WO2021134482A1 - Direct compressed activated carbon tablet formulation - Google Patents

Direct compressed activated carbon tablet formulation Download PDF

Info

Publication number
WO2021134482A1
WO2021134482A1 PCT/CN2019/130517 CN2019130517W WO2021134482A1 WO 2021134482 A1 WO2021134482 A1 WO 2021134482A1 CN 2019130517 W CN2019130517 W CN 2019130517W WO 2021134482 A1 WO2021134482 A1 WO 2021134482A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
binder
tablet formulation
enterosorbent
direct compressed
Prior art date
Application number
PCT/CN2019/130517
Other languages
French (fr)
Inventor
Wanding DENG
Misha ZOU
Original Assignee
Fresenius Medical Care Deutschland Gmbh
Fresenius Medical Care R&D (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Medical Care Deutschland Gmbh, Fresenius Medical Care R&D (Shanghai) Co., Ltd. filed Critical Fresenius Medical Care Deutschland Gmbh
Priority to PCT/CN2019/130517 priority Critical patent/WO2021134482A1/en
Publication of WO2021134482A1 publication Critical patent/WO2021134482A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system

Definitions

  • the present invention relates to a direct compressed activated carbon tablet formulation, its method of manufacture and the use of this tablets in the treatment of chronic kidney failure.
  • a patient suffering from end stage renal failure receives a hemodialysis or peritoneal dialysis treatment to remove excess water and water-soluble toxins like creatinine and urea.
  • Lipophilic toxins are difficult to remove by dialysis because these toxins are adsorbed on large proteins like albumin.
  • Precursors of these uremic retention solutes are generated in the patient’s intestinal flora and resorbed in the gut. Examples of such precursors are phenol, p-cresol, and indole.
  • Activated carbon granules are taken to adsorb lipophilic toxins.
  • One commercially available activated carbon product is sold as granules in a stickpack under the trademark Kremezin.
  • a typical daily dosis of activated carbon of a kidney disease patient is 6 grams.
  • the amount of water to take is limited. Many patients cannot take granules without taking in a large quantity of water to avoid any residue of the fine granules in the oral cavity. Likewise, many patients cannot take capsules without taking in a large quantity of water due to the large capsule volume.
  • the patient must take further medications like, e.g., phosphate and potassium binders to bind ions which are taken with the food.
  • Activated carbon granules are insoluble in water and it does not swell upon wetting with water. They have a high hardness and a non-compaction property. Due to the specific properties of activated carbon, general tableting methods, such as wet granule compression, dry granule compression, or direct powder compression cannot be applied for formulation of active carbon granules into tablets.
  • US 2013/344147A discloses a tablet-type adsorbent composition for oral administration using an excipient for tablet formulation with thin film forming ability.
  • excipient for tablet formulation means one which form a thin film when 0.5ml of a water solution or water dispersions of the excipient for tablet formulation of 1%by weight is put on a flat surface made of fluorine resin and heat-dried.
  • JP20068602 teaches that the spherical form of the activated carbon is destroyed by a tablet formation by compression, therefore, the tablet formation of the spherical activated carbons is impossible.
  • a disadvantage of the known method for tableting activated carbon is a decrease in the adsorption capacity, and consequently, the active surface due to blocking by the filler (starch) of a part of the sorption space. This leads to a decrease in the efficiency of the enterosorbent formulation.
  • Yet another object of the present invention is to provide a preparation method to prepare a tablet formulation without destroying the spherical form of the activated carbon.
  • the activated carbon tablet formulation is a direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of spherical granules.
  • Spherical activated carbon granules are obtainable from pitch or a polymer.
  • the granules are obtained from pitch.
  • the binder is selected from microcrystalline cellulose, lactose, starch or combination thereof.
  • binder is dry microcrystalline cellulose powder.
  • the enterosorbent tablets of the present invention weight ratio of binder to activated carbon granules can be varied in a broad range.
  • the weight ratio has an influence on the hardness of the tablets obtained.
  • the binder content is at least 33%by weight. In a preferred embodiment of the present invention the binder content is at least 40%by weight.
  • the activated carbon tablet formulation is a direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of granules obtained from pitch or a polymer and wherein the binder is dry powdered microcrystalline cellulose powder and wherein the binder content is at least 40%by weight.
  • the weight ratio of activated carbon to binder is 1: 1.
  • the compressed tablet is coated with a film coating material.
  • film bases include cellulose derivatives such as hydroxypropyl methyl cellulose, hydroxypropyl cellulose, vinyl polymers such as polyvinyl alcohol (PVA) based resin, polyvinyl pyrrolidone (PVP) , and acrylic polymers such as methacrylic acid copolymer.
  • components that may optionally be added to the coating layer other than the film base and the specific plasticizer include, for example, coloring agents such as titanium oxide, anti-sticking agents such as talc, brighteners such as anhydrous silicic acid and carnauba wax. Additionally, a plasticizer may be added as appropriate when necessary.
  • the present invention also relates to a method of producing enterosorbent tablets.
  • the method comprises the steps of
  • step b tableting the mixture obtained in step a.
  • the method comprises the step of
  • step b film coating the tablets obtained in step b.
  • Example 1 Tablet formulation with microcrystalline cellulose binder
  • Figure1 shows the appearance of tablets prepared in example #1.
  • the adsorption rate test of the tablet was performed using a dissolution tester.
  • the dissolution fluid was prepared by dissolving 1.7g potassium dihydrogen phosphate and 1.775g disodium hydrogen phosphate in 1000ml water.
  • a test liquid was prepared by dissolving 0.1g of indole in 1 L of dissolution fluid.
  • the test liquid was heated to 41 °C and degassed by filtering via 0.45 ⁇ m membrane filter.
  • 900 mL of the degassed test liquid was charged into a vessel of the dissolution tester and was allowed to cool down to 37 °C.
  • a tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was stirred at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected.
  • the indole concentration of the sample solution was quantified using UV spectrophotometer at 279nm.
  • indole relative adsorption rate expressed as mg/g.
  • a test liquid was prepared by dissolving 0.1 g of indoxyl sulfate with 1 L of dissolution fluid.
  • the test liquid was heated to 41 °C and degassed by filtering via 0.45 ⁇ m membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 °C.
  • a tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected.
  • the indoxyl sulfate concentration of the sample solution was quantified using UV spectrophotometer at 279 nm.
  • a test liquid was prepared by dissolving 0.1 g of indole acetic acid with 1 L of dissolution fluid.
  • the test liquid was heated to 41 °C and degassed by filtering via 0.45 ⁇ m membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 °C.
  • a tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected.
  • An indole acetic acid concentration of the sample solution was quantified using UV spectrophotometer at 279nm. The adsorbed amount of indole acetic acid is shown in Fig. 4 as the “indole acetic acid relative adsorption rate” expressed as mg/g.
  • a test liquid was prepared by dissolving 0.1g of tryptophan with 1 L of dissolution fluid.
  • the test liquid was heated to 41 °C and degassed by filtering via 0.45 ⁇ m membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 °C.
  • a tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected.
  • An indole acetic acid concentration of the sample solution was quantified using UV spectrophotometer at 279nm. The adsorbed amount of tryptophan is shown in Fig. 5 as the “tryptophan relative adsorption rate” expressed as mg/g.
  • a test liquid was prepared by dissolving 0.1g of indole and 10g pancreatin with 1 L of dissolution fluid.
  • the test liquid was heated to 41 °C and degassed by filtering via 0.45 ⁇ m membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 °C.
  • a tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. Total protein content was determined by BCA kit. The adsorbed amount of pancreatin showed in Fig. 6 as the “pancreatin relative adsorption rate” in %.
  • the enterosorbent tablets of the present invention showed a higher adsorption rate and a greater adsorption capacity for indole, indoxyl sulfate, indole acetic acid, and tryptophan compared to original drug. Meanwhile generic showed comparable and less pancreatin adsorption compared with original drug.

Abstract

The present disclosure discloses a direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of granules obtained from pitch or a polymer and wherein the binder is selected from microcrystalline cellulose, lactose, starch or combinations thereof and wherein the binder content is at least 33 % by weight. Also disclosed is a method of producing enterosorbent tablets.

