WO2021135297A1 - 一种地热-热电协同空调系统 - Google Patents

一种地热-热电协同空调系统 Download PDF

Info

Publication number
WO2021135297A1
WO2021135297A1 PCT/CN2020/111281 CN2020111281W WO2021135297A1 WO 2021135297 A1 WO2021135297 A1 WO 2021135297A1 CN 2020111281 W CN2020111281 W CN 2020111281W WO 2021135297 A1 WO2021135297 A1 WO 2021135297A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
thermoelectric
conditioning system
geothermal
terminal
Prior art date
Application number
PCT/CN2020/111281
Other languages
English (en)
French (fr)
Inventor
阚宗祥
赵怀周
李国栋
王晓伟
李晓明
陈树山
Original Assignee
中国科学院物理研究所
阚宗祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所, 阚宗祥 filed Critical 中国科学院物理研究所
Publication of WO2021135297A1 publication Critical patent/WO2021135297A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a discrete air-conditioning system, in particular to a novel discrete air-conditioning system based on geothermal-heat-power synergistic combined use technology.
  • Geothermal air-conditioning systems also known as geothermal heat pumps, use geothermal resources (about 47% of solar radiation energy) stored in the shallow layers of the ground to use shallow soil or groundwater as a source of cold and heat. Cooling/heating technology for energy conversion.
  • the soil and water on the surface are a huge dynamic energy balance system, which can naturally maintain the relative balance of energy receiving and radiating. The temperature is maintained at 10 ⁇ 25°C for many years.
  • the geothermal air conditioning system has more advantages. High cooling and heating coefficient.
  • Ground source heat pump technology is based on huge reserves of solar energy and ground energy, and is not restricted by regions and resources. It has many advantages such as environmental protection, energy saving, wide application range, clean and renewable. Since it was proposed by Swiss scientists in 1912 to today, ground source heat pump technology has been well developed and applied in many countries including Switzerland, Norway, Sweden, Canada, the United States, Japan, and China.
  • the traditional geothermal air conditioning system is composed of three parts: outdoor ground source heat exchange system, ground source heat pump host system and indoor terminal fan system. Its two-dimensional structure diagram is shown in Figure 1. Among them, 11 is a water pump and 12 is a water filter device. , 13 is the heat pump host system, 131 is the evaporator, 132 is the compressor, 133 is the expansion valve, 134 is the condenser, 14 is the fan coil, and 151, 152, 153 and 15n represent different terminal rooms.
  • Outdoor ground source heat exchange system refers to a heat exchanger device buried below the ground surface to exchange energy with groundwater, which can be divided into an open system and a closed system.
  • An open system refers to a system in which groundwater is driven by a circulating pump and directly flows through a ground source heat pump unit or through an intermediate heat exchanger for heat exchange;
  • a closed system refers to injecting antifreeze into a closed plastic pipe buried deep in the ground ,
  • the closed system that exchanges energy with water or soil through the heat exchanger has the advantage that the closed system is not affected by factors such as groundwater level and water quality.
  • Outdoor ground-source heat sources can be groundwater, rivers and lakes, sea water, reservoir water, urban reclaimed water, and other water resources or soil sources.
  • the heat pump host system is mainly composed of four parts: an evaporator, a compressor, an expansion valve, and a condenser.
  • the liquid working fluid (refrigerant or refrigerant) is continuously evaporated (absorbing heat from the environment) ⁇ compression ⁇ condensation (releasing heat) ) ⁇ Throttling ⁇ Re-evaporation thermal cycle process, so as to transfer the heat in the environment to the water.
  • the indoor terminal fan system includes fans, coils, and terminal air conditioners.
  • the indoor terminal fan system is composed of coils and fans to complete the heat exchange between the application scenarios and the ground source heat pump system.
  • the ground source heat pump When the local source heat pump is working, it usually only needs to input a small amount of electric energy to transfer the low-grade heat energy of the shallow land to the high-grade heat energy. Therefore, the ground source heat pump has a higher cooling and heating coefficient.
  • the cooling/heating coefficient (COP) of ground source heat pumps is between 3.5 and 4.4, that is, 1kWh of electricity is consumed, and users can get 3.5kWh to 4.4kWh of cold or heat.
  • the power consumption of ground source heat pumps is only 60% of air source heat pumps and 30% of electric heating systems. Its heating efficiency It is also nearly 50% more efficient than gas boilers.
  • the purpose of the present invention is to provide a new type of geothermal air-conditioning system, which solves the major problems of the waste of compressor power consumption in the traditional geothermal air-conditioning system and the required refrigeration/heating medium to have a certain degree of environmental pollution.
  • the idea of the present invention is to develop a new type of discrete air-conditioning system that combines geothermal and thermoelectricity.
  • the present invention provides a geothermal-thermoelectric cooperative air-conditioning system.
  • the geothermal-thermoelectric cooperative air-conditioning system includes an outdoor ground source acquisition system and one or more terminal thermoelectric air-conditioning systems, wherein the terminal thermoelectric air-conditioning system includes thermoelectric modules and Radiating fins and hot water exchange tanks for heat exchange on both sides of the thermoelectric module, wherein the hot water exchange tank is in fluid communication with the outdoor ground source collection system to form a loop to pass the underground ground collected by the outdoor ground source collection system The circulating water provides heat or cold for the thermoelectric module.
  • the conversion of cooling and heating is realized by switching the current direction of the thermoelectric module.
