WO2021134274A1 - Camera optical lens - Google Patents

Camera optical lens Download PDF

Info

Publication number
WO2021134274A1
WO2021134274A1 PCT/CN2019/130062 CN2019130062W WO2021134274A1 WO 2021134274 A1 WO2021134274 A1 WO 2021134274A1 CN 2019130062 W CN2019130062 W CN 2019130062W WO 2021134274 A1 WO2021134274 A1 WO 2021134274A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2019/130062
Other languages
French (fr)
Chinese (zh)
Inventor
孙雯
陈佳
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130062 priority Critical patent/WO2021134274A1/en
Publication of WO2021134274A1 publication Critical patent/WO2021134274A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optical lenses, and in particular to a camera optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
  • the purpose of this application is to provide an imaging optical lens that has good optical performance while being ultra-thin and wide-angle. At the same time, since at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the optical system. performance.
  • the embodiments of the present application provide an imaging optical lens.
  • the imaging optical lens sequentially includes from the object side to the image side: a first lens, a second lens, a third lens, and a fourth lens. ,
  • At least one of the first lens to the fifth lens includes a free-form surface, the focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the focal length of the third lens is f3, so The focal length of the fourth lens is f4, and satisfies the following relationship:
  • the on-axis thickness of the second lens is d3, and the on-axis distance from the image side surface of the second lens to the object side surface of the third lens is d4, and the following relationship is satisfied:
  • the on-axis thickness of the fourth lens is d7, and the on-axis distance from the image side surface of the fourth lens to the object side surface of the fifth lens is d8, and the following relationship is satisfied:
  • the curvature radius of the object side surface of the first lens is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side surface of the third lens is R5
  • the radius of curvature of the image side surface of the third lens is R6
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the radius of curvature of the image side surface of the fourth lens is R8
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the aperture F number of the imaging optical lens is Fno, and the following relational expression is satisfied:
  • the total optical length of the imaging optical lens is TTL
  • the diagonal full-field image height of the imaging optical lens is IH, and the following relationship is satisfied:
  • the imaging optical lens according to the present application has good optical performance while being ultra-thin and wide-angle.
  • at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the performance of the optical system, especially It is suitable for mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present application
  • Fig. 2 is a situation in which the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present application.
  • Fig. 4 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present application.
  • Fig. 6 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
  • FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present application.
  • FIG. 8 is a situation in which the RMS spot diameter of the imaging optical lens shown in FIG. 7 is in the first quadrant;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present application.
  • FIG. 10 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 9 is in the first quadrant;
  • FIG. 11 is a schematic diagram of the structure of an imaging optical lens according to a sixth embodiment of the present application.
  • FIG. 12 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 11 is in the first quadrant.
  • FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the application.
  • the imaging optical lens 10 includes five lenses.
  • the imaging optical lens 10 includes a first lens L1, an aperture S1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the first lens L1 has positive refractive power; the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has negative refractive power.
  • the first lens L1 to the fifth lens L5 are made of plastic material. By rationalizing the configuration of the lens material, the lens has good optical performance while being ultra-thin and wide-angle.
  • At least one of the first lens L1 to the fifth lens L5 includes a free-form surface.
  • the free-form surface helps correct aberrations such as astigmatism, curvature of field, and distortion of the wide-angle optical system, and improves optical System performance.
  • the focal length of the imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the following relationship is satisfied: 2.00 ⁇ f1/f ⁇ 6.00, which specifies the ratio of the focal length of the first lens L1 to the total focal length .
  • the spherical aberration and field curvature of the system can be effectively balanced.
  • 2.09 ⁇ f1/f ⁇ 5.86 is satisfied.
  • the focal length of the third lens L3 as f3
  • the focal length of the fourth lens L4 as f4, satisfying the following relationship: -5.50 ⁇ f3/f4 ⁇ -1.00, which specifies the focal length of the third lens L3 and the fourth lens
  • the ratio of the focal length of L4 through the reasonable allocation of focal length, makes the system have better imaging quality and lower sensitivity.
  • -5.43 ⁇ f3/f4 ⁇ -1.02 is satisfied.
  • the imaging optical lens 10 can be made to have good optical performance while being ultra-thin and wide-angle.
  • the on-axis thickness of the second lens L2 is defined as d3, and the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is d4, which satisfies the following relationship: 2.00 ⁇ d3/d4 ⁇ 8.00, which specifies the ratio between the on-axis thickness d3 of the second lens L2 and the on-axis distance d4 from the image side surface of the second lens L2 to the object side surface of the third lens L3.
  • Contribute to lens processing and assembly Preferably, 2.19 ⁇ d3/d4 ⁇ 7.80 is satisfied.
  • the on-axis thickness of the fourth lens L4 is defined as d7, and the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 is d8, which satisfies the following relationship: 2.20 ⁇ d7/d8 ⁇ 21.00, which specifies the ratio between the on-axis thickness d7 of the fourth lens L4 and the on-axis distance d8 from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5.
  • it helps to compress the total optical length and achieve ultra-thin effect.
  • it satisfies 2.21 ⁇ d7/d8 ⁇ 20.82.
  • the on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.13, which is beneficial to realize ultra-thinness.
  • 0.05 ⁇ d1/TTL ⁇ 0.10 is satisfied.
  • the focal length of the second lens L2 is f2, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.65 ⁇ f2/f ⁇ 2.18.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.23 ⁇ (R3+R4)/(R3-R4) ⁇ 1.97, which is specified
  • R3+R4/(R3-R4) ⁇ 1.97 which is specified
  • 0.38 ⁇ (R3+R4)/(R3-R4) ⁇ 1.57 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d3/TTL ⁇ 0.19, which is beneficial to realize ultra-thinness.
  • 0.06 ⁇ d3/TTL ⁇ 0.15 is satisfied.
  • the focal length of the third lens L3 is f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relational expression: -7.59 ⁇ f3/f ⁇ -1.21, through the reasonable distribution of optical power, the system has better High imaging quality and low sensitivity.
  • -4.75 ⁇ f3/f ⁇ -1.51 is satisfied.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -4.61 ⁇ (R5+R6)/(R5-R6) ⁇ 2.09, which stipulates When the shape of the third lens L3 is within the range specified by the conditional expression, the degree of deflection of the light passing through the lens can be reduced, and aberrations can be effectively reduced. Preferably, it satisfies -2.88 ⁇ (R5+R6)/(R5-R6) ⁇ 1.67.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d5/TTL ⁇ 0.07 is satisfied.
  • the focal length of the fourth lens L4 is f4, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.25 ⁇ f4/f ⁇ 3.18, which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system.
  • 0.25 ⁇ f4/f ⁇ 3.18 which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system.
  • 0.41 ⁇ f4/f ⁇ 2.55 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.66 ⁇ (R7+R8)/(R7-R8) ⁇ 8.68, which is specified
  • the shape of the fourth lens L4 is within the range of this conditional formula, and with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view. Preferably, 1.06 ⁇ (R7+R8)/(R7-R8) ⁇ 6.94 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d7/TTL ⁇ 0.31, which is beneficial to achieve ultra-thinness.
  • 0.09 ⁇ d7/TTL ⁇ 0.25 is satisfied.
  • the focal length of the fifth lens L5 is f5
  • the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -98.44 ⁇ f5/f ⁇ -0.38, which specifies the ratio of the focal length of the fifth lens L5 to the total focal length , When it is within the range of this conditional formula, it helps to reduce aberrations and improve imaging quality.
  • -61.53 ⁇ f5/f ⁇ -0.48 is satisfied.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • the shape of the fifth lens L5 is specified, and when it is within the range of the conditional expression, it helps to improve the image quality.
  • 1.12 ⁇ (R9+R10)/(R9-R10) ⁇ 9.98 is satisfied.
  • the on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d9/TTL ⁇ 0.19, which is conducive to achieving ultra-thinness.
  • 0.07 ⁇ d9/TTL ⁇ 0.15 is satisfied.
  • the F number of the aperture of the imaging optical lens 10 is defined as Fno, and the following relationship is satisfied: Fno ⁇ 2.49, large aperture, good imaging performance. Preferably, Fno ⁇ 2.44 is satisfied.
  • the diagonal full-field image height of the imaging optical lens 10 is defined as IH, and the following relationship is satisfied: TTL/IH ⁇ 0.88. Preferably, TTL/IH ⁇ 0.84 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 5.02 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 4.79 mm.
  • the imaging optical lens 10 has good optical performance while adopting a free-form surface, which can match the design image area with the actual use area, and maximize the image quality of the effective area; according to the characteristics of the optical lens 10
  • the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
  • the imaging optical lens 10 of the present application will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, and on-axis thickness is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspherical coefficients
  • r is the vertical distance between the point on the aspherical curve and the optical axis
  • z is the aspherical depth (aspherical surface The vertical distance between the point r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • this application is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows free-form surface data in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • Bi is the free-form surface coefficient
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction component of r
  • z is the aspheric depth (aspherical surface The vertical distance between the point at the upper distance of r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • each free-form surface uses the extended polynomial surface type (Extended Polynomial) shown in the above formula (2).
  • Extended Polynomial Extended Polynomial
  • this application is not limited to the free-form surface polynomial form expressed by the formula (2).
  • FIG. 2 shows a situation where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. According to FIG. 2, it can be seen that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • Table 19 shows the values corresponding to various values in each of Examples 1, 2, 3, 4, 5, and 6 and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 101.96°
  • the x-direction is 88.99°
  • the y-direction is 72.71°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 4 and Table 5 show the design data of the imaging optical lens 20 according to the second embodiment of the present application.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 5 shows the aspheric surface data of each lens in the imaging optical lens 20 of the second embodiment of the present application.
  • Table 6 shows free-form surface data in the imaging optical lens 20 of the second embodiment of the present application.
  • FIG. 4 shows a situation where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. According to FIG. 4, it can be seen that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 101.96°
  • the x-direction field-of-view angle is 89.11°
  • the y-direction field of view is 72.73°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 7 and Table 8 show the design data of the imaging optical lens 30 of the third embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 8 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present application.
  • Table 9 shows free-form surface data in the imaging optical lens 30 of the third embodiment of the present application.
  • FIG. 6 shows a situation in which the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. According to FIG. 6, it can be seen that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 101.99°
  • the x-direction field-of-view angle is 89.14°
  • the y-direction field of view is 72.48°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 10 and Table 11 show design data of the imaging optical lens 40 of the fourth embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 11 shows the aspheric surface data of each lens in the imaging optical lens 40 of the fourth embodiment of the present application.
  • Table 12 shows free-form surface data in the imaging optical lens 40 of the fourth embodiment of the present application.
  • FIG. 8 shows a situation where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. According to FIG. 8, it can be seen that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.313mm
  • the full-field image height (diagonal direction) IH is 6.400mm
  • the image height in the x direction is 5.000mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 89.47°
  • the x-direction field of view is 77.80°
  • the y-direction field of view is 66.75°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 50 of the fifth embodiment of the present application.
  • the object side surface and the image side surface of the fifth lens L5 are free-form surfaces.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present application.
  • Table 15 shows free-form surface data in the imaging optical lens 50 of the fifth embodiment of the present application.
  • FIG. 10 shows a situation where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. According to FIG. 10, it can be seen that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.366 mm
  • the full-field image height (diagonal direction) IH is 6.400 mm
  • the image height in the x direction is 5.000 mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 87.43°
  • the x-direction field of view is 76.10°
  • the y-direction field of view is 65.04°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the sixth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 16 and Table 17 show design data of the imaging optical lens 60 of the sixth embodiment of the present application.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 17 shows the aspheric surface data of each lens in the imaging optical lens 60 of the sixth embodiment of the present application.
  • Table 18 shows free-form surface data in the imaging optical lens 60 of the sixth embodiment of the present application.
  • FIG. 12 shows a situation where the RMS spot diameter of the imaging optical lens 60 of the sixth embodiment is within the first quadrant. According to FIG. 12, it can be seen that the imaging optical lens 60 of the sixth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.300mm
  • the full-field image height (diagonal direction) IH is 6.400mm
  • the image height in the x direction is 5.000mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 90.06°
  • the x-direction field-of-view angle is 78.42°
  • the y-direction field of view is 67.44°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 f1/f 5.72 5.57 5.25 2.19 2.26 2.24 f3/f4 -4.04 -3.56 -1.05 -4.52 -3.77 -5.36 f 1.955 1.955 1.955 2.953 3.074 2.925 f1 11.182 10.898 10.266 6.452 6.941 6.552 f2 2.846 2.755 2.707 4.059 4.015 4.093 f3 -4.176 -3.539 -4.344 -11.213 -9.413 -10.663 f4 1.033 0.993 4.149 2.483 2.500 1.988 f5 -1.127 -1.127 -96.229 -3.040 -3.025 -2.353 Fno 2.42 2.42 2.42 2.25 2.25 2.25

