WO2021132899A1 - Ultra-hydrophobic composite membrane for membrane aerated biofilm reactor process and manufacturing method therefor - Google Patents

Ultra-hydrophobic composite membrane for membrane aerated biofilm reactor process and manufacturing method therefor Download PDF

Info

Publication number
WO2021132899A1
WO2021132899A1 PCT/KR2020/016608 KR2020016608W WO2021132899A1 WO 2021132899 A1 WO2021132899 A1 WO 2021132899A1 KR 2020016608 W KR2020016608 W KR 2020016608W WO 2021132899 A1 WO2021132899 A1 WO 2021132899A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hollow fiber
porous
silicone
ultra
Prior art date
Application number
PCT/KR2020/016608
Other languages
French (fr)
Korean (ko)
Inventor
장재영
박재복
장상영
이정우
Original Assignee
주식회사 퓨어엔비텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퓨어엔비텍 filed Critical 주식회사 퓨어엔비텍
Publication of WO2021132899A1 publication Critical patent/WO2021132899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes

Definitions

  • the present invention relates to an ultra-hydrophobic composite membrane for a membrane aeration biofilm process and a method for manufacturing the same, and more particularly, a silicone outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane, and an inner direction of the hollow fiber membrane It relates to a technology for applying a very hydrophobic composite film having a structure in which a silicon-impregnated film embedded with a cross-locking structure is applied to a membrane aerated biofilm (MABR) process.
  • PVDF porous polyvinylidene fluoride
  • oxygen is transferred from the inside of the membrane to the outside in a bubbleless state by permeating air or oxygen in water through a homogeneous membrane without pores.
  • aerobic microorganisms grow on the outer surface of the membrane, and an anaerobic biofilm in which anaerobic microorganisms grow is formed from the outer wall of the aerobic microorganism biofilm that has consumed all of oxygen.
  • pollutants based on carbon and nitrogen atoms in wastewater can be removed with low energy.
  • PE polyethylene
  • PP polypropylene
  • SUEZ manufactured a very thin hollow fiber membrane with a material of 4-methyl-1-pentyl, wound it in a twisted form inside a support, and commercialized it as a membrane for the MABR process. Compared to silicone, it does not swell even under pressure. However, there is a problem in that it is impossible to use the membrane itself because the mechanical strength is weak because a thin and thin hollow fiber membrane is manufactured.
  • the present inventors have focused on the development of membranes for wastewater treatment for decades, and have held about 20 registered patents. Recently, hydrophobic polyvinylidene fluoride (PVDF) multi-bore hollow fiber membranes have been developed. It has been successfully developed and applied to the wastewater treatment process, which has been registered as Patent No. 1848817. Based on this patented technology, the present inventors have conducted research on the development of a membrane that can be applied to the above-described MABR process as a wastewater treatment process. As a result, the outer surface of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane has a silicone outer surface.
  • PVDF porous polyvinylidene fluoride
  • the present invention was completed by forming a membrane, embedding a silicon-impregnated membrane in the inner direction of the hollow fiber membrane, and manufacturing an ultra-hydrophobic composite membrane having a structure in which the silicone outer film and the silicon-impregnated membrane were cross-locked.
  • Patent Document 1 US Patent Publication US 2017-0088450
  • Patent Document 2 US Patent Publication US 2016-0009578
  • Patent Document 3 Korean Patent No. 10-1848817
  • the present invention has been devised in view of the above problems, and an object of the present invention is to provide an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process with high oxygen permeability and excellent mechanical properties and greatly improved durability, and a method for manufacturing the same that you want to provide.
  • MABR membrane aerated biofilm
  • a porous polyvinylidene fluoride (PVDF) hollow fiber membrane for achieving the object as described above, a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; a non-porous silicone outer film formed on the outer surface of the hollow fiber membrane; and a silicon-impregnated membrane embedded to a predetermined depth in the inner direction of the hollow fiber membrane from the side in contact with the non-porous silicone outer membrane.
  • PVDF polyvinylidene fluoride
  • the porous polyvinylidene fluoride (PVDF) hollow fiber membrane forms a channel having a plurality of holes (multi-bore) in the short fibers constituting the hollow fiber, and the outer peripheral surface of the short fibers including the plurality of holes is not circular. It is characterized in that the concave portion and the convex portion have a repeating pattern.
  • the porous polyvinylidene fluoride (PVDF) hollow fiber membrane is characterized in that the pore size is 0.05 to 0.45 ⁇ m.
  • the thickness of the non-porous silicone outer film is characterized in that 0.5 to 20 ⁇ m.
  • the silicon-impregnated membrane is characterized in that it is embedded in a depth of 1 to 100 ⁇ m in the inner direction of the hollow fiber membrane.
  • the silicone is characterized in that polydimethylsiloxane (PDMS).
  • the present invention comprises the steps of (I) obtaining a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; (II) forming a non-porous silicone outer film on the outer surface of the hollow fiber membrane by wetting and evaporating only the surface of the hollow fiber membrane in a hydrophilic medium, and then coating the silicone; and (III) after forming the non-porous silicone outer film, blowing in strong air to adjust the thickness of the outer film and impregnating with silicon to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film It provides a method for manufacturing an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process comprising a.
  • PVDF porous polyvinylidene fluoride
  • the hydrophilic media of step (II) is characterized in that it is selected from the group consisting of water, methanol, ethanol, n-propanol, isopropanol and n-butanol.
  • the silicone of step (II) or (III) is characterized in that it is polydimethylsiloxane (PDMS).
  • the ultra-hydrophobic composite membrane according to the present invention has a structure in which a silicone outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane and a silicon impregnated membrane embedded in the hollow fiber membrane are cross-locked. Due to this, the silicone outer film does not peel off, the silicone outer film does not swell even when the supply pressure is high, the oxygen permeability is high, and the durability is greatly improved due to excellent mechanical properties, so it can be applied to the MABR process and commercialized.
  • PVDF polyvinylidene fluoride
  • FIG. 1 is a block diagram showing a typical membrane aerated biofilm (MABR) process.
  • MABR membrane aerated biofilm
  • FIG. 2 is a 3D conceptual diagram showing a structure in which a silicon outer film and a silicon impregnated film are cross-locked according to the present invention
  • the present invention is a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; a non-porous silicone outer film formed on the outer surface of the hollow fiber membrane; and a silicon-impregnated membrane embedded to a predetermined depth in the inner direction of the hollow fiber membrane from the side in contact with the non-porous silicone outer membrane.
