WO2021135066A1 - 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 - Google Patents
一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 Download PDFInfo
- Publication number
- WO2021135066A1 WO2021135066A1 PCT/CN2020/093826 CN2020093826W WO2021135066A1 WO 2021135066 A1 WO2021135066 A1 WO 2021135066A1 CN 2020093826 W CN2020093826 W CN 2020093826W WO 2021135066 A1 WO2021135066 A1 WO 2021135066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flying saucer
- flying
- module
- saucer
- ion
- Prior art date
Links
- 240000002836 Ipomoea tricolor Species 0.000 title claims abstract description 256
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000005672 electromagnetic field Effects 0.000 title claims abstract description 20
- 238000004458 analytical method Methods 0.000 claims abstract description 52
- 150000002500 ions Chemical class 0.000 claims description 83
- 238000004891 communication Methods 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 27
- 230000033001 locomotion Effects 0.000 claims description 19
- 230000005684 electric field Effects 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 230000005484 gravity Effects 0.000 claims description 9
- 238000004148 unit process Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000008447 perception Effects 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/001—Flying saucers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to the field of aircraft, and in particular to a rotorless flying saucer based on electromagnetic field to provide power and a flying method thereof.
- the purpose of the present invention is to address the shortcomings of the prior art, and propose a rotorless flying saucer powered by an electromagnetic field and a flying method thereof, which solves the problem of environmental pollution caused by the use of fossil fuel combustion to provide power for the aircraft, and the noise pollution caused by the rotation of the blades. And safety hazards.
- a rotorless flying saucer powered by an electromagnetic field comprising: a control unit, an analysis unit and an execution unit;
- the control unit is set on the ground, and is used to send flight mission information and receive current flight status information of the flying saucer;
- the analysis unit is integrated on the flying saucer and is used to receive the flight mission information sent by the control unit, send it to the execution unit after processing, analyze the flying saucer flight status information, and send the flying saucer current flight status information back to the control unit.
- the execution unit is used to control the flying state of the flying saucer.
- the execution unit includes a flying saucer flying lift module and a horizontal plane power module;
- the flying saucer flight lift module includes a pair of ion generators installed on the top and bottom of the flying saucer and an energizing coil installed inside the flying saucer, the ion generator at the bottom of the flying saucer is located inside the energizing coil, and the ion generator on the top of the flying saucer is located above the energizing coil;
- the flying saucer flying lift module can generate a rotating ion current.
- the air pressure above the flying saucer is low, and there is a negative pressure zone or even a vacuum.
- the air moves from the normal pressure zone to the negative pressure zone or the vacuum zone to generate lift, which is used to control the flying saucer in the vertical direction. Speed and stability;
- the horizontal plane power module includes a pair of ion generators uniformly installed on the edge of the flying saucer.
- the ion generator ionizes the air to produce ion currents.
- the air pressure is low when the ions move at high speed, and there is a negative pressure zone or even a vacuum.
- the air moves from the normal pressure zone to the negative pressure zone or the vacuum zone, and the reaction force provides the power of the flying saucer in the horizontal direction;
- horizontal plane power The module is used to control all directions of the flying saucer on the horizontal plane and fly at the specified speed;
- T is the thrust of the flying saucer
- P is the power of the ion generator
- ⁇ is the charge density
- A is the contact area during the movement of the ion current
- L is the distance between the two ion generator electrodes
- V is the electric potential between the two ion generator electrodes
- j is the current density
- ⁇ is the ion mobility
- v 0 is the initial velocity of the particle
- the average electric field strength can be calculated according to the required thrust-to-power ratio Then you can choose a suitable ionizer; the lift of the flying saucer can be obtained according to the following formula:
- F is the lift of the flying saucer
- V' is the rising speed of the flying saucer
- P' is the total power of a pair of ion generators on the top and bottom of the flying saucer
- the corresponding lifting force of the flying saucer can be obtained, and then the maximum gravity of the flying saucer can be obtained.
- the gravity of the flying saucer the number of ion generators in the horizontal direction can be obtained.
- the ion generator includes two electrodes with different voltages. Both electrodes can ionize air molecules to make them charged particles. There is an electric field between the two electrodes. Under the action of the electric field force, the charged particles in the air. The movement from the low-voltage electrode side to the high-voltage electrode side generates ion current. The air pressure is low when the ion current rotates at high speed, and there is a negative pressure zone or even a vacuum. The air moves from the normal pressure zone to the negative pressure zone or the vacuum zone, which will cause the flying saucer The reaction force provides power for the flying saucer.
- the flying saucer flight status information refers to the flying speed and direction of the flying saucer in the vertical direction, the speed and direction of the flying saucer in the horizontal plane, and the current location of the flying saucer.
- control unit is a mobile intelligent terminal, including: an input module, a path planning module, an output module, a receiving module, and a judgment module;
- the input module is used to input the user's issued flight mission information
- the path planning module is used for path planning between the starting point and the ending point of the flying saucer
- the output module is used to output flight mission information, select wireless output, and select any one or any of wireless communication devices such as WiFi, Bluetooth, and zigbee.
- the flight mission information is to arrive at a certain designated location according to the route planned by the route planning module within a designated time;
- the receiving module is used to receive the current flight status information of the flying saucer returned by the analysis unit, including the current flying speed and position information of the flying saucer;
- the judgment module is used to judge whether the current flight status information of the flying saucer returned by the analysis unit is correct, that is, whether it deviates from the planned path.
- path planning refers to a sequence of points or curves connecting the start point and the end point according to a certain strategy.
- the specific method is as follows:
- step (2) The information obtained in step (1) is processed by the path planning module in the control unit to obtain a feasible flight path between the start point and the end point.
- the control unit integrates the current flight status information of the flying saucer transmitted from the analysis unit, and judges whether the current flying saucer is flying according to the planned path through the judgment module;
- the analysis unit includes: an on-board central processing unit, a data acquisition module, and a signal interface module;
- the on-board central processing unit is used to receive flight mission information from the control unit, process the flight mission information and send it to the execution unit, select the required ion generator to work according to the flight mission information, and then control the flying speed and direction of the flying saucer. And transmit the current flight status information of the flying saucer collected by the data collection module back to the control unit;
- the data acquisition module includes a gyroscope (that is, an angular velocity meter, used for flight attitude perception), an accelerometer, geomagnetic induction, an air pressure sensor (used to roughly calculate the hover height), an ultrasonic sensor (used for precise control of low altitude and obstacle avoidance) ), optical flow sensor (used to accurately measure the hovering horizontal position), GPS module and/or Beidou positioning system and other rough positioning modules (used to roughly locate the horizontal position of the flying saucer), used to collect all relevant data on the flying status of the flying saucer.
- a gyroscope that is, an angular velocity meter, used for flight attitude perception
- an accelerometer used to roughly calculate the hover height
- an ultrasonic sensor used for precise control of low altitude and obstacle avoidance
- optical flow sensor used to accurately measure the hovering horizontal position
- GPS module and/or Beidou positioning system and other rough positioning modules used to roughly locate the horizontal position of the flying saucer
- the signal interface module refers to a signal input/output device for receiving and sending signals.
- the data interaction mode between the units and the modules may be any one of wireless communication mode and wired communication mode or a combination of both modes.
- the wireless communication mode can be any one or more of infrared communication, Bluetooth communication, wifi communication, 3/4G network, zigbee communication, GSM, and CDMA.
- a method for flying a rotorless flying saucer powered by an electromagnetic field includes the following steps:
- the user generates a planned path through the path planning module in the control unit on the ground, and sends the path to the analysis unit as a flight mission instruction;
- the analysis unit processes the task instructions and sends them to the execution unit.