Abstract

A camera optical lens (10, 20, 30, 40, 50, 60) in the field of optical lenses. The camera optical lens (10, 20, 30, 40, 50, 60) sequentially comprises, from an object side to an image side, a first lens (L1), a second lens (L2), a third lens (L3), a fourth lens (L4), and a fifth lens (L5); at least one of the first lens (L1) to the fifth lens (L5) has a free-form surface, the focal length of the camera optical lens (10, 20, 30, 40, 50, 60) is f, the focal length of the first lens (L1) is f1, the focal length of the third lens (L3) is f3, and the focal length of the fourth lens (L4) is f4, and the following relational expressions are satisfied: 2.00 ≤ f1/f ≤ 6.00; and -5.50 ≤ f3/f4 ≤ -1.00. The camera optical lens (10, 20, 30, 40, 50, 60) is ultra-thin and wide-angle, and has good optical performance; in addition, as there is at least one lens having a free-form surface, aberration can be effectively corrected, further improving the performance of an optical system.

Description

摄像光学镜头Camera optical lens 技术领域Technical field
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。This application relates to the field of optical lenses, and in particular to a camera optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
背景技术Background technique
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。目前多采用旋转对称的非球面,这类非球面只在子午平面内具有充分的自由度,并不能很好的对轴外像差进行校正。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。With the development of imaging lenses, people have higher and higher requirements for lens imaging. The "night scene photography" and "background blur" of the lens have also become important indicators to measure the imaging standards of the lens. At present, rotationally symmetric aspheric surfaces are mostly used. Such aspheric surfaces only have sufficient degrees of freedom in the meridian plane, and cannot well correct off-axis aberrations. Free-form surface is a non-rotationally symmetric surface type, which can better balance aberrations and improve imaging quality, and the processing of free-form surfaces is gradually mature. With the increasing requirements for lens imaging, it is very important to add free-form surfaces when designing lenses, especially in the design of wide-angle and ultra-wide-angle lenses.
发明内容Summary of the invention
针对上述问题,本申请的目的在于提供一种摄像光学镜头,其在超薄和广角的同时具有良好光学性能,同时由于至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能。In view of the above-mentioned problems, the purpose of this application is to provide an imaging optical lens that has good optical performance while being ultra-thin and wide-angle. At the same time, since at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the optical system. performance.
为解决上述技术问题,本申请的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;In order to solve the above technical problems, the embodiments of the present application provide an imaging optical lens. The imaging optical lens sequentially includes from the object side to the image side: a first lens, a second lens, a third lens, and a fourth lens. , The fifth lens;
所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,且满足下列关系式:At least one of the first lens to the fifth lens includes a free-form surface, the focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the focal length of the third lens is f3, so The focal length of the fourth lens is f4, and satisfies the following relationship:
2.00≤f1/f≤6.00;2.00≤f1/f≤6.00;
-5.50≤f3/f4≤-1.00。-5.50≤f3/f4≤-1.00.
优选地,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:Preferably, the on-axis thickness of the second lens is d3, and the on-axis distance from the image side surface of the second lens to the object side surface of the third lens is d4, and the following relationship is satisfied:
2.00≤d3/d4≤8.00。2.00≤d3/d4≤8.00.
优选地,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:Preferably, the on-axis thickness of the fourth lens is d7, and the on-axis distance from the image side surface of the fourth lens to the object side surface of the fifth lens is d8, and the following relationship is satisfied:
2.20≤d7/d8≤21.00。2.20≤d7/d8≤21.00.
优选地,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the curvature radius of the object side surface of the first lens is R1, the curvature radius of the image side surface of the first lens is R2, the axial thickness of the first lens is d1, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
-6.47≤(R1+R2)/(R1-R2)≤8.76;-6.47≤(R1+R2)/(R1-R2)≤8.76;
0.03≤d1/TTL≤0.13。0.03≤d1/TTL≤0.13.
优选地,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the focal length of the second lens is f2, the radius of curvature of the object side of the second lens is R3, the radius of curvature of the image side of the second lens is R4, and the on-axis thickness of the second lens is d3 , The total optical length of the camera optical lens is TTL, and satisfies the following relationship:
0.65≤f2/f≤2.18;0.65≤f2/f≤2.18;
0.23≤(R3+R4)/(R3-R4)≤1.97;0.23≤(R3+R4)/(R3-R4)≤1.97;
0.04≤d3/TTL≤0.19。0.04≤d3/TTL≤0.19.
优选地,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the radius of curvature of the object side surface of the third lens is R5, the radius of curvature of the image side surface of the third lens is R6, the axial thickness of the third lens is d5, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
-7.59≤f3/f≤-1.21;-7.59≤f3/f≤-1.21;
-4.61≤(R5+R6)/(R5-R6)≤2.09;-4.61≤(R5+R6)/(R5-R6)≤2.09;
0.02≤d5/TTL≤0.09。0.02≤d5/TTL≤0.09.
优选地,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the radius of curvature of the object side surface of the fourth lens is R7, the radius of curvature of the image side surface of the fourth lens is R8, the axial thickness of the fourth lens is d7, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
0.25≤f4/f≤3.18;0.25≤f4/f≤3.18;
0.66≤(R7+R8)/(R7-R8)≤8.68;0.66≤(R7+R8)/(R7-R8)≤8.68;
0.05≤d7/TTL≤0.31。0.05≤d7/TTL≤0.31.
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the focal length of the fifth lens is f5, the radius of curvature of the object side of the fifth lens is R9, the radius of curvature of the image side of the fifth lens is R10, and the on-axis thickness of the fifth lens is d9 , The total optical length of the camera optical lens is TTL, and satisfies the following relationship:
-98.44≤f5/f≤-0.38;-98.44≤f5/f≤-0.38;
0.70≤(R9+R10)/(R9-R10)≤12.48;0.70≤(R9+R10)/(R9-R10)≤12.48;
0.05≤d9/TTL≤0.19。0.05≤d9/TTL≤0.19.
优选地,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:Preferably, the aperture F number of the imaging optical lens is Fno, and the following relational expression is satisfied:
Fno≤2.49。Fno≤2.49.
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的对角线的全视场像高为IH,且满足下列关系式:Preferably, the total optical length of the imaging optical lens is TTL, and the diagonal full-field image height of the imaging optical lens is IH, and the following relationship is satisfied:
TTL/IH≤0.88。TTL/IH≤0.88.
本申请的有益效果在于:根据本申请的摄像光学镜头在超薄和广角的同时具有良好光学性能,同时由于至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。The beneficial effects of the present application are: the imaging optical lens according to the present application has good optical performance while being ultra-thin and wide-angle. At the same time, since at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the performance of the optical system, especially It is suitable for mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
附图说明Description of the drawings
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to more clearly describe the technical solutions in the embodiments of the present application, the following will briefly introduce the accompanying drawings needed in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some implementations of the present application. For those of ordinary skill in the art, without creative work, other drawings can be obtained based on these drawings, among which:
图1是本申请第一实施方式的摄像光学镜头的结构示意图;FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present application;
图2是图1所示摄像光学镜头的RMS光斑直径在第一象限内的情况;Fig. 2 is a situation in which the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
