,无需单独执行活检步骤,避免了重复穿刺,减少了对人体的损伤,有利于减少手术过程中的潜在风险、 节省手术时间。
具体地,请一并参阅图2和图3,所述套管10为中空的圆管,其包括沿轴向延伸并贯通两端的内腔12,以用于活动地穿装所述电极针20(见图1)。所述套管10的远端的内壁开设有一圈收容槽13,所述收容槽13与所述内腔12的连接处形成一第一环形台阶14;所述套管10的远端还设置有前述的刃口11,其包括相对于所述套管10的轴线倾斜的切割刃面113,所述切割刃面113自其近端向远端逐渐靠近所述套管10的轴线,所述切割刃面113的切线与所述套管10的轴线呈第一夹角α,为保证所述切割刃面113的锋利度,本实施例中,所述第一夹角α的角度范围优选为9度至17度。此外,本实施例中,所述切割刃面113的远端所在的平面与所述套管10的轴线垂直,即,所述套管10的远端口为平直的端口。
请一并参阅图4和图5,所述电极针20大致呈圆杆状。所述针尖21包括位于远端的穿刺段211及连接于所述穿刺段211近端的连接段213,所述针杆23连接于所述连接段213的近端。优选地,本实施例中,所述穿刺段211呈尖锐的三棱锥状或者锥尖状,有利于保证所述穿刺段211具有较好的锋利程度,使得所述电极针20和所述套管10组合后更容易穿刺皮肤及组织。所述连接段213呈圆柱状,且所述连接段213的直径大于所述针杆23的直径,所述连接段213与所述针杆23的连接处形成一第二环形台阶25。进一步的,本申请中,为了在消融操作完成后获取活检样品,所述针杆23至少在靠近所述针尖21的部位开设有所述取样槽231。具体地,本实施例中,所述取样槽231为沿所述针杆23的轴向延伸的一个条形凹槽,所述取样槽231的垂直于所述针杆23轴向的横截面呈半圆形,即,所述针杆23的杆体在靠近所述针尖21的部位沿轴向去除一半形成所述取样槽231,所述取样槽231具有较大的取样空间,有利于所述针杆23周围的组织进入所述取样槽231内。当然,在其他实施例中,所述取样槽231的垂直于所述针杆23轴向的横截面可以是扇形、矩形等其他形状,只要能够容纳所述针杆23周围的组织即可。
在其他实施例中,所述取样槽231可以是沿所述针杆23的轴向延伸的数个条形凹槽,所述数个条形凹槽沿所述针杆23的周向或者轴向间隔设置。
在其他实施例中,所述取样槽231也可以是沿所述针杆23的周向延伸的 一个或者数个弧形凹槽,所述数个弧形凹槽沿所述针杆23的周向或者轴向间隔设置。
在其他实施例中,所述取样槽231还可以是沿所述针杆23的周向延伸一圈的一个或者数个环形凹槽,所述数个环形凹槽沿针杆23的轴向间隔设置。
请参阅图1,所述集成式消融针100还包括连接于所述套管10近端及所述电极针20近端的一手柄30,所述手柄30用于带动所述套管10相对于所述针杆23沿轴向移动,以暴露或者封盖所述取样槽231。
具体地,如图1所示,所述套管10的近端通过一体注塑成型或者粘接的连接方式与所述手柄30内部的驱动机构固定连接,且所述套管10的近端自所述手柄30的近端穿出;所述电极针20的针尖21位于所述套管10外,所述电极针20的针杆23活动地穿装于所述套管10内,所述针杆23的近端自所述套管10内穿过所述手柄30的近端,且所述针杆23的近端穿出于所述套管10的近端,所述针杆23的近端通过电极线27外接于射频发生器或者微波发生器等能量发生装置(图中未示),使得位于所述套管10外的所述电极针20远端的针尖21能够用于消融操作。具体地,所述电极针20电连接射频发生器时,所述电极针20传递高频电流使得所述电极针20的远端周围的病变组织中带电荷的正负离子发生高速振荡运动,高速振荡的离子因摩擦产生大量的热量,使病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外的水分丧失,病变组织出现凝固性坏死,从而实现射频消融;所述电极针20电连接微波发生器时,所述电极针20的远端形成微波场,病变组织内的水分子等偶极分子在微波场的作用下因运动摩擦、剧烈碰撞而产热使得病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外的水分丧失,病变组织出现凝固性坏死,从而实现微波消融。本实施例中,所述电极针20优选不锈钢等具有优良导电性能的生物相容性金属来制造,所述针杆23的近端通过所述电极线27电连接于一射频发生器,所述针尖21用于射频消融。
如上所述,所述套管10的近端与所述手柄30内的驱动机构固定连接,所述针杆23活动地穿装于所述套管10内,由此,沿轴向移动所述手柄30内的驱动机构即可带动所述套管10相对于所述针杆23沿轴向移动,从而可以根据需要暴露或者封盖所述针杆23上的取样槽231。具体地,在一些实施例中, 当所述手柄30内的驱动机构向近端移动一定距离时,所述手柄30带动所述套管10向近端移动至所述取样槽231被暴露,如图6所示;在一些实施例中,当所述手柄30内的驱动机构向远端移动一定距离时,所述手柄30带动所述套管10向远端移动至所述取样槽231被封盖,如图7所示。