Description

Direct compressed activated carbon tablet formulation Technical field
The present invention relates to a direct compressed activated carbon tablet formulation, its method of manufacture and the use of this tablets in the treatment of chronic kidney failure.
Background art
A patient suffering from end stage renal failure receives a hemodialysis or peritoneal dialysis treatment to remove excess water and water-soluble toxins like creatinine and urea. Lipophilic toxins, however, are difficult to remove by dialysis because these toxins are adsorbed on large proteins like albumin. Precursors of these uremic retention solutes are generated in the patient’s intestinal flora and resorbed in the gut. Examples of such precursors are phenol, p-cresol, and indole. Activated carbon granules are taken to adsorb lipophilic toxins. One commercially available activated carbon product is sold as granules in a stickpack under the trademark Kremezin. A typical daily dosis of activated carbon of a kidney disease patient is 6 grams. However, for patients suffering from a kidney disease or renal failure, the amount of water to take is limited. Many patients cannot take granules without taking in a large quantity of water to avoid any residue of the fine granules in the oral cavity. Likewise, many patients cannot take capsules without taking in a large quantity of water due to the large capsule volume. In addition, the patient must take further medications like, e.g., phosphate and potassium binders to bind ions which are taken with the food.
Activated carbon granules are insoluble in water and it does not swell upon wetting with water. They have a high hardness and a non-compaction property. Due to the specific properties of activated carbon, general tableting methods, such as wet granule compression, dry granule compression, or direct powder compression cannot be applied for formulation of active carbon granules into tablets.
US 2013/344147A discloses a tablet-type adsorbent composition for oral administration using an excipient for tablet formulation with thin film forming ability. The term “excipient for tablet formulation” means one which form a thin film when 0.5ml of a water solution or water dispersions of the excipient for tablet formulation of 1%by weight is put on a flat surface made of fluorine resin and heat-dried.
JP20068602 teaches that the spherical form of the activated carbon is destroyed by a tablet formation by compression, therefore, the tablet formation of the spherical activated carbons is impossible.
A disadvantage of the known method for tableting activated carbon is a decrease in the adsorption capacity, and consequently, the active surface due to blocking by the filler (starch) of a part of the sorption space. This leads to a decrease in the efficiency of the enterosorbent formulation.
Description of the invention
In view of the problems existing in the prior art, an object of the invention is to provide an activated carbon tablet formulation with an improved toxin adsorption compare to original tablet. Such formulations are also called enterosorbent tablet formulations. Yet another object of the present invention is to provide a tablet adsorbent for oral administration which can avoid any residue of the fine granules in the oral cavity, reduce the administered volume thereof compared to capsules, and can be easily taken.
Yet another object of the present invention is to provide a preparation method to prepare a tablet formulation without destroying the spherical form of the activated carbon.
In one embodiment of the present invention the activated carbon tablet formulation is a direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of spherical granules. Spherical activated carbon granules are obtainable from pitch or a polymer. Preferably the granules are obtained from pitch.
The binder is selected from microcrystalline cellulose, lactose, starch or combination thereof. In a preferred embodiment binder is dry microcrystalline cellulose powder.
The enterosorbent tablets of the present invention weight ratio of binder to activated carbon granules can be varied in a broad range. The weight ratio has an influence on the hardness of the tablets obtained. The more binder the formulation contains harder the tablets. In one embodiment of the present invention the binder content is at least 33%by weight. In a preferred embodiment of the present invention the binder content is at least 40%by weight.
In one embodiment of the present invention the activated carbon tablet formulation is a direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of granules obtained from pitch or a polymer and wherein the binder is dry powdered microcrystalline cellulose powder and wherein the binder content is at least 40%by weight. In a preferred embodiment the weight ratio of activated carbon to binder is 1: 1.