图3是本申请第二实施方式的摄像光学镜头的结构示意图;3 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present application;
图4是图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;Fig. 4 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
图5是本申请第三实施方式的摄像光学镜头的结构示意图;5 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present application;
图6是图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况;Fig. 6 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
图7是本申请第四实施方式的摄像光学镜头的结构示意图;FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present application;
图8是图7所示摄像光学镜头的RMS光斑直径在第一象限内的情况;FIG. 8 is a situation in which the RMS spot diameter of the imaging optical lens shown in FIG. 7 is in the first quadrant;
图9是本申请第五实施方式的摄像光学镜头的结构示意图;FIG. 9 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present application;
图10是图9所示摄像光学镜头的RMS光斑直径在第一象限内的情况;FIG. 10 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 9 is in the first quadrant;
图11是本申请第六实施方式的摄像光学镜头的结构示意图;11 is a schematic diagram of the structure of an imaging optical lens according to a sixth embodiment of the present application;
图12是图11所示摄像光学镜头的RMS光斑直径在第一象限内的情况。FIG. 12 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 11 is in the first quadrant.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。In order to make the purpose, technical solutions, and advantages of the present application clearer, the various embodiments of the present application will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can understand that in each embodiment of the present application, many technical details are proposed in order to enable readers to better understand the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solution claimed in this application can be realized.
(第一实施方式)(First embodiment)
参考附图,本申请提供了一种摄像光学镜头10。图1所示为本申请第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。With reference to the drawings, the present application provides an imaging optical lens 10. FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the application. The imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes a first lens L1, an aperture S1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side. An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
第一透镜L1具有正屈折力;第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负 屈折力。The first lens L1 has positive refractive power; the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has negative refractive power.
所述第一透镜L1至所述第五透镜L5均为塑料材质。通过合理化配置透镜的材料,使得镜头在超薄和广角的同时具有良好光学性能。The first lens L1 to the fifth lens L5 are made of plastic material. By rationalizing the configuration of the lens material, the lens has good optical performance while being ultra-thin and wide-angle.
在本实施方式中,定义所述第一透镜L1至所述第五透镜L5中的至少一个含自由曲面,自由曲面有助于广角光学系统像散、场曲和畸变等像差校正,提升光学系统性能。In this embodiment, it is defined that at least one of the first lens L1 to the fifth lens L5 includes a free-form surface. The free-form surface helps correct aberrations such as astigmatism, curvature of field, and distortion of the wide-angle optical system, and improves optical System performance.
定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,且满足下列关系式:2.00≤f1/f≤6.00,规定了第一透镜L1的焦距与总焦距的比值,在此条件式范围内时,可以有效地平衡系统的球差以及场曲量。优选地,满足2.09≤f1/f≤5.86。The focal length of the imaging optical lens 10 is defined as f, the focal length of the first lens L1 is f1, and the following relationship is satisfied: 2.00≤f1/f≤6.00, which specifies the ratio of the focal length of the first lens L1 to the total focal length , Within the range of this conditional formula, the spherical aberration and field curvature of the system can be effectively balanced. Preferably, 2.09≤f1/f≤5.86 is satisfied.
定义所述第三透镜L3的焦距为f3,所述第四透镜L4的焦距为f4,满足下列关系式:-5.50≤f3/f4≤-1.00,规定了第三透镜L3的焦距与第四透镜L4的焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-5.43≤f3/f4≤-1.02。Define the focal length of the third lens L3 as f3, and the focal length of the fourth lens L4 as f4, satisfying the following relationship: -5.50≤f3/f4≤-1.00, which specifies the focal length of the third lens L3 and the fourth lens The ratio of the focal length of L4, through the reasonable allocation of focal length, makes the system have better imaging quality and lower sensitivity. Preferably, -5.43≤f3/f4≤-1.02 is satisfied.
在满足上述条件式的时候,可以使摄像光学镜头10在超薄和广角的同时具有良好的光学性能。When the above conditional expression is satisfied, the imaging optical lens 10 can be made to have good optical performance while being ultra-thin and wide-angle.
定义所述第二透镜L2的轴上厚度为d3,所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,满足下列关系式:2.00≤d3/d4≤8.00,规定了第二透镜L2的轴上厚度d3与第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离d4之间的比值,在此条件式范围内时,有助于镜片加工和组装。优选地,满足2.19≤d3/d4≤7.80。The on-axis thickness of the second lens L2 is defined as d3, and the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is d4, which satisfies the following relationship: 2.00≤d3/d4 ≤8.00, which specifies the ratio between the on-axis thickness d3 of the second lens L2 and the on-axis distance d4 from the image side surface of the second lens L2 to the object side surface of the third lens L3. When within the range of this conditional expression, Contribute to lens processing and assembly. Preferably, 2.19≤d3/d4≤7.80 is satisfied.
定义所述第四透镜L4的轴上厚度为d7,所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,满足下列关系式:2.20≤d7/d8≤21.00,规定了第四透镜L4的轴上厚度d7与第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离d8之间的比值,在此条件式范围内时,有助于压缩光学总长,实现超薄化效果。优选地,满足2.21≤d7/d8≤20.82。The on-axis thickness of the fourth lens L4 is defined as d7, and the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 is d8, which satisfies the following relationship: 2.20≤d7/d8 ≤21.00, which specifies the ratio between the on-axis thickness d7 of the fourth lens L4 and the on-axis distance d8 from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5. When it is within the range of this conditional expression, It helps to compress the total optical length and achieve ultra-thin effect. Preferably, it satisfies 2.21≤d7/d8≤20.82.
定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-6.47≤(R1+R2)/(R1-R2)≤ 8.76,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-4.05≤(R1+R2)/(R1-R2)≤7.01。Define the curvature radius of the object side surface of the first lens L1 as R1, and the curvature radius of the image side surface of the first lens L1 as R2, which satisfies the following relationship: -6.47≤(R1+R2)/(R1-R2)≤ 8.76 , Reasonably control the shape of the first lens L1, so that the first lens L1 can effectively correct the spherical aberration of the system. Preferably, -4.05≤(R1+R2)/(R1-R2)≤7.01 is satisfied.
定义所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.13,有利于实现超薄化。优选地,满足0.05≤d1/TTL≤0.10。The on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03≤d1/TTL≤0.13, which is beneficial to realize ultra-thinness. Preferably, 0.05≤d1/TTL≤0.10 is satisfied.
所述第二透镜L2的焦距为f2,所述摄像光学镜头10的焦距为f,满足下列关系式:0.65≤f2/f≤2.18,通过将第二透镜L2的光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足1.04≤f2/f≤1.75。The focal length of the second lens L2 is f2, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.65≤f2/f≤2.18. By controlling the refractive power of the second lens L2 within a reasonable range, Conducive to correcting the aberration of the optical system. Preferably, 1.04≤f2/f≤1.75 is satisfied.
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.23≤(R3+R4)/(R3-R4)≤1.97,规定了第二透镜L2的形状,在此条件式范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足0.38≤(R3+R4)/(R3-R4)≤1.57。The curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.23≤(R3+R4)/(R3-R4)≤1.97, which is specified When the shape of the second lens L2 is within the range of this conditional expression, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration. Preferably, 0.38≤(R3+R4)/(R3-R4)≤1.57 is satisfied.
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d3/TTL≤0.19,有利于实现超薄化。优选地,满足0.06≤d3/TTL≤0.15。The on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04≤d3/TTL≤0.19, which is beneficial to realize ultra-thinness. Preferably, 0.06≤d3/TTL≤0.15 is satisfied.