可选的,所述套管10上设置第一定位部,所述电极针20上设置第二定位部,所述第一定位部与所述第二定位部配合以实现所述电极针20与所述套管10沿轴向的定位,以指示所述取样槽231是否被完全封盖,防止所述取样槽231未被完全封盖导致所述取样槽231内外的组织未被完全切断。
具体地,如图7所示,本实施例中,所述套管10的内腔12的直径大于所述针杆23的直径且小于所述针尖21的直径,所述套管10的收容槽13的直径大于所述针尖21的直径,因此,通过所述手柄30带动所述套管10相对于所述针杆23向远端持续移动时,所述套管10上的第一环形台阶14最终会抵顶于所述电极针20上的第二环形台阶25,此时,所述电极针20与所述套管10沿轴向定位,所述针尖21近端的连接段213部分收容于所述套管10的收容槽13内,所述针杆23上的取样槽231被完全封盖。其中,所述第一环形台阶14即所述第一定位部,所述第二环形台阶25即所述第二定位部。
在其他实施例中,所述第一定位部和所述第二定位部可以是能够在医学影像装置下显影的第一显影点和第二显影点,所述第一显影点设置于所述套管10的远端的外周面或者内周面上且靠近所述套管10远端的刃口11的位置,所述第二显影点设置于所述针尖21的连接段213的外周面上且靠近所述取样槽213的位置,操作者通过在医学影像装置下观察所述第一显影点和所述第二显影点的相对位置以判断所述取样槽231是否被完全封盖,当所述第一显影点和所述第二显影点重合或者部分重合时,即判断所述取样槽231被完全覆盖。再者,所述第一显影点和所述第二显影点,还可以帮助操作者判断所述电极针20的远端是否到达或者处于预定的消融位置。
其中,所述第一显影点和第二显影点可以采用超声显影、X光透视等显影方式,优选对人体损害较小、也比较经济的超声显影方式。
可以理解的是,通过所述手柄30内的驱动机构带动所述套管10相对于所述针杆23沿轴向移动,不仅可以用于暴露或者封盖所述取样槽231,也可以 用于调节所述电极针20的远端伸出所述套管10的长度,进而改变所述集成式消融针100的有效消融长度,以适应不同病变部位或者不同患者的消融需求。
其中,套设于所述电极针20外的套管10至少部分绝缘,即,所述套管10可以是全部绝缘或者部分绝缘。当套管10全部绝缘时,所述电极针20的远端伸出所述套管10的部分执行消融操作,所述电极针20的远端伸出所述套管10的部分的长度即为所述集成式消融针100的有效消融长度;当所述套管10部分绝缘时,所述电极针20的远端伸出所述套管10的部分以及所述套管10非绝缘的部分执行消融操作,所述电极针20的远端伸出所述套管10的部分以及所述套管10非绝缘的部分的长度之和即为所述集成式消融针100的有效消融长度。优选地,本实施例中,所述套管10全部绝缘。所述套管10可以完全由绝缘材料制作,比如PEEK、PI或者PA等能够满足硬度要求的塑料管,再比如高铝瓷、滑石瓷或者氮化硼等陶瓷管;所述套管10也可以全部由非绝缘材料制成,然后在所述套管10的外表面覆盖绝缘涂层。本实施例中,为了提高所述套管10的支撑性,且便于刺入人体组织,优选地,所述套管10由金属材料制成,管体的外表面涂覆绝缘涂层,所述金属材料包括但不限于304不锈钢、321不锈钢或者631不锈钢,所述绝缘涂层包括但不限于PTFE涂层、氮化钛涂层、派瑞林涂层等。制作所述套管10的金属材料应具备足够的硬度以刺入人体组织,同时需要具有优良的生物相容性,所述绝缘涂层需具有可靠的绝缘性、优良的生物相容性及较小的摩擦系数,并且要求绝缘涂层与所述套管10的管体外表面之间紧密结合,绝缘涂层不易脱落,例如可以选择304不锈钢管加PTFE涂层、304不锈钢管加派瑞林涂层、321不锈钢管加氮化钛涂层、或631不锈钢管加派瑞林涂层等。考虑到绝缘可靠性及工艺可行性,各种绝缘涂层的厚度均应≥3μm。
显然,在其他实施例中,所述套管10可以部分绝缘,从而所述套管10的非绝缘的部分也可以传递高频电流或者微波,有利于增大消融区域。
请一并参阅图1和图7,如前所述,所述电极针20电连接射频发生器或者微波发生器后,所述电极针20接触组织的部分会传递射频能量或者微波能量导致病灶局部组织产生高温,使得病灶组织凝固性坏死而达到治疗目的,但局部温度过高会影响不需要进行消融的正常组织,因此,本申请中,所述电极 针20内开设有冷却通道233,所述冷却通道233用于输送气态或液态的冷却介质(如冷却水)进行降温,以控制消融操作时的温度。
具体地,如图1所示,所述冷却通道233为圆柱形通道,所述冷却通道233自所述针杆23的近端面延伸至所述针尖21的内部。所述套管10近端及所述电极针20近端均连通于一负压装置40,使得所述负压装置40与所述冷却通道233连通,所述负压装置40的近端设置有一对循环管45,所述一对循环管45外接有冷却介质供给装置(图中未示),以提供足够的冷却介质,保证消融温度维持在较为理想的状态。可选地,所述冷却通道233内装设有延伸至所述针尖21内部的一测温元件50,以实时获知消融温度。本实施例中,所述测温元件50为延伸至所述针尖21内部的测温导线。