- the execution unit controls the on and off of each ion generator electrode, as well as the current and on and off of the energized coil, so that the flying saucer can fly in accordance with the task instructions;
- the analysis unit collects the flying status information of the flying saucer in real time through the data acquisition module, and transmits the information back to the control unit on the ground to determine whether the flying saucer has deviated from the planned path, and if it deviates from the planned path, the flight mission instruction is sent again To the analysis unit.
- the present invention can realize flying saucer controlled by electromagnetic field
- the flying saucer of the present invention can achieve no pollutant emission during flight
- the flying saucer of the present invention can achieve noiseless during flight, the researchers do not need to suffer from noise during research and development, and there is no noise pollution during application.
- the flying saucer of the present invention does not have rotating blades such as blades, it has higher safety. It can be used for tasks such as monitoring, tracking, and delivery in urban areas and other places with many people, so as to avoid hurting people and being affected by others. Objects such as trees intercepted and damaged the fuselage.
- Figure 1 is a schematic diagram of the appearance of the flying saucer of the present invention
- FIG. 2 is a schematic diagram of the movement of the charged particles in the vertical direction of the flying saucer of the present invention
- Figure 3 is a cross-sectional view of the flying saucer of the present invention.
- Figure 4 is a cross-sectional view of the flying saucer of the present invention.
- FIG. 5 is a block diagram of the flying saucer control system of the present invention.
- Fig. 6 is a flow chart of flying saucer flight control of the present invention.
- the present invention provides a rotorless flying saucer powered by electromagnetic field, the flying saucer includes:
- control unit the control unit is set on the ground and used to send flight missions and receive current flight status data of the flying saucer;
- the analysis unit which is integrated on the flying saucer, is used to receive the flight mission information sent by the control unit, send it to the execution unit after processing, analyze the flying status of the flying saucer, and send the current flying information of the flying saucer back to the control unit.
- control unit and the analysis unit exchange data.
- the execution unit is used to control the flying state of the flying saucer.
- the flying state of the flying saucer refers to the speed and direction of the flying saucer in the vertical direction, the speed and direction of the flying saucer in the horizontal plane, and the current position of the flying saucer.
- the analysis unit and the execution unit can be connected to transmit information through a hardware circuit.
- the control unit includes:
- the input module is used to detect the input instructions of the user, and any one or more of keyboards, microphones, etc. can be selected.
- Path planning module the path planning module is to plan the path between the starting point and the end point of the flying saucer with the assistance of the GPS system.
- the path planning refers to a sequence of points or curves that connect the start position and the end position according to a certain strategy. The specific method is as follows:
- step (2) The information obtained in step (1) is processed by the path planning module in the control unit to obtain a feasible flight path between the start point and the end point.
- the output module is used to output flight mission information.
- any one or more of wireless communication devices such as WiFi, Bluetooth, and zigbee can be selected.
- the flight mission information is to reach a certain designated position according to the route planned by the route planning module within a designated time.
- the receiving module is used to receive the data information returned by the analysis unit.
- the data information returned by the analysis unit refers to the current flying speed and position information of the flying saucer.
- the judgment module is used to judge whether the data information returned by the analysis unit is correct, that is, whether it deviates from the route planned by the route planning module.
- the specific process of judging whether the current flight status information of the flying saucer is correct is as follows:
- the control unit integrates the current flight status information of the flying saucer transmitted from the analysis unit, and judges whether the current flying saucer is flying according to the planned path through the judgment module;
- the control unit may be a mobile smart terminal.
- the mobile smart terminal is capable of capturing external information, performing calculations, analysis, and processing, has a signal generation function, and has a wireless communication function, and can perform information between different terminals.
- the portable device for transmission can be any one or more of mobile phones and computers.
- the analysis unit includes:
- the onboard central processing unit the onboard central processing unit is used to coordinate the data processing of the flying saucer and the sending of task instructions.
- the flight mission information is processed and sent to the execution unit, and the required ion generator is selected to work according to the flight mission information, thereby controlling the flying speed and direction of the flying saucer.
- the current flight status information of the flying saucer collected by the data acquisition module is transmitted back to the control unit.
- Data acquisition module said data acquisition module includes gyroscope (that is, angular velocity meter, used for flight attitude perception), accelerometer, geomagnetic induction, air pressure sensor (used for rough calculation of hovering height), ultrasonic sensor (used for low altitude altitude Precise control and obstacle avoidance), optical flow sensor (used to accurately measure the hovering horizontal position), GPS module and/or Beidou positioning system and other rough positioning modules (used to roughly locate the horizontal position of the flying saucer).
- gyroscope that is, angular velocity meter, used for flight attitude perception
- accelerometer used for rough calculation of hovering height
- ultrasonic sensor used for low altitude altitude Precise control and obstacle avoidance
- optical flow sensor used to accurately measure the hovering horizontal position
- GPS module and/or Beidou positioning system and other rough positioning modules used to roughly locate the horizontal position of the flying saucer.
- Beidou positioning system used to roughly locate the horizontal position of the flying saucer.
- the signal interface module refers to a signal input/output device for receiving and sending signals.
- the execution unit includes:
- the flying saucer lift module includes a pair of ion generators installed on the top and bottom of the flying saucer and an energized coil installed inside the flying saucer.
- the ion generator at the bottom of the flying saucer is located inside the energized coil, and the ions on the top of the flying saucer are generated
- the flying saucer is located on the upper part of the energized coil.
- the flying lift module of the flying saucer can generate a rotating ion current.
- the air pressure above the flying saucer is low, and there is a negative pressure zone or even a vacuum. The air moves from the normal pressure zone to the negative pressure zone or the vacuum zone to generate lift, which is used to control the flying saucer.
- the horizontal plane power module includes a pair of ion generators uniformly installed on the edge of the flying saucer.
- the ion generator ionizes the air to produce ion currents.
- the air pressure is low when the ions move at high speed, and there is a negative pressure zone or even a vacuum.
- the air moves from the normal pressure zone to the negative pressure zone or the vacuum zone, and the reaction force provides the power of the flying saucer in the horizontal direction;
- the module is used to control all directions of the flying saucer on the horizontal plane and fly at a specified speed.
- the ion generator includes two electrodes with different voltages.
- both electrodes can ionize air molecules to make them become charged particles, and there is an electric field between the two electrodes.
- the charged particles in the air move from the low-voltage electrode side to the high-voltage electrode side, generating ion current.
- the air pressure is lower at the high-speed movement of ion current, and there is a negative pressure zone or even vacuum, and the air moves from the normal pressure zone to negative
- the movement of the nip or vacuum zone will have a reaction force on the flying saucer and provide power for the flying saucer.
- I the electric field force experienced by a charged particle in an electric field
- q the number of charges carried by the particle
- the energized coil can be controlled to generate different magnetic fields by controlling the energized current in the helical energized coil.
- Ampere also called the right-handed spiral law, it indicates the relationship between the current and the direction of the magnetic field of the current excited magnetic field. then. Hold the energized solenoid with your right hand, so that the four fingers point in the direction of the current, then the end pointed by your thumb is the N pole of the energized solenoid.
- q is the number of charges carried by the particle
- the magnetic field in the energized coil is not uniform, the Lorentz force will change, and the charged particles will make a circular motion with a gradually increasing radius.
- a pair of ion generators will be installed on the top and bottom of the flying saucer, and several pairs of ion generators will be evenly distributed around the flying saucer to provide power in all directions.
- a set of energized coils is placed vertically in the flying saucer. Ionizers and energized coils in the vertical direction of the flying saucer make there are rotating charged particles around the flying saucer.
- a negative pressure zone or even a vacuum occurs at the high-speed rotation of the particles. The air moves from the normal pressure zone to the negative pressure zone or the vacuum zone, and the reaction force generates lift. And the rotation makes it easier for the flying saucer to remain stable.
- the force generated by the rotating particles can keep the flying saucer stable.
