WO2021135338A1 - 信号采样、重建方法及装置 - Google Patents

信号采样、重建方法及装置 Download PDF

Info

Publication number
WO2021135338A1
WO2021135338A1 PCT/CN2020/113208 CN2020113208W WO2021135338A1 WO 2021135338 A1 WO2021135338 A1 WO 2021135338A1 CN 2020113208 W CN2020113208 W CN 2020113208W WO 2021135338 A1 WO2021135338 A1 WO 2021135338A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
sampling
signal
electrical signal
measured
Prior art date
Application number
PCT/CN2020/113208
Other languages
English (en)
French (fr)
Inventor
谢庆国
苏禹鸣
代平平
梅峻骅
万琳
朱珂璋
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Priority to EP20910426.4A priority Critical patent/EP4086664A4/en
Priority to US17/790,164 priority patent/US20230083253A1/en
Priority to JP2022539734A priority patent/JP7418871B2/ja
Publication of WO2021135338A1 publication Critical patent/WO2021135338A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/1611Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially
    • G01T1/1612Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially with scintillation detectors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Definitions

  • This application relates to the field of signal processing technology, and in particular to a method and device for signal sampling and reconstruction.
  • Positron Emission Tomography is a technique that uses radioactive elements for clinical imaging. The process is to label radionuclides that emit positrons to those that can participate in the blood flow or metabolic processes of living tissues.
  • a compound labeled with a radionuclide is injected into the subject.
  • the positive electrons emitted by the radionuclide in the body combine with the negative electrons in the subject to annihilate the electron pair and produce gamma photons.
  • the gamma photons released can be converted into visible light by the scintillation crystal, and then converted by the photomultiplier tube element. It is an electrical signal for reconstruction, so as to help determine the enrichment site of radionuclides, and to help locate the area of strong metabolism and perform activity assessment.
  • an analog-to-digital converter In traditional technology, an analog-to-digital converter (ADC) is usually used to digitally sample the electrical signal generated by the PET detector.
  • ADC analog-to-digital converter
  • the use of ADCs to implement digital sampling of electrical signals is difficult to implement in engineering, and the cost is extremely high.
  • a multi-voltage threshold (MVT) sampling method is generally used in the prior art.
  • MVT multi-voltage threshold
  • the number of sampling points collected by this method is limited, and it is impossible to determine whether the collected sampling points are signal amplitude points, which may affect the sampling accuracy and the accuracy of subsequent signal restoration.
  • the purpose of the embodiments of the present application is to provide a signal sampling and reconstruction method and device to solve at least one technical problem existing in the prior art.
  • an embodiment of the present application provides a signal sampling method, and the signal sampling method includes:
  • the sampling point is characterized by the second amplitude and the second time.
  • the step of determining the second time includes:
  • the second time corresponding to the second amplitude is calculated using the difference value and the first time corresponding to the first amplitude.
  • the preset sampling method includes a multi-amplitude threshold sampling method or a time interval sampling method.
  • the electrical signal to be measured includes one of the following types of pulse signals generated by the PET detector: a sine wave signal, a cosine wave signal, a triangle wave signal, a sawtooth wave signal, a step wave signal, or a square wave signal.
  • the second amplitude includes the maximum amplitude or the minimum amplitude of the electrical signal to be measured.
  • An embodiment of the present application also provides a signal reconstruction method, which includes:
  • the step of performing reconstruction processing on the obtained first sampling point and the second sampling point includes:
  • the interpolation processing includes linear interpolation processing and/or spline interpolation processing.
  • An embodiment of the present application also provides a signal sampling device, which includes:
  • the first sampling unit is configured to sample the electrical signal to be measured using a preset sampling method to obtain a plurality of first sampling points, and each of the first sampling points is composed of a first amplitude and a corresponding first time.
  • a measuring unit configured to measure a second amplitude of the electrical signal to be measured, wherein the second amplitude is different from a plurality of the first amplitudes
  • the second sampling unit is configured to delay processing the electrical signal to be measured, and use the delayed electrical signal to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude A second sampling point is obtained, and the second sampling point is characterized by the second amplitude and the second time.
  • the measurement unit includes a voltage holding circuit composed of a capacitor, a diode, and an inductor, wherein one end of the capacitor is connected to ground in parallel with one end of the inductor, and the other end of the capacitor is connected in parallel with one end of the diode. The other end of the diode is connected in series with the other end of the inductor.
  • the embodiment of the present application also provides a signal reconstruction device, which is used to perform reconstruction processing on the first sampling point and the second sampling point collected by the above-mentioned signal sampling device to obtain the reconstructed waveform of the electrical signal to be measured .
  • the embodiments of the application use a preset sampling method to sample the electrical signal to be measured to obtain multiple first sampling points, measure the second amplitude of the electrical signal to be measured, and measure the second amplitude of the electrical signal to be measured. Delay processing of the electrical signal and using the delayed electrical signal to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude, so as to obtain the second sampling point, which increases the number of sampling points collected, Thereby, the sampling accuracy and the accuracy of subsequent signal restoration can be improved.
  • FIG. 1 is a flowchart of a signal sampling method provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the structure of the voltage holding circuit
  • Figure 3 is a schematic diagram of a waveform of an electrical signal to be tested