如图7所示,优选地,本实施例中,所述冷却通道233与所述取样槽231连通,从而,在所述套管10封盖所述取样槽231、所述电极针20执行消融时,冷却介质可以经所述取样槽231流入所述套管10与所述电极针20之间,使得冷却效果更加均匀,更优地,本实施例中,所述针杆23的直径小于所述套管10的内腔12的直径,从而可以为冷却介质提供所述冷却通道233以外的流动空间,冷却效果更快。
进一步地,为了防止在消融时冷却介质从所述套管10与所述针杆23之间的径向间隙中渗出,所述套管10和/或所述针杆23上设有密封机构以密封所述套管10与所述针杆23之间的径向间隙,且当所述取样槽231被所述套管10封盖时,所述密封机构位于所述取样槽231与所述针尖21之间。具体地,请一并参阅图5和图7,本实施例中,所述针杆23在靠近所述针尖21的部位开设有一圈密封槽235,所述密封槽235位于所述取样槽231与所述针尖21之间,所述密封槽235内套设密封圈60,所述密封槽235与所述密封圈60构成所述密封机构。其中,所述密封圈60具有弹性且所述密封圈60的外径略大于所述套管10的内腔12的直径,从而使得所述电极针20与所述套管10配合后,所述密封圈60发生弹性形变,进而能够紧密贴合所述套管10的内周面,具有较好的密封效果。
在其他实施例中,所述针杆23在靠近所述针尖21的部位可以沿轴向开设多个密封槽235,每一所述密封槽235内设置一密封圈60,以增强密封效果。
请参阅图8,本申请还提供一种消融系统1000,包括所述集成式消融针100及与所述集成式消融针100的电极针20电连接的能量发生装置200。其中,所述能量发生装置200包括但不限于射频发生器或者微波发生器,本实施例中,所述能量发生器200为射频发生器,所述射频发生器通过电极线27与所述电极针20电连接,用于为所述电极针20提供高频电流,以进行射频消融操作。
进一步的,所述消融系统1000还包括冷却介质供给装置300,所述冷却介质供给装置300通过一对循环管45与所述集成式消融针100的负压装置40连通,进而与所述电极针20的冷却通道233连通,以向所述冷却通道233内提供足够的气态或者液态的冷却介质,用于控制所述集成式消融针100消融操作时的温度。
请一并参阅图1、图9至图11,以下说明本申请提供的所述消融系统1000的使用过程:
第一步:如图9所示,首先将电极针20穿装于套管10内,电极针20与套管10处于闭合状态,使套管10将针杆23上的取样槽231完全盖住,在密封圈的作用下保证套管10与电极针20之间达到完全密封状态。在超声显影的引导下,处于闭合状态的套管10与电极针20通过针尖21的穿刺到达人体病变部位,通过能量发生装置200(见图8)向电极针20提供高频电流,电极针20远端的针尖21放电对病变部位实行射频消融,测温元件50(见图7)实时监控消融温度,冷却介质供给装置300(见图8)向电极针20的冷却通道233内通入冷却介质,实现循环冷却降温。
第二步:在消融完成后,关闭冷却介质供给装置300,开启负压装置40,将冷却介质利用负压效应完全吸除干净。待冷却介质被负压装置40完全排出后,操作手柄30带动与其连接的套管10相对于电极针20的针杆23向近端移动,完全或者部分暴露取样槽231,此时,针杆23周围的消融后的组织将部分进入取样槽231中,且由于负压装置40的持续工作,也将对组织产生一个负压力,使得组织被吸入到取样槽231中,如图10所示。
第三步:然后操控手柄30带动套管10相对于电极针20的针杆23向远端移动,完全封盖取样槽231,利用套管10远端的刃口11切断取样槽231内外 的组织,使得取样槽231内的组织与其它组织切割分离并保留在取样槽231之中,如图11所示。最后将整个集成式消融针100撤出人体,取出取样槽231内的组织,以作为活检样本进行检验分析。
本申请提供的所述集成式消融针100及所述消融系统1000,将消融、活检功能集成于同一消融针上,无需单独执行活检步骤,避免了重复穿刺,减少对人体的损伤,减少手术过程中的潜在风险,节省手术时间。
请一并参阅图12和图13,本申请第二实施例提供的集成式消融针100b的结构与第一实施例的集成式消融针100的结构相似,不同之处在于:在第二实施例中,所述切割刃面113b的远端所在的平面与所述套管10b的轴线呈第二夹角β,即,所述套管10b的远端口为斜切的尖端口。本实施例中,相比于平直的端口,斜切的尖端口在切割组织时,所述切割刃面113b的远端与组织的接触面积较小,在具有相同的触发力情况下,更小的接触面积使得所述切割刃面113b能更容易地切割下组织。
其中,为保证所述切割刃面113b在切割时的锋利度,本实施例中,所述第二夹角β的角度范围优选为25度至35度。