  • PVDF polyvinylidene fluoride
  • the porous polyvinylidene fluoride (PVDF) hollow fiber membrane preferably has a pore size of 0.05 to 0.45 ⁇ m, an inner diameter of the membrane of 0.2 to 2.0 mm, and a thickness of the membrane of 0.1 to 3.0 mm.
  • the polyvinylidene fluoride (PVDF) hollow fiber membrane is hydrophobic and has the advantage of being easily discharged without being condensed inside even if moisture is contained when gas such as air is supplied to the inside of the membrane.
  • the shape of the hollow fiber constituting the porous polyvinylidene fluoride (PVDF) hollow fiber membrane may be a single-bore hole in the single fiber constituting the hollow fiber, and preferably a plurality of holes (multi-bore). bore) is formed, and the outer peripheral surface of the short fiber including the plurality of holes has a pattern in which concave and convex portions are repeated rather than circular, which is shown in FIGS. 7 may be a porous hollow fiber membrane.
  • a non-porous silicone outer film is formed on the outer surface of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane.
  • PVDF porous polyvinylidene fluoride
  • a silicon-impregnated film embedded to a predetermined depth in the inner direction of the hollow fiber film is formed from the side in contact with the non-porous silicon outer film, and the non-porous silicon outer film and the embedded silicon-impregnated film are cross-locked.
  • Silicon has a very high oxygen permeability. After oxygen is initially adsorbed to silicon, it diffuses through the silicon thickness and then goes through three stages of dissolution in water, and the diffusion rate is faster as the thickness becomes thinner. Making the thickness as thin as possible is the key to increasing the oxygen transfer ability.
  • the silicone is cross-locked in the pores of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane, which serves as a support for the silicone outer film and the composite film, so that the silicon outer film is not peeled off, the size of the pores
  • the size of the pores is preferably controlled to 0.05 to 0.45 ⁇ m.
  • the silicon-impregnated membrane is preferably embedded to a depth of 1 to 100 ⁇ m in the inner direction of the hollow fiber membrane, and more preferably, the depth is 5 to 15 ⁇ m.
  • polydimethylsiloxane is preferably used as a silicone material for forming the silicone outer film and the silicone impregnated film.
  • FIG. 2 is a 3D conceptual diagram illustrating a structure in which the silicon outer film and the silicon impregnated film are cross-locked according to the present invention as described above.
  • the present invention comprises the steps of (I) obtaining a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; (II) forming a non-porous silicone outer film on the outer surface of the hollow fiber membrane by wetting and evaporating only the surface of the hollow fiber membrane in a hydrophilic medium, and then coating a silicone; and (III) after forming the non-porous silicone outer film, blowing in strong air to adjust the thickness of the outer film and impregnating with silicon to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film It provides a method for manufacturing an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process comprising a.
  • PVDF porous polyvinylidene fluoride
  • a porous polyvinylidene fluoride (PVDF) hollow fiber membrane having a single hole in a single fiber forming a hollow fiber according to a known conventional hollow fiber membrane manufacturing method may be prepared and obtained.
  • a porous polyvinylidene fluoride (PVDF) hollow fiber membrane of a multi-bore type may be obtained by manufacturing according to the method disclosed in [Experimental Example] of the present inventor's Patent No. 1848817 as described above. .
  • step (II) after wetting the porous polyvinylidene fluoride (PVDF) hollow fiber membrane in a hydrophilic medium and evaporating only the surface, silicone is coated to form a non-porous silicone outer film on the outer surface of the hollow fiber membrane,
  • the hydrophilic media one selected from the group consisting of water, methanol, ethanol, n-propanol, isopropanol and n-butanol may be used.
  • step (III) after forming the non-porous silicone outer film, strong air is blown in to control the thickness of the outer film, and silicon is impregnated to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film.
  • the silicon-impregnated membrane is embedded in a depth of 1 to 100 ⁇ m in the inner direction of the hollow fiber membrane, and more preferably to a depth of 5 to 15 ⁇ m.
  • Cross-locking of the non-porous silicone outer coating and the embedded silicon-impregnated membrane. The effect of locking) can be maximized.
  • PVDF polyvinylidene fluoride
  • the thickness of the outer film is adjusted by blowing in strong air (0.5 to 20 ⁇ m), and a polydimethylsiloxane solution is impregnated to form a polydimethylsiloxane-impregnated film in the inner direction of the hollow fiber film from the side in contact with the polydimethylsiloxane outer film.
  • a composite membrane was prepared.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • Table 1 below shows the oxygen permeability measurement and bubble test (at 3 bar) of the hollow fiber composite membranes or single membranes prepared from Examples 1 and 2 and Comparative Examples 1 and 2 according to the present invention.
  • a commercially available homogeneous silicon film with a thickness of 1 ⁇ m is known to have a pure oxygen permeability of 56,283 g/m 2 ⁇ day.
  • Examples 1 and 2 and Comparative Examples 1 and 2 are all theoretical oxygen permeability. It was measured with a value similar to the transmittance, and it was confirmed that no bubbles were generated in the water at 3 bar.
  • the oxygen permeability of the membrane developed by SUEZ or OXYMEM is 8 ⁇ 20 g/m 2 ⁇ day, and the amount of oxygen supplied to the biofilm required for the MABR process exceeds 20 g/m 2 ⁇ day You do not have to do. There is a limit to the amount of oxygen consumed by microorganisms present in the biofilm, so it is unnecessary to deliver too much. Due to the characteristics of wastewater treatment, durability should be maintained for more than 5 years in contaminated water, so it is more important to maintain the same performance for a long time without damaging the silicon film rather than oxygen permeability. Oxygen permeability increases when the supply pressure is high, but it is required to have an appropriate permeability to enable operation at low pressure. It is possible to maintain about 1 bar for a short period using a blower, but it is recommended to adjust it to 0.5 to 0.8 bar for long-term operation. desirable.
  • oxygen permeability in water was measured by continuously pressurizing at 3 bar (Na 2 SO 3 was added in excess to remove dissolved oxygen because dissolved oxygen in water interferes with oxygen permeability) This is a method of measuring the amount of oxygen consumed in the absence of dissolved oxygen by measuring and calculating the oxygen permeability).
  • Oxygen permeability was measured under the conditions of 3.0 bar and 0.5 bar, and it was confirmed that there was no change in oxygen permeability compared to the initial stage even after 3 months as well as 1 year.