  • FIG. 4 is a schematic diagram of the waveform of the electrical signal output by the voltage holding circuit for the electrical signal to be measured in FIG. 3;
  • Fig. 5 is a schematic structural diagram of a signal sampling device provided by an embodiment of the present application.
  • connection/connection refers to the presence or addition of features, steps or elements, but does not exclude the presence or addition of one or more other features, steps or elements.
  • connecting/connection refers to the presence or addition of features, steps or elements, but does not exclude the presence or addition of one or more other features, steps or elements.
  • connecting/connection refers to the presence or addition of features, steps or elements, but does not exclude the presence or addition of one or more other features, steps or elements.
  • and/or as used herein includes any and all combinations of one or more of the associated listed items.
  • an embodiment of the present application provides a signal sampling method, which may include the following steps:
  • S1 Use the preset sampling method to sample the electrical signal to be measured to obtain multiple first sampling points.
  • a preset sampling method such as a multi-amplitude threshold sampling (for example, MVT) method or a time interval sampling method may be used to sample the acquired electrical signal to be measured to obtain multiple first sampling points.
  • MVT multi-amplitude threshold sampling
  • a time interval sampling method may be used to sample the acquired electrical signal to be measured to obtain multiple first sampling points.
  • a plurality of preset first amplitudes may be used to sample the electrical signal to be measured, and the first time when the amplitude of the electrical signal to be measured reaches the first amplitude can be determined, so that multiple first sampling points can be obtained.
  • each first sampling point can be characterized by a first amplitude and a corresponding first time, for example, (T 1 ,V 1 ), (T 2 ,V 2 ), (T 3 ,V 2 ) or ( T 4 ,V 1 ).
  • the multiple first amplitudes are different from each other, and the multiple first times are also different from each other.
  • the first amplitude is the preset amplitude threshold, and the first time is the measured time corresponding to the amplitude threshold; for the time interval sampling method, the first amplitude is the measurement
  • the first time is the time calculated according to the preset time interval.
  • one first amplitude corresponds to two first times.
  • the electrical signal to be measured can be a pulse signal generated by a PET detector, for example, a periodic signal such as a sine wave signal, a cosine wave signal, a triangle wave signal, a sawtooth wave signal, a step wave signal, or a square wave signal, or other periodic signals that need to be measured.
  • a periodic signal such as a sine wave signal, a cosine wave signal, a triangle wave signal, a sawtooth wave signal, a step wave signal, or a square wave signal, or other periodic signals that need to be measured.
  • the electrical signal is not limited here.
  • the voltage holding circuit can also be used to measure the second amplitude of the electrical signal to be measured.
  • the second amplitude is different from the multiple first amplitudes.
  • the second amplitude may be any amplitude different from the first amplitude, and is preferably the maximum amplitude of the electrical signal to be measured.
  • the electrical signal to be measured is a signal whose amplitude first decreases and then increases (for example, a cosine wave signal)
  • the second amplitude may also be the minimum amplitude.
  • the voltage holding circuit can be designed in advance according to actual needs or experience. It can keep its output voltage unchanged after the amplitude of the electrical signal to be measured reaches its internally set amplitude threshold, or it can be adjusted at the amplitude of the electrical signal to be measured. After reaching the peak value (that is, the maximum amplitude or minimum amplitude of the electrical signal to be measured), the output voltage remains unchanged.
  • the voltage holding circuit can be designed in advance, so that the measured second amplitude of the electrical signal to be measured is different from the first amplitude.
  • the voltage holding circuit may include components such as capacitors, diodes, and inductors.
  • One end of the capacitor is connected to the ground in parallel with one end of the inductor, and the other end of the capacitor is connected in parallel with one end of the diode.
  • the other end of the diode is connected in series with the other end of the inductor, as shown in Figure 2.
  • the diode can be turned on before the amplitude of the electrical signal to be measured reaches the peak value, and cut off after the amplitude of the electrical signal to be measured reaches the peak value, so that the voltage of the capacitor can be stabilized for a period of time.
  • the amplitude of the electrical signal to be measured recording time when the voltage across the capacitor suddenly change, e.g., from a jump into V i V j (where, i and j are different positive integers), the amplitude of the electrical signal to be measured recording time, and Take this as the second magnitude.
  • V i V j where, i and j are different positive integers
  • the electrical signal output by the voltage holding circuit is shown in FIG. 4, where Vmax is the measured second amplitude.
  • the voltage holding circuit may also be another element or circuit structure for holding voltage, which is not limited here.
  • step S1 does not limit the execution sequence between step S1 and step S2, and step S1 can also be executed after step S2.
  • S3 Perform delay processing on the electrical signal to be measured, and use the delayed electrical signal to determine a second time when the amplitude of the electrical signal to be measured reaches the second amplitude to obtain a second sampling point.
  • the electrical signal to be measured can also be delayed.
  • the electrical signal to be measured can be delayed by 30 ns.
  • this application does not limit the execution sequence between measuring the second amplitude of the electrical signal to be measured and the delay processing of the electrical signal to be measured, and the two can be executed sequentially or simultaneously.
  • the delayed electrical signal can be used to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude, so as to obtain one or more second sampling points, which can be determined by The second amplitude and the corresponding second time are characterized.
  • the collected second sampling point is the amplitude point (that is, the peak or the trough) of the electrical signal to be measured.