请一并参阅图14至图16,本申请第三实施例提供的集成式消融针100c的结构与第一实施例的集成式消融针100的结构相似,不同之处在于:在第三实施例中,所述集成式消融针100c还包括穿装于所述套管10外的外管70,所述电极针20及所述套管10可相对于所述外管70沿轴向移动,使得所述集成式消融针100c可以通过一次穿刺执行消融前活检、消融、及消融后活检。
具体地,在使用所述集成式消融针100c时,将所述外管70套设于所述套管10外并随穿装在一起的所述套管10及所述电极针20一起穿刺进入病变组织,在进行消融操作前,先使得所述外管70相对于所述套管10及所述电极针20沿轴向向近端移动,使得穿装在一起的所述套管10及所述电极针20的远端部分露出来;然后控制所述套管10相对于所述电极针20沿轴向移动以获取消融前的组织样本,将穿装在一起的所述套管10及所述电极针20自所述外管70中撤出体外,所述外管70留置在组织内,取出所述电极针20的取样槽231内的消融前的组织样本;然后,穿装在一起的所述套管10及所述电极针20再以留置在组织内的所述外管70作为通道进入病变组织部位,执行消融,消 融后再次控制所述套管10相对于所述电极针20沿轴向移动以获取消融后的组织样本,最后将所述外管70、所述套管10及所述电极针20一同撤出体外。
为了避免增加所述外管70后,所述集成式消融针100c的整体外径过大而导致穿刺过程中阻力过大,本实施例中,所述针尖21的近端沿周向开设有一圈避让槽237,所述避让槽237与所述针杆23上的密封槽235的连接处形成前述的第二环形台阶25,所述套管10相对于所述电极针20沿轴向定位时,所述套管10的第一环形台阶14(图中未标示)抵顶于所述第二环形台阶25,且所述套管10的刃口11容置于所述避让槽237内,所述套管10的外径等于或者小于所述针尖21的近端的直径,使得所述外管70套设于所述套管10之后,所述集成式消融针100c的整体外径并没有增加,以便于穿刺;再者,所述套管10的刃口11容置于所述避让槽237内,还有利于保护所述套管10的刃口11。
优选地,所述外管70的远端设置有斜面71,所述斜面71自其近端向远端逐渐靠近所述外管70的轴线,所述斜面71能够减少所述外管70进入组织时受到的阻力,便于穿刺。
本实施例中,所述套管10的外部增设有所述外管70,所述外管70可随穿装在一起的所述套管10及所述电极针20一并穿刺进入组织后,所述外管70留置在组织内,即可作为消融前活检、消融和消融后活检的通道,避免了重复穿刺,可减少对人体组织的损伤,且有利于减少手术过程中的潜在风险、节省手术时间。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (19)

  1. 一种集成式消融针,其特征在于,包括套管及活动穿装于所述套管内的电极针,所述电极针包括位于远端的针尖及连接于所述针尖近端的针杆,所述针杆至少在靠近所述针尖的部位开设取样槽,所述套管的远端设置刃口;
    所述套管相对于所述针杆沿轴向移动以暴露或封盖所述取样槽;当所述取样槽被暴露时,所述针杆周围的组织部分进入所述取样槽;当所述取样槽被封盖时,所述刃口切断所述取样槽内外的组织,以获取所述取样槽内的组织作为活检样品。
  2. 如权利要求1所述的集成式消融针,其特征在于,所述套管至少部分绝缘。
  3. 如权利要求1所述的集成式消融针,其特征在于,所述取样槽为沿所述针杆的轴向延伸的一个或数个条形凹槽,所述数个条形凹槽沿所述针杆的周向或轴向间隔设置。
  4. 如权利要求1所述的集成式消融针,其特征在于,所述取样槽为沿所述针杆的周向延伸的一个或数个弧形凹槽,所述数个弧形凹槽沿所述针杆的周向或轴向间隔设置。
  5. 如权利要求1所述的集成式消融针,其特征在于,所述取样槽为沿所述针杆的周向延伸一圈的一个或数个环形凹槽,所述数个环形凹槽沿所述针杆的轴向间隔设置。
  6. 如权利要求1所述的集成式消融针,其特征在于,所述刃口包括相对所述套管的轴线倾斜的切割刃面,所述切割刃面自其近端向远端逐渐靠近套管的轴线,所述切割刃面的切线与所述套管的轴线呈第一夹角,所述第一夹角的角度范围为9度至17度。
  7. 如权利要求6所述的集成式消融针,其特征在于,所述切割刃面的远端所在的平面与所述套管的轴线垂直;或者所述切割刃面的远端所在的平面与所述套管的轴线呈第二夹角,所述第二夹角的角度范围为25度至35度。
  8. 如权利要求1所述的集成式消融针,其特征在于,所述套管上设置第一定位部,所述电极针上设置第二定位部,所述第一定位部与所述第二定位部配合以实现所述电极针与所述套管沿轴向的定位。
  9. 如权利要求8所述的集成式消融针,其特征在于,所述套管的远端的内壁开设一圈收容槽,所述套管的内腔与所述收容槽的连接处形成第一环形台阶,所述第一定位部为所述第一环形台阶;所述针尖的近端的直径大于所述针杆的直径,所述针尖的近端与所述针杆的连接处形成第二环形台阶,所述第二定位部为所述第二环形台阶;所述第一环形台阶抵顶所述第二环形台阶时,所述电极针与所述套管沿轴向定位,所述针尖的近端部分收容于所述收容槽内。