  • the thermoelectric module has two energization modes with opposite current directions. In one energization mode, the side of the thermoelectric module close to the heat dissipation fin is the hot end, and the side close to the coil is the cold end.
  • the geothermal-thermoelectric air conditioning system realizes the heating function; in another energization mode, the side of the thermoelectric module close to the heat dissipation fins is the cold end, and the side close to the coil is the hot end, and the geothermal-thermoelectric air conditioning system realizes the cooling function .
  • the terminal thermoelectric air-conditioning system further includes a fan.
  • the fan is used to make the air flow through the radiating fins to be heated or cooled to form hot air or cold air.
  • the fan is a cross flow fan.
  • the terminal thermoelectric air-conditioning system may further include a coil radiator in fluid communication with the hot water exchange tank.
  • the terminal thermoelectric air-conditioning system is arranged so that the underground circulating water first flows through the coil radiator, then enters the hot water exchange tank, and finally flows out of the hot water exchange tank to form return water.
  • the terminal thermoelectric air-conditioning system further includes an air inlet and an air outlet.
  • the air inlet is used to allow air to enter the terminal thermoelectric air conditioning system.
  • the air from the air inlet first passes through the coil radiator for the first heat exchange, and then passes through the heat dissipation fins and the thermoelectric air conditioning system.
  • the module performs the second heat exchange, and the air outlet is used to discharge the air from the second heat exchange out of the terminal thermoelectric air-conditioning system.
  • the cooling or heating power can be controlled by regulating the current input to the thermoelectric module.
  • the terminal thermoelectric air-conditioning system can be designed in multiple modes such as a built-in type, a tower type, a floor-standing type, and a wall-mounted type.
  • the geothermal-thermoelectric coordinated air-conditioning system includes multiple terminal thermoelectric air-conditioning systems, and the geothermal-thermoelectric coordinated air-conditioning system further includes collecting data from the outdoor ground source collection system.
  • the underground circulating water is distributed to the shunt devices of each terminal thermoelectric air-conditioning system.
  • the outdoor ground source collection system includes a water pump, a water filtering device, and a water inlet pipeline and a return water pipeline.
  • the hot water exchange tank may be a water passing device of any shape that can exchange heat between underground circulating water and the thermoelectric module, and has a water inlet and a water outlet, And it preferably has the largest contact area with the thermoelectric module.
  • the contact area between the hot water exchange tank and the thermoelectric module is greater than 50% of the area of the hot or cold end of the thermoelectric module, and more preferably greater than 75% of the area of the hot or cold end of the thermoelectric module. %, the improvement is preferably greater than 90% of the area of the hot end or the cold end of the thermoelectric module.
  • the underground circulating water may come from water or other liquids enclosed in underground heat exchange pipelines, underground well water, rivers and lakes, sea water, and the like.
  • the temperature of the underground circulating water is 18-25°C.
  • the geothermal-thermoelectric cooperative air-conditioning system does not use a compressor and a fluorine-containing refrigeration/heating medium.
  • the geothermal-thermoelectric cooperative air conditioning system provided by the present invention can utilize the heat pump function of the thermoelectric module to transfer outdoor ground source cold or heat to the radiating fins, and improve the cooling/heating coefficient (COP) of the thermoelectric air conditioner.
  • COP cooling/heating coefficient
  • the invention directly combines the hot water exchange tank with the thermoelectric module in the air conditioning terminal, uses the thermoelectric solid-state cooling/heating mechanism to compensate for the low-grade heat energy in the geothermal resource, removes the compressor and other components in the traditional geothermal air conditioning system, and eliminates
  • the refrigeration/heating liquid fluorine-containing medium used in the original geothermal air-conditioning system also realizes the discrete and personalized thermal energy management of the air-conditioning terminal, rationally utilizes the geothermal resources, and effectively avoids the waste of electric energy.
  • the geothermal-thermoelectric cooperative air conditioning system of the present invention has the following characteristics and advantages:
  • Thermoelectric cooling/heating technology is an all-solid form of energy conversion. It does not require any liquid refrigeration medium or any solid, liquid, gas waste discharge, reducing environmental pollution and damage, and is a complete Clean energy conversion technology;
  • thermoelectric modules with hot water exchange tanks, using thermoelectric solid-state cooling/heating to compensate for low-grade geothermal resources, replacing the heat pump host system of traditional ground source heat pumps, reducing system mechanical costs and Electricity consumption per unit cooling and heating power;
  • the geothermal-thermoelectric cooperative air-conditioning system of the present invention not only retains the clean, renewable, and high cooling/heating efficiency characteristics of traditional ground source heat pump technology, but also eliminates the high power consumption compressors in traditional ground source heat pumps.
  • Components and fluorine-containing refrigeration/heating media that cause pollution and damage to the environment, and realize independent control of terminal heat energy, is a brand-new refrigeration/heating air-conditioning technology.
  • Figure 1 is a schematic diagram of the structure of a traditional geothermal air conditioning system