  • Comparative Example 1 is a porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane that is not coated with silicone, wherein oxygen permeates in a bubble state at 3 bar and oxygen permeates in water but in air Similarly, the oxygen permeability was measured to be 100,000 g/m 2 ⁇ day. On the other hand, at 0.5 bar, no bubbles were generated and oxygen was transferred to the porous membrane without resistance , showing a high oxygen permeability of 126 g/m 2 ⁇ day. However, after 3 months, the pores of the porous membrane were wetted by water. Oxygen was not permeated.
  • PVDF polyvinylidene fluoride
  • Comparative Example 2 is a composite membrane in which polydimethylsiloxane is coated only on the surface of a porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane (polydimethylsiloxane impregnated membrane is not formed). It was measured to be 258 g/m 2 ⁇ day at 3 bar and 45 g/m 2 ⁇ day at 0.5 bar. In addition, as a result of observing the swelling of the PDMS outer film, the swelling of the outer film occurred after 1 month at 3 bar and after 7 months at 0.5 bar.
  • PVDF polyvinylidene fluoride
  • the ultra-hydrophobic composite membrane according to the present invention has a structure in which a silicon outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane and a silicon impregnated membrane embedded in the hollow fiber membrane are cross-locked. Due to this, the silicone outer film does not peel off, the silicon outer film does not swell even when the supply pressure is high, and the oxygen permeability is high and the durability is greatly improved due to excellent mechanical properties. .
  • PVDF polyvinylidene fluoride

Abstract

The present invention relates to an ultra-hydrophobic composite membrane for a membrane aerated biofilm reactor (MABR) process, the membrane comprising: a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; a non-porous silicone envelope membrane formed on the external surface of the hollow fiber membrane; and a silicone impregnation membrane embedded at a predetermined depth in the inner direction of the hollow fiber membrane from a side in contact with the non-porous silicone envelope membrane. The ultra-hydrophobic composite membrane according to the present invention is free from exfoliation of the silicone envelope membrane, causes no swelling of the silicone envelope membrane even under a high supply pressure, has high oxygen permeability, and has significantly improved durability due to excellent mechanical properties, and thus is commercially usable through the application to the MABR process.

Description

멤브레인 폭기 생물막 공정용 극소수성 복합막 및 그 제조방법Ultra-hydrophobic composite membrane for membrane aeration biofilm process and manufacturing method thereof
본 발명은 멤브레인 폭기 생물막 공정용 극소수성 복합막 및 그 제조방법에 관한 것으로, 보다 상세하게는 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 외부 표면에 형성된 실리콘 외피막과, 상기 중공사막 내부 방향으로 임베드된 실리콘 함침막이 크로스 로킹(cross-locking)된 구조의 극소수성 복합막을 멤브레인 폭기 생물막(MABR) 공정에 응용하는 기술에 관한 것에 관한 것이다.The present invention relates to an ultra-hydrophobic composite membrane for a membrane aeration biofilm process and a method for manufacturing the same, and more particularly, a silicone outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane, and an inner direction of the hollow fiber membrane It relates to a technology for applying a very hydrophobic composite film having a structure in which a silicon-impregnated film embedded with a cross-locking structure is applied to a membrane aerated biofilm (MABR) process.
일반적으로 멤브레인 폭기 생물막(membrane aerated biofilm reactor, MABR) 공정에서는 기공이 없는 균질막을 통해 수중에서 공기 또는 산소를 투과시킴으로써 버블리스 상태로 산소를 막 내부로부터 외부로 전달한다. 이때, 막 외부 표면에서 호기성 미생물이 성장하고, 산소를 모두 소비한 호기성 미생물 비이오필름 외벽으로부터는 혐기성 미생물이 성장하는 혐기성 바이오필름이 형성된다. 이러한 작용기전에 따라 폐수 내 탄소 및 질소 원자를 기반으로 하는 오염물을 낮은 에너지로 제거할 수 있다.In general, in a membrane aerated biofilm reactor (MABR) process, oxygen is transferred from the inside of the membrane to the outside in a bubbleless state by permeating air or oxygen in water through a homogeneous membrane without pores. At this time, aerobic microorganisms grow on the outer surface of the membrane, and an anaerobic biofilm in which anaerobic microorganisms grow is formed from the outer wall of the aerobic microorganism biofilm that has consumed all of oxygen. According to this mechanism of action, pollutants based on carbon and nitrogen atoms in wastewater can be removed with low energy.
종래 MABR 공정용 분리막으로서 1 세대에는 소수성 소재인 폴리에틸렌(PE) 또는 폴리프로필렌(PP)계 다공성 중공사막에 대하여 많은 연구가 이루어졌다. 그런데 이러한 중공사막은 기공이 있음에도 소수성 소재의 특성으로 인하여 수중에서 버블리스 상태로 수소, 산소 또는 공기 등의 기체를 전달함으로써 특정한 미생물을 부착, 폐수처리 하는 다양한 연구방향으로 진행되었다. 그러나 단기간 운전 후에 막의 기공에 무기물 등 오염물이 부착되어 소수성 막의 특성이 친수성으로 바뀌고, 이렇게 친수화 됨으로써 막의 기공에 물이 채워져 기체가 투과되지 않아 상용화에 이르지는 못하였다.A lot of research has been done on polyethylene (PE) or polypropylene (PP)-based porous hollow fiber membranes, which are hydrophobic materials, in the first generation as a separator for the conventional MABR process. However, these hollow fiber membranes have been conducted in various research directions to attach specific microorganisms and treat wastewater by delivering gases such as hydrogen, oxygen, or air in a bubbleless state in water due to the characteristics of hydrophobic materials despite the presence of pores. However, after a short period of operation, contaminants such as inorganic substances were attached to the pores of the membrane, and the properties of the hydrophobic membrane were changed to hydrophilic.
즉, MABR 공정용 분리막으로서 상용화되기 위해서는 산소 등 기체투과성이 좋아야 하고, 소수성의 재질로서 막에 기공이 없어 막이 오염되더라도 물이 침투되지 않아야 하며, 막의 내구성이 우수하여 적어도 5년 이상 사용이 가능하여야 한다. 최근에는 이러한 조건에 부합하기 위하여 기공이 없는 균질막을 사용함으로써 MABR 공정용으로 상용화 한 사례가 있다.In other words, in order to be commercialized as a separation membrane for the MABR process, it must have good gas permeability such as oxygen, and as a hydrophobic material, water should not penetrate even if the membrane is contaminated because there are no pores in the membrane. do. Recently, there is a case of commercialization for MABR process by using a homogeneous membrane without pores in order to meet these conditions.
