WO2021135138A1 - 一种目标运动轨迹构建方法、设备以及计算机存储介质 - Google Patents

一种目标运动轨迹构建方法、设备以及计算机存储介质 Download PDF

Info

Publication number
WO2021135138A1
WO2021135138A1 PCT/CN2020/100265 CN2020100265W WO2021135138A1 WO 2021135138 A1 WO2021135138 A1 WO 2021135138A1 CN 2020100265 W CN2020100265 W CN 2020100265W WO 2021135138 A1 WO2021135138 A1 WO 2021135138A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
picture
feature
features
face
Prior art date
Application number
PCT/CN2020/100265
Other languages
English (en)
French (fr)
Inventor
付豪
李蔚琳
李晓通
张寅艳
刘晖
Original Assignee
深圳市商汤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市商汤科技有限公司 filed Critical 深圳市商汤科技有限公司
Priority to KR1020227020877A priority Critical patent/KR20220098030A/ko
Priority to JP2022535529A priority patent/JP2023505864A/ja
Publication of WO2021135138A1 publication Critical patent/WO2021135138A1/zh
Priority to US17/836,288 priority patent/US20220301317A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/70Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F16/75Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/70Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F16/78Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/783Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/70Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F16/78Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/787Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/46Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • G06V40/173Classification, e.g. identification face re-identification, e.g. recognising unknown faces across different face tracks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/08Detecting or categorising vehicles