- the pair of ion generators evenly distributed around the flying saucer can generate force against its rotation, so that the flying saucer can fly stably.
- the motor voltage can be obtained by carrying a battery pack with a flying saucer to obtain a certain voltage. Because the higher the voltage that the battery pack can provide, the heavier the battery pack will be. Based on the load capacity of the flying saucer, select a battery pack that can provide low voltage. Connect with the transformer to obtain high voltage, and install the control circuit to ensure safety.
- the said transformer refers to a device that uses the principle of electromagnetic induction to change the AC voltage, and the main components are the primary coil, the secondary coil and the iron core (magnetic core).
- the main functions are: voltage transformation, current transformation, impedance transformation, isolation, voltage stabilization (magnetic saturation transformer), etc. You can choose a coupled inductor to achieve the function of a transformer.
- the most important limiting parameter for aircraft flight is the quality factor of the propulsion system, that is, the thrust-to-power ratio, which is a measure of static propulsion efficiency.
- the thrust/power ratio of a traditional helicopter rotor is 50N KW -1 .
- the thrust-to-power ratio should be higher than 50N KW -1 .
- E represents the electric field strength
- x represents the distance between the two electrodes
- V represents the electric potential between the two electrodes
- ⁇ represents the charge density
- ⁇ represents the dielectric constant
- E represents the electric field strength
- x represents the distance between the two electrodes
- ⁇ represents the charge density
- P represents the pressure on the flying saucer.
- T is the thrust of the flying saucer
- P is the power of the ion generator
- ⁇ is the charge density
- Is the average electric field strength
- A is the contact area during the movement of the ion current
- L is the distance between the electrodes
- V is the potential between the two electrodes
- j is the current density
- ⁇ is the ion mobility
- v0 is the initial particle velocity
- positive and negative ion mobility weight were 1.5 ⁇ 10 -2 cm 2 /(V ⁇ s),2.0 ⁇ 10 -2 cm 2 / (V ⁇ s); positive, negative light ions, respectively mobility It is 1.5cm 2 /(V ⁇ s), 2.0cm 2 /(V ⁇ s). As a guarantee Established, It should be guaranteed to be less than 100KV/m.
- F is the lift of the flying saucer
- V' is the rising speed of the flying saucer
- P' is the total power of a pair of ion generators on the top and bottom of the flying saucer
- the corresponding lifting force of the flying saucer can be obtained, and then the maximum gravity of the flying saucer can be obtained.
- the gravity of the flying saucer the number of ion generators in the horizontal direction can be obtained.
- the potential between the two electrodes is less than 100KV.
- the electrode voltage should be tens of thousands of volts.
- the 15KV ion generator is taken as an example on the market, each with a mass of 10kg and a power of up to 100w.
- G is gravity
- g is the acceleration of gravity taking 10N/kg
- m is the mass of the flying saucer.
- the total gravity of the ion generator should be less than 2000N, and the number should be less than 20 at this time.
- the flying saucer shell has a certain weight, the number of ion generators is reduced to 16, of which, the flying saucer needs two in the vertical direction, and the number of evenly distributed in the horizontal direction should be less than 14.
- the horizontal direction ion generator At least 2 pairs.
- the data interaction mode between the units and modules in the present invention can be any one of wireless communication mode and wired communication mode or a combination of both modes.
- the wireless communication mode can be any one or more of infrared communication, Bluetooth communication, wifi communication, 3/4G network, zigbee communication, GSM, and CDMA.
- a method for flying a rotorless flying saucer powered by an electromagnetic field includes the following steps:
- the user generates a planned path through the path planning module in the ground control unit, and sends the path as a flight mission instruction to the analysis unit;
- the analysis unit processes the task instructions and sends them to the execution unit.
- the execution unit controls the on and off of each ionizer electrode, as well as the current and on and off of the energized coil, so that the flying saucer can fly according to the task instructions;
- the analysis unit collects the flying status information of the flying saucer in real time through the data acquisition module, and transmits the information back to the control unit on the ground to determine whether the flying saucer has deviated from the planned path, and if it deviates from the planned path, the flight mission instruction is sent again To the analysis unit.
- the said task instruction means that the flying saucer arrives at the designated place according to the route planned by the control unit within a designated time, and can be programmed by a control unit such as a mobile phone or a notebook computer.
- the flying saucer can ensure that late-night delivery will not disturb the people, and the delivery of goods can be completed safely in the case of many obstacles in the city.
- Step 1 First, the customer places an order through the mobile phone platform, sends the required goods information and delivery address to the background, completes the distribution in the background, and enters the delivery address information in the control unit.
- Step 2 The control unit is programmed by a control unit such as a mobile phone or a laptop to issue flight mission instructions, which include the delivery address and arrival time;
- a control unit such as a mobile phone or a laptop to issue flight mission instructions, which include the delivery address and arrival time;
- Step 3 Send this task instruction program to the analysis unit onboard the flying saucer through wireless communication transmission technology.
- the analysis unit processes the task instruction, it is sent to the execution unit, and the execution unit controls the power on and off of each ion generator electrode and the energized coil The current size and on-off, make the flying saucer fly in accordance with the mission instructions.
- the steps of sending task instructions are as follows:
- the control unit can select any one or more of wireless communication devices such as WiFi, Bluetooth, zigbee, etc., and send the data to the flying saucer analysis unit.
- wireless communication devices such as WiFi, Bluetooth, zigbee, etc.
- the flying saucer analysis unit sends the data to the central processing unit onboard the flying saucer.
- Step 4 The execution unit changes the flying state of the flying saucer and executes the flight mission
- the steps to change the flying state of the flying saucer are as follows:
- the flying saucer lift module can generate a rotating ion current, and the air pressure above the flying saucer is lower. , There is a negative pressure zone or even a vacuum, the air moves from the normal pressure zone to the negative pressure zone or the vacuum zone, the reaction force generates lift, and the vertical movement speed of the flying saucer is controlled by controlling the movement of the charged particles.
- Step 5 The analysis unit collects the current flight status information of the flying saucer in real time through the data acquisition module, and transmits the information back to the control unit on the ground;
- Step 6 The control unit analyzes and processes the data transmitted by the analysis unit, and judges whether the current flying saucer is flying according to the mission specification through the judgment module;
- the judging module judges that the flying saucer is moving according to the path planned by the path planning module, the current flying saucer will complete the flight mission correctly in real time and no operation is required.
- the judging module judges that the flying saucer deviates from the path planned by the path planning module, it re-sends the flight mission instruction to the analysis unit.
- Step 7 When the flying saucer arrives at the destination, it sends the arrived information to the control unit.
- the control unit reminds the customer to pick up the goods through the background. After the pick-up is completed, the flying saucer returns to the departure point.
- seedling supplementation After crop seedlings are unearthed, when there are often lack of seedlings and ridges, the process of replenishing the seedlings by transplanting or reseeding is called seedling supplementation.
- the drone if the drone is used to fill the seedlings with a traditional drone, it may be affected Damage to other crops and drone blades. If the drone flies too high, the seeds cannot be accurately placed in the designated position. The drone of the present invention can fly low and accurately sow without harming other seedlings.
- Step 1 determine the required seedling replenishment position through the pictures taken by the aerial drone.
- Step 2 The control unit is programmed by a control unit such as a mobile phone or a laptop computer to issue flight mission instructions, which include all replenishment positions;
- a control unit such as a mobile phone or a laptop computer to issue flight mission instructions, which include all replenishment positions;
- Step 3 Send the task instruction program to the analysis unit onboard the flying saucer through wireless communication transmission technology.
- the analysis unit processes the task instruction and sends it to the execution unit.
- the execution unit controls the power on and off of each ion generator electrode and the energized coil The current size and on-off, make the flying saucer fly in accordance with the mission instructions.