  10. 如权利要求1所述的集成式消融针,其特征在于,所述电极针内开设有自其近端面沿轴向延伸至所述针尖内部的冷却通道。
  11. 如权利要求10所述的集成式消融针,其特征在于,所述冷却通道与所述取样槽连通,所述针杆的外径小于所述套管的内径。
  12. 如权利要求11所述的集成式消融针,其特征在于,所述套管和/或所述针杆上设有密封机构以密封所述套管与所述针杆之间的径向间隙,且当所述取样槽被所述套管封盖时,所述密封机构位于所述取样槽与所述针尖之间。
  13. 如权利要求12所述的集成式消融针,其特征在于,所述针杆在靠近所述针尖的部位开设至少一圈密封槽,所述密封槽位于所述取样槽与所述针尖之间,所述密封槽内套设密封圈,所述密封槽与所述密封圈构成所述密封机构。
  14. 如权利要求13所述的集成式消融针,其特征在于,所述冷却通道内装设有延伸至所述针尖内部的测温元件。
  15. 如权利要求11所述的集成式消融针,其特征在于,所述套管近端及所述电极针近端均连通负压装置。
  16. 如权利要求1所述的集成式消融针,其特征在于,还包括连接于所述套管近端及所述电极针近端的手柄,所述手柄用于带动所述套管相对于所述针杆沿轴向移动。
  17. 如权利要求1至16任一项所述的集成式消融针,其特征在于,还包括穿装于所述套管外的外管,所述电极针及所述套管可相对于所述外管沿轴向移动。
  18. 如权利要求17所述的集成式消融针,其特征在于,所述针尖的近端沿周向开设一圈避让槽,所述套管相对于所述电极针沿轴向定位时,所述套管的刃口容置于所述避让槽内,所述套管的外径等于或小于所述针尖的近端的直 径。
  19. 一种消融系统,其特征在于,包括如权利要求1至18任一项所述的集成式消融针及与所述集成式消融针的电极针电连接的能量发生装置。
PCT/CN2020/130917 2019-12-31 2020-11-23 集成式消融针及消融系统 WO2021135726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20910481.9A EP4085859A4 (en) 2019-12-31 2020-11-23 INTEGRATED ABLATION NEEDLE AND ABLATION SYSTEM
US17/850,798 US20220338919A1 (en) 2019-12-31 2022-06-27 Integrated ablation needle and ablation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922501255.7U CN211934280U (zh) 2019-12-31 2019-12-31 集成式消融针及消融系统
CN201911424501.1 2019-12-31
CN201911424501.1A CN113116503A (zh) 2019-12-31 2019-12-31 集成式消融针及消融系统
CN201922501255.7 2019-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/850,798 Continuation US20220338919A1 (en) 2019-12-31 2022-06-27 Integrated ablation needle and ablation system

Publications (1)

Publication Number Publication Date
WO2021135726A1 true WO2021135726A1 (zh) 2021-07-08

Family

ID=76687267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130917 WO2021135726A1 (zh) 2019-12-31 2020-11-23 集成式消融针及消融系统

Country Status (3)

Country Link
US (1) US20220338919A1 (zh)
EP (1) EP4085859A4 (zh)
WO (1) WO2021135726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116503A (zh) * 2019-12-31 2021-07-16 杭州诺诚医疗器械有限公司 集成式消融针及消融系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024151304A1 (en) * 2023-01-09 2024-07-18 Bard Peripheral Vascular, Inc. Biopsy devices and methods