Definitions

  • This application relates to the field of traffic monitoring, and in particular to a method, equipment and computer storage medium for constructing a target motion trajectory.
  • This application provides a method, equipment and computer-readable storage medium for constructing a target motion trajectory.
  • the present application provides a method for constructing a target motion trajectory.
  • the method for constructing a target motion trajectory includes:
  • At least two different types of target features that match the retrieval condition, where the at least two different types of target features include at least two of face features, human body features, and vehicle features;
  • the target motion trajectory is generated according to the combination of the shooting time and the shooting location associated with the at least two different types of target features.
  • the step of generating the target motion trajectory according to the combination of the shooting time and the shooting location associated with the at least two different types of target features further includes:
  • the shooting time and shooting location associated with the auxiliary target feature are eliminated.
  • the method of judging whether the relative position of the auxiliary target feature and the main target feature conforms to the motion law of the target according to the shooting time and shooting location of the main target feature, and the shooting time and shooting location of the auxiliary target feature further include:
  • the movement speed is calculated based on the position difference and the time difference, and when the movement speed is less than or equal to a preset movement speed threshold, it is determined that the relative position of the auxiliary target feature and the main target feature conforms to the movement law of the target.
  • the acquiring the shooting time and the shooting location respectively associated with the at least two different types of target features includes:
  • the shooting time and shooting location associated with the target feature are determined based on at least the first target picture.
  • the method further includes:
  • a target human face picture corresponding to the human face feature Acquiring a target human face picture corresponding to the human face feature, a target human body picture corresponding to the human body feature, and/or a target vehicle picture corresponding to the vehicle feature;
  • the target human face picture and the target human body picture correspond to the same first target picture and have a preset spatial relationship
  • the target human face picture and the target human body in the first target picture Picture association in the case where the target face picture and the target vehicle picture correspond to the same first target picture and have a preset spatial relationship, combine the target face picture in the first target picture with all The target vehicle picture is associated; in the case that the target human body picture and the target vehicle picture correspond to the same first target picture and have a preset spatial relationship, combine the target human body picture in the first target picture with The target vehicle picture is associated.
  • the Methods also include:
  • the determining the shooting time and shooting location associated with the target feature based at least on the first target picture includes:
  • the shooting time and shooting location associated with the target feature are determined based on the first target picture and the second target picture.
  • the Methods also include:
  • the determining the shooting time and shooting location associated with the target feature based at least on the first target picture includes:
  • the shooting time and shooting location associated with the target feature are determined based on the first target picture and the third target picture.
  • the preset spatial relationship includes at least one of the following:
  • the image coverage of the first target-related picture includes the image coverage of the second target-related picture
  • the image coverage of the first target-related picture partially overlaps the image coverage of the second target-related picture
  • the image coverage of the first target-related picture is connected to the image coverage of the second target-related picture
  • the first target associated picture includes any one or more of the target face picture, the target human body picture, and the target vehicle picture
  • the second target associated picture includes the target person Any one or more of the face picture, the target human body picture, and the target vehicle picture.
  • the step of obtaining at least two different types of target features that match the retrieval conditions includes:
  • the target feature that matches any one of the at least two search conditions is retrieved from the database.
  • the retrieval conditions include at least one of identity retrieval conditions, face retrieval conditions, human body retrieval conditions, and vehicle retrieval conditions;
  • the target feature is pre-associated with identity information
  • the identity information is any one of ID card information, name information, and file information.
  • the step of retrieving the target feature matching any one of the at least two retrieval conditions from the database includes:
  • the present application provides a target motion trajectory construction device.
  • the target motion trajectory construction device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor is used to execute the computer program to implement the steps of the target motion trajectory construction method.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed, the steps of constructing the above-mentioned target motion trajectory are realized.
  • This application also provides a computer program product.
  • the instructions in the computer program product are executed by a processor, any one of the aforementioned methods for constructing a target motion trajectory is executed.
  • the beneficial effect of the present application is that the target motion trajectory construction device acquires at least two different types of target features that match the retrieval conditions, wherein the at least two different types of target features include at least one of a face feature, a human body feature, and a vehicle feature.
  • Two types acquiring shooting time and shooting location respectively associated with at least two different types of target features; generating a target motion trajectory according to a combination of shooting time and shooting location associated with at least two different types of target features.
  • Fig. 1 is a schematic flowchart of a first embodiment of a method for constructing a target motion trajectory provided by the present application
  • FIG. 2 is a schematic flowchart of a second embodiment of a method for constructing a target motion trajectory provided by the present application
  • FIG. 3 is a schematic flowchart of a third embodiment of a method for constructing a target motion trajectory provided by the present application
  • FIG. 4 is a schematic flowchart of a fourth embodiment of a method for constructing a target motion trajectory provided by the present application
  • Fig. 5 is a schematic structural diagram of an embodiment of a target motion trajectory construction device provided by the present application.
  • Fig. 6 is a schematic structural diagram of another embodiment of a target motion trajectory construction device provided by the present application.
  • Fig. 7 is a schematic structural diagram of an embodiment of a computer-readable storage medium provided by the present application.
  • This application provides a specific method for constructing a target motion trajectory. Based on the development of face retrieval, human body retrieval, vehicle retrieval and video structuring technology, the method provided by this application integrates multiple algorithms to automatically combine single retrieval objects or multiple retrieval objects such as face information, human body information, and vehicle information in traffic images. The combination of the retrieval objects retrieves the results at the same time at one time, and merges and restores all the target motion trajectories.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for constructing a target motion trajectory provided by the present application.
  • the target motion trajectory construction method of the present application is applied to a target motion trajectory construction device.
  • the target motion trajectory construction device can be a terminal device such as a smart phone, a tablet computer, a notebook computer, a computer or a wearable device, or it can be a bayonet traffic The monitoring system in the system.
  • a trajectory construction device is used uniformly to describe the method for constructing a target motion trajectory.
  • the method for constructing a target motion trajectory of this embodiment specifically includes the following steps:
  • S101 Acquire at least two different types of target features that match the retrieval condition, where the at least two different types of target features include at least two of face features, human body features, and vehicle features.
  • the trajectory construction equipment obtains multiple image data, and the image data can be obtained directly from the existing traffic big data open source platform or from the traffic management department.
  • the image data includes time information and location information.
  • the trajectory construction equipment can also obtain a real-time video stream from an existing traffic big data open source platform or from a traffic management department, and then perform image frame segmentation on the real-time video stream to obtain multiple image data.
  • the image data needs to include the bayonet point position information in the monitoring area, such as latitude and longitude (latitude, longitude) information, etc.; it also needs to include a preset time period, such as the bayonet snapped car record data within a month, where , Bayonet captures the past car record data including time information. If location information such as latitude and longitude is stored in the bayonet-captured vehicle history data, the bayonet point position information can also be directly extracted from the bayonet-capture vehicle history data.
  • the capture records in the recent period of time cannot guarantee that all the bayonet points have image data.
  • the terminal equipment needs to be upgraded from the existing traffic.
  • the data open source platform or the traffic management department obtains all the bayonet point location information.
  • the terminal device can also preprocess the image data. Specifically, the terminal device determines whether each image data includes time information of the capture time and all information in the location information including latitude and longitude information. If any one of the time information and the location information is missing in the image data, the terminal device directly removes the corresponding image data, so as to avoid the problem of data missing in the subsequent spatio-temporal prediction database.
  • the terminal equipment cleans the repeated data and invalid data in the original image data, which is conducive to data analysis.
  • the trajectory construction device performs target detection on multiple image data respectively. Specifically, the trajectory construction device detects all the faces, human bodies and/or vehicles in the image data through a target detection algorithm or the fusion of multiple target detection algorithms. , And extract all the features of faces, human bodies and/or vehicles to form target features.
  • the target feature may include image features extracted from image data and/or text features generated by structural analysis of image features.
  • Image features include all facial features, human body features, and vehicle features in image data.
  • Text features are feature information generated by structural analysis of vehicle features. For example, trajectory building equipment can perform text recognition on vehicle features to obtain vehicle features.
  • the license plate number in, the license plate number is used as a text feature.
  • the trajectory construction device receives the search condition input by the user, and searches the dynamic database for the target feature matching the search condition according to the search condition.
  • the trajectory construction device acquires at least two different types of target features that match the retrieval conditions, and the at least two different types of target features include at least two of face features, human body features, and vehicle features. Obtaining multiple types of target features is conducive to extracting sufficient trajectory information, avoiding the loss of some important trajectory information due to blurred shooting, obstructions, etc., and improving the accuracy of trajectory construction methods.
  • the retrieval conditions can be the human face and human body images of the retrieval target obtained by the police through on-site surveys, police station reporting, and capture retrieval, etc., or any images or texts containing the above-mentioned image information.
  • the trajectory construction device retrieves the target feature matching the face and human body image from the dynamic database according to the face and human body image.
  • S102 Acquire shooting time and shooting location respectively associated with at least two different types of target features.
  • the trajectory construction device after acquiring the target feature of the image data, the trajectory construction device further acquires the shooting time and shooting location of the image data, and associates the target feature of the same image data with the corresponding shooting time and shooting location.
  • the association method can be stored in the same storage space, or the same identification number can be set.
  • the trajectory construction device obtains the shooting time of the target feature from the time information of the image data, and the trajectory construction device obtains the shooting location of the target feature from the position information of the image data.
  • the trajectory construction device further stores the associated target feature, shooting time and shooting location in a dynamic database, where the dynamic database settings can be in the server, in the local storage, or in the cloud.
  • S103 Generate a target motion trajectory according to a combination of shooting time and shooting location associated with at least two different types of target features.
  • the trajectory construction device extracts the shooting time and shooting location associated with the target feature matching the retrieval condition from the dynamic database, and connects the shooting locations according to the sequence of the target feature, that is, the shooting time sequence, to generate the target motion trajectory.
  • the target motion trajectory construction device acquires at least two different types of target features that match the retrieval conditions, and the at least two different types of target features include at least two of face features, human body features, and vehicle features.
  • the at least two different types of target features include at least two of face features, human body features, and vehicle features.
  • FIG. 2 is a view of the second embodiment of the target motion trajectory construction method provided by this application. Schematic diagram of the process.
  • the method for constructing a target motion trajectory of this embodiment specifically includes the following steps:
  • S201 Acquire at least two retrieval conditions.
  • the at least two search conditions shown in this application include at least two of a face search condition, a human body search condition, and a vehicle search condition. Based on the types of search conditions mentioned above, this application also provides corresponding search methods.
  • the trajectory construction device acquires an image data and uses any target or combination of targets such as a face, a human body, and a vehicle as the retrieval condition
  • the types of retrieval algorithms automatically invoked by the trajectory construction device are:
  • the search condition may also include an identity search condition, wherein the above-mentioned target feature is pre-associated with identity information, and the identity information is any one of ID card information, name information, and file information.
  • S202 Search the database for the target feature that matches any one of the at least two search conditions.
  • the trajectory construction device retrieves the required target features in the dynamic database, it respectively matches the target features with at least two retrieval conditions input by the user, and selects the target that matches any one of the at least two retrieval conditions. feature.
  • the trajectory construction device searches in the dynamic database based on the face search condition and the vehicle search condition, and extracts the search condition and the vehicle search condition. At least one of the search conditions matches the target feature, thereby realizing the multi-dimensional retrieval of the target feature and avoiding the problem of missing track points caused by single-dimensional retrieval.