  • Using the delayed electrical signal to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude may specifically include: First, it is possible to measure that the amplitude of the delayed electrical signal reaches any of the multiple first amplitudes. A first delay time and a second delay time for the first amplitude and the second amplitude; then, the difference between the second delay time and the first delay time can be calculated; finally, the difference and the second delay time can be used The first time corresponding to one amplitude is used to calculate the second time corresponding to the second amplitude.
  • the calculation process can be expressed by the formula as follows:
  • T j represents the second time
  • T i represents the first time, which can be any one of the two first times corresponding to the selected first amplitude
  • T′ j represents the second delay time
  • T′ i may be the first delay time corresponding to the first time T i.
  • both the first amplitude and the second amplitude may be voltage or current, etc., and may also be other physical quantities used to represent the amplitude.
  • the embodiment of the present application samples the electrical signal to be measured by using a preset sampling method to obtain multiple first sampling points, measures the second amplitude of the electrical signal to be measured, and performs delay processing on the electrical signal to be measured.
  • the delayed electrical signal is used to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude, so that the second sampling point can be obtained, which increases the number of sampling points collected, thereby improving the subsequent signal restoration Accuracy.
  • the amplitude points (ie, peaks or valleys) of the electrical signals can be adaptively collected, which is more conducive to improving the accuracy of subsequent signal restoration, thereby improving energy resolution.
  • An embodiment of the present application also provides a signal reconstruction method, which includes: performing reconstruction processing on the first sampling point and the second sampling point of the electrical signal to be measured collected by the signal sampling method described in the foregoing embodiment.
  • reconstruction processing may be performed on the obtained first sampling point and the second sampling point, so as to obtain a reconstructed waveform of the electrical signal.
  • the first sampling point and the second sampling point can be directly fitted; the first sampling point and the second sampling point can also be directly interpolated; the first sampling point and the second sampling point can also be interpolated first. Get more sampling points, and then fit the sampling points after interpolation processing.
  • the interpolation processing may include linear interpolation processing and/or spline interpolation processing, but is not limited thereto. Regarding the specific process of performing interpolation processing on the sampling points, reference may be made to the prior art, which will not be repeated here.
  • the accuracy of signal restoration can be improved.
  • the embodiment of the present application also provides a pulse signal sampling device.
  • the signal sampling device may include:
  • the first sampling unit 510 is configured to use a preset sampling method to sample the electrical signal to be measured to obtain a plurality of first sampling points, and each first sampling point is characterized by a first amplitude and a corresponding first time ;
  • the measuring unit 520 can be used to measure the second amplitude of the electrical signal to be measured, where the second amplitude is different from the first amplitude;
  • the second sampling unit 530 can be used to delay processing the electrical signal to be measured, and use the delayed electrical signal to determine the second time when the amplitude of the electrical signal to be measured reaches the second amplitude to obtain the second sampling point.
  • the second sampling point is characterized by the second amplitude and the second time.
  • the measuring unit 520 may include a voltage holding circuit composed of a capacitor, a diode, and an inductor, wherein one end of the capacitor is connected to ground in parallel with one end of the inductor, the other end of the capacitor is connected in parallel with one end of the diode, and the other end of the diode is connected to the ground.
  • the other end of the inductor is connected in series.
  • the circuit holding circuit can measure the maximum amplitude of the electrical signal to be measured.
  • the second sampling unit 530 may specifically include (not shown in the figure):
  • a measurement subunit which can be used to measure the first delay time and the second delay time when the amplitude of the delayed electrical signal reaches the first amplitude and the second amplitude, respectively;
  • a calculation subunit which can be used to calculate the difference between the second delay time and the first delay time, and use the difference and the first time corresponding to the first amplitude to calculate the second time corresponding to the second amplitude .
  • the signal sampling device samples the electrical signal to be measured according to a preset sampling method by using the first sampling unit to obtain multiple first sampling points, and uses the measurement unit to measure the first sampling point of the electrical signal to be measured.
  • the delay unit is used to delay the electrical signal to be measured to obtain the delayed electrical signal
  • the second sampling unit is used to determine the second time when the electrical signal to be measured reaches the second amplitude according to the delayed electrical signal to obtain the second Sampling points, which makes the number of collected sampling points relatively large, which can improve the sampling precision and accuracy of the electrical signal, and can directly obtain other required information (for example, energy) based on the information of the collected sampling points.
  • the embodiment of the application also provides a signal reconstruction device, which can be used to perform reconstruction processing on the first sampling point and the second sampling point collected by the signal sampling device described in the above embodiment to obtain the reconstructed waveform of the electrical signal to be measured. .
  • An embodiment of the present application also provides a signal processing system, which may include the above-mentioned signal sampling device and signal reconstruction device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种信号采样、重建方法及装置,该信号采样方法包括:S1、利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个第一采样点均由一个第一幅度以及对应的一个第一时间来表征;S2、测量待测电信号的第二幅度,其中,第二幅度与多个第一幅度均不同;S3、对待测电信号进行延迟处理,并且利用延迟处理后的电信号确定待测电信号的幅度达到第二幅度时的第二时间以获得第二采样点,第二采样点由第二幅度和第二时间来表征。通过该方法可以采集到相对多的采样点,从而可以提高信号采样精度,并且可以提高后续信号还原的准确度。