CN116746966B (zh) * 2023-03-23 2023-11-28 上海导向医疗系统有限公司 一种低温冷冻旋切装置
CN116327350B (zh) * 2023-05-24 2023-08-22 浙江伽奈维医疗科技有限公司 一种消融针组件及消融系统
CN116869582B (zh) * 2023-09-01 2023-11-28 浙江首鼎医学科技有限公司 一种基于穿刺阻力的活检针取样装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014018A1 (en) * 1994-11-04 1996-05-17 Levin John M Biopsy needle with cauterization feature
US5947964A (en) * 1995-03-03 1999-09-07 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US6485436B1 (en) * 2000-08-10 2002-11-26 Csaba Truckai Pressure-assisted biopsy needle apparatus and technique
CN1666717A (zh) * 2004-03-12 2005-09-14 伊西康内外科公司 用于活检装置的电极套筒
WO2009156506A1 (de) * 2008-06-26 2009-12-30 Rheinisch-Westfälische Technische Hochschule Aachen Biopsienadel
CN103876785A (zh) * 2014-03-05 2014-06-25 中国人民解放军第二军医大学 实体瘤微创活检及消融多功能针
CN203789956U (zh) * 2014-03-05 2014-08-27 中国人民解放军第二军医大学 软组织活检及消融多功能针
US20180303534A1 (en) * 2004-04-20 2018-10-25 Boston Scientific Scimed, Inc. Co-access bipolar ablation probe
CN209548081U (zh) * 2018-05-08 2019-10-29 常颜信 多功能微波热凝针
CN110584724A (zh) * 2019-09-20 2019-12-20 丽水市中心医院 一种穿刺及射频消融装置
CN209808524U (zh) * 2018-12-28 2019-12-20 重庆西山科技股份有限公司 单极射频穿刺头及活检装置
CN209808523U (zh) * 2018-12-28 2019-12-20 重庆西山科技股份有限公司 双极射频穿刺头及活检装置
CN209847249U (zh) * 2019-03-07 2019-12-27 浙江伽奈维医疗科技有限公司 一种可分离的活检消融装置
CN211934280U (zh) * 2019-12-31 2020-11-17 杭州诺诚医疗器械有限公司 集成式消融针及消融系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497706B1 (en) * 1998-03-03 2002-12-24 Senorx, Inc. Biopsy device and method of use

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014018A1 (en) * 1994-11-04 1996-05-17 Levin John M Biopsy needle with cauterization feature
US5947964A (en) * 1995-03-03 1999-09-07 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US6485436B1 (en) * 2000-08-10 2002-11-26 Csaba Truckai Pressure-assisted biopsy needle apparatus and technique
CN1666717A (zh) * 2004-03-12 2005-09-14 伊西康内外科公司 用于活检装置的电极套筒
US20180303534A1 (en) * 2004-04-20 2018-10-25 Boston Scientific Scimed, Inc. Co-access bipolar ablation probe
WO2009156506A1 (de) * 2008-06-26 2009-12-30 Rheinisch-Westfälische Technische Hochschule Aachen Biopsienadel