  • Figure 2 is a schematic structural diagram of the geothermal-thermoelectric cooperative air-conditioning system of the present invention
  • thermoelectric air conditioning system of the geothermal-thermoelectric coordinated air conditioning system according to Embodiment 1 of the present invention
  • thermoelectric air-conditioning system of the geothermal-thermoelectric cooperative air-conditioning system according to Embodiment 2 of the present invention.
  • This embodiment is used to illustrate the geothermal-thermoelectric cooperative air-conditioning system provided by the present invention.
  • the geothermal-thermoelectric coordinated air conditioning system includes an outdoor ground source collection system and multiple terminal thermoelectric air conditioning systems.
  • the underground circulating water collected by the outdoor ground source collection system is distributed to each terminal thermoelectric air conditioning system through a shunt device 26.
  • the multiple terminal thermoelectric air-conditioning systems respectively cool or heat multiple terminal rooms 251, 252,... 25n.
  • the outdoor ground source collection system includes a water pump 21, a water filtering device 22, a water inlet pipe 23, and a return water pipe 24.
  • the schematic diagram of the front structure and the schematic diagram of the side structure of the terminal thermoelectric air conditioning system are shown in FIG. 3.
  • the terminal thermoelectric air-conditioning system includes a coil radiator 301, a thermoelectric module 302, and heat dissipation fins 303 and a hot water exchange tank 304 that exchange heat with both sides of the thermoelectric module 302, wherein the coil radiator 301, heat exchange
  • the water tank 304 is in fluid communication with the outdoor ground source collection system to form a loop.
  • the underground circulating water collected by the outdoor ground source collection system flows in from the coil water inlet 312, first flows through the coil radiator 301, and then enters the hot water exchange tank 304, and finally It flows out from the water outlet 313 of the hot water exchange tank 304.
  • the terminal thermoelectric air conditioning system of this embodiment also includes a large particle filter 308, a water receiving tank 309, a liquid crystal control panel 310, a power controller 311, and a water drain 314.
  • the water pump 21 runs, and groundwater (the groundwater temperature in summer is about 20°C) circulates in the entire system, and flows through the coil radiator 301 and the hot end of the thermoelectric module 302 (ie, the hot water exchange tank 34) in the terminal thermoelectric air conditioning system.
  • the fan 305 starts, and the indoor hot air (assuming the temperature is about 30°C) entering from the air inlet 306 is first blown through the coil radiator 301 to be cooled by groundwater for the first time, and then through the heat dissipation fins 303 connected to the thermoelectric module 302 for the first time.
  • the air outlet 307 flows out of the terminal thermoelectric air-conditioning system and enters the room to realize indoor cooling.
  • the heat at the hot end of the thermoelectric module 302 is taken away by the underground circulating water, and different cooling temperature and power requirements can be achieved by adjusting the amount of electricity of the thermoelectric module or the speed of the wind speed of the fan.
  • the coefficient of refrigeration (COP) of the geothermal-thermoelectric cooperative air-conditioning system corresponds to 3.1 when the temperature difference between the hot end and the cold end is 2°C.
  • the water pump 21 runs, and groundwater (the groundwater temperature in winter is about 20°C) circulates in the entire system, and flows through the coil radiator 301 and the cold end of the thermoelectric module 302 (ie, the hot water exchange tank 304) in the terminal thermoelectric air conditioning system.
  • the fan 305 is activated, and the indoor cold air (assuming a temperature of about 16°C) entering from the air inlet 306 is first blown through the coil radiator 301 to raise the temperature of the ground water for the first time, and then passes through the heat dissipation fins 303 connected to the thermoelectric module 302 for the first time.
  • the terminal thermoelectric air-conditioning system flows out of the air outlet 307 and enters the room to realize indoor heating.
  • the heat at the hot end of the thermoelectric module 302 is provided by the underground circulating water.
  • the heating coefficient (COP) of the geothermal-thermoelectric cooperative air conditioning system is 4.2 when the temperature difference between the hot end and the cold end is 2°C.
  • the difference between the geothermal-thermoelectric cooperative air-conditioning system of this embodiment and the first embodiment is only that there is no coil radiator in the terminal thermoelectric air-conditioning system.
  • the front structure diagram and the side structure diagram of the terminal thermoelectric air conditioning system of the geothermal-thermoelectric cooperative air conditioning system of this embodiment are shown in FIG. 4.
  • the terminal thermoelectric air-conditioning system includes a thermoelectric module 402, heat dissipation fins 403 and a hot water exchange tank 404 for heat exchange with both sides of the thermoelectric module 402, wherein the hot water exchange tank 404 is in fluid communication with the outdoor ground source collection system to form a loop ,
  • the underground circulating water collected by the outdoor ground source collection system enters the hot water exchange tank 404 through the water inlet 412, and then is discharged from the water outlet 413 of the hot water exchange tank 404.
  • the terminal thermoelectric air conditioning system of this embodiment also includes a large particle filter 408, a water receiving tank 409, a liquid crystal control panel 410, a power controller 411, and a water drain 314.
  • the coefficient of refrigeration (COP) of the geothermal-thermoelectric cooperative air-conditioning system can reach up to 3.1.
  • the heating coefficient (COP) of the geothermal-thermoelectric coordinated air-conditioning system can reach up to 4.2.