Description

信号采样、重建方法及装置
本公开要求于2020年01月02日提交的中国专利申请202010000182.8的优先权,其全部内容通过援引加入本文。
技术领域
本申请涉及信号处理技术领域,特别涉及一种信号采样、重建方法及装置。
背景技术
正电子发射断层成像(Positron Emission Tomography,简称PET)是一种利用放射性元素进行临床显像的技术,其过程为:将发射正电子的放射性核素标记到能够参与活体组织血流或代谢过程的化合物上,再将标有放射性核素的化合物注射到受检者体内。放射性核素在体内发射出的正电子与受检者体内的负电子结合发生电子对的湮灭,产生γ光子,释放出的γ光子可以被闪烁晶体接受转换为可见光,再通过光电倍增管元件转换为电信号以进行重建,从而帮助确定放射性核素的富集部位,并且帮助定位代谢旺盛区域并进行活度评估。
在传统技术中,通常利用模数转换器(ADC)来对PET探测器产生的电信号进行数字化采样。然而,利用ADC实现电信号的数字化采样,其工程实现难度较大,并且成本极其高昂。
在辐射探测与成像领域,为了降低电信号的数字化采样成本,现有技术中一般采用多电压阈值(MVT)采样方法。然而,利用该方法采集到的采样点数量有限,并且不能判别所采集的采样点是否为信号幅值点,这可能会影响采样精度,也可能会影响后续信号还原的准确度。
发明内容
本申请实施例的目的是提供一种信号采样、重建方法及装置,以解决现有技术中存在的至少一种技术问题。
为了解决上述技术问题,本申请实施例提供了一种信号采样方法,该信号采样方法包括:
利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个所述第一采样点均由一个第一幅度以及对应的一个第一时间来表征;
测量所述待测电信号的第二幅度,其中,所述第二幅度与多个所述第一幅度均不同;
对所述待测电信号进行延迟处理,并且利用延迟处理后的电信号确定所述待测电信号的幅度达到所述第二幅度时的第二时间以获得第二采样点,所述第二采样点由所述第二幅度和所述第二时间来表征。
可选地,确定所述第二时间的步骤包括:
测量所述延迟电信号的幅度分别达到多个所述第一幅度中的任意一个第一幅度和第二幅度时的第一延迟时间和第二延迟时间;
计算所述第二延迟时间与所述第一延迟时间之间的差值;
利用所述差值以及与所述第一幅度对应的第一时间来计算与第二幅度对应的第二时间。
可选地,所述预设采样方法包括多幅度阈值采样方法或时间间隔采样方法。
可选地,所述待测电信号包括PET探测器产生的以下类型的脉冲信号中的一种:正弦波信号、余弦波信号、三角波信号、锯齿波信号、阶梯波信号或方波信号。
可选地,所述第二幅度包括所述待测电信号的最大幅度或最小幅 度。
本申请实施例还提供了一种信号重建方法,该信号重建方法包括:
对利用上述信号采样方法采集到的所述待测电信号的所述第一采样点和所述第二采样点进行重建处理以获得所述待测电信号的重建波形。
可选地,对所获得的所述第一采样点和所述第二采样点进行重建处理的步骤包括:
对所述第一采样点和所述第二采样点进行拟合处理;
对所述第一采样点和所述第二采样点进行插值处理;或者
对所述第一采样点和所述第二采样点进行插值处理,并且对插值处理之后的所有采样点进行拟合处理,
其中,所述插值处理包括线性插值处理和/或样条插值处理。
本申请实施例还提供了一种信号采样装置,该信号采样装置包括:
第一采样单元,其被配置为利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个所述第一采样点均由一个第一幅度以及对应的一个第一时间来表征;
测量单元,其被配置为测量所述待测电信号的第二幅度,其中,所述第二幅度与多个所述第一幅度均不同;
第二采样单元,其被配置为对所述待测电信号进行延迟处理,并且利用延迟处理后的电信号来确定所述待测电信号的幅度达到所述第二幅度时的第二时间以获得第二采样点,所述第二采样点由所述第二幅度和所述第二时间来表征。
可选地,所述测量单元包括由电容、二极管和电感构成的电压保持电路,其中,电容的一端与所述电感的一端并联接地,所述电容的另一端与所述二极管的一端并联,所述二极管的另一端与所述电感的 另一端串联。
本申请实施例还提供了一种信号重建装置,该信号重建装置用于对上述信号采样装置所采集的第一采样点和第二采样点进行重建处理以获得所述待测电信号的重建波形。
由以上本申请实施例提供的技术方案可见,本申请实施例通过利用预设采样方法对待测电信号进行采样以获得多个第一采样点,测量待测电信号的第二幅度,并且对待测电信号进行延迟处理以及利用延迟处理后的电信号来确定待测电信号的幅度达到第二幅度时的第二时间,从而可以获得第二采样点,这增加了所采集的采样点的点数,从而可以提高采样精度以及后续信号还原的准确度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种信号采样方法的流程图;
图2是电压保持电路的结构示意图;
图3是一种待测电信号的波形示意图;
图4是电压保持电路针对图3中的待测电信号所输出的电信号的波形示意图;