  • the face search method based on the face search condition is specifically: the face in the image uploaded by the user is compared with the face of the target feature in the dynamic database, and the target feature whose similarity exceeds a set threshold is returned.
  • the fusion retrieval method based on the face retrieval condition and the human body retrieval condition is specifically: the face or human body in the image uploaded by the user is compared with the face or human body of the target feature in the dynamic database, and the similarity exceeds the set threshold.
  • Target characteristics are specifically: the face in the image uploaded by the user is compared with the face of the target feature in the dynamic database, and the similarity exceeds the set threshold.
  • the vehicle retrieval method based on vehicle retrieval conditions is specifically: the vehicle in the image uploaded by the user is compared with the vehicle of the target feature in the dynamic database, and the target feature whose similarity exceeds the set threshold is returned; the vehicle retrieval method can also be input by the user
  • the license plate number is searched for the license plate number extracted in the dynamic database structured, and the target feature corresponding to the license plate number is returned.
  • the face retrieval method based on the face retrieval condition is specifically as follows: the user inputs any one of ID card information, name information, and file information, and the target feature corresponding to the identity information is matched and associated based on the above information. For example, when the police needs to hunt down a suspect, they can input the identity information of the suspect into the trajectory construction device.
  • the identity information can be any of file ID, name, ID card, and license plate number.
  • the trajectory construction device uses the sample feature of any one of the at least two retrieval conditions input by the user as the clustering center, clusters the target features in the database, and classifies the target within the preset range of the clustering center
  • the feature is used as the target feature that matches the search condition.
  • the trajectory construction setting retrieves the target feature through any two retrieval conditions of the face retrieval condition, the human body retrieval condition, the vehicle retrieval condition, and the identity retrieval condition, which can realize multi-dimensional retrieval and improve the accuracy of retrieval. And efficiency.
  • the present application also provides another specific target motion trajectory construction method.
  • FIG. 3 is the flow of the third embodiment of the target motion trajectory construction method provided by the present application. Schematic.
  • the method for constructing a target motion trajectory of this embodiment specifically includes the following steps:
  • S301 Use a target feature of at least two different types of target features as a main target feature, and use other types of target features as auxiliary target features.
  • the trajectory construction device sets face features as the main target feature, and other types of target features, such as human body features and vehicle features, as secondary target features. .
  • S302 Determine whether the relative position of the auxiliary target feature and the main target feature conforms to the motion law of the target according to the shooting time and shooting location of the main target feature, and the shooting time and shooting location of the auxiliary target feature.
  • the trajectory construction device acquires adjacent main target features and auxiliary target features, calculates the displacement difference according to the shooting location of the main target feature and the shooting location of the auxiliary target feature, and the shooting time according to the shooting time of the main target feature and the auxiliary target feature Time calculation time difference. Furthermore, the trajectory construction device calculates the movement speed between the main target feature and the auxiliary target feature based on the displacement difference and the time difference.
  • the trajectory construction device can preset a movement speed threshold based on the maximum speed limit of the road, interval speed measurement data, historical pedestrian data, and the like.
  • a movement speed threshold based on the maximum speed limit of the road, interval speed measurement data, historical pedestrian data, and the like.
  • the trajectory construction device detects the relationship between the target features and judges whether it conforms to the motion law of the target, thereby eliminating the shooting time and shooting location associated with the wrong target feature, thereby improving the accuracy of the target motion trajectory building method .
  • FIG. 4 is a flowchart of the fourth embodiment of the target motion trajectory construction method provided by this application. Schematic.
  • the method for constructing a target motion trajectory of this embodiment specifically includes the following steps:
  • S401 Acquire first target pictures respectively corresponding to at least two different types of target features.
  • the trajectory construction device obtains a first target picture, and the first target picture includes at least two different types of target features.
  • the trajectory construction device separately obtains the target face picture corresponding to the face feature, the target human picture corresponding to the human body feature, and the target vehicle picture corresponding to the vehicle feature.
  • the pictures may exist in the same first target picture.
  • the trajectory construction device When the target face picture, target body picture, and/or target vehicle picture exist in the same first target picture, the trajectory construction device further associates the target face picture, target body picture, and/or target vehicle picture according to the preset spatial relationship .
  • the preset spatial relationship includes any one of the following: the image coverage of the target vehicle picture includes the image coverage of the target face picture; the image coverage of the target vehicle picture It partially overlaps with the image coverage of the target face picture; the image coverage of the target vehicle picture is connected with the image coverage of the target face picture.
  • the predetermined spatial relationship is used to determine whether there is an association relationship between the target face picture, the target human body picture, and the target vehicle picture, which can quickly and accurately identify the relationship between the face, the human body, and the vehicle.
  • the coverage of the target vehicle picture includes the coverage of the target face picture of the driver inside the vehicle. Therefore, it is judged that the two are related to each other and are related to each other; In this case, the image coverage of the target human body picture of the cyclist partially overlaps the image coverage of the target vehicle picture. Therefore, it is determined that the two have an associated relationship and are associated with each other.
  • the trajectory building device obtains the target vehicle picture corresponding to the target vehicle picture based on the target vehicle picture.
  • Obtaining the second target picture corresponding to the target vehicle picture and the third target picture corresponding to the target human body picture is for when a target picture does not include the target face image, it can be based on the association relationship and the target vehicle picture and/or The target human body image searches for the target face image to enrich the trajectory information constructed by the target motion trajectory.
  • S402 Determine the shooting time and shooting location associated with the target feature based at least on the first target picture.
  • the trajectory construction device determines the shooting time and shooting location associated with the target feature based on the first target picture, the second target picture, and/or the third target picture.
  • this application also provides a target motion trajectory construction device.
  • FIG. 5 is a schematic structural diagram of an embodiment of the target motion trajectory construction device provided by this application.
  • the target motion trajectory construction device 500 of this embodiment can be used to execute or implement the target motion trajectory construction method in any of the above embodiments. As shown in FIG. 5, the target motion trajectory construction device 500 includes a retrieval module 51, an acquisition module 52 and a trajectory construction module 53.
  • the retrieval module 51 is configured to obtain at least two different types of target features matching the retrieval conditions, wherein the at least two different types of target features include at least two of face features, human body features, and vehicle features.
  • the acquiring module 52 is configured to acquire the shooting time and shooting location respectively associated with at least two different types of target features.
  • the trajectory construction module 53 is configured to generate a target motion trajectory according to the combination of the shooting time and the shooting location associated with the at least two different types of target features.
  • the trajectory construction module 53 is further configured to use a target feature of a certain type among the at least two different types of target features as the main target feature, and use other types of target features as the auxiliary target feature. According to the shooting time and shooting location of the main target feature, and the shooting time and shooting location of the auxiliary target feature, it is judged whether the relative position of the auxiliary target feature and the main target feature conforms to the motion law of the target. If it does not conform to the movement law of the target, the shooting time and shooting location associated with the auxiliary target feature are eliminated.
  • the trajectory construction module 53 is further configured to: calculate the position difference according to the shooting location of the main target feature and the shooting location of the auxiliary target feature; calculate the time difference according to the shooting time of the main target feature and the shooting time of the auxiliary target feature; The position difference and the time difference calculate the movement speed. When the movement speed is greater than the preset movement speed threshold, it is judged that the relative position of the auxiliary target feature and the main target feature does not conform to the movement law of the target.
  • the acquiring module 52 is further configured to: acquire first target pictures respectively corresponding to at least two different types of target features; and determine the shooting time and shooting location associated with the target features based at least on the first target picture.
  • the acquiring module 52 is also used to: respectively acquire the target face picture corresponding to the face feature, the target human body picture corresponding to the human body feature, and/or the target vehicle picture corresponding to the vehicle feature; When the human body picture corresponds to the same first target picture and has a preset spatial relationship, associate the target face picture in the first target picture with the target human body picture; when the target face picture and the target vehicle picture correspond to the same first target picture When the target picture has a preset spatial relationship, associate the target face picture in the first target picture with the target vehicle picture; when the target human body picture and the target vehicle picture correspond to the same first target picture and have the preset spatial relationship In the case of, the target human body picture in the first target picture is associated with the target vehicle picture.
  • the acquiring module 52 is further configured to: The target vehicle picture acquires a second target picture corresponding to the target vehicle picture; and the shooting time and shooting location associated with the target feature are determined based on the first target picture and the second target picture.
  • the acquiring module 52 is further configured to: The target human body picture acquires a third target picture corresponding to the target human body picture; and the shooting time and shooting location associated with the target feature are determined based on the first target picture and the third target picture.
  • the preset spatial relationship includes at least one of the following: the image coverage of the first target associated picture includes the image coverage of the second target associated picture; the image coverage of the first target associated picture is associated with the second target The image coverage areas of the pictures partially overlap; the image coverage areas of the first target-associated pictures are connected with the image coverage areas of the second target-associated pictures.
  • the first target-related picture includes any one or more of the target face picture, the target human body picture, and the target vehicle picture
  • the second target-related picture includes any one of the target face picture, the target human body picture, and the target vehicle picture. Kind or more.
  • the retrieval module 51 is further configured to: obtain at least two retrieval conditions; retrieve a target feature matching any one of the at least two retrieval conditions from the database.
  • the retrieval conditions include at least one of identity retrieval conditions, face retrieval conditions, human body retrieval conditions, and vehicle retrieval conditions.
  • the target feature is pre-associated with identity information, and the identity information is any one of ID card information, name information, and file information.
  • the retrieval module 51 is further configured to: use the sample feature of any one of the at least two retrieval conditions as the clustering center, cluster the target feature in the database, and set the preset cluster center
  • the target features in the range are used as target features that match the retrieval conditions.
  • this application also provides another target motion trajectory construction device.
  • FIG. 6, is the structure of another embodiment of the target motion trajectory construction device provided by this application. Schematic.
  • the target motion trajectory construction device 600 of this embodiment includes a processor 61, a memory 62, an input and output device 63 and a bus 64.
  • the processor 61, the memory 62, and the input/output device 63 are respectively connected to the bus 64, the memory 62 stores a computer program, and the processor 61 is used to execute the computer program to implement the target motion trajectory construction method of the foregoing embodiment.
  • the processor 61 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 61 may be an integrated circuit chip with signal processing capability.
  • the processor 61 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component .
  • the processor 61 can also be a GPU (Graphics Processing Unit, graphics processor), also known as a display core, a visual processor, and a display chip. It is a type of computer, workstation, game console, and some mobile devices (such as tablet computers, A microprocessor for image calculations on smartphones, etc.).
  • the purpose of GPU is to convert and drive the display information required by the computer system, and to provide line scan signals to the display to control the correct display of the display. It is an important component for connecting the display to the PC motherboard and an important device for "human-machine dialogue". one.
  • the graphics card is responsible for the task of outputting and displaying graphics. The graphics card is very important for those engaged in professional graphics design.
  • the general-purpose processor may be a microprocessor or the processor 51 may also be any conventional processor or the like.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium 700 is used to store a computer program 71.
  • the computer program 71 is executed by a processor, it is used to achieve the target motion trajectory of this application Construct the method described in the method embodiment.
  • the methods involved in the embodiments of the method for constructing the target motion trajectory of this application exist in the form of software functional units when implemented and when sold or used as independent products, they can be stored in the device, such as a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本申请公开了一种目标运动轨迹构建方法、设备以及计算机可读存储介质,该目标运动轨迹构建方法包括:获取与检索条件匹配的至少两种不同类型的目标特征,其中至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;获取分别与至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;根据至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。通过上述方法,本申请可以通过输入检索条件匹配对应的目标特征,并根据目标特征关联的拍摄时间和拍摄地点生成目标运动轨迹,提高目标运动轨迹构建方法的实用性。