- the steps of sending task instructions are as follows:
- the control unit can select any one or more of wireless communication devices such as WiFi, Bluetooth, zigbee, etc., and send the data to the flying saucer analysis unit.
- wireless communication devices such as WiFi, Bluetooth, zigbee, etc.
- the flying saucer analysis unit sends the data to the central processing unit onboard the flying saucer.
- Step 4 The execution unit changes the flying state of the flying saucer and executes the flight mission
- the steps to change the flying state of the flying saucer are as follows:
- the air pressure is lower at the high-speed ion movement, and there is a negative pressure zone or even a vacuum, and the air moves from the normal pressure zone to the negative pressure zone or vacuum zone. Movement, the reaction force provides the power of the flying saucer in the horizontal direction. Control the number of charged particles and the speed of movement in each direction of the flying saucer's horizontal plane, and then control the speed of the flying saucer's horizontal plane direction. At the same time, it can balance the reaction force generated by the rotating ion current when the flying saucer does not need to rotate.
- Step 5 The analysis unit collects the flying saucer flight status information in real time through the data collection module, and transmits the information back to the control unit on the ground;
- Step 6 The control unit analyzes and processes the data transmitted by the analysis unit, and judges whether the current flying saucer is flying according to the mission specification through the judgment module;
- the judging module judges that the flying saucer is moving according to the path planned by the path planning module, the current flying saucer will complete the flight mission correctly in real time and no operation is required.
- the judging module judges that the flying saucer deviates from the path planned by the path planning module, it re-sends the flight mission instruction to the analysis unit.
- Step 7 After the flying saucer completes replenishing seedlings in sequence, return to the starting point.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Catching Or Destruction (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
一种基于电磁场提供动力的无旋翼飞碟及其飞行方法。该飞碟包括控制单元、分析单元、执行单元。飞碟控制单元用于输入指令。飞碟分析单元用于解析指令,并输出到执行单元,同时将飞碟飞行状态反馈给控制单元。飞碟执行单元包括为飞碟提供升力的升力模块和为飞碟提供各方向前进动力的水平面动力模块。升力模块通过离子发生器产生离子流,通过为线圈通变化电流可产生变化磁场,离子流在变化磁场中产生旋转,此旋转离子流可为飞碟提供稳定升力。水平面动力模块通过均匀分布的离子发生器可产生不同方向的离子流,为飞碟提供水平面上各方向的动力。执行单元通过调整升力模块和水平面动力模块即可实现三维空间内飞碟的飞行任务。
Description
本发明涉及飞行器领域,尤其涉及一种基于电磁场提供动力的无旋翼飞碟及其飞行方法。
目前几乎所有应用生产的飞行器都需借助于螺旋桨、涡轮叶片或风扇等活动零件飞行,这些零件需要由化石燃料的燃烧或飞行器中的电池组供电,因此整个飞行过程中会产生大量的污染物的排放和噪音。用化石燃料燃烧提供动力的方式进行飞行,这对于环境非常不友好。许多飞机场建立在距离市区较远的地方是考虑到了噪音这一因素,飞行器用于室内调试时噪音会损害研究人员的身体健康,同时桨叶的旋转也容易使研究人员受伤。飞行器在室外飞行的过程中也由于桨叶等的存在伤人或被其他物体如树木等拦截,损坏飞行器。因此,在大气污染和噪声污染日益严重的今天,不通过活动零件旋转和燃烧化石燃料而制造动力的飞行器,将会带来飞行器的革命,开启飞行器新篇章,在军事、商业领域有着巨大的价值。
发明内容
本发明目的在于针对现有技术的不足,提出一种基于电磁场提供动力的无旋翼飞碟及其飞行方法,解决了飞行器使用化石燃料燃烧提供动力造成的环境污染问题,以及桨叶旋转产生的噪音污染和安全隐患问题。
本发明的目的是通过以下技术方案来实现的:一种基于电磁场提供动力的无旋翼飞碟,所述飞碟包括:控制单元、分析单元和执行单元;
所述控制单元设置在地面,用于发送飞行任务信息并接收飞碟当前飞行状态信息;
所述分析单元集成在飞碟上,用于接收控制单元发送的飞行任务信息,处理后发送到执行单元,同时分析飞碟飞行状态信息,将飞碟当前飞行状态信息发送回控制单元。
所述执行单元用于控制飞碟的飞行状态。执行单元包括飞碟飞行升力模块和水平面动力模块;
所述飞碟飞行升力模块包括安装于飞碟顶部和底部的一对离子发生器以及安装在飞碟内部的通电线圈,飞碟底部的离子发生器位于通电线圈内部,飞碟顶部的离子发生器位于通电线圈上部;飞碟飞行升力模块可生成旋转离子流,飞碟上方气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,产生升力,用于控制飞碟在竖直方向飞行的速度及稳定性;
所述水平面动力模块,包括均匀安装在飞碟边缘的成对的离子发生器。离子发生器电离空气产生离子流,离子高速运动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力提供飞碟在水平方向的动力;水平面动力模块用于控制飞碟在水平面上的各个方向,按照指定速度飞行;
飞碟推力功率比的公式如下:
上式中,T是飞碟推力,P是离子发生器的功率,ρ代表电荷密度,
是平均电场强度,A是离子流运动过程中接触到的面积,L是两离子发生器电极间距离,V代表两离子发生器电极间的电势,j为电流密度,μ为离子迁移率,v
0为粒子初始速度;
P’=F×V’
式中,F为飞碟升力,V’为上升飞碟速度,P’为飞碟顶部和底部的一对离子发生器的总功率,P’可由选择的离子发生器得到。
根据需求的飞碟速度,可得到相应的飞碟升力,进而得到飞碟的最大重力,根据飞碟的重力可得到水平方向的离子发生器的数量。
进一步地,所述水平方向的离子发生器至少为两对。
进一步地,所述的离子发生器包括两个电压不同的电极,两个电极均可电离空气分子使其成为带电粒子,两个电极之间存在电场,在电场力的作用下,空气中带电粒子由低电压电极侧向高电压电极侧运动,产生离子流,离子流高速旋转处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,将对飞碟产生反作用力,为飞碟提供动力。