Abstract

本发明提供一种地热-热电协同空调系统,其包括室外地源采集系统以及一个或多个终端热电空调系统,其中所述终端热电空调系统包括热电模块以及分别与所述热电模块的两侧进行热交换的散热翅片和换热水箱,其中所述换热水箱与所述室外地源采集系统流体连通形成回路,以通过所述室外地源采集系统采集的地下循环水为所述热电模块提供热量或冷量。本发明的地热-热电协同空调系统既保留了传统地源热泵技术的清洁可再生、高制冷/制热效率的特点,又去除了传统地源热泵中高耗电能的压缩机等部件以及对环境造成污染和破坏的含氟制冷/制热媒质,并且实现了终端热能的独立控制。

Description

一种地热-热电协同空调系统 技术领域
本发明涉及一种分立式空调系统,具体涉及一种基于地热-热电协同联用技术的新型分立式空调系统。
背景技术
地热空调系统,亦称为地源热泵(Geothermal Heat Pumps),是一种利用储藏于地表浅层的地热资源(约47%的太阳辐射能量),将陆地浅层土壤或者地下水作为冷热源,进行能量转换的制冷/供暖技术。地表的土壤和水体是一个巨大的动态能量平衡系统,可以自然地保持能量接受和发散的相对平衡,温度长年保持在10~25℃之间,其作为冷热源使得地热空调系统具有着较高的制冷和制热系数。地源热泵技术基于储量巨大的太阳能和地能,且不受地域和资源的限制,具有环保、节能、应用范围广、清洁可再生等诸多优点。自1912年由瑞士的科学家提出到现今,地源热泵技术已在包括瑞士、挪威、瑞典、加拿大、美国、日本、中国等多个国家得到很好的发展和应用。
传统的地热空调系统由室外地源换热系统、地源热泵主机系统和室内末端风机系统三个部分组成,其二维结构示意图如图1所示,其中,11为水泵,12为滤水装置,13为热泵主机系统,131为蒸发器,132为压缩机,133为膨胀阀,134为冷凝器,14为风机盘管,151、152、153和15n代表不同的终端房间。
室外地源换热系统是指埋藏于地表以下与地下水交换能量的换热器装置,有开式系统和闭式系统之分。开式系统是指地下水在循环泵的驱动下,直接流经地源热泵机组或者通过中间换热器进行热交换的系统;闭式系统是指将防冻液注入在深埋于地下的封闭塑料管内,通过换热器与水或土壤交换能量的封闭系统,其优点是闭式系统不受地下水位、水质等因素影响。室外的地源热源可以是地下水、江河湖水、海水、水库水、城市中水等各类水资源或土壤源。
所述热泵主机系统主要由蒸发器、压缩机、膨胀阀和冷凝器四部分构成,通过让液态工质(制冷剂或冷媒)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热 量转移到水中。
室内末端风机系统包括风机、盘管以及终端空调等装置。室内末端风机系统由盘管和风机完成热量在应用场景和地源热泵系统之间的交换。
当地源热泵工作时,通常只需通过输入少量的电能就可将陆地浅层的低品位热能向高品位热能转移,因此,地源热泵具有较高的制冷、制热系数。当前,地源热泵的制冷/制热系数(COP)介于3.5到4.4之间,即消耗1kWh的电能,用户可以得到3.5kWh到4.4kWh的冷量或热量。相比于其它形式的热泵,如空气源热泵或者电供暖系统,在同等输出热量的前提下,地源热泵的电力消耗只有空气源热泵的60%、电供暖系统的30%,它的制热效率也比燃气锅炉的效率提高了近50%。
然而,当前地源热泵的发展,特别是大型地热中央空调的发展遇到了瓶颈问题,主要表现在以下几个方面:(一)常规的压缩机热泵仍需要使用大量的含氟制冷剂,会对环境造成非常大的污染和破坏;(二)地热中央空调的终端独立操作性很差,在一些情况下会造成很大的能源浪费,例如为了满足10%终端房间的制冷或取暖需求,整个热泵系统仍需要消耗80%~90%的满负荷运载电能;(三)大型的热泵系统,特别是压缩机,对于一个500平方米的工作空间,通常需要将近百千瓦的压缩机,其满负荷运行时的耗电量巨大。特别是在应用大型地热中央空调系统的工厂、学校、医院、机场等场景中,这些问题尤为突出。
发明内容
为了解决以上问题,本发明的目的是提供一种新型地热空调系统,解决传统地热空调系统中压缩机功耗浪费以及所需制冷/制热媒质具有一定程度环境污染等重大问题。
本发明的构思是研发一套将地热与热电相结合的新型分立式空调系统。首先,在不损失传统地热空调系统较高制冷/制热效率的基础上(即COP在3左右),进一步降低高品位能量如电能的消耗;其次,通过将热电模块与中央空调分立终端的结合,实现空调终端的独立热能管理;最后,推广发展地热-热电相结合的新型分立式空调系统实现洁净可再生地热资源更加有效地利用。