Description

一种目标运动轨迹构建方法、设备以及计算机存储介质
本申请要求在2019年12月30日提交中国专利局、申请号为201911402892.7、申请名称为“一种目标运动轨迹构建方法、设备以及计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及交通监控领域,特别是涉及一种目标运动轨迹构建方法、设备以及计算机存储介质。
【背景技术】
当前城市中建立了许多摄像头点位,可以捕捉到包含有人体、人脸、机动车、非机动车等各种内容的实时视频,对这些视频进行目标检测和结构化解析,可以提取出人脸、人体、车辆的特征和属性信息。在公安部门进行日常的视频侦查、疑犯追踪等任务时,经常会需要上传各个渠道收集到的带有嫌疑人相关信息(包括人脸、人体、作案/逃跑车辆等)的图片和文本线索,再比对实时视频中的内容,通过检索出带有时空信息的结果来还原嫌疑人的行动路线和逃跑轨迹等。
【发明内容】
本申请提供一种目标运动轨迹构建方法、设备以及计算机可读存储介质。
本申请提供一种目标运动轨迹构建方法,所述目标运动轨迹构建方法包括:
获取与检索条件匹配的至少两种不同类型的目标特征,其中所述至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;
获取分别与所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;
根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。
其中,所述根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹的步骤进一步包括:
以所述至少两种不同类型的目标特征中的某一类型的目标特征作为主目标特征,并以其他类型的目标特征为辅目标特征;
根据所述主目标特征的拍摄时间和拍摄地点,以及所述辅目标特征的拍摄时间和拍摄地 点判断所述辅目标特征与所述主目标特征相对位置是否符合目标的运动规律;
若不符合目标的运动规律,剔除所述辅目标特征所关联的拍摄时间和拍摄地点。
其中,所述根据所述主目标特征的拍摄时间和拍摄地点,以及所述辅目标特征的拍摄时间和拍摄地点判断所述辅目标特征与所述主目标特征相对位置是否符合目标的运动规律的步骤进一步包括:
根据所述主目标特征的拍摄地点以及所述辅目标特征的拍摄地点计算位置差;
根据所述主目标特征的拍摄时间以及所述辅目标特征的拍摄时间计算时间差;
基于所述位置差和所述时间差计算运动速度,当所述运动速度小于或等于预设运动速度阈值时,判断所述辅目标特征与所述主目标特征相对位置符合目标的运动规律。
其中,所述获取分别与所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点,包括:
获取分别与所述至少两种不同类型的目标特征对应的第一目标图片;
至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
其中,所述获取分别与所述至少两种不同类型的目标特征关联的第一目标图片之后,所述方法还包括:
分别获取所述人脸特征对应的目标人脸图片,所述人体特征对应的目标人体图片和/或所述车辆特征对应的目标车辆图片;
在所述目标人脸图片与所述目标人体图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标人体图片关联;在所述目标人脸图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联;在所述目标人体图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人体图片与所述目标车辆图片关联。
其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联之后,所述方法还包括:
基于所述目标车辆图片获取与所述目标车辆图片对应的第二目标图片;
所述至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点,包括:
基于所述第一目标图片和所述第二目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第 一目标图片中的所述目标人脸图片与所述目标人体图片关联之后,所述方法还包括:
基于所述目标人体图片获取与所述目标人体图片对应的第三目标图片;
所述至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点,包括:
基于所述第一目标图片和所述第三目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
其中,所述预设空间关系包括以下至少一种:
所述第一目标关联图片的图像覆盖范围包含所述第二目标关联图片的图像覆盖范围;
所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围部分重叠;
所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围相连接;
其中,所述第一目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车辆图片中的任一一种或多种,所述第二目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车辆图片中的任一一种或多种。
其中,所述获取与检索条件匹配的至少两种不同类型的目标特征的步骤包括:
获取至少两个所述检索条件;
从数据库中检索所述至少两个检索条件中的任意一检索条件相匹配的目标特征。
其中,所述检索条件包括身份检索条件、人脸检索条件、人体检索条件以及车辆检索条件中的至少一个;
其中,所述目标特征预先关联有身份信息,所述身份信息为身份证信息、姓名信息和档案信息中的任意一种。
其中,所述从数据库中检索所述至少两个检索条件中的任意一检索条件相匹配的目标特征的步骤包括:
以至少两个检索条件中的任意一检索条件的样本特征作为聚类中心,对所述数据库中的目标特征进行聚类,将所述聚类中心的预设范围内的目标特征作为与所述检索条件相匹配的目标特征。
本申请提供一种目标运动轨迹构建设备,所述目标运动轨迹构建设备包括处理器和存储器,存储器中存储有计算机程序,处理器用于执行计算机程序以实现上述目标运动轨迹构建方法的步骤。
本申请提供一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机程序,计算机程序被执行时实现上述目标运动轨迹构建的步骤。
本申请还提供一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行前面任一所述的目标运动轨迹构建方法。
本申请的有益效果在于:目标运动轨迹构建设备获取与检索条件匹配的至少两种不同类型的目标特征,其中至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;获取分别与至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;根据至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。通过上述方法,本申请可以通过输入检索条件匹配对应的目标特征,并根据目标特征关联的拍摄时间和拍摄地点生成目标运动轨迹,提高目标运动轨迹构建方法的实用性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的目标运动轨迹构建方法第一实施例的流程示意图;
图2是本申请提供的目标运动轨迹构建方法第二实施例的流程示意图;
图3是本申请提供的目标运动轨迹构建方法第三实施例的流程示意图;
图4是本申请提供的目标运动轨迹构建方法第四实施例的流程示意图;
图5是本申请提供的目标运动轨迹构建设备一实施例的结构示意图;
图6是本申请提供的目标运动轨迹构建设备另一实施例的结构示意图;
图7是本申请提供的计算机可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供了一种具体的目标运动轨迹构建方法。基于人脸检索、人体检索以及车辆检索和视频结构化技术的发展,本申请提供的方法通过融合多种算法,自动将交通图像中的人脸信息、人体信息以及车辆信息等单一检索对象或多个检索对象的组合一次性同时检索出结果,并且将所有的目标运动轨迹合并还原。
具体请参阅图1,图1是本申请提供的目标运动轨迹构建方法第一实施例的流程示意图。 本申请的目标运动轨迹构建方法应用于一种目标运动轨迹构建设备,目标运动轨迹构建设备可以为例如智能手机、平板电脑、笔记本电脑、电脑或者可穿戴设备等终端设备,也可以是卡口交通系统中的监控系统。在下述实施例的描述中,统一使用轨迹构建设备进行目标运动轨迹构建方法的描述。