图5是本申请实施例提供的一种信号采样装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例仅仅是用于解释说明本申请的一部分实施例,而不是全部的实施例,并不希望限制本申请的范围或权利要求书。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都应当属于本申请保护的范围。
需要说明的是,当元件被称为“设置在”另一个元件上,它可以直接设置在另一个元件上或者也可以存在居中的元件。当元件被称为“连接/联接”至另一个元件,它可以是直接连接/联接至另一个元件或者可能同时存在居中元件。本文所使用的术语“连接/联接”可以包括电气和/或机械物理连接/联接。本文所使用的术语“包括/包含”指特征、步骤或元件的存在,但并不排除一个或更多个其它特征、步骤或元件的存在或添加。本文所使用的术语“和/或”包括一个或多个相关所列项目的任意的和所有的组合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体实施例的目的,而并不是旨在限制本申请。
另外,在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面结合附图对本申请实施例所提供的信号采样方法、重建方法及装置进行详细说明。
如图1所示,本申请实施例提供了一种信号采样方法,其可以包括以下步骤:
S1:利用预设采样方法对待测电信号进行采样以获得多个第一采 样点。
在获取待测电信号之后,可以利用多幅度阈值采样(例如,MVT)方法或时间间隔采样方法等预设采样方法对所获取的待测电信号进行采样以获得多个第一采样点。例如,可以利用预先设置的多个第一幅度对待测电信号进行采样,确定出待测电信号的幅度达到第一幅度时的第一时间,从而可以获得多个第一采样点。再例如,也可以利用预设时间间隔对待测电信号进行采样,确定出与预设时间间隔对应的多个第一时间所对应的待测电信号的第一幅度,从而也可以获得多个第一采样点。每个第一采样点均可以由一个第一幅度以及对应的一个第一时间来表征,例如,(T 1,V 1)、(T 2,V 2)、(T 3,V 2)或(T 4,V 1)。
需要说明的是,多个第一幅度各不相同,并且多个第一时间也各不相同。而且,对于多幅度阈值采样方法而言,第一幅度是预先设置的幅度阈值,第一时间是所测得的与幅度阈值对应的时间;而对于时间间隔采样方法而言,第一幅度是测量到的待测电信号的幅度,第一时间是根据预设时间间隔计算出的时间。而且,一般而言,一个第一幅度对应两个第一时间。
关于具体如何利用多幅度阈值采样方法和时间间隔采样方法对电信号进行采样,可以参照现有技术中的相关描述,在此不再赘叙。
该待测电信号可以是PET探测器产生的脉冲信号,例如,正弦波信号、余弦波信号、三角波信号、锯齿波信号、阶梯波信号或方波信号等周期性信号,也可以是其它需要测量的电信号,在此并不限制。
S2:测量待测电信号的第二幅度。
在获取待测电信号之后,也可以利用电压保持电路测量待测电信号的第二幅度。其中,该第二幅度与多个第一幅度均不同。另外,该第二幅度可以为与第一幅度不同的任意幅度,优选地为待测电信号的 最大幅度。此外,当待测电信号为幅度先减小后增大的信号(例如,余弦波信号)时,该第二幅度也可以为最小幅度。
该电压保持电路可以是预先根据实际需求或经验来设计的,其可以在待测电信号的幅度达到其内部设置的幅度阈值之后保持其输出的电压不变,也可以在待测电信号的幅度达到峰值(即,待测电信号的最大幅度或最小幅度)之后保持其输出的电压不变。可以通过预先对电压保持电路进行设计,以使得所测得的待测电信号的第二幅度与第一幅度不同。
当第二幅度为待测电信号的最大幅度时,该电压保持电路可以包括电容、二极管和电感等元件,其中,电容的一端与电感的一端并联接地,电容的另一端与二极管的一端并联,二极管的另一端与电感的另一端串联,如图2所示。该二极管可以在待测电信号的幅度达到峰值之前导通,并且在待测电信号的幅度达到峰值之后截止,从而可以使电容的电压稳定一段时间。在测量过程中,当电容两端的电压突然产生变化时,例如,从V i跳变为V j(其中,i和j为不同的正整数)时,记录此时待测电信号的幅度,并且将其作为第二幅度。例如,针对图3中所示的待测电信号,电压保持电路所输出的电信号如图4所示,其中,Vmax即为所测得的第二幅度。
当第二幅度为待测电信号的最小幅度时,该电压保持电路也可以是用于保持电压的其他元件或电路结构,在此并不限制。
需要说明的是,本申请并不限制步骤S1与步骤S2之间的执行顺序,步骤S1也可以在步骤S2之后执行。
S3:对待测电信号进行延迟处理,并且利用延迟处理后的电信号确定待测电信号的幅度达到第二幅度时的第二时间以获得第二采样点。
在获取待测电信号之后,也可以对待测电信号进行延迟处理,例如,可以将待测电信号延迟30ns。关于对电信号进行延迟处理的具体过程可以参照现有技术中的相关描述,在此不再赘叙。
需要指出的是,本申请也不限制测量待测电信号的第二幅度和对待测电信号进行延迟处理之间的执行顺序,二者可以按顺序依次执行,也可以同时执行。
在对待测电信号进行延迟处理后,可以利用延迟处理后的电信号来确定待测电信号的幅度达到第二幅度时的第二时间,从而获得一个或多个第二采样点,其可以由第二幅度以及对应的第二时间来表征。当第二幅度为最大幅度或最小幅度时,所采集的第二采样点为待测电信号的幅值点(即,波峰或波谷)。