옥시멤(OXYMEM) 사는 기체투과성이 우수한 소수성 실리콘계 중공사 균질막으로 제조하여 상용화 하였으나, 이는 중공사 단일막 형태이므로 일정 두께 이하에서는 압력을 견디지 못하고 부풀기 때문에 기계적 물성이 떨어져 일정 두께 이상을 유지하여야 하는 단점이 있다.OXYMEM manufactured and commercialized a hydrophobic silicone-based hollow fiber homogeneous membrane with excellent gas permeability, but since it is a hollow fiber single membrane type, it cannot withstand pressure below a certain thickness and swells. There is a downside to
또한, 수에즈(SUEZ) 사는 4-메틸-1-펜틸의 소재로 매우 얇은 두께의 중공사막을 제조하여 지지체 안에 트위스트 형태로 감아서 MABR 공정용 막으로 상용화 하였는데, 실리콘에 비하여 압력을 받아도 부풀지 않는 성질이 있으나, 얇고 가늘게 중공사막을 제조한 까닭에 기계적 강도가 약하여 막 자체를 단독으로 사용하는 것은 불가한 문제점이 있다.In addition, SUEZ manufactured a very thin hollow fiber membrane with a material of 4-methyl-1-pentyl, wound it in a twisted form inside a support, and commercialized it as a membrane for the MABR process. Compared to silicone, it does not swell even under pressure. However, there is a problem in that it is impossible to use the membrane itself because the mechanical strength is weak because a thin and thin hollow fiber membrane is manufactured.
본 발명자 등은 수십 년간 폐수처리를 위한 멤브레인 개발에 주력하였고, 그 동안 20여 건의 등록특허를 보유하고 있는데, 최근에는 소수성의 폴리비닐리덴플루오라이드(PVDF) 다공형(multi-bore) 중공사막의 개발에 성공하여 폐수처리공정에 응용하고 있으며, 이는 특허 제1848817호로 등록된 바 있다. 이러한 특허기술을 바탕으로 본 발명자 등은 폐수처리공정으로서 상술한 MABR 공정에 적용할 수 있는 멤브레인 개발에 관한 연구를 거듭한 결과, 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 외부 표면에 실리콘 외피막을 형성하고, 상기 중공사막 내부 방향으로 실리콘 함침막이 임베드 되어, 상기 실리콘 외피막과 실리콘 함침막이 크로스 로킹(cross-locking)된 구조의 극소수성 복합막을 제조하여 본 발명을 완성하기에 이르렀다.The present inventors have focused on the development of membranes for wastewater treatment for decades, and have held about 20 registered patents. Recently, hydrophobic polyvinylidene fluoride (PVDF) multi-bore hollow fiber membranes have been developed. It has been successfully developed and applied to the wastewater treatment process, which has been registered as Patent No. 1848817. Based on this patented technology, the present inventors have conducted research on the development of a membrane that can be applied to the above-described MABR process as a wastewater treatment process. As a result, the outer surface of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane has a silicone outer surface. The present invention was completed by forming a membrane, embedding a silicon-impregnated membrane in the inner direction of the hollow fiber membrane, and manufacturing an ultra-hydrophobic composite membrane having a structure in which the silicone outer film and the silicon-impregnated membrane were cross-locked.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
특허문헌 1. 미국공개특허 US 2017-0088450Patent Document 1. US Patent Publication US 2017-0088450
특허문헌 2. 미국공개특허 US 2016-0009578Patent Document 2. US Patent Publication US 2016-0009578
특허문헌 3. 한국등록특허 제10-1848817호 Patent Document 3. Korean Patent No. 10-1848817
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 산소투과도가 높고, 기계적 물성이 우수하여 내구성이 크게 향상된 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막 및 그 제조방법을 제공하고자 하는 것이다.The present invention has been devised in view of the above problems, and an object of the present invention is to provide an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process with high oxygen permeability and excellent mechanical properties and greatly improved durability, and a method for manufacturing the same that you want to provide.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막; 상기 중공사막의 외부 표면에 형성된 비다공성 실리콘 외피막; 및 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 소정의 깊이로 임베드된 실리콘 함침막;을 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막을 제공한다.The present invention for achieving the object as described above, a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; a non-porous silicone outer film formed on the outer surface of the hollow fiber membrane; and a silicon-impregnated membrane embedded to a predetermined depth in the inner direction of the hollow fiber membrane from the side in contact with the non-porous silicone outer membrane.
상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막은 중공사를 이루는 단섬유에 복수 개의 구멍(multi-bore)을 갖는 채널을 형성하고, 상기 복수 개의 구멍을 포함하는 단섬유의 외주면은 원형이 아닌 오목 부분 및 볼록 부분이 반복되는 패턴을 갖는 것을 특징으로 한다.The porous polyvinylidene fluoride (PVDF) hollow fiber membrane forms a channel having a plurality of holes (multi-bore) in the short fibers constituting the hollow fiber, and the outer peripheral surface of the short fibers including the plurality of holes is not circular. It is characterized in that the concave portion and the convex portion have a repeating pattern.
상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막은 그 기공의 크기가 0.05 내지 0.45 ㎛인 것을 특징으로 한다.The porous polyvinylidene fluoride (PVDF) hollow fiber membrane is characterized in that the pore size is 0.05 to 0.45 μm.
상기 비다공성 실리콘 외피막의 두께는 0.5 내지 20 ㎛인 것을 특징으로 한다.The thickness of the non-porous silicone outer film is characterized in that 0.5 to 20 ㎛.
상기 실리콘 함침막은 상기 중공사막 내부 방향으로 1 내지 100 ㎛ 깊이로 임베드된 것을 특징으로 한다.The silicon-impregnated membrane is characterized in that it is embedded in a depth of 1 to 100 μm in the inner direction of the hollow fiber membrane.
상기 실리콘은 폴리디메틸실록산(PDMS)인 것을 특징으로 한다.The silicone is characterized in that polydimethylsiloxane (PDMS).