如图1所示,本实施例的目标运动轨迹构建方法具体包括以下步骤:
S101:获取与检索条件匹配的至少两种不同类型的目标特征,其中至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种。
轨迹构建设备获取多个图像数据,图像数据的获取可以直接从现有的交通大数据开源平台或者从交通管理部门获取。其中,图像数据包括时间信息和位置信息。其中,轨迹构建设备还可以从现有的交通大数据开源平台或者从交通管理部门获取实时视频流,然后对实时视频流进行图像帧切分,以获取多个图像数据。
具体地,图像数据需要包括监控区域内的卡口点位位置信息,如经纬度(latitude,longitude)信息等;还需要包括预设时间段,如一个月内的卡口抓拍过车记录数据,其中,卡口抓拍过车记录数据包括时间信息。如果卡口抓拍过车记录数据中存储有经纬度等位置信息,卡口点位位置信息也可以直接在卡口抓拍过车记录数据内提取。
因为在极端情况下近一段时间内的抓拍记录不能保证所有卡口点位都有图像数据,为保证监控区域内的所有卡口点位不能缺少,此时,终端设备需要从现有的交通大数据开源平台或者交通管理部门获取所有的卡口点位位置信息。
由于在原始图像数据集合中可能会存在部分异常数据,在获取图像数据后,终端设备还可以对图像数据进行预处理。具体地,终端设备判断每个图像数据中是否包括抓拍时间的时间信息和包括经纬度信息的位置信息中的所有信息。若图像数据中缺失时间信息和位置信息中的任一种信息,终端设备直接剔除对应的图像数据,以免在后续时空预料库出现数据缺失的问题。
终端设备对原始图像数据中的重复数据、无效数据进行清洗,有利于数据分析。
其中,轨迹构建设备分别对多个图像数据进行目标检测,具体地,轨迹构建设备通过一种目标检测算法或多种目标检测算法的融合检测出图像数据中所有的人脸、人体和/或车辆,并将所有的人脸、人体和/或车辆的特征进行提取,以形成目标特征。
具体地,目标特征可以包括从图像数据中提取的图像特征和/或图像特征进行结构化解析所生成的文本特征。图像特征包括图像数据中所有的人脸特征、人体特征以及车辆特征,文本特征即将车辆特征进行结构化解析所生成的特征信息,例如,轨迹构建设备可以对车辆特 征进行文字识别,以得到车辆特征中的车牌号,将该车牌号作为文本特征。
进一步地,轨迹构建设备接收用户输入的检索条件,并根据检索条件从动态数据库中检索与检索条件相匹配的目标特征。其中,轨迹构建设备获取与检索条件匹配的至少两种不同类型的目标特征,至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种。获取多种类型目标特征有利于提取足够的轨迹信息,避免因拍摄模糊、障碍物遮挡等原因丢失部分重要轨迹信息,提高轨迹构建方法的准确性。
其中,检索条件可以为警方通过现场勘查、派出所上报、抓拍检索等渠道获取得到的检索目标的人脸人体图像、作案/逃跑车辆图像等,或包含上述图像信息的任意图像或本文。
例如,警方向轨迹构建设备输入作案嫌疑人的人脸人体图像后,轨迹构建设备根据人脸人体图像从动态数据库中检索与该人脸人体图像相匹配的目标特征。
S102:获取分别与至少两种不同类型的目标特征关联的拍摄时间和拍摄地点。
其中,轨迹构建设备获取图像数据的目标特征后,进一步获取该图像数据的拍摄时间和拍摄地点,并将同一图像数据的目标特征与对应的拍摄时间和拍摄地点进行关联。关联方式可以为存储在同一存储空间,也可以为设置同一标识号等。
具体地,轨迹构建设备从图像数据的时间信息中获取目标特征的拍摄时间,轨迹构建设备从图像数据的位置信息中获取目标特征的拍摄地点。
轨迹构建设备进一步将关联的目标特征与拍摄时间和拍摄地点存储到动态数据库中,其中,动态数据库设置可以在服务器中,也可以在本地存储器中,还可以在云端。
S103:根据至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。
其中,轨迹构建设备从动态数据库中提取与检索条件相匹配的目标特征所关联的拍摄时间和拍摄地点,并根据目标特征的顺序,即拍摄时间顺序将拍摄地点连接,以生成目标运动轨迹。
在本实施例中,目标运动轨迹构建设备获取与检索条件匹配的至少两种不同类型的目标特征,其中至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;获取分别与至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;根据至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。通过上述方法,本申请可以通过输入检索条件匹配对应的目标特征,并根据目标特征关联的拍摄时间和拍摄地点生成目标运动轨迹,提高目标运动轨迹构建方法的实用性。
在上述实施例中的S101的基础上,本申请还提供了另一种具体的目标运动轨迹构建方法, 具体请参阅图2,图2是本申请提供的目标运动轨迹构建方法第二实施例的流程示意图。
如图2所示,本实施例的目标运动轨迹构建方法具体包括以下步骤:
S201:获取至少两个检索条件。
其中,本申请所示的至少两个检索条件包括人脸检索条件、人体检索条件以及车辆检索条件中的至少两个。基于上述检索条件种类,本申请还提供了对应的检索方式。
具体地,当轨迹构建设备获取一个图像数据,并将人脸、人体、车辆等任意目标或目标组合作为检索条件时,轨迹构建设备自动调用的检索算法类型分别为:
目标/目标组合 检索方式
人脸 人脸检索、人脸人体融合检索
人体 人体融合检索
车辆 车辆检索
人脸+人体 人脸检索、人体融合检索
人脸+车辆 人脸检索、人脸融合检索、车辆检索
人体+车辆 人体融合检索、车辆检索
人脸+人体+车辆 人脸检索、人体融合检索、车辆检索
进一步地,检索条件还可以包括身份检索条件,其中,上述目标特征预先关联有身份信息,身份信息为身份证信息、姓名信息和档案信息中的任意一种。
S202:从数据库中检索至少两个检索条件中的任意一检索条件相匹配的目标特征。
其中,轨迹构建设备在动态数据库中检索所需要的目标特征时,分别将目标特征与用户输入的至少两个检索条件进行匹配,并选择与至少两个检索条件中任意一检索条件相匹配的目标特征。
例如,用户输入的两个检索条件分别为人脸检索条件和车辆检索条件时,轨迹构建设备基于人脸检索条件和车辆检索条件在动态数据库中进行检索,并提取与人脸检索条件和车辆检索条件中至少一个检索条件相匹配的目标特征,从而实现对目标特征的多维度检索,避免出现单一维度检索导致的轨迹点缺失的问题。
其中,基于人脸检索条件的人脸检索方式具体为:用户上传的图像中的人脸与动态数据库内目标特征的人脸进行比对,返回相似度超过设定阈值以上的目标特征。基于人脸检索条件和人体检索条件的融合检索方式具体为:用户上传的图像中的人脸或人体与动态数据库内目标特征的人脸或人体进行比对,返回相似度超过设定阈值以上的目标特征。基于车辆检索条件的车辆检索方式具体为:用户上传的图像中的车辆与动态数据库内目标特征的车辆进行 比对,返回相似度超过设定阈值以上的目标特征;车辆检索方式也可以通过用户输入的车牌号,查找动态数据库中结构化提取出的车牌号,返回车牌号对应的目标特征。基于人脸检索条件的人脸检索方式具体为:用户输入身份证信息、姓名信息和档案信息中的任意一种,基于上述信息匹配关联有对应身份信息的目标特征。例如,当警方需要追捕作案嫌疑人时,可以向轨迹构建设备输入该作案嫌疑人的身份识别信息,身份识别信息可以为档案ID、姓名、身份证和车牌号中的任意一种信息。
具体地,轨迹构建设备将用户输入的至少两个检索条件中的任意一检索条件的样本特征作为聚类中心,对数据库中的目标特征进行聚类,将聚类中心的预设范围内的目标特征作为与检索条件相匹配的目标特征。
在本实施例中,轨迹构建设置通过人脸检索条件、人体检索条件、车辆检索条件以及身份检索条件中的任意两个检索条件对目标特征进行检索,能够实现多维度检索,以提高检索的精度和效率。
在上述实施例的S102的基础上,本申请还提供了又一种具体的目标运动轨迹构建方法,具体请参阅图3,图3是本申请提供的目标运动轨迹构建方法第三实施例的流程示意图。
如图3所示,本实施例的目标运动轨迹构建方法具体包括以下步骤:
S301:以至少两种不同类型的目标特征中的某一类型的目标特征作为主目标特征,并以其他类型的目标特征为辅目标特征。
其中,由于人脸特征是所有目标特征中最具表现力的特征类型,轨迹构建设备将人脸特征设置为主目标特征,将其他类型的目标特征,如人体特征以及车辆特征等作为辅目标特征。
S302:根据主目标特征的拍摄时间和拍摄地点,以及辅目标特征的拍摄时间和拍摄地点判断辅目标特征与所述主目标特征相对位置是否符合目标的运动规律。
具体地,轨迹构建设备获取相邻的主目标特征和辅目标特征,根据主目标特征的拍摄地点和辅目标特征的拍摄地点计算位移差,以及根据主目标特征的拍摄时间和辅目标特征的拍摄时间计算时间差。进而,轨迹构建设备根据位移差和时间差,计算主目标特征和辅目标特征之间的运动速度。
S303:若不符合目标的运动规律,剔除辅目标特征所关联的拍摄时间和拍摄地点。