本发明提供了一种地热-热电协同空调系统,所述地热-热电协同空调系统包括室外地源采集系统以及一个或多个终端热电空调系统,其中所述 终端热电空调系统包括热电模块以及分别与所述热电模块的两侧进行热交换的散热翅片和换热水箱,其中所述换热水箱与所述室外地源采集系统流体连通形成回路,以通过所述室外地源采集系统采集的地下循环水为所述热电模块提供热量或冷量。
根据本发明提供的地热-热电协同空调系统,其中,通过切换所述热电模块的电流方向实现制冷和制热的转换。具体而言,所述热电模块具有电流方向相反的两种通电模式,在一种通电模式中,所述热电模块靠近散热翅片一侧为热端,靠近盘管一侧为冷端,所述地热-热电空调系统实现供暖功能;在另一种通电模式中,所述热电模块靠近散热翅片一侧为冷端,靠近盘管一侧为热端,所述地热-热电空调系统实现制冷功能。
根据本发明提供的地热-热电协同空调系统,其中,所述终端热电空调系统还包括风机。所述风机用于使空气流过散热翅片而被加热或冷却,形成热风或冷风。优选地,所述风机为横流风机。
在本发明的一种优选的实施方案中,所述终端热电空调系统还可以包括与所述换热水箱流体连通的盘管散热器。优选地,所述终端热电空调系统的排布使得地下循环水先流经所述盘管散热器,然后再进入所述换热水箱,最后从所述换热水箱流出形成回水。
根据本发明提供的地热-热电协同空调系统,其中,所述终端热电空调系统还包括进风口和出风口。所述进风口用于使空气进入终端热电空调系统,来自进风口的空气在风机的作用下先通过所述盘管散热器进行第一次热量交换,再通过所述散热翅片和所述热电模块进行第二次热量交换,所述出风口用于使第二次热量交换的空气排出终端热电空调系统。可以通过调控输入到热电模块的电流实现制冷或制热功率的控制。针对不同的应用场景,所述终端热电空调系统可以设计成立式、塔式、落地式以及壁挂式等多种模式。
根据本发明提供的地热-热电协同空调系统,其中,所述地热-热电协同空调系统包括多个终端热电空调系统,所述地热-热电协同空调系统还包括将所述室外地源采集系统采集的地下循环水分配到各个终端热电空调系统分流装置。
根据本发明提供的地热-热电协同空调系统,其中,所述室外地源采集系统包括水泵、滤水装置以及进水管路和回水管路。
根据本发明提供的地热-热电协同空调系统,其中,所述换热水箱可以是能够使地下循环水与所述热电模块进行热交换的任何形状的通水装置, 其具有进水口和出水口,并且优选地与热电模块具有最大的接触面积。在本发明优选的实施方案中,所述换热水箱与热电模块的接触面积大于所述热电模块热端或冷端面积的50%,更优选大于所述热电模块热端或冷端面积的75%,进步优选大于所述热电模块热端或冷端面积的90%。
根据本发明提供的地热-热电协同空调系统,其中,所述地下循环水可以来自封闭于地下热交换管道的水或其它液体、地下井水、江河湖泊、海水等。优选地,所述地下循环水的温度为18~25℃。
根据本发明提供的地热-热电协同空调系统,其中,所述地热-热电协同空调系统不使用压缩机和含氟制冷/制热媒质。
由此,本发明提供的地热-热电协同空调系统可以利用热电模块的热泵功能,将室外的地源冷量或热量搬运至散热翅片,提高热电空调的制冷/制热系数(COP)。
本发明在空调终端直接将换热水箱与热电模块相结合,利用热电固态制冷/制热的机制来补偿地热资源中的低品位热能,去除了传统地热空调系统中的压缩机等部件,消除了原有地热空调系统中使用的制冷/制热液态含氟媒质,同时实现空调终端分立式、个性化的热能管理,合理利用地热资源,有效避免电能的浪费。
与传统的地热空调系统相比,本发明的地热-热电协同空调系统具有以下特点和优势:
(一)无污染:热电制冷/制热技术是一种全固态的能源转换形式,不需要任何液态制冷媒质及任何固液气废料的排放,降低了对环境的污染和破坏,是一种完全清洁的能源转换技术;
(二)低能耗:将热电模块与换热水箱相结合,利用热电固态制冷/制热的形式去补偿低品位的地热资源,取代了传统地源热泵的热泵主机系统,降低了系统机械成本和单位制冷及取暖功率下的电能消耗;
(三)分立式:实现每个终端热能的独立控制,满足独立终端热能的个性化需求,解决传统地热中央空调的电能浪费问题。
综上所述,本发明的地热-热电协同空调系统既保留了传统地源热泵技术的清洁可再生、高制冷/制热效率的特点,又去除了传统地源热泵中高耗电能的压缩机等部件以及对环境造成污染和破坏的含氟制冷/制热媒质,并且实现了终端热能的独立控制,是一种全新的制冷/制热空调技术。