进一步地,所述的飞碟飞行状态信息是指飞碟在竖直方向的飞行速度大小及方向和飞碟在水平面中飞行的速度大小及方向,以及飞碟目前所在位置。
进一步地,所述的控制单元为移动智能终端,包括:输入模块、路径规划模块、输出模块、接收模块和判断模块;
所述的输入模块用于输入用户的发出飞行任务信息;
所述路径规划模块用于对飞碟起点与终点之间进行路径规划;
所述输出模块用于输出飞行任务信息,选择无线输出,可选择WiFi、蓝牙、zigbee等无线通信设备中的任意一种或任意多种。所述飞行任务信息为在指定时间内,按照路径规划模块规划好的路径到达某一指定位置;
所述接收模块用于接收分析单元返回的飞碟当前飞行状态信息,包括飞碟当前的飞行速度及位置信息;
所述判断模块用于判断分析单元返回的飞碟当前飞行状态信息是否正确,即判断是否偏离规划的路径。
进一步地,所述路径规划是指按照一定策略连接起点位置和终点位置的序列点或曲线。具体方法如下:
(1)通过GPS定位系统或其他定位系统获取起点与目标点的位置与包括起点与目标点在内的一定范围的3D地图;
(2)将步骤(1)获得的信息在控制单元内通过路径规划模块进行处理,得到起点与终点之间可行飞行路径。
进一步地,所述判断模块如下判断飞碟当前飞行状态信息是否正确的具体过程如下:
(1)控制单元对分析单元传输回来的飞碟当前飞行状态信息进行整合,通过判断模块判断当前飞碟是否按照规划的路径飞行;
(2)若飞碟偏离了规划的路径,则重新将规划的路径发送至分析单元。
进一步地,所述的分析单元包括:机载中央处理器、数据采集模块和信号接口模块;
所述机载中央处理器用于接收到来自控制单元的飞行任务信息,将飞行任务信息处理后发送给执行单元,根据飞行任务信息选择需要的离子发生器进行工作,进而控制飞碟飞行速度和方向。并将数据采集模块采集到的飞碟当前飞行状态信息传输回控制单元中;
所述数据采集模块包含陀螺仪(即角速度计,用于飞行姿态感知)、加速度计、地磁感应、气压传感器(用于粗略计算悬停高度)、超声波传感器(用于低空高度精确控制及避障)、光流传感器(用于精确测量悬停水平位置)、GPS模块和/或北斗定位系统等其他粗略定位模块(用于粗略定位飞碟水平位置),用于采集飞碟飞行状态所有相关数据。
所述信号接口模块是指信号输入/输出设备,用于接收和发出信号。
进一步地,各单元之间、各模块之间的数据交互方式可以是无线通信方式、有线通信方式中的任意一种或两种方式的结合。所述的无线通信方式可以是红外线通信、蓝牙通信、wifi通信、3/4G网络、zigbee通信、GSM、CDMA中的任意一种或任意多种。
一种基于电磁场提供动力的无旋翼飞碟的飞行方法,该方法包括以下步骤:
(1)用户通过地面的控制单元中的路径规划模块生成规划好的路径,并将该路径作为飞行任务指令发送到分析单元;
(2)分析单元处理任务指令后发送到执行单元,通过执行单元控制各个离子发生器电极的通断电,以及通电线圈的电流大小和通断,使飞碟按照任务指令飞行;
(3)分析单元通过数据采集模块实时采集飞碟飞行状态信息,并将信息传输回到地面的控制单元中,判断飞碟是否偏离了规划的路径,若偏离了规划的路径,则重新发送飞行任务指令到分析单元。
本发明的有益效果:
(1)本发明可实现通过电磁场控制飞行的飞碟
(2)本发明中的飞碟可实现飞行过程中无污染物排放
(3)本发明中的飞碟可实现飞行过程中无噪音,研发时研究人员不需要遭受噪音,应用时也无噪音污染。
(4)本发明中的飞碟因为没有桨叶等旋转叶片,所以具有更高的安全性,可以在市区等人多的地方用于监控、追踪、送货等任务,避免伤人以及被其他物体如树木等拦截,损坏机身。
图1为本发明的飞碟外观示意图;
图2为本发明的飞碟竖直方向带电粒子运动示意图;
图3为本发明的飞碟截面图;
图4为本发明的飞碟剖面图;
图5为本发明的飞碟控制系统框图;
图6为本发明的飞碟飞行控制流程图。
以下结合附图对本发明具体实施方式作进一步详细说明。
如图1所示,本发明提供的一种基于电磁场提供动力的无旋翼飞碟,所述飞碟包括:
控制单元,所述的控制单元设置在地面,用于发送飞行任务并接收飞碟当前飞行状态数据;
分析单元,所述的分析单元集成在飞碟上,用于接收控制单元发送的飞行任务信息,处理后发送到执行单元,同时分析飞碟飞行状态,将飞碟当前飞行信息发送回控制单元。
所述的控制单元和分析单元进行数据交互。
执行单元,所述的执行单元用以控制飞碟的飞行状态。
所述的飞碟飞行状态是指飞碟在竖直方向的飞行速度大小及方向和飞碟在水平面中飞行的速度大小及方向,以及飞碟目前所在位置。
所述的分析单元和执行单元可通过硬件电路连接传输信息。
所述的控制单元包括:
输入模块,所述的输入模块用于检测用户的输入指令,可选择键盘、麦克等任意一种或任意多种。
路径规划模块,所述的路径规划模块是在GPS系统的辅助下,对飞碟起点与终点之间进行路径规划。所述路径规划是指按照一定策略连接起点位置和终点位置的序列点或曲线。具体方法如下:
(1)通过GPS定位系统或其他定位方法获取起点与目标点的位置与包括起点与目标点在内的一定范围的3D地图;
(2)将步骤(1)获得的信息在控制单元内通过路径规划模块进行处理,得到起点与终点之间可行飞行路径。
输出模块,所述的输出模块用于输出飞行任务信息,选择无线输出模块,可选择WiFi、蓝牙、zigbee等无线通信设备中的任意一种或任意多种。
所述的飞行任务信息为在指定时间内,按照路径规划模块规划好的路径到达某一指定位置。
接收模块,所述的接收模块用于接收分析单元返回的数据信息。
所述的分析单元返回的数据信息是指飞碟当前的飞行速度及位置信息。
判断模块,所述的判断模块用以判断分析单元返回的数据信息是否正确,即判断是否偏离路径规划模块规划好的路径。判断飞碟当前飞行状态信息是否正确的具体过程如下:
(1)控制单元对分析单元传输回来的飞碟当前飞行状态信息进行整合,通过判断模块判断当前飞碟是否按照规划的路径飞行;
(2)若飞碟偏离了规划的路径,则重新将规划的路径发送至分析单元。
所述的控制单元可以是移动智能终端,所述的移动智能终端是指能够捕获外部信息,进行计算、分析和处理,具有信号发生功能,同时具有无线通信功能,能够在不同终端之间进行信息传输的便携式设备,可以是手机、电脑中的任意一种或多种。
所述的分析单元包括:
机载中央处理器,所述的机载中央处理器是用于协调所述飞碟的数据处理及任务指令发送的工作。接收到来自控制单元的飞行任务指令,将飞行任务信息处理后发送给执行单元,根据飞行任务信息选择需要的离子发生器进行工作,进而控制飞碟飞行速度和方向。并将数据采集模块采集到的飞碟当前飞行状态信息传输回控制单元中。
数据采集模块,所述的数据采集模块包含陀螺仪(即角速度计,用于飞行姿态感知)、加 速度计、地磁感应、气压传感器(用于粗略计算悬停高度)、超声波传感器(用于低空高度精确控制及避障)、光流传感器(用于精确测量悬停水平位置)、GPS模块和/或北斗定位系统等其他粗略定位模块(用于粗略定位飞碟水平位置)。上述传感器可以监测飞碟飞行状态所有相关数据。
信号接口模块,所述的信号接口模块是指信号输入/输出设备,用于接收和发出信号。
所述的执行单元包括:
飞碟飞行升力模块,所述的飞碟升力模块,包括安装于飞碟顶部和底部的一对离子发生器以及安装在飞碟内部的通电线圈,飞碟底部的离子发生器位于通电线圈内部,飞碟顶部的离子发生器位于通电线圈上部,飞碟飞行升力模块可生成旋转离子流,飞碟上方气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,产生升力,用于控制飞碟在竖直方向飞行的速度及稳定性;
水平面动力模块,所述的水平面动力模块,包括均匀安装在飞碟边缘的成对的离子发生器。离子发生器电离空气产生离子流,离子高速运动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力提供飞碟在水平方向的动力;水平面动力模块用于控制飞碟在水平面上的各个方向,按照指定速度飞行。
所述的离子发生器包括两个电压不同的电极,当电极电压足够高时,通常在几万伏左右,两个电极均可电离空气分子使其成为带电粒子,两个电极之间存在电场,在电场力的作用下,空气中带电粒子由低电压电极侧向高电压电极侧运动,产生离子流,离子流高速运动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,将对飞碟产生反作用力,为飞碟提供动力。
飞碟中带电粒子所受电场力为;
所述的通电线圈,可通过控制螺旋通电线圈中通电电流使其产生不同的磁场,根据安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。
飞碟中带电粒子所受磁场力为:
如图2所示,通电线圈中磁场是不均匀的,洛伦兹力的大小会发生变化,带电粒子将会做半径逐渐变大的圆周运动。
如图3和图4所示,飞碟顶部和底部将安装一对离子发生器,飞碟四周将均匀分布数对离子发生器,以提供各个方向的动力。一组通电线圈竖直放置在飞碟内。飞碟竖直方向的离子发生器和通电线圈使飞碟周围存在旋转的带电粒子,粒子高速旋转处出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力产生升力,且旋转使飞碟更易保持稳定,同时当飞碟变换方向时,向某一方向倾斜时,旋转粒子产生的力可保持飞碟稳定。当旋转力干扰飞碟的正常飞行时,可通过飞碟四周均匀分布的成对离子发生器产生对抗其旋转的力,使飞碟稳定飞行。