In one embodiment of the present invention, the compressed tablet is coated with a film coating material. Examples of film bases include cellulose derivatives such as hydroxypropyl methyl cellulose, hydroxypropyl cellulose, vinyl polymers such as polyvinyl alcohol (PVA) based resin, polyvinyl pyrrolidone (PVP) , and acrylic polymers such as methacrylic acid copolymer.
Examples of components that may optionally be added to the coating layer other than the film base and the specific plasticizer include, for example, coloring agents such as titanium oxide, anti-sticking agents such as talc, brighteners such as anhydrous silicic acid and carnauba wax. Additionally, a plasticizer may be added as appropriate when necessary.
The present invention also relates to a method of producing enterosorbent tablets. In one embodiment the method comprises the steps of
a. dry mixing activated carbon granules and powdered microcrystalline cellulose,
b. tableting the mixture obtained in step a.
In one embodiment the method comprises the step of
c. film coating the tablets obtained in step b.
Examples
Examples Activated carbon tablet formulation and preparation method thereof
Example 1: Tablet formulation with microcrystalline cellulose binder
Figure PCTCN2019130517-appb-000001
Figure1 shows the appearance of tablets prepared in example #1.
Example 3: Toxin adsorption experiment
1. Testing drug
Reference drug: Kremezin Tablet, strength 500mg, Kureha Corporation (Original) Test drug: Example#1 tablet (Generic) , strength 500mg
2. Experiment of absorption rate
The adsorption rate test of the tablet was performed using a dissolution tester. The dissolution fluid was prepared by dissolving 1.7g potassium dihydrogen phosphate and 1.775g disodium hydrogen phosphate in 1000ml water.
2.1 Absorption rate of indole
A test liquid was prepared by dissolving 0.1g of indole in 1 L of dissolution fluid. The test liquid was heated to 41 ℃ and degassed by filtering via 0.45 μm membrane filter. 900 mL of the degassed test liquid was charged into a vessel of the dissolution tester and was allowed to cool down to 37 ℃. A tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was stirred at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. The indole concentration of the sample solution was quantified using UV spectrophotometer at 279nm.
The adsorbed amount of indole is shown in Fig. 2 as the “indole relative adsorption rate” expressed as mg/g.
2.2 Absorption rate of indoxyl sulfate
A test liquid was prepared by dissolving 0.1 g of indoxyl sulfate with 1 L of dissolution fluid. The test liquid was heated to 41 ℃ and degassed by filtering via 0.45 μm membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 ℃. A tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. The indoxyl sulfate concentration of the sample solution was quantified using UV spectrophotometer at 279 nm.
In Fig. 3, the adsorbed amount of indoxyl sulfate is shown by the “indoxyl sulfate relative adsorption rate” expressed as mg/g.
2.3 Absorption rate of indole acetic acid
A test liquid was prepared by dissolving 0.1 g of indole acetic acid with 1 L of dissolution fluid. The test liquid was heated to 41 ℃ and degassed by filtering via 0.45 μm membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 ℃. A tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. An indole acetic acid concentration of the sample solution was quantified  using UV spectrophotometer at 279nm. The adsorbed amount of indole acetic acid is shown in Fig. 4 as the “indole acetic acid relative adsorption rate” expressed as mg/g.
2.4 Absorption rate of tryptophan
A test liquid was prepared by dissolving 0.1g of tryptophan with 1 L of dissolution fluid. The test liquid was heated to 41 ℃ and degassed by filtering via 0.45 μm membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 ℃. A tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. An indole acetic acid concentration of the sample solution was quantified using UV spectrophotometer at 279nm. The adsorbed amount of tryptophan is shown in Fig. 5 as the “tryptophan relative adsorption rate” expressed as mg/g.
2.5 Absorption rate of Pancreatin
A test liquid was prepared by dissolving 0.1g of indole and 10g pancreatin with 1 L of dissolution fluid. The test liquid was heated to 41 ℃ and degassed by filtering via 0.45 μm membrane filter. 900mL of the degassed test liquid was charged to a vessel of the dissolution tester and was allowed to cool down to 37 ℃. A tablet containing 500 mg of the activated carbon was added to the vessel of the dissolution tester and was rotated at 100 rpm. After 0.5 h, 1 h, 2 h, 4 h and 6 h, 10mL of the test liquid was collected. Total protein content was determined by BCA kit. The adsorbed amount of pancreatin showed in Fig. 6 as the “pancreatin relative adsorption rate” in %.
3 Result
In the adsorption experiments of Example 3, the enterosorbent tablets of the present invention showed a higher adsorption rate and a greater adsorption capacity for indole, indoxyl sulfate, indole acetic acid, and tryptophan compared to original drug. Meanwhile generic showed comparable and less pancreatin adsorption compared with original drug.