其中,轨迹构建设备可以基于道路的最大限行速度、区间测速数据、历史行人数据等预设一运动速度阈值。当主目标特征和辅目标特征之间的运动速度大于预设的运动速度阈值时,说明主目标特征和辅目标特征无法正常关联,进而剔除辅目标特征所关联的拍摄时间和拍摄地点。
在本实施例中,轨迹构建设备通过检测目标特征之间的关系,判断是否符合目标的运动规律,从而剔除错误目标特征所关联的拍摄时间和拍摄地点,从而提高目标运动轨迹构建方法的准确性。
在上述实施例的S103的基础上,本申请还提供了又一种具体的目标运动轨迹构建方法,具体请参阅图4,图4是本申请提供的目标运动轨迹构建方法第四实施例的流程示意图。
如图4所示,本实施例的目标运动轨迹构建方法具体包括以下步骤:
S401:获取分别与至少两种不同类型的目标特征对应的第一目标图片。
其中,轨迹构建设备获取第一目标图片,第一目标图片中至少包括两种不同类型的目标特征。
具体地,轨迹构建设备分别获取人脸特征对应的目标人脸图片,人体特征对应的目标人体图片和车辆特征对应的目标车辆图片,上述图片可以存在于同一第一目标图片。
当目标人脸图片、目标人体图片和/或目标车辆图片存在于同一第一目标图片时,轨迹构建设备进一步根据预设空间关系将目标人脸图片、目标人体图片和/或目标车辆图片进行关联。
其中,以目标人脸图片和目标车辆图片为例,预设空间关系包括以下中的任意一种:目标车辆图片的图像覆盖范围包含目标人脸图片的图像覆盖范围;目标车辆图片的图像覆盖范围与目标人脸图片的图像覆盖范围部分重叠;目标车辆图片的图像覆盖范围与目标人脸图片的图像覆盖范围相连接。
在本实施例中,通过预设空间关系对目标人脸图片、目标人体图片和目标车辆图片之间是否具有关联关系进行判断,能够快速准确地识别人脸、人体以及车辆之间的关系。例如,驾驶员驾驶机动车的情况,目标车辆图片覆盖范围包含车辆内部的驾驶员的目标人脸图片覆盖范围,因此判断两者具有关联关系,从而进行相互关联;骑车人骑行电动车的情况,骑车人目标人体图片的图像覆盖范围与目标车辆图片的图像覆盖范围具有部分重叠,因此判断两者具有关联关系,从而进行相互关联。
在至少两种不同类型的目标特征包括人脸特征的情况下,以及将第一目标图片中的目标人脸图片与目标车辆图片关联之后,轨迹构建设备基于目标车辆图片获取与目标车辆图片对应的第二目标图片;或者,在至少两种不同类型的目标特征包括人脸特征的情况下,以及将第一目标图片中的目标人脸图片与目标人体图片关联之后,轨迹构建设备基于目标人体图片获取与目标人体图片对应的第三目标图片。
获取与目标车辆图片对应的第二目标图片和与目标人体图片对应的第三目标图片,是为了在某一目标图片中不包括目标人脸图像时,可以根据关联关系以及目标车辆图片和/或目标 人体图片搜索目标人脸图像,以丰富目标运动轨迹构建的轨迹信息。
S402:至少基于第一目标图片确定目标特征关联的拍摄时间和拍摄地点。
轨迹构建设备基于第一目标图片、第二目标图片和/或第三目标图片确定目标特征关联的拍摄时间和拍摄地点。
为了实现上述实施例的目标运动轨迹构建方法,本申请还提供了一种目标运动轨迹构建设备,具体请参阅图5,图5是本申请提供的目标运动轨迹构建设备一实施例的结构示意图。
本实施例的目标运动轨迹构建设备500可用于执行或实现以上任意实施例中的目标运动轨迹构建方法。如图5所示,目标运动轨迹构建设备500包括检索模块51、获取模块52以及轨迹构建模块53。
其中,检索模块51,用于获取与检索条件匹配的至少两种不同类型的目标特征,其中至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种。
获取模块52,用于获取分别与至少两种不同类型的目标特征关联的拍摄时间和拍摄地点。
轨迹构建模块53,用于根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。
在一些实施例中,轨迹构建模块53还用于:以至少两种不同类型的目标特征中的某一类型的目标特征作为主目标特征,并以其他类型的目标特征为辅目标特征。根据主目标特征的拍摄时间和拍摄地点,以及辅目标特征的拍摄时间和拍摄地点判断辅目标特征与主目标特征相对位置是否符合目标的运动规律。若不符合目标的运动规律,剔除辅目标特征所关联的拍摄时间和拍摄地点。
在一些实施例中,轨迹构建模块53还用于:根据主目标特征的拍摄地点以及辅目标特征的拍摄地点计算位置差;根据主目标特征的拍摄时间以及辅目标特征的拍摄时间计算时间差;基于位置差和时间差计算运动速度,当运动速度大于预设运动速度阈值时,判断辅目标特征与主目标特征相对位置不符合目标的运动规律。
在一些实施例中,获取模块52还用于:获取分别与至少两种不同类型的目标特征对应的第一目标图片;至少基于第一目标图片确定目标特征关联的拍摄时间和拍摄地点。
在一些实施例中,获取模块52还用于:分别获取人脸特征对应的目标人脸图片,人体特征对应的目标人体图片和/或车辆特征对应的目标车辆图片;在目标人脸图片与目标人体图片对应于同一第一目标图片且具有预设空间关系的情况下,将第一目标图片中的目标人脸图片与目标人体图片关联;在目标人脸图片与目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将第一目标图片中的目标人脸图片与目标车辆图片关联;在目标人体图 片与目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将第一目标图片中的目标人体图片与目标车辆图片关联。
在一些实施例中,在至少两种不同类型的目标特征包括人脸特征的情况下,以及将第一目标图片中的目标人脸图片与目标车辆图片关联之后,获取模块52还用于:基于目标车辆图片获取与目标车辆图片对应的第二目标图片;以及基于第一目标图片和第二目标图片确定目标特征关联的拍摄时间和拍摄地点。
在一些实施例中,在至少两种不同类型的目标特征包括人脸特征的情况下,以及将第一目标图片中的目标人脸图片与目标车辆图片关联之后,获取模块52还用于:基于目标人体图片获取与目标人体图片对应的第三目标图片;以及基于第一目标图片和第三目标图片确定目标特征关联的拍摄时间和拍摄地点。
在一些实施例中,预设空间关系包括以下至少一种:第一目标关联图片的图像覆盖范围包含第二目标关联图片的图像覆盖范围;第一目标关联图片的图像覆盖范围与第二目标关联图片的图像覆盖范围部分重叠;第一目标关联图片的图像覆盖范围与第二目标关联图片的图像覆盖范围相连接。第一目标关联图片包括目标人脸图片、目标人体图片及目标车辆图片中的任一一种或多种,第二目标关联图片包括目标人脸图片、目标人体图片及目标车辆图片中的任意一种或多种。
在一些实施例中,检索模块51还用于:获取至少两个检索条件;从数据库中检索至少两个检索条件中的任意一检索条件相匹配的目标特征。
在一些实施例中,检索条件包括身份检索条件、人脸检索条件、人体检索条件以及车辆检索条件中的至少一个。目标特征预先关联有身份信息,身份信息为身份证信息、姓名信息和档案信息中的任意一种。
在一些实施例中,检索模块51还用于:以至少两个检索条件中的任意一检索条件的样本特征作为聚类中心,对数据库中的目标特征进行聚类,将聚类中心的预设范围内的目标特征作为与检索条件相匹配的目标特征。
为了实现上述实施例的目标运动轨迹构建方法,本申请还提供了另一种目标运动轨迹构建设备,具体请参阅图6,图6是本申请提供的目标运动轨迹构建设备另一实施例的结构示意图。
如图6所示,本实施例的目标运动轨迹构建设备600包括处理器61、存储器62、输入输出设备63以及总线64。
该处理器61、存储器62、输入输出设备63分别与总线64相连,该存储器62中存储有 计算机程序,处理器61用于执行计算机程序以实现上述实施例的目标运动轨迹构建方法。
在本实施例中,处理器61还可以称为CPU(Central Processing Unit,中央处理单元)。处理器61可能是一种集成电路芯片,具有信号的处理能力。处理器61还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。处理器61还可以是GPU(Graphics Processing Unit,图形处理器),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。GPU的用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。通用处理器可以是微处理器或者该处理器51也可以是任何常规的处理器等。
本申请还提供一种计算机可读存储介质,如图7所示,计算机可读存储介质700用于存储计算机程序71,计算机程序71在被处理器执行时,用以实现如本申请目标运动轨迹构建方法实施例中所述的方法。
本申请目标运动轨迹构建方法实施例中所涉及到的方法,在实现时以软件功能单元的形式存在并作为独立的产品销售或使用时,可以存储在设备中,例如一个计算机可读取存储介质。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (25)