附图的简要说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为传统地热空调系统的结构示意图;
图2为本发明的地热-热电协同空调系统的结构示意图;
图3为本发明实施例1的地热-热电协同空调系统的终端热电空调系统的正面结构示意图和侧面结构示意图;
图4为本发明实施例2的地热-热电协同空调系统的终端热电空调系统的正面结构示意图和侧面结构示意图。
实施发明的最佳方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。
实施例1
本实施例用于说明本发明提供的地热-热电协同空调系统。
如图2所示,该地热-热电协同空调系统包括室外地源采集系统以及多个终端热电空调系统,室外地源采集系统采集的地下循环水通过分流装置26被分配到各个终端热电空调系统。所述多个终端热电空调系统分别为多个终端房间251、252、……25n制冷或制热。其中,所述室外地源采集系统包括水泵21、滤水装置22、进水管路23和回水管路24。
所述终端热电空调系统的正面结构示意图和侧面结构示意图如图3所示。该终端热电空调系统包括盘管散热器301、热电模块302、以及分别与所述热电模块302的两侧进行热交换的散热翅片303和换热水箱304,其中盘管散热器301、换热水箱304与室外地源采集系统流体连通形成回路,通过室外地源采集系统采集的地下循环水从盘管进水口312流入,先流经盘管散热器301,然后再进入换热水箱304,最后从所述换热水箱304的出水口313流出。
本实施例的终端热电空调系统还包括大颗粒过滤网308、接水槽309、液晶控制面板310、电源控制器311和放水口314。
地热-热电协同空调系统的制冷原理
水泵21运行,地下水(夏季地下水温约20℃)在整个系统中循环,并在终端热电空调系统中依次流经盘管散热器301和热电模块302的热端(即,换热水箱34)。风机305启动,由进风口306进入的室内热风(假 设温度约为30℃)首先吹过盘管散热器301由地下水进行第一次降温,再通过与热电模块302连接的散热翅片303进行第二次降温,之后由出风口307流出终端热电空调系统进入房间,实现室内制冷。热电模块302热端的热量由地下循环水带走,通过调控热电模块电量的大小或者风机风速的快慢可以实现不同制冷温度和功率的需求。
经过封闭实测,该地热-热电协同空调系统的制冷系数(COP)在热端和冷端温差为2℃时对应值为3.1。
地热-热电协同空调系统的制热原理
水泵21运行,地下水(冬季地下水温约20℃)在整个系统中循环,并在终端热电空调系统中依次流经盘管散热器301和热电模块302的冷端(即,换热水箱304)。风机305启动,由进风口306进入的室内冷风(假设温度约为16℃)首先吹过盘管散热器301由地下水进行第一次升温,再通过与热电模块302连接的散热翅片303进行第二次升温,之后由出风口307流出终端热电空调系统进入房间,实现室内供暖。热电模块302热端的热量由地下循环水提供,通过调控热电模块电量的大小或者风机风速的快慢可以实现不同供暖温度和功率的需求。
经过封闭实测的,该地热-热电协同空调系统的制热系数(COP)在热端和冷端温差为2℃时对应值为4.2。
实施例2
本实施例的地热-热电协同空调系统与实施例1的不同之处仅在于终端热电空调系统中没有盘管散热器。
本实施例的地热-热电协同空调系统的终端热电空调系统的正面结构示意图和侧面结构示意图如图4所示。该终端热电空调系统包括热电模块402、以及分别与所述热电模块402的两侧进行热交换的散热翅片403和换热水箱404,其中换热水箱404与室外地源采集系统流体连通形成回路,通过室外地源采集系统采集的地下循环水通过进水口412进入换热水箱404,然后从所述换热水箱404的出水口413排出。
本实施例的终端热电空调系统还包括大颗粒过滤网408、接水槽409、液晶控制面板410、电源控制器411和放水口314。
经过封闭实测的,该地热-热电协同空调系统的制冷系数(COP)最高可达到3.1。经过封闭实测的,该地热-热电协同空调系统的制热系数(COP) 最高可达到4.2。
尽管已经对本发明进行了一定程度的描述,明显地,在不脱离本发明的精神和范围的情况下,可进行各个条件的适当变化。可以理解,本发明不限于所述实施方案,而归于权利要求的范围,其包括所述每个因素的等同替换。