또한, 본 발명은 (I) 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 얻는 단계; (II) 상기 중공사막을 친수성 미디어에 습윤 및 표면만 증발시킨 후, 실리콘을 코팅하여 상기 중공사막의 외부 표면에 비다공성 실리콘 외피막을 형성하는 단계; 및 (III) 상기 비다공성 실리콘 외피막 형성 후, 강한 공기를 취입하여 외피막의 두께를 조절하고 실리콘을 함침시켜 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 실리콘 함침막을 형성하는 단계;를 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막의 제조방법을 제공한다.In addition, the present invention comprises the steps of (I) obtaining a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; (II) forming a non-porous silicone outer film on the outer surface of the hollow fiber membrane by wetting and evaporating only the surface of the hollow fiber membrane in a hydrophilic medium, and then coating the silicone; and (III) after forming the non-porous silicone outer film, blowing in strong air to adjust the thickness of the outer film and impregnating with silicon to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film It provides a method for manufacturing an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process comprising a.
상기 (II) 단계의 친수성 미디어는 물, 메탄올, 에탄올, n-프로판올, 이소프로판올 및 n-부탄올로 이루어진 군으로부터 선택된 것을 특징으로 한다. The hydrophilic media of step (II) is characterized in that it is selected from the group consisting of water, methanol, ethanol, n-propanol, isopropanol and n-butanol.
상기 (II) 단계 또는 (III) 단계의 실리콘은 폴리디메틸실록산(PDMS)인 것을 특징으로 한다.The silicone of step (II) or (III) is characterized in that it is polydimethylsiloxane (PDMS).
본 발명에 따른 극소수성 복합막은 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 외부 표면에 형성된 실리콘 외피막과, 상기 중공사막 내부 방향으로 임베드된 실리콘 함침막이 크로스 로킹(cross-locking)된 구조로 인하여, 실리콘 외피막이 박리되지 않고 공급압력이 높아도 실리콘 외피막이 부풀지 않으며, 산소투과도가 높으면서도, 기계적 물성이 우수하여 내구성이 크게 향상되므로 MABR 공정에 적용하여 상용화 가능하다. The ultra-hydrophobic composite membrane according to the present invention has a structure in which a silicone outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane and a silicon impregnated membrane embedded in the hollow fiber membrane are cross-locked. Due to this, the silicone outer film does not peel off, the silicone outer film does not swell even when the supply pressure is high, the oxygen permeability is high, and the durability is greatly improved due to excellent mechanical properties, so it can be applied to the MABR process and commercialized.
도 1은 통상의 멤브레인 폭기 생물막(MABR) 공정을 나타낸 구성도. 1 is a block diagram showing a typical membrane aerated biofilm (MABR) process.
도 2는 본 발명에 따라 실리콘 외피막과 실리콘 함침막이 크로스 로킹(cross-locking)된 구조를 나타낸 3D 개념도.2 is a 3D conceptual diagram showing a structure in which a silicon outer film and a silicon impregnated film are cross-locked according to the present invention;
이하에서는 본 발명에 따른 멤브레인 폭기 생물막 공정용 극소수성 복합막 및 그 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, the ultra-hydrophobic composite membrane for a membrane aeration biofilm process according to the present invention and a method for manufacturing the same will be described in detail with the accompanying drawings.
본 발명은 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막; 상기 중공사막의 외부 표면에 형성된 비다공성 실리콘 외피막; 및 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 소정의 깊이로 임베드된 실리콘 함침막;을 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막을 제공한다.The present invention is a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; a non-porous silicone outer film formed on the outer surface of the hollow fiber membrane; and a silicon-impregnated membrane embedded to a predetermined depth in the inner direction of the hollow fiber membrane from the side in contact with the non-porous silicone outer membrane.
상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막은 기공의 크기가 0.05 내지 0.45 ㎛인 것이 바람직하며, 막의 내경은 0.2 내지 2.0 mm, 막의 두께는 0.1 내지 3.0 mm일 수 있다. 이러한 폴리비닐리덴플루오라이드(PVDF) 중공사막은 소수성으로서 막 내부로 공기 등의 기체를 공급하는 경우에 수분이 함유되더라도 내부에 응축되지 않고 배출이 용이한 장점을 갖는다. The porous polyvinylidene fluoride (PVDF) hollow fiber membrane preferably has a pore size of 0.05 to 0.45 μm, an inner diameter of the membrane of 0.2 to 2.0 mm, and a thickness of the membrane of 0.1 to 3.0 mm. The polyvinylidene fluoride (PVDF) hollow fiber membrane is hydrophobic and has the advantage of being easily discharged without being condensed inside even if moisture is contained when gas such as air is supplied to the inside of the membrane.
특히, 상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 구성하는 중공사의 형태는 중공사를 이루는 단섬유에 구멍이 한 개(single-bore)일 수 있고, 바람직하기로는 복수 개의 구멍(multi-bore)을 갖는 채널이 형성되되, 상기 복수 개의 구멍을 포함하는 단섬유의 외주면은 원형이 아닌 오목부분 및 볼록 부분이 반복되는 패턴을 갖는 것으로서, 이는 본 발명자의 등록특허 제1848817호의 도 1 내지 도 7에 개시된 다공형 중공사막일 수 있다.In particular, the shape of the hollow fiber constituting the porous polyvinylidene fluoride (PVDF) hollow fiber membrane may be a single-bore hole in the single fiber constituting the hollow fiber, and preferably a plurality of holes (multi-bore). bore) is formed, and the outer peripheral surface of the short fiber including the plurality of holes has a pattern in which concave and convex portions are repeated rather than circular, which is shown in FIGS. 7 may be a porous hollow fiber membrane.
또한, 상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 외부 표면에 비다공성 실리콘 외피막이 형성되는바, 실리콘 외피막은 그 두께가 얇을수록 산소투과도는 좋지만 지속적인 공급압력으로 인하여 박리가 발생할 수 있다. 이를 방지하기 위해서는 실리콘 외피막의 두께가 두꺼울수록 박리 내구성은 향상되는 반면, 산소투과도가 저하되므로 실리콘 외피막이 최대한 얇으면서 박리에 안정한 구조를 가져야 한다. 따라서 상기 비다공성 실리콘 외피막의 두께는 0.5 내지 20 ㎛인 것이 바람직하고, 3 내지 8 ㎛인 것이 더욱 바람직하다.In addition, a non-porous silicone outer film is formed on the outer surface of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane. The thinner the silicon outer film, the better the oxygen permeability, but peeling may occur due to the continuous supply pressure. In order to prevent this, peeling durability is improved as the thickness of the silicone outer film is increased, while oxygen permeability is lowered. Therefore, the silicon outer film must be as thin as possible and have a structure stable for peeling. Therefore, the thickness of the non-porous silicone outer film is preferably 0.5 to 20 μm, more preferably 3 to 8 μm.