所述的电机电压可通过飞碟携带电池组获得一定电压,由于电池组可提供电压越高,电池组重量也会越大,基于飞碟载重量考虑,选择一定可提供低电压的电池组,将其与变压器连接,即可获得高电压,同时安装控制电路确保安全。
所述的变压器是指利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。可以选择耦合电感实现变压器的功能。
飞行器飞行最重要的限制参数是推进系统的品质因数,即推力功率比,它是静态推进效率的量度,传统直升机旋翼的推力/功率比为50N KW
-1,推力功率比越高,推进效果越好,为保证安全起见,推力功率比应当高于50N KW
-1。
根据两高电极之间的高斯定律可得:
式中,E代表电场强度,x代表两电极间的距离,V代表两电极间的电势,ρ代表电荷密度,ε代表介电常数。
根据流体动量方程:
式中E代表电场强度,x代表两电极间的距离,ρ代表电荷密度,P代表飞碟受到的压力。
同时由于电流密度j=ρ(μE+v
0),其中μ为离子迁移率,v
0为初始漂移速度。
可推出此飞碟推力功率比公式如下:
上式中,T是飞碟推力,P是离子发生器的功率,ρ代表电荷密度,
是平均电场强度, A是离子流运动过程中接触到的面积,L是电极间距离,V代表两电极间的电势,j为电流密度,μ为离子迁移率,v0为粒子初始速度;
假定初始速度为0,则该公式简化为
理想条件下正、负极性重离子迁移率分别为1.5×10
-2cm
2/(V·s),2.0×10
-2cm
2/(V·s);正、负极性轻离子迁移率分别为1.5cm
2/(V·s),2.0cm
2/(V·s)。为保证
成立,
应保证小于100KV/m.
根据飞碟升力与上升速度公式:
P’=F×V’ (7)
式中,F为飞碟升力,V’为上升飞碟速度,P’为飞碟顶部和底部的一对离子发生器的总功率,P’可由选择的离子发生器得到。
根据需求的飞碟速度,可得到相应的飞碟升力,进而得到飞碟的最大重力,根据飞碟的重力可得到水平方向的离子发生器的数量。
假定离子发生器电极距离为1m,则两电极之间电势小于100KV。通常若要使得空气发生电离,电极电压应当上万伏。目前市面以15KV离子发生器为例,每个质量为10kg,功率最高可达100w,
根据:
G=mg (8)
式中,G为重力,g为重力加速度取10N/kg,m为飞碟质量,为使该飞碟能够起飞,其离子发生器总重力应当小于2000N,此时其数量应当小于20个,同时由于线圈及飞碟外壳存在一定重量,离子发生器数量减至16个,其中,飞碟竖直方向需要两个,水平方向均匀分布数量应少于14个,为保证各个方向均可调节,水平方向离子发生器至少为2对。
随着技术的发展,离子发生器的质量不断减轻,可以逐步提高飞机飞行速度并减小飞机尺寸。
如图5所示,本发明中所述的各单元之间、各模块之间的数据交互方式可以是无线通信方式、有线通信方式中的任意一种或两种方式的结合。所述的无线通信方式可以是红外线通信、蓝牙通信、wifi通信、3/4G网络、zigbee通信、GSM、CDMA中的任意一种或任意多种。
如图6所示,一种基于电磁场提供动力的无旋翼飞碟的飞行方法,该方法包括以下步骤:
(1)用户通过地面的控制单元中的路径规划模块生成规划好的路径,并将该路径作为飞 行任务指令发送到分析单元;
(2)分析单元处理任务指令后发送到执行单元,通过执行单元控制各个离子发生器电极的通断电,以及通电线圈的电流大小和通断,使飞碟按照任务指令飞行;
(3)分析单元通过数据采集模块实时采集飞碟飞行状态信息,并将信息传输回到地面的控制单元中,判断飞碟是否偏离了规划的路径,若偏离了规划的路径,则重新发送飞行任务指令到分析单元。所述的任务指令是指飞碟在指定时间内按照控制单元规划的路径到达指定地点,可以通过手机或笔记本电脑等控制单元进行编程。
实施例1:
下面以飞碟深夜送货或外卖为例具体说明一种基于电磁场提供动力的无旋翼飞碟。该飞碟可保证深夜送货不会扰民,且在城市中障碍物较多的情况下安全完成货物配送。
具体过程如下:
步骤1:首先客户通过手机平台下单,将并所需货物信息及送货地址发送至后台,后台完成配货,并在控制单元中输入送货地址信息。
步骤2:控制单元通过手机或笔记本电脑等控制单元进行编程,发出飞行任务指令,任务指令包括送货地址及到达时间;
步骤3:将此任务指令程序通过无线通信传输技术发送至飞碟机载的分析单元,分析单元处理任务指令后发送到执行单元,通过执行单元控制各个离子发生器电极的通断电,以及通电线圈的电流大小和通断,使飞碟按照任务指令飞行。
所述的发送任务指令步骤如下:
(1)控制单元通过无线输出模块,可选择WiFi、蓝牙、zigbee等无线通信设备中的任意一种或任意多种,将数据发送给飞碟分析单元。
(2)飞碟分析单元将数据发送至飞碟机载中央处理器。
(3)飞碟机载中央处理器对任务数据进行处理后,通过有线或无线通信传输方式将指令传送至飞碟执行单元。
步骤4:执行单元改变飞碟飞行状态,执行飞行任务;
飞碟改变飞行状态步骤如下:
(1)改变飞碟升力模块离子发生器电机所通电压的大小,控制飞碟竖直方向带电粒子数量及运动速度,改变通电线圈电流变化,飞碟飞行升力模块可生成旋转离子流,飞碟上方气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力产生升力,通过控制带电粒子的运动进而控制飞碟竖直方向运动速度。
(2)改变水平面动力模块离子发生器电机所通电压的大小以及各电极通断,离子高速运 动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力为飞碟提供在水平方向的动力。控制飞碟水平面各方向带电粒子数量及运动速度,进而控制飞碟水平面方向运动速度,同时可在飞碟无需旋转时平衡旋转离子流产生的反作用力。
步骤5:分析单元通过所述的数据采集模块实时采集飞碟当前飞行状态信息,并将信息传输回到地面的控制单元中;
步骤6:控制单元对分析单元传输回来的数据进行分析处理,通过判断模块判断当前飞碟是否按照任务指定飞行;
判断过程具体步骤如下:
(1)若所述的判断模块判断飞碟按照路径规划模块规划的路径运动,则当前飞碟实时正确完成飞行任务,无需进行操作。
(2)若所述的判断模块判断飞碟偏离路径规划模块规划的路径运动,则重新发送飞行任务指令到分析单元。
步骤7:飞碟到达目的地,向控制单元传送已到达的信息,控制单元通过后台提醒客户取货,取货完成后,飞碟返程,回到出发点。
实施例2:
农作物幼苗出土后,经常有缺苗断垄现象时,用移苗或补种的方法把苗补全的过程称为补苗,但是使用传统无人机进行补苗若无人机飞行较低时可能会损坏其他作物,以及无人机桨叶,若无人机飞行过高则种子无法精准放入指定位置,本发明中的无人机可飞行较低准确播种,并不会伤害其他幼苗。
具体步骤如下:
步骤1,首先通过航拍无人机航拍到的图片确定所需补苗位置。
步骤2,控制单元通过手机或笔记本电脑等控制单元进行编程,发出飞行任务指令,飞行任务指令包括所有补苗位置;
步骤3,将此任务指令程序通过无线通信传输技术发送至飞碟机载的分析单元,分析单元处理任务指令后发送到执行单元,通过执行单元控制各个离子发生器电极的通断电,以及通电线圈的电流大小和通断,使飞碟按照任务指令飞行。
所述的发送任务指令步骤如下:
(1)控制单元通过无线输出模块,可选择WiFi、蓝牙、zigbee等无线通信设备中的任意一种或任意多种,将数据发送给飞碟分析单元。
(2)飞碟分析单元将数据发送至飞碟机载中央处理器。
(3)飞碟机载中央处理器对任务数据进行处理后,通过有线或无线通信传输方式将指令 传送至飞碟执行单元。
步骤4:执行单元改变飞碟飞行状态,执行飞行任务;
飞碟改变飞行状态步骤如下:
(1)改变飞碟升力模块离子发生器电机所通电压的大小,控制飞碟竖直方向带电粒子数量及运动速度,改变通电线圈电流变化,飞碟飞行升力模块可生成旋转离子流,飞碟上方气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力产生升力。通过控制带电粒子运动进而控制飞碟竖直方向运动速度。
(2)通过改变水平面动力模块离子发生器电机所通电压的大小以及各电极通断,离子高速运动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,反作用力为飞碟提供在水平方向的动力。控制飞碟水平面各方向带电粒子数量及运动速度,进而控制飞碟水平面方向运动速度,同时可在飞碟无需旋转时平衡旋转离子流产生的反作用力。
步骤5:分析单元通过所述的数据采集模块实时采集飞碟飞行状态信息,并将信息传输回到地面的控制单元中;
步骤6;控制单元对分析单元传输回来的数据进行分析处理,通过判断模块判断当前飞碟是否按照任务指定飞行;
判断过程具体步骤如下:
(1)若所述的判断模块判断飞碟按照路径规划模块规划的路径运动,则当前飞碟实时正确完成飞行任务,无需进行操作。
(2)若所述的判断模块判断飞碟偏离路径规划模块规划的路径运动,则重新发送飞行任务指令到分析单元。
步骤7:飞碟依次完成补苗后,回到出发点。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
Claims (10)