  1. 一种目标运动轨迹构建方法,其中,所述方法包括:
    获取与检索条件匹配的至少两种不同类型的目标特征,其中所述至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;
    获取分别与所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;
    根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。
  2. 根据权利要求1所述的方法,其中,所述根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹的步骤进一步包括:
    以所述至少两种不同类型的目标特征中的某一类型的目标特征作为主目标特征,并以其他类型的目标特征为辅目标特征;
    根据所述主目标特征的拍摄时间和拍摄地点,以及所述辅目标特征的拍摄时间和拍摄地点判断所述辅目标特征与所述主目标特征相对位置是否符合目标的运动规律;
    若不符合目标的运动规律,剔除所述辅目标特征所关联的拍摄时间和拍摄地点。
  3. 根据权利要求2所述的方法,其中,所述根据所述主目标特征的拍摄时间和拍摄地点,以及所述辅目标特征的拍摄时间和拍摄地点判断所述辅目标特征与所述主目标特征相对位置是否符合目标的运动规律的步骤进一步包括:
    根据所述主目标特征的拍摄地点以及所述辅目标特征的拍摄地点计算位置差;
    根据所述主目标特征的拍摄时间以及所述辅目标特征的拍摄时间计算时间差;
    基于所述位置差和所述时间差计算运动速度,当所述运动速度大于预设运动速度阈值时,判断所述辅目标特征与所述主目标特征相对位置不符合目标的运动规律。
  4. 根据权利要求1或2所述的方法,其中,所述获取分别与所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点,包括:
    获取分别与所述至少两种不同类型的目标特征对应的第一目标图片;
    至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  5. 根据权利要求4所述的方法,其中,所述获取分别与所述至少两种不同类型的目标特征关联的第一目标图片之后,所述方法还包括:
    分别获取所述人脸特征对应的目标人脸图片,所述人体特征对应的目标人体图片和/或所述车辆特征对应的目标车辆图片;
    在所述目标人脸图片与所述目标人体图片对应于同一第一目标图片且具有预设空间关系 的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标人体图片关联;在所述目标人脸图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联;在所述目标人体图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人体图片与所述目标车辆图片关联。
  6. 根据权利要求5所述的方法,其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联之后,所述方法还包括:
    基于所述目标车辆图片获取与所述目标车辆图片对应的第二目标图片;
    所述至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点,包括:
    基于所述第一目标图片和所述第二目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  7. 根据权利要求5所述的方法,其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第一目标图片中的所述目标人脸图片与所述目标人体图片关联之后,所述方法还包括:
    基于所述目标人体图片获取与所述目标人体图片对应的第三目标图片;
    所述至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点,包括:
    基于所述第一目标图片和所述第三目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  8. 根据权利要求5-7任一项所述的方法,其中,所述预设空间关系包括以下至少一种:
    所述第一目标关联图片的图像覆盖范围包含所述第二目标关联图片的图像覆盖范围;
    所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围部分重叠;
    所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围相连接;
    其中,所述第一目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车辆图片中的任一一种或多种,所述第二目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车辆图片中的任意一种或多种。
  9. 根据权利要求1所述的方法,其中,所述获取与检索条件匹配的至少两种不同类型的目标特征的步骤包括:
    获取至少两个所述检索条件;
    从数据库中检索所述至少两个检索条件中的任意一检索条件相匹配的目标特征。
  10. 根据权利要求9所述的方法,其中,所述检索条件包括身份检索条件、人脸检索条件、人体检索条件以及车辆检索条件中的至少一个;
    其中,所述目标特征预先关联有身份信息,所述身份信息为身份证信息、姓名信息和档案信息中的任意一种。
  11. 根据权利要求9所述的方法,其中,所述从数据库中检索所述至少两个检索条件中的任意一检索条件相匹配的目标特征的步骤包括:
    以至少两个检索条件中的任意一检索条件的样本特征作为聚类中心,对所述数据库中的目标特征进行聚类,将所述聚类中心的预设范围内的目标特征作为与所述检索条件相匹配的目标特征。
  12. 一种目标运动轨迹构建设备,其中,所述设备包括检索模块、获取模块以及轨迹构建模块;
    所述检索模块,用于获取与检索条件匹配的至少两种不同类型的目标特征,其中所述至少两种不同类型的目标特征至少包括人脸特征、人体特征以及车辆特征中的至少两种;
    所述获取模块,用于获取分别与所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点;
    所述轨迹构建模块,用于根据所述至少两种不同类型的目标特征关联的拍摄时间和拍摄地点的组合生成目标运动轨迹。
  13. 根据权利要求12所述的目标运动轨迹构建设备,其中,所述轨迹构建模块还用于:
    以所述至少两种不同类型的目标特征中的某一类型的目标特征作为主目标特征,并以其他类型的目标特征为辅目标特征;
    根据所述主目标特征的拍摄时间和拍摄地点,以及所述辅目标特征的拍摄时间和拍摄地点判断所述辅目标特征与所述主目标特征相对位置是否符合目标的运动规律;
    若不符合目标的运动规律,剔除所述辅目标特征所关联的拍摄时间和拍摄地点。
  14. 根据权利要求13所述的目标运动轨迹构建设备,其中,所述轨迹构建模块,还用于:
    根据所述主目标特征的拍摄地点以及所述辅目标特征的拍摄地点计算位置差;
    根据所述主目标特征的拍摄时间以及所述辅目标特征的拍摄时间计算时间差;
    基于所述位置差和所述时间差计算运动速度,当所述运动速度大于预设运动速度阈值时,判断所述辅目标特征与所述主目标特征相对位置不符合目标的运动规律。
  15. 根据权利要求12或13所述的目标运动轨迹构建设备,其中,所述获取模块还用于:
    获取分别与所述至少两种不同类型的目标特征对应的第一目标图片;
    至少基于所述第一目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  16. 根据权利要求15所述的目标运动轨迹构建设备,其中,所述获取模块还用于:
    分别获取所述人脸特征对应的目标人脸图片,所述人体特征对应的目标人体图片和/或所述车辆特征对应的目标车辆图片;
    在所述目标人脸图片与所述目标人体图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标人体图片关联;在所述目标人脸图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联;在所述目标人体图片与所述目标车辆图片对应于同一第一目标图片且具有预设空间关系的情况下,将所述第一目标图片中的所述目标人体图片与所述目标车辆图片关联。
  17. 根据权利要求16所述的目标运动轨迹构建设备,其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第一目标图片中的所述目标人脸图片与所述目标车辆图片关联之后,所述获取模块还用于:基于所述目标车辆图片获取与所述目标车辆图片对应的第二目标图片;以及
    基于所述第一目标图片和所述第二目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  18. 根据权利要求16所述的目标运动轨迹构建设备,其中,在所述至少两种不同类型的目标特征包括所述人脸特征的情况下,以及将所述第一目标图片中的所述目标人脸图片与所述目标人体图片关联之后,所述获取模块还用于:
    基于所述目标人体图片获取与所述目标人体图片对应的第三目标图片;以及
    基于所述第一目标图片和所述第三目标图片确定所述目标特征关联的拍摄时间和拍摄地点。
  19. 根据权利要求16-18任一项所述的目标运动轨迹构建设备,其中,所述预设空间关系包括以下至少一种:
    所述第一目标关联图片的图像覆盖范围包含所述第二目标关联图片的图像覆盖范围;
    所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围部分重叠;
    所述第一目标关联图片的图像覆盖范围与所述第二目标关联图片的图像覆盖范围相连接;
    其中,所述第一目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车 辆图片中的任一一种或多种,所述第二目标关联图片包括所述目标人脸图片、所述目标人体图片及所述目标车辆图片中的任意一种或多种。
  20. 根据权利要求12所述的目标运动轨迹构建设备,其中,所述检索模块还用于:
    获取至少两个所述检索条件;
    从数据库中检索所述至少两个检索条件中的任意一检索条件相匹配的目标特征。
  21. 根据权利要求20所述的目标运动轨迹构建设备,其中,所述检索条件包括身份检索条件、人脸检索条件、人体检索条件以及车辆检索条件中的至少一个;
    其中,所述目标特征预先关联有身份信息,所述身份信息为身份证信息、姓名信息和档案信息中的任意一种。
  22. 根据权利要求20所述的目标运动轨迹构建设备,其中,检索模块还用于:
    以至少两个检索条件中的任意一检索条件的样本特征作为聚类中心,对所述数据库中的目标特征进行聚类,将所述聚类中心的预设范围内的目标特征作为与所述检索条件相匹配的目标特征。
  23. 一种目标运动轨迹构建设备,其中,所述设备包括处理器和存储器;所述存储器中存储有计算机程序,所述处理器用于执行所述计算机程序以实现如权利要求1-11中任一项所述目标运动轨迹构建方法的步骤。
  24. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被执行时实现如权利要求1-11中任一项所述目标运动轨迹构建方法的步骤。
  25. 一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行如权利要求1-11中任一所述的基于图片的目标运动轨迹构建方法。
PCT/CN2020/100265 2019-12-30 2020-07-03 一种目标运动轨迹构建方法、设备以及计算机存储介质 WO2021135138A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227020877A KR20220098030A (ko) 2019-12-30 2020-07-03 타깃 운동 궤적 구축 방법, 기기 및 컴퓨터 저장 매체
JP2022535529A JP2023505864A (ja) 2019-12-30 2020-07-03 ターゲット移動軌跡の構築方法、機器及びコンピュータ記憶媒体
US17/836,288 US20220301317A1 (en) 2019-12-30 2022-06-09 Method and device for constructing object motion trajectory, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911402892.7A CN111400550A (zh) 2019-12-30 2019-12-30 一种目标运动轨迹构建方法、设备以及计算机存储介质
CN201911402892.7 2019-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/836,288 Continuation US20220301317A1 (en) 2019-12-30 2022-06-09 Method and device for constructing object motion trajectory, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2021135138A1 true WO2021135138A1 (zh) 2021-07-08