또한, 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 소정의 깊이로 임베드된 실리콘 함침막이 형성되는바, 상기 비다공성 실리콘 외피막과 상기 임베드된 실리콘 함침막이 크로스 로킹(cross-locking)된 구조를 가짐으로써 실리콘 외피막이 박리되지 않고, 공급압력이 높아도 실리콘 외피막이 부풀지 않는 효과를 나타낸다.In addition, a silicon-impregnated film embedded to a predetermined depth in the inner direction of the hollow fiber film is formed from the side in contact with the non-porous silicon outer film, and the non-porous silicon outer film and the embedded silicon-impregnated film are cross-locked. By having a structured structure, the silicone outer film does not peel off, and the silicone outer film does not swell even when the supply pressure is high.
실리콘은 산소투과도가 매우 높은 특성을 갖고 있는데, 산소가 실리콘에 최초 흡착 후, 실리콘 두께를 통해 확산된 다음, 물에 용해되는 3 단계를 거치며, 그 확산 속도는 두께가 얇을수록 빠르므로 실리콘 외피막의 두께를 최대한 얇게 하는 것이 산소 전달 능력을 높이는 관건이다.Silicon has a very high oxygen permeability. After oxygen is initially adsorbed to silicon, it diffuses through the silicon thickness and then goes through three stages of dissolution in water, and the diffusion rate is faster as the thickness becomes thinner. Making the thickness as thin as possible is the key to increasing the oxygen transfer ability.
즉, 실리콘 외피막과 복합막의 지지체 역할을 수행하는 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 기공에 실리콘이 크로스 로킹(cross-locking)되어 실리콘 외피막이 박리되지 않도록 잡아주는바, 기공의 크기가 클수록 잡아주는 효과가 상승되지만 기공이 너무 크면 임베드 되는 실리콘 함침막의 깊이가 깊어져 산소투과도가 급격히 떨어진다. 따라서 크로스 로킹(cross-locking) 효과를 나타내면서 임베드 되는 실리콘 함침막의 깊이를 조절하기 위하여 기공의 크기는 0.05 내지 0.45 ㎛으로 제어하는 것이 바람직하다. 이때, 상기 실리콘 함침막은 상기 중공사막 내부 방향으로 1 내지 100 ㎛ 깊이로 임베드된 것이 바람직하고, 그 깊이가 5 내지 15 ㎛인 것이 더욱 바람직하다. That is, the silicone is cross-locked in the pores of the porous polyvinylidene fluoride (PVDF) hollow fiber membrane, which serves as a support for the silicone outer film and the composite film, so that the silicon outer film is not peeled off, the size of the pores The larger the size, the higher the holding effect, but if the pores are too large, the depth of the silicon-impregnated film to be embedded deepens, and the oxygen permeability drops sharply. Therefore, in order to control the depth of the silicon-impregnated film to be embedded while exhibiting a cross-locking effect, the size of the pores is preferably controlled to 0.05 to 0.45 μm. In this case, the silicon-impregnated membrane is preferably embedded to a depth of 1 to 100 μm in the inner direction of the hollow fiber membrane, and more preferably, the depth is 5 to 15 μm.
또한, 상기 실리콘 외피막 및 실리콘 함침막을 형성하는 실리콘 소재로서는 폴리디메틸실록산(PDMS)을 바람직하게 사용한다.In addition, polydimethylsiloxane (PDMS) is preferably used as a silicone material for forming the silicone outer film and the silicone impregnated film.
도 2에는 상술한 바와 같이 본 발명에 따른 실리콘 외피막과 실리콘 함침막이 크로스 로킹(cross-locking)된 구조를 3D 개념도로 나타내었다. 2 is a 3D conceptual diagram illustrating a structure in which the silicon outer film and the silicon impregnated film are cross-locked according to the present invention as described above.
또한, 본 발명은 (I) 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 얻는 단계; (II) 상기 중공사막을 친수성 미디어에 습윤 및 표면만 증발시킨 후, 실리콘을 코팅하여 상기 중공사막의 외부 표면에 비다공성 실리콘 외피막을 형성하는 단계; 및 (III) 상기 비다공성 실리콘 외피막 형성 후, 강한 공기를 취입하여 외피막의 두께를 조절하고 실리콘을 함침시켜 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 실리콘 함침막을 형성하는 단계;를 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막의 제조방법을 제공한다.In addition, the present invention comprises the steps of (I) obtaining a porous polyvinylidene fluoride (PVDF) hollow fiber membrane; (II) forming a non-porous silicone outer film on the outer surface of the hollow fiber membrane by wetting and evaporating only the surface of the hollow fiber membrane in a hydrophilic medium, and then coating a silicone; and (III) after forming the non-porous silicone outer film, blowing in strong air to adjust the thickness of the outer film and impregnating with silicon to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film It provides a method for manufacturing an ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process comprising a.
상기 (I) 단계에서는 공지된 통상의 중공사막 제조방법에 따라 중공사를 이루는 단섬유에 구멍이 한 개(single-bore)인 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 제조하여 얻을 수도 있고, 바람직하기로는 상술한 바와 같이 본 발명자의 등록특허 제1848817호의 [실험예]에 개시된 방법에 따라 제조하여 다공형(multi-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 얻을 수도 있다.In step (I), a porous polyvinylidene fluoride (PVDF) hollow fiber membrane having a single hole in a single fiber forming a hollow fiber according to a known conventional hollow fiber membrane manufacturing method may be prepared and obtained. , preferably, a porous polyvinylidene fluoride (PVDF) hollow fiber membrane of a multi-bore type may be obtained by manufacturing according to the method disclosed in [Experimental Example] of the present inventor's Patent No. 1848817 as described above. .