CN203789956U (zh) * 2014-03-05 2014-08-27 中国人民解放军第二军医大学 软组织活检及消融多功能针
CN103876785A (zh) * 2014-03-05 2014-06-25 中国人民解放军第二军医大学 实体瘤微创活检及消融多功能针
CN209548081U (zh) * 2018-05-08 2019-10-29 常颜信 多功能微波热凝针
CN209808524U (zh) * 2018-12-28 2019-12-20 重庆西山科技股份有限公司 单极射频穿刺头及活检装置
CN209808523U (zh) * 2018-12-28 2019-12-20 重庆西山科技股份有限公司 双极射频穿刺头及活检装置
CN209847249U (zh) * 2019-03-07 2019-12-27 浙江伽奈维医疗科技有限公司 一种可分离的活检消融装置
CN110584724A (zh) * 2019-09-20 2019-12-20 丽水市中心医院 一种穿刺及射频消融装置
CN211934280U (zh) * 2019-12-31 2020-11-17 杭州诺诚医疗器械有限公司 集成式消融针及消融系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4085859A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116503A (zh) * 2019-12-31 2021-07-16 杭州诺诚医疗器械有限公司 集成式消融针及消融系统

Also Published As

Publication number Publication date
EP4085859A4 (en) 2024-01-17
US20220338919A1 (en) 2022-10-27
EP4085859A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021135726A1 (zh) 集成式消融针及消融系统
CN210301203U (zh) 消融针组件及消融系统
CN211934280U (zh) 集成式消融针及消融系统
US6770070B1 (en) Lung treatment apparatus and method
US20090264878A1 (en) Devices and methods for ablating and removing a tissue mass
US20090228001A1 (en) Device and method for the treatment of diseased tissue such as tumors
US9168084B2 (en) Brazed electrosurgical device
EP3052038A1 (en) Electrosurgical fibroid ablation system and method
JP2015525607A (ja) 焼灼デバイスを組織に係留させるための拡張可能チャンバを有する焼灼デバイス
JP2021518789A (ja) 非穿刺型マイクロ波アブレーションアンテナ及びその使用
US20170020607A1 (en) Microwave-Irradiating Instrument
AU2019357958B2 (en) Cautery tool for intracranial surgery
EP3361971B1 (en) Surgical device
US9011426B2 (en) Flexible electrosurgical ablation and aspiration electrode with beveled active surface
CN113116503A (zh) 集成式消融针及消融系统
WO2020038216A1 (zh) 消融针组件及消融系统
JP2000287992A (ja) 高周波焼灼装置
US11039879B2 (en) Ablation device
CN116138870B (zh) 活检及消融装置、活检及消融系统
CN219000547U (zh) 射频消融电极及射频消融系统
KR20110120166A (ko) 니들 어셈블리 및 그것을 구비한 고주파 열치료 장치
US20220265163A1 (en) Bioimpedance system for enhanced positional guidance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910481

Country of ref document: EP

Effective date: 20220801