Family

ID=71428378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100265 WO2021135138A1 (zh) 2019-12-30 2020-07-03 一种目标运动轨迹构建方法、设备以及计算机存储介质

Country Status (6)

Country Link
US (1) US20220301317A1 (zh)
JP (1) JP2023505864A (zh)
KR (1) KR20220098030A (zh)
CN (1) CN111400550A (zh)
TW (1) TW202125332A (zh)
WO (1) WO2021135138A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112364722A (zh) * 2020-10-23 2021-02-12 岭东核电有限公司 核电作业人员监控处理方法、装置和计算机设备
CN112883214B (zh) * 2021-01-07 2022-10-28 浙江大华技术股份有限公司 特征检索方法、电子设备及存储介质
CN114543674B (zh) * 2022-02-22 2023-02-07 成都睿畜电子科技有限公司 一种基于图像识别的检测方法及系统
CN114724122B (zh) * 2022-03-29 2023-10-17 北京卓视智通科技有限责任公司 一种目标追踪方法、装置、电子设备及存储介质
CN114863400B (zh) * 2022-04-06 2024-09-10 浙江大华技术股份有限公司 一种确定车辆轨迹的方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153908A1 (en) * 2012-12-05 2014-06-05 Canon Kabushiki Kaisha Reproduction control apparatus, reproduction control method, and storage medium
CN105975633A (zh) * 2016-06-21 2016-09-28 北京小米移动软件有限公司 运动轨迹的获取方法及装置
CN109189972A (zh) * 2018-07-16 2019-01-11 高新兴科技集团股份有限公司 一种目标行踪确定方法、装置、设备及计算机存储介质
CN110532923A (zh) * 2019-08-21 2019-12-03 深圳供电局有限公司 一种人物轨迹检索方法及其系统
CN110532432A (zh) * 2019-08-21 2019-12-03 深圳供电局有限公司 一种人物轨迹检索方法及其系统、计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176987B1 (en) * 2014-08-26 2015-11-03 TCL Research America Inc. Automatic face annotation method and system
CN108875548B (zh) * 2018-04-18 2022-02-01 科大讯飞股份有限公司 人物轨迹生成方法及装置、存储介质、电子设备
CN110070005A (zh) * 2019-04-02 2019-07-30 腾讯科技(深圳)有限公司 图像目标识别方法、装置、存储介质及电子设备
CN110609916A (zh) * 2019-09-25 2019-12-24 四川东方网力科技有限公司 视频图像数据检索方法、装置、设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153908A1 (en) * 2012-12-05 2014-06-05 Canon Kabushiki Kaisha Reproduction control apparatus, reproduction control method, and storage medium
CN105975633A (zh) * 2016-06-21 2016-09-28 北京小米移动软件有限公司 运动轨迹的获取方法及装置
CN109189972A (zh) * 2018-07-16 2019-01-11 高新兴科技集团股份有限公司 一种目标行踪确定方法、装置、设备及计算机存储介质
CN110532923A (zh) * 2019-08-21 2019-12-03 深圳供电局有限公司 一种人物轨迹检索方法及其系统
CN110532432A (zh) * 2019-08-21 2019-12-03 深圳供电局有限公司 一种人物轨迹检索方法及其系统、计算机可读存储介质

Also Published As

Publication number Publication date
CN111400550A (zh) 2020-07-10
US20220301317A1 (en) 2022-09-22
TW202125332A (zh) 2021-07-01
KR20220098030A (ko) 2022-07-08
JP2023505864A (ja) 2023-02-13

Similar Documents

Publication Publication Date Title
WO2021135138A1 (zh) 一种目标运动轨迹构建方法、设备以及计算机存储介质
US9560323B2 (en) Method and system for metadata extraction from master-slave cameras tracking system
US20220092881A1 (en) Method and apparatus for behavior analysis, electronic apparatus, storage medium, and computer program
US11527000B2 (en) System and method for re-identifying target object based on location information of CCTV and movement information of object
WO2021139324A1 (zh) 图像识别方法、装置、计算机可读存储介质及电子设备
US20210382933A1 (en) Method and device for archive application, and storage medium
WO2021051545A1 (zh) 基于行为识别模型的摔倒动作判定方法、装置、计算机设备及存储介质
CN111488855A (zh) 疲劳驾驶检测方法、装置、计算机设备和存储介质
CN109902681B (zh) 用户群体关系确定方法、装置、设备及存储介质
US20210319226A1 (en) Face clustering in video streams
KR20180015101A (ko) 소스 비디오 내에서 관심 동영상을 추출하는 장치 및 방법
CN109002776B (zh) 人脸识别方法、系统、计算机设备和计算机可读存储介质
CN111753766B (zh) 一种图像处理方法、装置、设备及介质
CN110619280B (zh) 一种基于深度联合判别学习的车辆重识别方法及装置
US20220027406A1 (en) Method and system for using geographic information to direct video
JPWO2018179119A1 (ja) 映像解析装置、映像解析方法およびプログラム
US20230008356A1 (en) Video processing apparatus, method and computer program
CN112329665B (zh) 一种人脸抓拍系统
CN114913470A (zh) 一种事件检测方法及装置
Teja et al. Man-on-man brutality identification on video data using Haar cascade algorithm
WO2021017289A1 (zh) 在视频中定位对象的方法、装置、计算机设备及存储介质
JP2022534314A (ja) ピクチャに基づいた多次元情報の統合方法及び関連機器
JP7540500B2 (ja) グループ特定装置、グループ特定方法、及びプログラム
Golda Image-based Anomaly Detection within Crowds
Kim et al. SlowFast Based Real-Time Human Motion Recognition with Action Localization.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535529

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20909155

Country of ref document: EP

Kind code of ref document: A1