상기 (II) 단계에서는 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 친수성 미디어에 습윤 및 표면만 증발시킨 후, 실리콘을 코팅하여 상기 중공사막의 외부 표면에 비다공성 실리콘 외피막을 형성하는바, 상기 친수성 미디어로서는 물, 메탄올, 에탄올, n-프로판올, 이소프로판올 및 n-부탄올로 이루어진 군으로부터 선택된 것을 사용할 수 있다.In step (II), after wetting the porous polyvinylidene fluoride (PVDF) hollow fiber membrane in a hydrophilic medium and evaporating only the surface, silicone is coated to form a non-porous silicone outer film on the outer surface of the hollow fiber membrane, As the hydrophilic media, one selected from the group consisting of water, methanol, ethanol, n-propanol, isopropanol and n-butanol may be used.
상기 (III) 단계에서는 비다공성 실리콘 외피막 형성 후, 강한 공기를 취입하여 외피막의 두께를 조절하고 실리콘을 함침시켜 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 실리콘 함침막을 형성하는바, 상기 실리콘 함침막은 상기 중공사막 내부 방향으로 1 내지 100 ㎛ 깊이로, 더욱 바람직하기로는 5 내지 15 ㎛ 깊이로 임베드 되는 것이 상기 비다공성 실리콘 외피막과 상기 임베드된 실리콘 함침막의 크로스 로킹(cross-locking)으로 인한 효과를 극대화 할 수 있다.In step (III), after forming the non-porous silicone outer film, strong air is blown in to control the thickness of the outer film, and silicon is impregnated to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film. Bar, the silicon-impregnated membrane is embedded in a depth of 1 to 100 μm in the inner direction of the hollow fiber membrane, and more preferably to a depth of 5 to 15 μm. Cross-locking of the non-porous silicone outer coating and the embedded silicon-impregnated membrane. The effect of locking) can be maximized.
이하에서는 본 발명에 따른 구체적인 실시예 및 비교예를 서술한다.Hereinafter, specific examples and comparative examples according to the present invention will be described.
(( 실시예Example 1 내지 2) 1 to 2)
등록특허 제1848817호의 [실험예]에 개시된 방법에 따라 제조하여 다공형(7-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 얻었다. 상기 얻어진 중공사막을 이소프로판올에 습윤 및 표면만 증발시킨 후, 폴리디메틸실록산(PDMS) 용액을 코팅하여 상기 중공사막의 외부 표면에 비다공성 폴리디메틸실록산 외피막을 형성하였다. 이어서 강한 공기를 취입하여 외피막의 두께를 조절하고(0.5 내지 20 ㎛) 폴리디메틸실록산 용액을 함침시켜 상기 폴리디메틸실록산 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 폴리디메틸실록산 함침막을 형성함으로써 극소수성 복합막을 제조하였다.A porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber membrane was obtained according to the method disclosed in [Experimental Example] of Patent Registration No. 1848817. After the obtained hollow fiber membrane was wetted with isopropanol and only the surface was evaporated, a polydimethylsiloxane (PDMS) solution was coated to form a non-porous polydimethylsiloxane outer film on the outer surface of the hollow fiber membrane. Then, the thickness of the outer film is adjusted by blowing in strong air (0.5 to 20 μm), and a polydimethylsiloxane solution is impregnated to form a polydimethylsiloxane-impregnated film in the inner direction of the hollow fiber film from the side in contact with the polydimethylsiloxane outer film. A composite membrane was prepared.
(비교예 1)(Comparative Example 1)
실시예 1에 따라 다공형(7-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사 단일막을 제조하였다.A porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane was prepared according to Example 1.
(비교예 2)(Comparative Example 2)
비교예 1로부터 제조한 다공형(7-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사 단일막의 표면에만 폴리디메틸실록산을 코팅한(폴리디메틸실록산 함침막은 형성하지 않음) 복합막을 제조하였다. A composite membrane in which only the surface of the porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane prepared in Comparative Example 1 was coated with polydimethylsiloxane (a polydimethylsiloxane impregnated membrane was not formed) was prepared.
하기 표 1에는 본 발명에 따른 실시예 1 내지 2 및 비교예 1 내지 2로부터 제조한 중공사 복합막 또는 단일막의 산소투과도 측정 및 버블(bubble) 테스트(at 3 bar) 결과를 나타내었다.Table 1 below shows the oxygen permeability measurement and bubble test (at 3 bar) of the hollow fiber composite membranes or single membranes prepared from Examples 1 and 2 and Comparative Examples 1 and 2 according to the present invention.
샘플Sample PDMS 외피막 두께
(㎛)
PDMS envelope thickness
(μm)
PDMS 함침막 깊이
(㎛)
PDMS impregnated film depth
(μm)
산소투과도
(g/m2·day)
oxygen permeability
(g/m 2 day)
버블 테스트
(at 3 bar)
bubble test
(at 3 bar)
실시예 1Example 1 88 1515 2,8002,800 No bubbleNo bubble
실시예 2Example 2 2020 7070 700700 No bubbleNo bubble
비교예 1Comparative Example 1 -- -- 100,000100,000 bubblebubble
비교예 2Comparative Example 2 3030 -- 1,8201,820 No bubbleNo bubble
일반적으로 상업화된 1 ㎛ 두께의 균질한 실리콘막은 순수 산소투과도가 56,283 g/m2·day로 알려져 있는데, 상기 표 1에서 보는 바와 같이, 실시예 1, 2 및 비교예 1, 2 모두 이론적인 산소투과도와 유사한 값으로 측정되었고 3 bar에서 수중 버블이 발생하지 않은 것으로 확인되었다.A commercially available homogeneous silicon film with a thickness of 1 μm is known to have a pure oxygen permeability of 56,283 g/m 2 ·day. As shown in Table 1, Examples 1 and 2 and Comparative Examples 1 and 2 are all theoretical oxygen permeability. It was measured with a value similar to the transmittance, and it was confirmed that no bubbles were generated in the water at 3 bar.
한편, 산소투과도만을 고려했을 때는 실시예 1, 2 이외에 비교예 1, 2도 충분한 산소투과도를 나타내었으나, 실제로 본 발명에 따른 복합막을 폐수처리공정에 응용하는 특성 상, 5년 이상의 연속 사용이 가능하여야 MABR 공정에 상용화 할 수 있으므로, 수중에서 압력조건을 달리하면서(at 3 bar 및 at 0.5 bar; 초기 및 3개월 후) 거듭 산소투과도 및 내구성(at 3 bar, PDMS 외피막이 부풀어 오르는 현상을 관찰)을 시험하였는바, 그 결과를 아래 표 2에 나타내었다.On the other hand, when only the oxygen permeability was considered, Comparative Examples 1 and 2 in addition to Examples 1 and 2 showed sufficient oxygen permeability. However, due to the characteristics of actually applying the composite membrane according to the present invention to a wastewater treatment process, continuous use for more than 5 years is possible In order to be commercialized in the MABR process, the oxygen permeability and durability (at 3 bar, the swelling of the PDMS outer film was observed) while varying the pressure conditions in water (at 3 bar and at 0.5 bar; initial and after 3 months) was tested, and the results are shown in Table 2 below.