Claims (8)

  1. Direct compressed enterosorbent tablet formulation comprising activated carbon and a binder, wherein the activated carbon is in the form of granules obtained from pitch or a polymer and wherein the binder is selected from microcrystalline cellulose, lactose, starch or combinations thereof and wherein the binder content is at least 33 %by weight.
  2. Direct compressed enterosorbent tablet formulation of claim 1, wherein the binder content is at least 40 %by weight.
  3. Direct compressed enterosorbent tablet formulation of claim 1, wherein the weight ratio of activated carbon to binder is 1: 1.
  4. Direct compressed enterosorbent tablet formulation of claim 1, wherein the binder content is dry powdered microcrystalline cellulose.
  5. Direct compressed enterosorbent tablet formulation of claim 1 or 2, wherein the tablets are coated with a film coating material.
  6. Method of producing enterosorbent tablets according to any of the previous claims comprising the steps of
    a. dry mixing activated carbon granules and a binder selected from microcrystalline cellulose, lactose, starch or combinations thereof,
    b. tableting the mixture obtained.
  7. Method of claim 6, the weight ratio of activated carbon to binder is 1: 1 and the binder is dry powdered microcrystalline cellulose.
  8. Method of claim 6 or 7 further comprising the step of
    c. Film coating the tablets obtained in step b.
PCT/CN2019/130517 2019-12-31 2019-12-31 Direct compressed activated carbon tablet formulation WO2021134482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130517 WO2021134482A1 (en) 2019-12-31 2019-12-31 Direct compressed activated carbon tablet formulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130517 WO2021134482A1 (en) 2019-12-31 2019-12-31 Direct compressed activated carbon tablet formulation