利用延迟处理后的电信号来确定待测电信号的幅度达到第二幅度时的第二时间具体可以包括:首先,可以测量延迟处理后的电信号的幅度分别达到多个第一幅度中的任意一个第一幅度和第二幅度时的第一延迟时间和第二延迟时间;然后,可以计算第二延迟时间与第一延迟时间之间的差值;最后,可以利用该差值以及与该第一幅度对应的第一时间来计算与第二幅度对应的第二时间。该计算过程可以用公式表示如下:
T j=T i+ΔT=T i+(T′ j-T′ i)
上式中,T j表示第二时间,T i表示第一时间,其可以是所选取的第一幅度对应的两个第一时间中的任意一个,T′ j表示第二延迟时间,T′ i可以是与第一时间T i对应的第一延迟时间。
在上述实施例中,第一幅度和第二幅度均可以是电压或电流等,也可以是用于表示幅度的其它物理量。
通过上述描述可以看出,本申请实施例通过利用预设采样方法对 待测电信号进行采样以获得多个第一采样点,测量待测电信号的第二幅度,对待测电信号进行延迟处理并且利用延迟处理后的电信号来确定待测电信号的幅度达到第二幅度时的第二时间,从而可以获得第二采样点,这增加了所采集的采样点点数,从而可以提高后续信号还原的精度。而且,通过利用本申请的技术方案,可以自适应地采集到电信号的幅值点(即,波峰或波谷),这更加有利于提高后续信号还原的精度,从而可以提高能量分辨率。
本申请实施例还提供了一种信号重建方法,该方法包括:对利用上述实施例中描述的信号采样方法采集到的待测电信号的第一采样点和第二采样点进行重建处理。
在获得电信号的第一采样点和第二采样点之后,可以对所获得的第一采样点和第二采样点进行重建处理,从而获得电信号的重建波形。该步骤具体可以包括:利用电信号的先验模型或特征函数(例如,y(t)=a*exp(-(t-d)/b)*(1-exp(-(t-d)/c)))直接对第一采样点和第二采样点进行拟合处理;也可以直接对第一采样点和第二采样点进行插值处理;还可以首先对第一采样点和第二采样点进行插值处理以获得更多的采样点,然后再对插值处理之后的采样点进行拟合。所述插值处理可以包括线性插值处理和/或样条插值处理,但不限于此。关于对采样点进行插值处理的具体过程可以参照现有技术,在此不再赘叙。
通过利用本申请实施例提供的信号重建方法,可以提高信号还原的精度。
本申请实施例还提供了一种脉冲信号的采样装置,如图5所示,该信号采样装置可以包括:
第一采样单元510,其用于利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个第一采样点均由一个第一幅度以及 对应的一个第一时间来表征;
测量单元520,其可以用于测量待测电信号的第二幅度,其中,第二幅度与第一幅度不同;
第二采样单元530,其可以用于对待测电信号进行延迟处理,并且利用延迟处理后的电信号确定待测电信号的幅度达到第二幅度时的第二时间以获得第二采样点,该第二采样点由第二幅度和第二时间来表征。
在一个实施例中,测量单元520可以包括由电容、二极管和电感构成的电压保持电路,其中,电容的一端与电感的一端并联接地,电容的另一端与二极管的一端并联,二极管的另一端与电感的另一端串联。该电路保持电路可以测量待测电信号的最大幅度。
在一个实施例中,第二采样单元530具体可以包括(图中未示出):
测量子单元,其可以用于测量延迟电信号的幅度分别达到第一幅度和第二幅度时的第一延迟时间和第二延迟时间;
计算子单元,其可以用于计算第二延迟时间与第一延迟时间之间的差值,并且利用该差值以及与第一幅度对应的第一时间来计算与第二幅度对应的第二时间。
关于该信号采样装置的详细描述,可以参照上面实施例中对信号采样方法的详细描述,在此不再赘叙。
通过以上描述可知,本申请实施例提供的信号采样装置通过利用第一采样单元根据预设采样方法对待测电信号进行采样以获得多个第一采样点,利用测量单元测量待测电信号的第二幅度,利用延迟单元对待测电信号进行延迟处理以得到延迟电信号,以及利用第二采样单元根据延迟电信号来确定待测电信号的幅度达到第二幅度时的第 二时间以获得第二采样点,这使得所采集的采样点数相对较多,因而可以提高电信号的采样精度和准确性,并且可以直接根据所采集的采样点的信息来获得其它所需要的信息(例如,能量)。
本申请实施例还提供了一种信号重建装置,其可以用于对上述实施例中描述的信号采样装置采集的第一采样点和第二采样点进行重建处理以获得待测电信号的重建波形。
关于该信号重建装置的描述,可以参照上述对电信号重建方法的描述,在此不再赘叙。
本申请实施例还提供了一种信号处理系统,其可以包括上述信号采样装置和信号重建装置。
上述实施例阐明的系统、装置、单元等,具体可以由半导体芯片、计算机芯片和/或实体实现,或者由具有某种功能的产品来实现。为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以在同一个或多个芯片中实现各单元的功能。
虽然本申请提供了如上述实施例或流程图所述的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。
上述实施例是为便于该技术领域的普通技术人员能够理解和使用本申请而描述的。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本申请不限于上述实施例,本领域技 术人员根据本申请的揭示,不脱离本申请范畴所做出的改进和修改都应该在本申请的保护范围之内。