Claims (10)

  1. 一种地热-热电协同空调系统,所述地热-热电协同空调系统包括室外地源采集系统以及一个或多个终端热电空调系统,其中所述终端热电空调系统包括热电模块以及分别与所述热电模块的两侧进行热交换的散热翅片和换热水箱,其中所述换热水箱与所述室外地源采集系统流体连通形成回路,以通过所述室外地源采集系统采集的地下循环水为所述热电模块提供热量或冷量。
  2. 根据权利要求1所述的地热-热电协同空调系统,其中,通过切换所述热电模块的电流方向实现制冷和制热的转换。
  3. 根据权利要求2所述的地热-热电协同空调系统,其中,所述热电模块具有电流方向相反的两种通电模式,在一种通电模式中,所述热电模块靠近散热翅片一侧为热端,靠近盘管一侧为冷端,所述地热-热电空调系统实现供暖功能;在另一种通电模式中,所述热电模块靠近散热翅片一侧为冷端,靠近盘管一侧为热端,所述地热-热电空调系统实现制冷功能。
  4. 根据权利要求1至3中任一项所述的地热-热电协同空调系统,其中,所述终端热电空调系统还包括风机;优选地,所述风机为横流风机。
  5. 根据权利要求1至4中任一项所述的地热-热电协同空调系统,其中,所述终端热电空调系统还包括与所述换热水箱流体连通的盘管散热器。
  6. 根据权利要求5所述的地热-热电协同空调系统,其中,所述终端热电空调系统的排布使得地下循环水先流经所述盘管散热器,然后再进入所述换热水箱,最后从所述换热水箱流出形成回水。
  7. 根据权利要求5或6所述的地热-热电协同空调系统,其中,所述终端热电空调系统还包括进风口和出风口,所述进风口用于使空气进入终端热电空调系统,来自进风口的空气在风机的作用下先通过所述盘管散热器进行第一次热量交换,再通过所述散热翅片和所述热电模块进行第二次热量交换,所述出风口用于使第二次热量交换的空气排出终端热电空调系统。
  8. 根据权利要求1至7中任一项所述的地热-热电协同空调系统,其中,所述地热-热电协同空调系统包括多个终端热电空调系统,所述地热- 热电协同空调系统还包括将所述室外地源采集系统采集的地下循环水分配到各个终端热电空调系统分流装置。
  9. 根据权利要求1至8中任一项所述的地热-热电协同空调系统,其中,所述室外地源采集系统包括水泵、滤水装置以及进水管路和回水管路。
  10. 根据权利要求1至9中任一项所述的地热-热电协同空调系统,其中,所述地热-热电协同空调系统不使用压缩机和含氟制冷/制热媒质。
PCT/CN2020/111281 2020-01-02 2020-08-26 一种地热-热电协同空调系统 WO2021135297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010002275 2020-01-02
CN202010002275.4 2020-01-02