Publications (1)

Publication Number Publication Date
WO2021134482A1 true WO2021134482A1 (en) 2021-07-08

Family

ID=76687493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130517 WO2021134482A1 (en) 2019-12-31 2019-12-31 Direct compressed activated carbon tablet formulation

Country Status (1)

Country Link
WO (1) WO2021134482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114195A (en) * 1994-05-27 1996-01-03 吴羽化学工业株式会社 Pharmaceutical composition for treating stomaperipheral inflammation diseases
CN1406587A (en) * 2001-09-13 2003-04-02 陈德才 Use of activated carbon in oral medicinal preparation for hyperthyroidism
RU2228186C1 (en) * 2002-11-13 2004-05-10 Фотеев Владимир Геннадьевич Method for making enterosorbent tablets
JP2005187405A (en) * 2003-12-25 2005-07-14 Lion Corp Uric acid value inhibitor and purine body adsorbent
CN103491949A (en) * 2011-03-04 2014-01-01 株式会社吴羽 Tablet-type composition for oral administration and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114195A (en) * 1994-05-27 1996-01-03 吴羽化学工业株式会社 Pharmaceutical composition for treating stomaperipheral inflammation diseases
CN1406587A (en) * 2001-09-13 2003-04-02 陈德才 Use of activated carbon in oral medicinal preparation for hyperthyroidism
RU2228186C1 (en) * 2002-11-13 2004-05-10 Фотеев Владимир Геннадьевич Method for making enterosorbent tablets
JP2005187405A (en) * 2003-12-25 2005-07-14 Lion Corp Uric acid value inhibitor and purine body adsorbent
CN103491949A (en) * 2011-03-04 2014-01-01 株式会社吴羽 Tablet-type composition for oral administration and method for producing same

Similar Documents

Publication Publication Date Title
JP5701971B2 (en) Tablet-type composition for oral administration and method for producing the same
JP5681156B2 (en) Phosphate-binding polymer formulation
JP3611456B2 (en) Theophylline sustained release tablets
KR101665968B1 (en) Ferric citrate dosage forms
TWI319985B (en) Adsorbent for oral administration, agent for treating or preventing renal disease, and agent for treating or preventing liver disease
JP5442459B2 (en) Salt of 8-[{1- (3,5-bis- (trifluoromethyl) phenyl) -ethoxy} -methyl] -8-phenyl-1,7-diaza-spiro [4.5] decan-2-one Tablet formulations containing and tablets made therefrom
Nirmal et al. Bilayer tablets of atorvastatin calcium and nicotinic acid: formulation and evaluation
US20060115529A1 (en) Fast-melting tablets having taste-masking and sustained release properties
WO1995010264A1 (en) Tablet containing enteric granules
AU2012297569B2 (en) Controlled-release formulation
JP5300262B2 (en) Sustained release formulation for oral administration of metformin
EP1976490A1 (en) Zaltoprofen-containing sustained release tablet and process for the preparation thereof
TW201410267A (en) Extended-release levetiracetam and method of preparation
TWI341732B (en) Adsorbent for oral administration,agent for treating or preventing renal disease, and
WO2021134482A1 (en) Direct compressed activated carbon tablet formulation
EP3236963A1 (en) Method of treatment
WO2010001485A1 (en) Adsorbent for oral administration
KR102054346B1 (en) A controlled-release composition comprising a complex of a clay mineral and alpha adrenergic blocking agent for administration
KR20150112416A (en) Celecoxib solid dispersion and preparation method thereof
JP5347092B2 (en) Andrographis extract formulation
TWI356711B (en) Saquinavir mesylate oral dosage form
WO2010137716A1 (en) Orally disintegrating tablet which contains precipitated calcium carbonate as active ingredient
CN110575443A (en) Doxofylline sustained release tablet and preparation method thereof
CA2796884A1 (en) Improved controlled release oral dosage form
EP3369424A1 (en) Porous material formulation for delivery to large intestine or lower small intestine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958355

Country of ref document: EP

Kind code of ref document: A1