Claims (10)

  1. 一种信号采样方法,其特征在于,该信号采样方法包括:
    利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个所述第一采样点均由一个第一幅度以及对应的一个第一时间来表征;
    测量所述待测电信号的第二幅度,其中,所述第二幅度与多个所述第一幅度均不同;
    对所述待测电信号进行延迟处理,并且利用延迟处理后的电信号确定所述待测电信号的幅度达到所述第二幅度时的第二时间以获得第二采样点,所述第二采样点由所述第二幅度和所述第二时间来表征。
  2. 根据权利要求1所述的信号采样方法,其特征在于,确定所述第二时间的步骤包括:
    测量所述延迟电信号的幅度分别达到多个所述第一幅度中的任意一个第一幅度和第二幅度时的第一延迟时间和第二延迟时间;
    计算所述第二延迟时间与所述第一延迟时间之间的差值;
    利用所述差值以及与所述第一幅度对应的第一时间来计算与第二幅度对应的第二时间。
  3. 根据权利要求1所述的信号采样方法,其特征在于,所述预设采样方法包括多幅度阈值采样方法或时间间隔采样方法。
  4. 根据权利要求1所述的信号采样方法,其特征在于,所述待测电信号包括PET探测器产生的以下类型的脉冲信号中的一种:正弦波信号、余弦波信号、三角波信号、锯齿波信号、阶梯波信号或方波信号。
  5. 根据权利要求1所述的信号采样方法,其特征在于,所述第二幅度包括所述待测电信号的最大幅度或最小幅度。
  6. 一种信号重建方法,其特征在于,该信号重建方法包括:
    对利用权利要求1-5中任一项所述的信号采样方法采集到的所述待测电信号的所述第一采样点和所述第二采样点进行重建处理以获得所述待测电信号的重建波形。
  7. 根据权利要求6所述的信号重建方法,其特征在于,对所获得的所述第一采样点和所述第二采样点进行重建处理的步骤包括:
    对所述第一采样点和所述第二采样点进行拟合处理;
    对所述第一采样点和所述第二采样点进行插值处理;或者
    对所述第一采样点和所述第二采样点进行插值处理,并且对插值处理之后的所有采样点进行拟合处理,
    其中,所述插值处理包括线性插值处理和/或样条插值处理。
  8. 一种信号采样装置,其特征在于,该信号采样装置包括:
    第一采样单元,其被配置为利用预设采样方法对待测电信号进行采样以获得多个第一采样点,每个所述第一采样点均由一个第一幅度以及对应的一个第一时间来表征;
    测量单元,其被配置为测量所述待测电信号的第二幅度,其中,所述第二幅度与多个所述第一幅度均不同;
    第二采样单元,其被配置为对所述待测电信号进行延迟处理,并且利用延迟处理后的电信号来确定所述待测电信号的幅度达到所述第二幅度时的第二时间以获得第二采样点,所述第二采样点由所述第二幅度和所述第二时间来表征。
  9. 根据权利要求8所述的信号采样装置,其特征在于,所述测量单元包括由电容、二极管和电感构成的电压保持电路,其中,电容的一端与所述电感的一端并联接地,所述电容的另一端与所述二极管的一端并联,所述二极管的另一端与所述电感的另一端串联。
  10. 一种信号重建装置,其特征在于,该装置被配置为对权利要求8或9中所述的信号采样装置所采集的第一采样点和第二采样点进行重建处理以获得所述待测电信号的重建波形。
PCT/CN2020/113208 2020-01-02 2020-09-03 信号采样、重建方法及装置 WO2021135338A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20910426.4A EP4086664A4 (en) 2020-01-02 2020-09-03 METHOD AND DEVICE FOR SAMPLING AND SIGNAL RECONSTRUCTION
US17/790,164 US20230083253A1 (en) 2020-01-02 2020-09-03 Signal Sampling and Reconstruction Methods and Devices
JP2022539734A JP7418871B2 (ja) 2020-01-02 2020-09-03 信号サンプリング方法及び再構成方法、並びに装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010000182.8 2020-01-02
CN202010000182.8A CN111158039B (zh) 2020-01-02 2020-01-02 信号采样、重建方法及装置

Publications (1)

Publication Number Publication Date
WO2021135338A1 true WO2021135338A1 (zh) 2021-07-08

Family

ID=70560904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113208 WO2021135338A1 (zh) 2020-01-02 2020-09-03 信号采样、重建方法及装置

Country Status (5)