所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,满足下列关系式:-7.59≤f3/f≤-1.21,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-4.75≤f3/f≤-1.51。The focal length of the third lens L3 is f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relational expression: -7.59≤f3/f≤-1.21, through the reasonable distribution of optical power, the system has better High imaging quality and low sensitivity. Preferably, -4.75≤f3/f≤-1.51 is satisfied.
所述第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:-4.61≤(R5+R6)/(R5-R6)≤2.09,规定了第三透镜L3的形状,在此条件式规定范围内时,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-2.88≤(R5+R6)/(R5-R6)≤1.67。The curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -4.61≤(R5+R6)/(R5-R6)≤2.09, which stipulates When the shape of the third lens L3 is within the range specified by the conditional expression, the degree of deflection of the light passing through the lens can be reduced, and aberrations can be effectively reduced. Preferably, it satisfies -2.88≤(R5+R6)/(R5-R6)≤1.67.
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.09,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.07。The axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02≦d5/TTL≦0.09, which is beneficial to realize ultra-thinness. Preferably, 0.04≤d5/TTL≤0.07 is satisfied.
所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f, 满足下列关系式:0.25≤f4/f≤3.18,规定了第四透镜L4的焦距与系统焦距的比值,在条件式范围内时,有助于提高光学系统性能。优选地,满足0.41≤f4/f≤2.55。The focal length of the fourth lens L4 is f4, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.25≤f4/f≤3.18, which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system. When the conditional expression is within the range, it helps to improve the optical system performance. Preferably, 0.41≤f4/f≤2.55 is satisfied.
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.66≤(R7+R8)/(R7-R8)≤8.68,规定了第四透镜L4的形状,在此条件式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.06≤(R7+R8)/(R7-R8)≤6.94。The curvature radius of the object side surface of the fourth lens L4 is R7, and the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.66≤(R7+R8)/(R7-R8)≤8.68, which is specified The shape of the fourth lens L4 is within the range of this conditional formula, and with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view. Preferably, 1.06≤(R7+R8)/(R7-R8)≤6.94 is satisfied.
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d7/TTL≤0.31,有利于实现超薄化。优选地,满足0.09≤d7/TTL≤0.25。The axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05≤d7/TTL≤0.31, which is beneficial to achieve ultra-thinness. Preferably, 0.09≤d7/TTL≤0.25 is satisfied.
所述第五透镜L5的焦距为f5,所述摄像光学镜头10的焦距为f,满足下列关系式:-98.44≤f5/f≤-0.38,规定了第五透镜L5的焦距与总焦距的比值,在此条件式范围内时,有助于减小像差,提升成像品质。优选地,满足-61.53≤f5/f≤-0.48。The focal length of the fifth lens L5 is f5, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -98.44≤f5/f≤-0.38, which specifies the ratio of the focal length of the fifth lens L5 to the total focal length , When it is within the range of this conditional formula, it helps to reduce aberrations and improve imaging quality. Preferably, -61.53≤f5/f≤-0.48 is satisfied.
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.70≤(R9+R10)/(R9-R10)≤12.48,规定了第五透镜L5的形状,在此条件式范围内时,有助于提高成像质量。优选地,满足1.12≤(R9+R10)/(R9-R10)≤9.98。Define the radius of curvature of the object side surface of the fifth lens L5 as R9, and the radius of curvature of the image side surface of the fifth lens L5 as R10, satisfying the following relationship: 0.70≤(R9+R10)/(R9-R10)≤12.48, The shape of the fifth lens L5 is specified, and when it is within the range of the conditional expression, it helps to improve the image quality. Preferably, 1.12≤(R9+R10)/(R9-R10)≤9.98 is satisfied.
定义所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d9/TTL≤0.19,有利于实现超薄化。优选地,满足0.07≤d9/TTL≤0.15。The on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05≤d9/TTL≤0.19, which is conducive to achieving ultra-thinness. Preferably, 0.07≤d9/TTL≤0.15 is satisfied.
定义所述摄像光学镜头10的光圈F数为Fno,且满足下列关系式:Fno≤2.49,大光圈,成像性能好。优选地,满足Fno≤2.44。The F number of the aperture of the imaging optical lens 10 is defined as Fno, and the following relationship is satisfied: Fno≤2.49, large aperture, good imaging performance. Preferably, Fno≤2.44 is satisfied.
定义所述摄像光学镜头10的对角线的全视场像高为IH,且满足下列关系式:TTL/IH≤0.88。优选地,满足TTL/IH≤0.84。The diagonal full-field image height of the imaging optical lens 10 is defined as IH, and the following relationship is satisfied: TTL/IH≦0.88. Preferably, TTL/IH≤0.84 is satisfied.
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于5.02毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于4.79毫米。In this embodiment, the total optical length TTL of the imaging optical lens 10 is less than or equal to 5.02 mm, which is beneficial to realize ultra-thinness. Preferably, the total optical length TTL is less than or equal to 4.79 mm.
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同 时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。When the above relationship is satisfied, the imaging optical lens 10 has good optical performance while adopting a free-form surface, which can match the design image area with the actual use area, and maximize the image quality of the effective area; according to the characteristics of the optical lens 10 The optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度的单位为mm。The imaging optical lens 10 of the present application will be described below with an example. The symbols described in each example are as follows. The unit of focal length, on-axis distance, radius of curvature, and on-axis thickness is mm.
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;TTL: total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
表1、表2示出本申请第一实施方式的摄像光学镜头10的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present application. Among them, the object side surface and the image side surface of the first lens L1 are free-form surfaces.
【表1】【Table 1】
Figure PCTCN2019130062-appb-000001
Figure PCTCN2019130062-appb-000001
其中,各符号的含义如下。Among them, the meaning of each symbol is as follows.
S1:光圈;S1: aperture;
R:光学面的曲率半径、透镜时为中心曲率半径;R: The radius of curvature of the optical surface, and the radius of curvature of the center of the lens;
R1:第一透镜L1的物侧面的曲率半径;R1: the radius of curvature of the object side surface of the first lens L1;
R2:第一透镜L1的像侧面的曲率半径;R2: the radius of curvature of the image side surface of the first lens L1;
R3:第二透镜L2的物侧面的曲率半径;R3: the radius of curvature of the object side surface of the second lens L2;
R4:第二透镜L2的像侧面的曲率半径;R4: the radius of curvature of the image side surface of the second lens L2;
R5:第三透镜L3的物侧面的曲率半径;R5: the radius of curvature of the object side surface of the third lens L3;
R6:第三透镜L3的像侧面的曲率半径;R6: the radius of curvature of the image side surface of the third lens L3;
R7:第四透镜L4的物侧面的曲率半径;R7: the radius of curvature of the object side of the fourth lens L4;
R8:第四透镜L4的像侧面的曲率半径;R8: the radius of curvature of the image side surface of the fourth lens L4;
R9:第五透镜L5的物侧面的曲率半径;R9: the radius of curvature of the object side surface of the fifth lens L5;
R10:第五透镜L5的像侧面的曲率半径;R10: the radius of curvature of the image side surface of the fifth lens L5;
R11:光学过滤片GF的物侧面的曲率半径;R11: the radius of curvature of the object side of the optical filter GF;
R12:光学过滤片GF的像侧面的曲率半径;R12: the radius of curvature of the image side surface of the optical filter GF;
d:透镜的轴上厚度以及透镜之间的轴上距离;d: the on-axis thickness of the lens and the on-axis distance between the lenses;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;d0: the on-axis distance from the aperture S1 to the object side of the first lens L1;
d1:第一透镜L1的轴上厚度;d1: the on-axis thickness of the first lens L1;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;d2: the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
d3:第二透镜L2的轴上厚度;d3: the on-axis thickness of the second lens L2;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;d4: the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
d5:第三透镜L3的轴上厚度;d5: the on-axis thickness of the third lens L3;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;d6: the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
d7:第四透镜L4的轴上厚度;d7: the on-axis thickness of the fourth lens L4;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;d8: the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;