- 一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述飞碟包括:控制单元、分析单元和执行单元;所述控制单元设置在地面,用于发送飞行任务信息并接收飞碟当前飞行状态信息;所述分析单元集成在飞碟上,用于接收控制单元发送的飞行任务信息,处理后发送到执行单元,同时分析飞碟飞行状态信息,将飞碟当前飞行状态信息发送回控制单元。所述执行单元用于控制飞碟的飞行状态。执行单元包括飞碟飞行升力模块和水平面动力模块;所述飞碟飞行升力模块包括安装于飞碟顶部和底部的一对离子发生器以及安装在飞碟内部的通电线圈,飞碟底部的离子发生器位于通电线圈内部,飞碟顶部的离子发生器位于通电线圈上部;飞碟飞行升力模块可生成旋转离子流,飞碟上方气压低于周围气压,出现负压区甚至真空,产生升力,用于控制飞碟在竖直方向飞行的速度及稳定性;所述水平面动力模块,包括均匀安装在飞碟边缘的成对的离子发生器。离子发生器电离空气产生离子流,离子高速运动处气压低于周围气压,出现负压区甚至真空,提供飞碟在水平方向的动力;水平面动力模块用于控制飞碟在水平面上的各个方向按照指定速度飞行;飞碟推力功率比的公式如下:式中,T是飞碟推力,P是离子发生器的功率,ρ代表电荷密度, 是平均电场强度,A是离子流运动过程中接触到的面积,L是两离子发生器电极间距离,V代表两离子发生器电极间的电势,j为电流密度,μ为离子迁移率,v 0为粒子初始速度;P’=F×V’式中,F为飞碟升力,V’为上升飞碟速度,P’为飞碟顶部和底部的一对离子发生器的总功率,P’可由选择的离子发生器得到。根据需求的飞碟速度,可得到相应的飞碟升力,进而得到飞碟的最大重力,根据飞碟的重力可得到水平方向的离子发生器的数量。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述水平面动力模块中的离子发生器至少为两对。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述的离子发生器包括两个电压不同的电极,两个电极均可电离空气分子使其成为带电粒子,两个电极之间存在电场,在电场力的作用下,空气中带电粒子由低电压电极侧向高电压电极侧运动,产生离子流,离子流高速运动处气压较低,出现负压区甚至真空,空气由正常气压区向负压区或真空区运动,将对飞碟产生反作用力,为飞碟提供动力。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述的飞碟飞行状态信息是指飞碟在竖直方向的飞行速度大小及方向和飞碟在水平面中飞行的速度大小及方向,以及飞碟目前所在位置。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述的控制单元为移动智能终端,包括:输入模块、路径规划模块、输出模块、接收模块和判断模块;所述的输入模块用于输入用户的发出飞行任务信息;所述路径规划模块用于对飞碟起点与终点之间进行路径规划;所述输出模块用于输出飞行任务信息,选择无线输出,可选择WiFi、蓝牙、zigbee等无线通信设备中的任意一种或任意多种。所述飞行任务信息为在指定时间内,按照路径规划模块规划好的路径到达某一指定位置;所述接收模块用于接收分析单元返回的飞碟当前飞行状态信息,包括飞碟当前的飞行速度及位置信息;所述判断模块用于判断分析单元返回的飞碟当前飞行状态信息是否正确,即判断是否偏离规划的路径。
- 根据权利要求5所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述路径规划是指按照一定策略连接起点位置和终点位置的序列点或曲线。具体方法如下:(1)通过GPS定位系统或其他定位系统获取起点与目标点的位置与包括起点与目标点在内的一定范围的3D地图;(2)将步骤(1)获得的信息在控制单元内通过路径规划模块进行处理,得到起点与终点之间可行飞行路径。
- 根据权利要求5所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述判断模块如下判断飞碟当前飞行状态信息是否正确的具体过程如下:(1)控制单元对分析单元传输回来的飞碟当前飞行状态信息进行整合,通过判断模块判断当前飞碟是否按照规划的路径飞行;(2)若飞碟偏离了规划的路径,则重新将规划的路径发送至分析单元。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,所述的分析单元包括:机载中央处理器、数据采集模块和信号接口模块;所述机载中央处理器用于接收到来自控制单元的飞行任务信息,将飞行任务信息处理后发送给执行单元,根据飞行任务信息选择需要的离子发生器进行工作,进而控制飞碟飞行速度和方向。并将数据采集模块采集到的飞碟当前飞行状态信息传输回控制单元中;所述数据采集模块包含陀螺仪(即角速度计,用于飞行姿态感知)、加速度计、地磁感应、气压传感器(用于粗略计算悬停高度)、超声波传感器(用于低空高度精确控制及避障)、光流传感器(用于精确测量悬停水平位置)、GPS模块和/或北斗定位系统等其他粗略定位模块(用于粗略定位飞碟水平位置),用于采集飞碟飞行状态所有相关数据。
- 根据权利要求1所述的一种基于电磁场提供动力的无旋翼飞碟,其特征在于,各单元之间、各模块之间的数据交互方式可以是无线通信方式、有线通信方式中的任意一种或两种方式的结合。所述的无线通信方式可以是红外线通信、蓝牙通信、wifi通信、3/4G网络、zigbee通信、GSM、CDMA中的任意一种或任意多种。
- 一种基于电磁场提供动力的无旋翼飞碟的飞行方法,其特征在于,该方法包括以下步骤:(1)用户通过地面的控制单元中的路径规划模块生成规划好的路径,并将该路径作为飞行任务指令发送到分析单元;(2)分析单元处理任务指令后发送到执行单元,通过执行单元控制各个离子发生器电极的通断电,以及通电线圈的电流大小和通断,使飞碟按照任务指令飞行;(3)分析单元通过数据采集模块实时采集飞碟飞行状态信息,并将信息传输回到地面的控制单元中,判断飞碟是否偏离了规划的路径,若偏离了规划的路径,则重新发送飞行任务指令到分析单元。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022503008A JP7270315B2 (ja) | 2019-12-31 | 2020-06-02 | 電磁界による動力供給のロータ無しのフライディスク及びその飛行方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911423997.0A CN111114774B (zh) | 2019-12-31 | 2019-12-31 | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 |
CN201911423997.0 | 2019-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021135066A1 true WO2021135066A1 (zh) | 2021-07-08 |
Family
ID=70507140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/093826 WO2021135066A1 (zh) | 2019-12-31 | 2020-06-02 | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7270315B2 (zh) |
CN (1) | CN111114774B (zh) |
WO (1) | WO2021135066A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111114774B (zh) * | 2019-12-31 | 2021-10-22 | 浙江大学 | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089763A1 (en) * | 2002-11-12 | 2004-05-13 | Redmond Scott D. | Personal flight vehicle and system |
CN1836974A (zh) * | 2005-03-23 | 2006-09-27 | 夏烆光 | 离子风航空飞行器 |
CN101427436A (zh) * | 2004-05-24 | 2009-05-06 | Sdi技术信托公司 | 用于通过将受控等离子体环境引入到非对称电容器中而生成力的系统、装置和方法 |
CN110228583A (zh) * | 2019-05-23 | 2019-09-13 | 中国科学院合肥物质科学研究院 | 一种离子风固态飞行器及其控制方法 |
CN111114774A (zh) * | 2019-12-31 | 2020-05-08 | 浙江大学 | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2054014U (zh) * | 1989-02-21 | 1990-03-07 | 董长军 | 一种圆形碟状无翼飞行器 |
DE4000344A1 (de) * | 1990-01-08 | 1991-07-11 | Harald Teinzer | Fluegelrand-duesen-vsl-flugzeug |
FR2775949B1 (fr) * | 1998-03-11 | 2000-04-21 | Centre Nat Etd Spatiales | Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique |
CN1269308A (zh) * | 2000-03-21 | 2000-10-11 | 贾龙 | 一种飞行器的升空和飞行方法及其装置 |
FR2810296B3 (fr) * | 2000-06-16 | 2002-04-19 | Andre Loisseau | La propulsion cyclonale |
US20050269996A1 (en) * | 2004-05-24 | 2005-12-08 | Brennan Robert C | System, apparatus, and method for generating force by introducing a controlled plasma environment into an asymmetric capacitor |
CN101301931A (zh) * | 2008-04-28 | 2008-11-12 | 全力 | 复合涡流的制造方法、制造设备及复合涡流飞行器 |
FR2950115B1 (fr) * | 2009-09-17 | 2012-11-16 | Snecma | Propulseur plasmique a effet hall |
CN201647124U (zh) * | 2009-10-30 | 2010-11-24 | 北京工业大学 | 一种磁悬浮电动力旋翼飞碟 |
CA2831309C (en) * | 2012-12-04 | 2017-05-30 | The Boeing Company | Methods and apparatus for performing propulsion operations using electric propulsion systems |
EP3265885A4 (en) * | 2015-03-03 | 2018-08-29 | Prenav Inc. | Scanning environments and tracking unmanned aerial vehicles |
US10332724B2 (en) * | 2017-03-17 | 2019-06-25 | Cu Aerospace, Llc | Cyclotronic plasma actuator with arc-magnet for active flow control |
EP3398852A1 (en) * | 2017-05-01 | 2018-11-07 | Ecotech Engines AG | Method and device for creating a lifting force on a wing-disc transport apparatus |
CN110568862A (zh) * | 2019-09-29 | 2019-12-13 | 苏州浪潮智能科技有限公司 | 一种无人机飞行路径规划方法、装置及相关设备 |
-
2019
- 2019-12-31 CN CN201911423997.0A patent/CN111114774B/zh active Active
-
2020
- 2020-06-02 JP JP2022503008A patent/JP7270315B2/ja active Active
- 2020-06-02 WO PCT/CN2020/093826 patent/WO2021135066A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089763A1 (en) * | 2002-11-12 | 2004-05-13 | Redmond Scott D. | Personal flight vehicle and system |
CN101427436A (zh) * | 2004-05-24 | 2009-05-06 | Sdi技术信托公司 | 用于通过将受控等离子体环境引入到非对称电容器中而生成力的系统、装置和方法 |
CN1836974A (zh) * | 2005-03-23 | 2006-09-27 | 夏烆光 | 离子风航空飞行器 |
CN110228583A (zh) * | 2019-05-23 | 2019-09-13 | 中国科学院合肥物质科学研究院 | 一种离子风固态飞行器及其控制方法 |
CN111114774A (zh) * | 2019-12-31 | 2020-05-08 | 浙江大学 | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7270315B2 (ja) | 2023-05-10 |
CN111114774A (zh) | 2020-05-08 |
CN111114774B (zh) | 2021-10-22 |
JP2022540940A (ja) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chittoor et al. | A review on UAV wireless charging: Fundamentals, applications, charging techniques and standards | |
Lu et al. | Wireless charging techniques for UAVs: A review, reconceptualization, and extension | |
Mulgaonkar et al. | Power and weight considerations in small, agile quadrotors | |
US9550582B2 (en) | Multi-zone battery exchange system | |
CN106786956B (zh) | 群体无人机供电装置 | |
CN105259917A (zh) | 一种无人飞行器安全快速降落装置及方法 | |
Zhu et al. | Aerial refueling: Scheduling wireless energy charging for UAV enabled data collection | |
Liu et al. | Study on UAV parallel planning system for transmission line project acceptance under the background of industry 5.0 | |
KR20160104385A (ko) | 무인항공기 | |
CN112180954B (zh) | 一种基于人工势场的无人机避障方法 | |
WO2021135066A1 (zh) | 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法 | |
CN113031640B (zh) | 一种杆塔的无人机巡检实现方法、装置、终端设备及介质 | |
CN205121348U (zh) | 无人飞行器安全快速降落系统及其遥控设备和无人飞行器 | |
CN104773289A (zh) | 一种基于物联网的微型四旋翼飞行器 | |
JP2018206089A (ja) | 誘導システム、及び、誘導方法 | |
CN204078068U (zh) | 一种超长续航能力的四轴飞行器 | |
WO2021135067A1 (zh) | 一种基于电空气动力学可自适应环境的无桨叶飞行器及其控制方法 | |
Voznesenskii | Automated battery charging system for multi-rotor aerial vehicles | |
CN205581550U (zh) | 微型四旋翼无人机控制装置 | |
CN109624629A (zh) | 基于矢量飞行的爬壁机器人 | |
Grobler | Automated recharging and vision-based improved localisation for a quadrotor UAV | |
KR102393330B1 (ko) | 드론장치 | |
CN113946158A (zh) | 基于无人机组投放震源体的地震波激发系统与方法 | |
Rosales et al. | Simulation Environment for Development of Algorithms for Autonomous Soaring | |
Huang et al. | On the 3D Track Planning for Electric Power Inspection Based on the Improved Ant Colony Optimization and A∗ Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20910870 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022503008 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20910870 Country of ref document: EP Kind code of ref document: A1 |