Country Link
US (1) US20230083253A1 (zh)
EP (1) EP4086664A4 (zh)
JP (1) JP7418871B2 (zh)
CN (1) CN111158039B (zh)
WO (1) WO2021135338A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158039B (zh) * 2020-01-02 2022-01-04 苏州瑞派宁科技有限公司 信号采样、重建方法及装置
CN115032877B (zh) * 2022-05-26 2024-03-29 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 脉冲的采样方法、采样系统、装置及计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710183A (zh) * 2009-12-31 2010-05-19 中国原子能科学研究院 用于核谱学及核电子学的数字符合多道系统
CN102262238A (zh) * 2011-04-19 2011-11-30 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置
CN103961126A (zh) * 2013-02-05 2014-08-06 苏州瑞派宁科技有限公司 一种多阈值采样数字化器件的阈值校正方法
CN105212954A (zh) * 2015-11-05 2016-01-06 苏州瑞派宁科技有限公司 一种脉冲堆积事件实时处理方法与系统
US20190036759A1 (en) * 2017-07-28 2019-01-31 Roshmere, Inc. Timing recovery for nyquist shaped pulses
CN109444559A (zh) * 2018-10-26 2019-03-08 苏州瑞迈斯医疗科技有限公司 脉冲信号的采样方法、重建方法和装置
CN111103614A (zh) * 2020-01-02 2020-05-05 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像系统
CN111158039A (zh) * 2020-01-02 2020-05-15 苏州瑞派宁科技有限公司 信号采样、重建方法及装置
CN211698223U (zh) * 2020-01-02 2020-10-16 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047894A (en) * 1993-05-07 2000-04-11 Spectra-Physics Scanning Systems, Inc. Signal conditioning for variable focus optical reader
EP2100167A2 (en) 2006-11-30 2009-09-16 Koninklijke Philips Electronics N.V. Spectral computed tomography using correlated photon number and energy measurements
JP4574658B2 (ja) * 2006-12-13 2010-11-04 パナソニック株式会社 無線装置
JP5137269B2 (ja) * 2007-04-25 2013-02-06 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド 還流ダイオードを備えた降圧スイッチングレギュレータ
WO2009059312A2 (en) * 2007-11-02 2009-05-07 University Of Washington Data acquisition for positron emission tomography
CN104639123B (zh) * 2013-11-14 2017-08-25 苏州瑞派宁科技有限公司 闪烁脉冲越过阈值的时间点获取方法及装置
CN105940321A (zh) 2014-01-28 2016-09-14 株式会社岛津制作所 放射线检测器
CN109171787B (zh) * 2018-08-27 2021-02-26 苏州瑞派宁科技有限公司 脉冲信号的采样方法、装置和计算机程序介质
CN109581460B (zh) * 2018-12-17 2021-02-26 苏州瑞派宁科技有限公司 复合探测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710183A (zh) * 2009-12-31 2010-05-19 中国原子能科学研究院 用于核谱学及核电子学的数字符合多道系统
CN102262238A (zh) * 2011-04-19 2011-11-30 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置
CN103961126A (zh) * 2013-02-05 2014-08-06 苏州瑞派宁科技有限公司 一种多阈值采样数字化器件的阈值校正方法
CN105212954A (zh) * 2015-11-05 2016-01-06 苏州瑞派宁科技有限公司 一种脉冲堆积事件实时处理方法与系统
US20190036759A1 (en) * 2017-07-28 2019-01-31 Roshmere, Inc. Timing recovery for nyquist shaped pulses
CN109444559A (zh) * 2018-10-26 2019-03-08 苏州瑞迈斯医疗科技有限公司 脉冲信号的采样方法、重建方法和装置
CN111103614A (zh) * 2020-01-02 2020-05-05 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像系统
CN111158039A (zh) * 2020-01-02 2020-05-15 苏州瑞派宁科技有限公司 信号采样、重建方法及装置
CN211698223U (zh) * 2020-01-02 2020-10-16 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, H. ; KAO, C.M. ; XIE, Q. ; CHEN, C.T. ; ZHOU, L. ; TANG, F. ; FRISCH, H. ; MOSES, W.W. ; CHOONG, W.S.: "A multi-threshold sampling method for TOF-PET signal processing", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ELSEVIER BV * NORTH-HOLLAND, NL, vol. 602, no. 2, 21 April 2009 (2009-04-21), NL, pages 618 - 621, XP026080453, ISSN: 0168-9002, DOI: 10.1016/j.nima.2009.01.100 *
See also references of EP4086664A4

Also Published As

Publication number Publication date
JP2023517792A (ja) 2023-04-27
CN111158039A (zh) 2020-05-15
US20230083253A1 (en) 2023-03-16
EP4086664A4 (en) 2023-12-27
EP4086664A1 (en) 2022-11-09
JP7418871B2 (ja) 2024-01-22
CN111158039B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US9772408B2 (en) Method and device for extracting scintillation pulse information
EP3796048B1 (en) Method and device for sampling pulse signal, and computer program medium
WO2021135337A1 (zh) 信号采样电路、探测装置及成像系统
WO2021135338A1 (zh) 信号采样、重建方法及装置
US8080780B2 (en) Apparatus and associated methodology for improving timing resolution in gamma ray detection
US10416295B2 (en) Interpolation measurement of the arrival time and/or amplitude of a digitized electronic pulse
US8735831B2 (en) Trigger methods in nuclear medical imaging
JP7049709B2 (ja) 信号のためのフィッティングモデルを決定し、信号を再構築するための方法及びその装置
US20150200680A1 (en) Method and device for digitalizing scintillation pulse
Xie et al. A new approach for pulse processing in positron emission tomography
Xie et al. Potentials of digitally sampling scintillation pulses in timing determination in PET
US8330112B2 (en) Timing response improvement in light-sharing detectors
Pałka et al. A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in Positron Emission Tomography
KR20190093890A (ko) 방사선 영상 기기의 신호 검출 방법 및 그 방사선 영상 기기
CN211698223U (zh) 信号采样电路、探测装置及成像系统
KR101092648B1 (ko) Pet 검출기에서의 감마선 펄스 신호의 도달 시간 검출방법
US11635531B2 (en) Apparatus for measuring photon information and photon measurement device
Zhu et al. Potential Advantages of Peak Picking Multi-Voltage Threshold Digitizer in Energy Determination in Radiation Measurement
Xie et al. Potential advantages of digitally sampling scintillation pulses in timing determination in PET
Ruiz-Gonzalez et al. Scintillator-specific optimization of 2-bit sigma-delta modulation A/D for gamma-ray pulse waveform capture
CN113729751B (zh) 一种示踪剂活度的检测方法、设备及pet扫描仪
Murata et al. Evaluation of digital methods for energy calculation and timing pick-off in positron emission tomography
Chu et al. Single-line multi-voltage threshold method for scintillation detectors
US9778383B2 (en) Transmission of PET-signals by means of time division multiplexing
Xie et al. A new approach for pulse processing in PET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910426

Country of ref document: EP

Effective date: 20220802