d9:第五透镜L5的轴上厚度;d9: the on-axis thickness of the fifth lens L5;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;d10: the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
d11:光学过滤片GF的轴上厚度;d11: the axial thickness of the optical filter GF;
d12:光学过滤片GF的像侧面到像面的轴上距离;d12: the on-axis distance from the image side surface of the optical filter GF to the image surface;
nd:d线的折射率;nd: refractive index of d-line;
nd1:第一透镜L1的d线的折射率;nd1: the refractive index of the d-line of the first lens L1;
nd2:第二透镜L2的d线的折射率;nd2: the refractive index of the d-line of the second lens L2;
nd3:第三透镜L3的d线的折射率;nd3: the refractive index of the d-line of the third lens L3;
nd4:第四透镜L4的d线的折射率;nd4: the refractive index of the d-line of the fourth lens L4;
nd5:第五透镜L5的d线的折射率;nd5: the refractive index of the d-line of the fifth lens L5;
ndg:光学过滤片GF的d线的折射率;ndg: the refractive index of the d-line of the optical filter GF;
vd:阿贝数;vd: Abbe number;
v1:第一透镜L1的阿贝数;v1: Abbe number of the first lens L1;
v2:第二透镜L2的阿贝数;v2: Abbe number of the second lens L2;
v3:第三透镜L3的阿贝数;v3: Abbe number of the third lens L3;
v4:第四透镜L4的阿贝数;v4: Abbe number of the fourth lens L4;
v5:第五透镜L5的阿贝数;v5: Abbe number of the fifth lens L5;
vg:光学过滤片GF的阿贝数。vg: Abbe number of optical filter GF.
表2示出本申请第一实施方式的摄像光学镜头10中各透镜的非球面数据。Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
【表2】【Table 2】
Figure PCTCN2019130062-appb-000002
Figure PCTCN2019130062-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。Among them, k is the conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspherical coefficients, r is the vertical distance between the point on the aspherical curve and the optical axis, and z is the aspherical depth (aspherical surface The vertical distance between the point r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
z=(cr 2)/[1+{1-(k+1)(c 2r 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20          (1) z=(cr 2 )/[1+{1-(k+1)(c 2 r 2 )} 1/2 ]+A4x 4 +A6x 6 +A8x 8 +A10x 10 +A12x 12 +A14x 14 +A16x 16 +A18x 18 +A20x 20 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本申请不限于该公式(1)表示的非球面多项式形式。For convenience, the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1). However, this application is not limited to the aspheric polynomial form represented by the formula (1).
表3示出本申请第一实施方式的摄像光学镜头10中的自由曲面数据。Table 3 shows free-form surface data in the imaging optical lens 10 of the first embodiment of the present application.
【表3】【table 3】
Figure PCTCN2019130062-appb-000003
Figure PCTCN2019130062-appb-000003
Figure PCTCN2019130062-appb-000004
Figure PCTCN2019130062-appb-000004
其中,k是圆锥系数,Bi是自由曲面系数,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。Among them, k is the conic coefficient, Bi is the free-form surface coefficient, r is the vertical distance between the point on the free-form surface and the optical axis, x is the x-direction component of r, y is the y-direction component of r, and z is the aspheric depth (aspherical surface The vertical distance between the point at the upper distance of r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
Figure PCTCN2019130062-appb-000005
Figure PCTCN2019130062-appb-000005
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本申请不限于该公式(2)表示的自由曲面多项式形式。For convenience, each free-form surface uses the extended polynomial surface type (Extended Polynomial) shown in the above formula (2). However, this application is not limited to the free-form surface polynomial form expressed by the formula (2).
图2示出了第一实施例的摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。FIG. 2 shows a situation where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. According to FIG. 2, it can be seen that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
后出现的表19示出各实例1、2、3、4、5、6中各种数值与条件式中已规定的参数所对应的值。The following Table 19 shows the values corresponding to various values in each of Examples 1, 2, 3, 4, 5, and 6 and the parameters specified in the conditional expressions.
如表19所示,第一实施方式满足各条件式。As shown in Table 19, the first embodiment satisfies each conditional expression.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对 角线方向的视场角FOV为101.96°,x方向的视场角为88.99°,y方向的视场角为72.71°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm, the full-field image height (diagonal direction) IH is 4.800mm, the x-direction image height is 3.840mm, and the y-direction image height is 2.880 mm, the imaging effect is best in this rectangular range. The diagonal FOV is 101.96°, the x-direction is 88.99°, the y-direction is 72.71°, wide-angle, ultra-thin, The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
(第二实施方式)(Second embodiment)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。The second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
表4、表5示出本申请第二实施方式的摄像光学镜头20的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。Table 4 and Table 5 show the design data of the imaging optical lens 20 according to the second embodiment of the present application. Among them, the object side surface and the image side surface of the second lens L2 are free-form surfaces.
【表4】【Table 4】
Figure PCTCN2019130062-appb-000006
Figure PCTCN2019130062-appb-000006
表5示出本申请第二实施方式的摄像光学镜头20中各透镜的非球面数据。Table 5 shows the aspheric surface data of each lens in the imaging optical lens 20 of the second embodiment of the present application.
【表5】【table 5】
Figure PCTCN2019130062-appb-000007
Figure PCTCN2019130062-appb-000007
表6示出本申请第二实施方式的摄像光学镜头20中的自由曲面数据。Table 6 shows free-form surface data in the imaging optical lens 20 of the second embodiment of the present application.
【表6】【Table 6】
Figure PCTCN2019130062-appb-000008
Figure PCTCN2019130062-appb-000008
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。FIG. 4 shows a situation where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. According to FIG. 4, it can be seen that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
如表19所示,第二实施方式满足各条件式。As shown in Table 19, the second embodiment satisfies various conditional expressions.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为101.96°,x方向视场角为89.11°,y方向视场角为72.73°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm, the full-field image height (diagonal direction) IH is 4.800mm, the x-direction image height is 3.840mm, and the y-direction image height is 2.880 mm, the imaging effect is best in this rectangular range, the diagonal FOV is 101.96°, the x-direction field-of-view angle is 89.11°, the y-direction field of view is 72.73°, wide-angle, ultra-thin, and its axis The on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
(第三实施方式)(Third embodiment)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方 式相同,以下只列出不同点。The third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
表7、表8示出本申请第三实施方式的摄像光学镜头30的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。Table 7 and Table 8 show the design data of the imaging optical lens 30 of the third embodiment of the present application. Among them, the object side surface and the image side surface of the first lens L1 are free-form surfaces.
【表7】【Table 7】
Figure PCTCN2019130062-appb-000009
Figure PCTCN2019130062-appb-000009
表8示出本申请第三实施方式的摄像光学镜头30中各透镜的非球面数据。Table 8 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present application.
【表8】【Table 8】
Figure PCTCN2019130062-appb-000010
Figure PCTCN2019130062-appb-000010
表9示出本申请第三实施方式的摄像光学镜头30中的自由曲面数据。Table 9 shows free-form surface data in the imaging optical lens 30 of the third embodiment of the present application.
【表9】【Table 9】
Figure PCTCN2019130062-appb-000011
Figure PCTCN2019130062-appb-000011
Figure PCTCN2019130062-appb-000012
Figure PCTCN2019130062-appb-000012
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。FIG. 6 shows a situation in which the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. According to FIG. 6, it can be seen that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。The following Table 19 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical system of this embodiment satisfies the above-mentioned conditional expressions.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为101.99°,x方向视场角为89.14°,y方向视场角为72.48°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm, the full-field image height (diagonal direction) IH is 4.800mm, the x-direction image height is 3.840mm, and the y-direction image height is 2.880 mm, the imaging effect is best in this rectangular range. The diagonal FOV is 101.99°, the x-direction field-of-view angle is 89.14°, the y-direction field of view is 72.48°, wide-angle, ultra-thin, and its axis The on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