Publications (1)

Publication Number Publication Date
WO2021135297A1 true WO2021135297A1 (zh) 2021-07-08

Family

ID=72859195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111281 WO2021135297A1 (zh) 2020-01-02 2020-08-26 一种地热-热电协同空调系统

Country Status (2)

Country Link
CN (2) CN111811089A (zh)
WO (1) WO2021135297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781195A (zh) * 2021-02-18 2021-05-11 珠海格力电器股份有限公司 空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375661A (zh) * 2001-03-21 2002-10-23 锦州俏牌实业有限公司 两循环地温空调
CN101566376A (zh) * 2009-05-21 2009-10-28 赵铭 集中换热分户控制家用中央空调系统
CN102221250A (zh) * 2011-05-13 2011-10-19 苏州市伦琴工业设计有限公司 井水制冷制热系统
CN103252260A (zh) * 2013-05-17 2013-08-21 清华大学 一种用于室内的环境舱温度控制装置
US20170248333A1 (en) * 2016-02-26 2017-08-31 American Water Works Company, Inc. Geothermal heating and cooling system
CN109140625A (zh) * 2017-06-13 2019-01-04 南阳明政建材科技有限公司 自然能空调
KR20190124378A (ko) * 2018-04-26 2019-11-05 버튼솔루션 주식회사 히트펌프 기반의 자동제어 지열 시스템 및 그 제어방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375661A (zh) * 2001-03-21 2002-10-23 锦州俏牌实业有限公司 两循环地温空调
CN101566376A (zh) * 2009-05-21 2009-10-28 赵铭 集中换热分户控制家用中央空调系统
CN102221250A (zh) * 2011-05-13 2011-10-19 苏州市伦琴工业设计有限公司 井水制冷制热系统
CN103252260A (zh) * 2013-05-17 2013-08-21 清华大学 一种用于室内的环境舱温度控制装置
US20170248333A1 (en) * 2016-02-26 2017-08-31 American Water Works Company, Inc. Geothermal heating and cooling system
CN109140625A (zh) * 2017-06-13 2019-01-04 南阳明政建材科技有限公司 自然能空调
KR20190124378A (ko) * 2018-04-26 2019-11-05 버튼솔루션 주식회사 히트펌프 기반의 자동제어 지열 시스템 및 그 제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781195A (zh) * 2021-02-18 2021-05-11 珠海格力电器股份有限公司 空调系统

Also Published As

Publication number Publication date
CN212777730U (zh) 2021-03-23
CN111811089A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN103983042B (zh) 一种太阳能室内冷热一体化系统
CN101403521B (zh) 太阳能吸收式制冷与地源热泵耦合联供系统
CN102116539B (zh) 一种多热源驱动的吸收压缩复合式热泵系统
CN102278836B (zh) 一种分置式水/地能冷暖生活热水一体中央空调机组
CN102914012A (zh) 一种太阳能与水冷风冷空调机组复合的冷暖生活热水一体机组
CN101893299A (zh) 基于相变蓄冷的太阳能吸附式空调系统
CN105222404A (zh) 一种利用太阳能-空气能热泵系统
CN201363859Y (zh) 一种空调机组
CN202734111U (zh) 空气源热泵和太阳能相结合的空调系统
CN1877208A (zh) 一种太阳能空调热水系统
CN202885144U (zh) 一种太阳能与水冷风冷空调机组复合的冷暖生活热水一体机组
CN102721128B (zh) 一种利用水库水作冷源或热源的水电空调系统
CN102937315A (zh) 制冷蓄冷系统
CN102721131B (zh) 高效节能的水电空调冷热水系统
CN107218681A (zh) 双源双凝空调机组
WO2021135297A1 (zh) 一种地热-热电协同空调系统
CN102095234A (zh) 太阳能热泵与动力热管复合系统
CN106839217B (zh) 脱电独立运行复合式热泵空调系统及其控制方法
CN102230690B (zh) 超热自由回收太阳能热泵机组
CN2748843Y (zh) 太阳能-地源热泵空调热水设备
CN203163097U (zh) 太阳能空调
CN211952967U (zh) 太阳能热泵供热系统
CN204963288U (zh) 一种使用太阳能和水源的溴化锂吸收式制热、制冷装置
CN211316299U (zh) 城市热能综合利用系统
CN209926501U (zh) 盐水冷却塔空调热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911090

Country of ref document: EP

Kind code of ref document: A1