(第四实施方式)(Fourth embodiment)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。The fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
表10、表11示出本申请第四实施方式的摄像光学镜头40的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。Table 10 and Table 11 show design data of the imaging optical lens 40 of the fourth embodiment of the present application. Among them, the object side surface and the image side surface of the first lens L1 are free-form surfaces.
【表10】【Table 10】
Figure PCTCN2019130062-appb-000013
Figure PCTCN2019130062-appb-000013
表11示出本申请第四实施方式的摄像光学镜头40中各透镜的非球面数据。Table 11 shows the aspheric surface data of each lens in the imaging optical lens 40 of the fourth embodiment of the present application.
【表11】【Table 11】
Figure PCTCN2019130062-appb-000014
Figure PCTCN2019130062-appb-000014
表12示出本申请第四实施方式的摄像光学镜头40中的自由曲面数据。Table 12 shows free-form surface data in the imaging optical lens 40 of the fourth embodiment of the present application.
【表12】【Table 12】
Figure PCTCN2019130062-appb-000015
Figure PCTCN2019130062-appb-000015
Figure PCTCN2019130062-appb-000016
Figure PCTCN2019130062-appb-000016
图8示出了第四实施例的摄像光学镜头40的RMS光斑直径在第一象限内的情况,根据图8可知,第四实施方式的摄像光学镜头40能够实现良好的成像品质。FIG. 8 shows a situation where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. According to FIG. 8, it can be seen that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。The following Table 19 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical system of this embodiment satisfies the above-mentioned conditional expressions.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.313mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为89.47°,x方向视场角为77.80°,y方向视场角为66.75°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 1.313mm, the full-field image height (diagonal direction) IH is 6.400mm, the image height in the x direction is 5.000mm, and the image height in the y direction is 4.000. mm, the imaging effect is the best in this rectangular range, the diagonal FOV is 89.47°, the x-direction field of view is 77.80°, the y-direction field of view is 66.75°, wide-angle, ultra-thin, and its axis The on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
(第五实施方式)(Fifth Embodiment)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。The fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
表13、表14示出本申请第五实施方式的摄像光学镜头50的设计数据。其中,第五透镜L5的物侧面和像侧面为自由曲面。Table 13 and Table 14 show design data of the imaging optical lens 50 of the fifth embodiment of the present application. Among them, the object side surface and the image side surface of the fifth lens L5 are free-form surfaces.
【表13】【Table 13】
Figure PCTCN2019130062-appb-000017
Figure PCTCN2019130062-appb-000017
Figure PCTCN2019130062-appb-000018
Figure PCTCN2019130062-appb-000018
表14示出本申请第五实施方式的摄像光学镜头50中各透镜的非球面数据。Table 14 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present application.
【表14】【Table 14】
Figure PCTCN2019130062-appb-000019
Figure PCTCN2019130062-appb-000019
表15示出本申请第五实施方式的摄像光学镜头50中的自由曲面数据。Table 15 shows free-form surface data in the imaging optical lens 50 of the fifth embodiment of the present application.
【表15】【Table 15】
Figure PCTCN2019130062-appb-000020
Figure PCTCN2019130062-appb-000020
Figure PCTCN2019130062-appb-000021
Figure PCTCN2019130062-appb-000021
图10示出了第五实施例的摄像光学镜头50的RMS光斑直径在第一象限内的情况,根据图10可知,第五实施方式的摄像光学镜头50能够实现良好的成像品质。FIG. 10 shows a situation where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. According to FIG. 10, it can be seen that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。The following Table 19 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical system of this embodiment satisfies the above-mentioned conditional expressions.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.366mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为87.43°,x方向视场角为76.10°,y方向视场角为65.04°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 1.366 mm, the full-field image height (diagonal direction) IH is 6.400 mm, the image height in the x direction is 5.000 mm, and the image height in the y direction is 4.000. mm, the imaging effect is the best in this rectangular range, the diagonal FOV is 87.43°, the x-direction field of view is 76.10°, the y-direction field of view is 65.04°, wide-angle, ultra-thin, and its axis The on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
(第六实施方式)(Sixth Embodiment)
第六实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。The sixth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
表16、表17示出本申请第六实施方式的摄像光学镜头60的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。Table 16 and Table 17 show design data of the imaging optical lens 60 of the sixth embodiment of the present application. Among them, the object side surface and the image side surface of the second lens L2 are free-form surfaces.
【表16】【Table 16】
Figure PCTCN2019130062-appb-000022
Figure PCTCN2019130062-appb-000022
表17示出本申请第六实施方式的摄像光学镜头60中各透镜的非球面数据。Table 17 shows the aspheric surface data of each lens in the imaging optical lens 60 of the sixth embodiment of the present application.
【表17】【Table 17】
Figure PCTCN2019130062-appb-000023
Figure PCTCN2019130062-appb-000023
表18示出本申请第六实施方式的摄像光学镜头60中的自由曲面数据。Table 18 shows free-form surface data in the imaging optical lens 60 of the sixth embodiment of the present application.
【表18】【Table 18】
Figure PCTCN2019130062-appb-000024
Figure PCTCN2019130062-appb-000024
图12示出了第六实施例的摄像光学镜头60的RMS光斑直径在第一象限内的情况,根据图12可知,第六实施方式的摄像光学镜头60 能够实现良好的成像品质。FIG. 12 shows a situation where the RMS spot diameter of the imaging optical lens 60 of the sixth embodiment is within the first quadrant. According to FIG. 12, it can be seen that the imaging optical lens 60 of the sixth embodiment can achieve good imaging quality.
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。The following Table 19 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical system of this embodiment satisfies the above-mentioned conditional expressions.
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.300mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为90.06°,x方向视场角为78.42°,y方向视场角为67.44°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 1.300mm, the full-field image height (diagonal direction) IH is 6.400mm, the image height in the x direction is 5.000mm, and the image height in the y direction is 4.000. mm, the imaging effect is best in this rectangular range, the diagonal FOV is 90.06°, the x-direction field-of-view angle is 78.42°, the y-direction field of view is 67.44°, wide-angle, ultra-thin, and its axis The on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
【表19】【Table 19】
参数及条件式Parameters and conditions 实施例1Example 1 实施例2Example 2 实施例3Example 3 实施例4Example 4 实施例5Example 5 实施例6Example 6
f1/ff1/f 5.725.72 5.575.57 5.255.25 2.192.19 2.262.26 2.242.24
f3/f4f3/f4 -4.04-4.04 -3.56-3.56 -1.05-1.05 -4.52-4.52 -3.77-3.77 -5.36-5.36
ff 1.9551.955 1.9551.955 1.9551.955 2.9532.953 3.0743.074 2.9252.925
f1f1 11.18211.182 10.89810.898 10.26610.266 6.4526.452 6.9416.941 6.5526.552
f2f2 2.8462.846 2.7552.755 2.7072.707 4.0594.059 4.0154.015 4.0934.093
f3f3 -4.176-4.176 -3.539-3.539 -4.344-4.344 -11.213-11.213 -9.413-9.413 -10.663-10.663
f4f4 1.0331.033 0.9930.993 4.1494.149 2.4832.483 2.5002.500 1.9881.988
f5f5 -1.127-1.127 -1.127-1.127 -96.229-96.229 -3.040-3.040 -3.025-3.025 -2.353-2.353
FnoFno 2.422.42 2.422.42 2.422.42 2.252.25 2.252.25 2.252.25
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific embodiments for realizing the present application, and in actual applications, various changes can be made in form and details without departing from the spirit and spirit of the present application. range.

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;An imaging optical lens, characterized in that, from the object side to the image side, the imaging optical lens includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in sequence;
    所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,且满足下列关系式:At least one of the first lens to the fifth lens includes a free-form surface, the focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the focal length of the third lens is f3, so The focal length of the fourth lens is f4, and satisfies the following relationship:
    2.00≤f1/f≤6.00;2.00≤f1/f≤6.00;
    -5.50≤f3/f4≤-1.00。-5.50≤f3/f4≤-1.00.
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:The imaging optical lens of claim 1, wherein the on-axis thickness of the second lens is d3, and the on-axis distance from the image side surface of the second lens to the object side surface of the third lens is d4 , And satisfy the following relationship:
    2.00≤d3/d4≤8.00。2.00≤d3/d4≤8.00.
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:The imaging optical lens of claim 1, wherein the on-axis thickness of the fourth lens is d7, and the on-axis distance from the image side surface of the fourth lens to the object side surface of the fifth lens is d8 , And satisfy the following relationship:
    2.20≤d7/d8≤21.00。2.20≤d7/d8≤21.00.
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The imaging optical lens of claim 1, wherein the curvature radius of the object side surface of the first lens is R1, the curvature radius of the image side surface of the first lens is R2, and the on-axis thickness of the first lens Is d1, the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
    -6.47≤(R1+R2)/(R1-R2)≤8.76;-6.47≤(R1+R2)/(R1-R2)≤8.76;
    0.03≤d1/TTL≤0.13。0.03≤d1/TTL≤0.13.
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The imaging optical lens according to claim 1, wherein the focal length of the second lens is f2, the radius of curvature of the object side of the second lens is R3, and the radius of curvature of the image side of the second lens is R4 , The axial thickness of the second lens is d3, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
    0.65≤f2/f≤2.18;0.65≤f2/f≤2.18;
    0.23≤(R3+R4)/(R3-R4)≤1.97;0.23≤(R3+R4)/(R3-R4)≤1.97;
    0.04≤d3/TTL≤0.19。0.04≤d3/TTL≤0.19.
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The imaging optical lens of claim 1, wherein the curvature radius of the object side surface of the third lens is R5, the curvature radius of the image side surface of the third lens is R6, and the on-axis thickness of the third lens Is d5, the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
    -7.59≤f3/f≤-1.21;-7.59≤f3/f≤-1.21;
    -4.61≤(R5+R6)/(R5-R6)≤2.09;-4.61≤(R5+R6)/(R5-R6)≤2.09;
    0.02≤d5/TTL≤0.09。0.02≤d5/TTL≤0.09.
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The imaging optical lens of claim 1, wherein the radius of curvature of the object side surface of the fourth lens is R7, the radius of curvature of the image side surface of the fourth lens is R8, and the on-axis thickness of the fourth lens Is d7, the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
    0.25≤f4/f≤3.18;0.25≤f4/f≤3.18;
    0.66≤(R7+R8)/(R7-R8)≤8.68;0.66≤(R7+R8)/(R7-R8)≤8.68;
    0.05≤d7/TTL≤0.31。0.05≤d7/TTL≤0.31.
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The imaging optical lens of claim 1, wherein the focal length of the fifth lens is f5, the radius of curvature of the object side of the fifth lens is R9, and the radius of curvature of the image side of the fifth lens is R10 , The axial thickness of the fifth lens is d9, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
    -98.44≤f5/f≤-0.38;-98.44≤f5/f≤-0.38;
    0.70≤(R9+R10)/(R9-R10)≤12.48;0.70≤(R9+R10)/(R9-R10)≤12.48;
    0.05≤d9/TTL≤0.19。0.05≤d9/TTL≤0.19.
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:The imaging optical lens of claim 1, wherein the aperture F number of the imaging optical lens is Fno, and the following relationship is satisfied:
    Fno≤2.49。Fno≤2.49.
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的对角线的全视场像高为IH,且满足下列关系式:The imaging optical lens of claim 1, wherein the total optical length of the imaging optical lens is TTL, the diagonal full-field image height of the imaging optical lens is IH, and the following relationship is satisfied:
    TTL/IH≤0.88。TTL/IH≤0.88.
PCT/CN2019/130062 2019-12-30 2019-12-30 Camera optical lens WO2021134274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130062 WO2021134274A1 (en) 2019-12-30 2019-12-30 Camera optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130062 WO2021134274A1 (en) 2019-12-30 2019-12-30 Camera optical lens

Publications (1)

Publication Number Publication Date
WO2021134274A1 true WO2021134274A1 (en) 2021-07-08

Family

ID=76686095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130062 WO2021134274A1 (en) 2019-12-30 2019-12-30 Camera optical lens

Country Status (1)

Country Link
WO (1) WO2021134274A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145839A (en) * 2007-12-18 2009-07-02 Olympus Corp Fisheye lens and imaging apparatus having the same
CN104880804A (en) * 2014-02-27 2015-09-02 三星电机株式会社 Lens module
CN104914558A (en) * 2014-03-14 2015-09-16 光燿科技股份有限公司 Imaging lens group
CN207780340U (en) * 2018-01-09 2018-08-28 浙江舜宇光学有限公司 Optical imaging lens
US10107993B2 (en) * 2015-10-01 2018-10-23 Olympus Corporation Wide-angle optical system and image pickup apparatus using the same
CN109031594A (en) * 2018-08-03 2018-12-18 瑞声声学科技(深圳)有限公司 Camera optical camera lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145839A (en) * 2007-12-18 2009-07-02 Olympus Corp Fisheye lens and imaging apparatus having the same
CN104880804A (en) * 2014-02-27 2015-09-02 三星电机株式会社 Lens module
CN104914558A (en) * 2014-03-14 2015-09-16 光燿科技股份有限公司 Imaging lens group
US10107993B2 (en) * 2015-10-01 2018-10-23 Olympus Corporation Wide-angle optical system and image pickup apparatus using the same
CN207780340U (en) * 2018-01-09 2018-08-28 浙江舜宇光学有限公司 Optical imaging lens
CN109031594A (en) * 2018-08-03 2018-12-18 瑞声声学科技(深圳)有限公司 Camera optical camera lens

Similar Documents

Publication Publication Date Title
WO2022021453A1 (en) Camera optical lens
WO2022000658A1 (en) Camera optical lens
WO2022000659A1 (en) Camera optical lens
WO2021168881A1 (en) Camera optical lens
WO2022000647A1 (en) Camera optical lens
WO2022041391A1 (en) Camera optical lens
WO2022021456A1 (en) Camera optical lens
WO2022021457A1 (en) Camera optical lens
WO2022032827A1 (en) Camera optical lens
WO2022126700A1 (en) Photographic optical lens
WO2022021455A1 (en) Camera optical lens
WO2021168882A1 (en) Camera optical lens
WO2022007022A1 (en) Image pickup optical camera
WO2021168891A1 (en) Camera optical lens
WO2022007027A1 (en) Camera optical lens
WO2022021458A1 (en) Photographing optical lens
WO2021134321A1 (en) Photographic optical lens
WO2021134324A1 (en) Camera optical lens
WO2021168889A1 (en) Camera optical lens
WO2022032828A1 (en) Image pickup optical camera
WO2021134331A1 (en) Camera optical lens
WO2022032826A1 (en) Camera optical lens
WO2022021454A1 (en) Camera optical lens
WO2021134330A1 (en) Camera optical lens
WO2022041385A1 (en) Camera optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958235

Country of ref document: EP

Kind code of ref document: A1