샘플Sample 산소투과도
(g/m2·day)
at 3 bar
oxygen permeability
(g/m 2 day)
at 3 bar
산소투과도
(g/m2·day)
at 0.5 bar 초기
oxygen permeability
(g/m 2 day)
at 0.5 bar initial
산소투과도
(g/m2·day)
at 0.5 bar 3개월 후
oxygen permeability
(g/m 2 day)
at 0.5 bar after 3 months
PDMS 외피막의 부품 현상 Part development of PDMS envelope
실시예 1Example 1 430430 7272 7272 부풀지 않음not bloated
실시예 2Example 2 106106 1818 1818 부풀지 않음not bloated
비교예 1Comparative Example 1 100,000100,000 126126 -- --
비교예 2Comparative Example 2 258258 4545 4545 부풀어 오름intumescence
통상 수에즈(SUEZ) 사나 옥시멤(OXYMEM) 사에서 개발한 막의 산소투과도는 8~20 g/m2·day이며, MABR 공정에 필요한 생물막에 공급하는 산소의 양은 20 g/m2·day를 초과하지 않아도 된다. 생물막에 존재하는 미생물이 산소를 소비하는 양은 한계가 있어 너무 많이 전달되는 것도 불필요하다. 폐수처리의 특성 상, 오염된 물속에서 5년 이상 내구성이 유지되어야 하므로 산소투과도보다는 실리콘 막이 손상되지 않고 장기간 동일한 성능을 유지하는 것이 중요하다. 산소투과도는 공급압력이 높으면 증가하지만 낮은 압력에서 운전이 가능하도록 적정 투과도를 갖는 것이 요구되는바, 블로워를 사용하여 단기간 1 bar 정도를 유지하는 것은 가능하지만 장기간 운전은 0.5~0.8 bar로 조절하는 것이 바람직하다.Normally, the oxygen permeability of the membrane developed by SUEZ or OXYMEM is 8~20 g/m 2 ·day, and the amount of oxygen supplied to the biofilm required for the MABR process exceeds 20 g/m 2 ·day You do not have to do. There is a limit to the amount of oxygen consumed by microorganisms present in the biofilm, so it is unnecessary to deliver too much. Due to the characteristics of wastewater treatment, durability should be maintained for more than 5 years in contaminated water, so it is more important to maintain the same performance for a long time without damaging the silicon film rather than oxygen permeability. Oxygen permeability increases when the supply pressure is high, but it is required to have an appropriate permeability to enable operation at low pressure. It is possible to maintain about 1 bar for a short period using a blower, but it is recommended to adjust it to 0.5 to 0.8 bar for long-term operation. desirable.
상기 표 2의 실시예 1, 2는 3 bar에서 연속적으로 가압하여 물속에서 산소투과도를 측정한 것이다(물속의 용존산소가 산소투과율을 방해하므로 용존산소를 제거하기 위하여 Na2SO3를 과량으로 투입하여 용존산소가 존재하지 않는 조건에서 산소가 소비되는 양을 측정하는 방법으로 산소투과율을 측정, 계산한 것임). 산소투과도는 3.0 bar 및 0.5 bar의 조건에서 측정하였는바, 3개월 후 뿐만 아니라 1년이 경과되어도 초기 대비 산소투과도에 변화가 없었음을 확인하였다.In Examples 1 and 2 of Table 2, oxygen permeability in water was measured by continuously pressurizing at 3 bar (Na 2 SO 3 was added in excess to remove dissolved oxygen because dissolved oxygen in water interferes with oxygen permeability) This is a method of measuring the amount of oxygen consumed in the absence of dissolved oxygen by measuring and calculating the oxygen permeability). Oxygen permeability was measured under the conditions of 3.0 bar and 0.5 bar, and it was confirmed that there was no change in oxygen permeability compared to the initial stage even after 3 months as well as 1 year.
비교예 1은 실리콘을 코팅하지 않은 다공형(7-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사 단일막으로서 3 bar에서 산소가 버블 상태로 투과하여 수중이지만 공기 중에서 산소가 투과하는 것과 동일하게 산소투과도가 100,000 g/m2·day로 측정되었다. 한편, 0.5 bar에서는 버블이 발생하지 않고 다공성 막으로 저항 없이 산소가 전달되어 126 g/m2·day의 높은 산소투과도를 나타내었으나, 3개월 후에는 다공성 막의 기공이 물에 의하여 젖게(wetting) 됨으로써 산소가 투과되지 않았다.Comparative Example 1 is a porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane that is not coated with silicone, wherein oxygen permeates in a bubble state at 3 bar and oxygen permeates in water but in air Similarly, the oxygen permeability was measured to be 100,000 g/m 2 ·day. On the other hand, at 0.5 bar, no bubbles were generated and oxygen was transferred to the porous membrane without resistance , showing a high oxygen permeability of 126 g/m 2 ·day. However, after 3 months, the pores of the porous membrane were wetted by water. Oxygen was not permeated.
비교예 2는 다공형(7-bore)의 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사 단일막의 표면에만 폴리디메틸실록산을 코팅한(폴리디메틸실록산 함침막은 형성하지 않음) 복합막으로서, 산소투과도가 3 bar에서 258 g/m2·day, 0.5 bar에서 45 g/m2·day로 측정되었다. 또한, PDMS 외피막이 부풀어 오르는 현상을 관찰한 결과, 3 bar에서는 1개월 후에, 0.5 bar에서는 7개월 후에 외피막이 부풀어 오르는 현상이 발생함으로써 내구성이 크게 떨어져 MABR 공정용 막으로서 상용화가 불가능한 것으로 평가되었다. Comparative Example 2 is a composite membrane in which polydimethylsiloxane is coated only on the surface of a porous (7-bore) porous polyvinylidene fluoride (PVDF) hollow fiber single membrane (polydimethylsiloxane impregnated membrane is not formed). It was measured to be 258 g/m 2 ·day at 3 bar and 45 g/m 2 ·day at 0.5 bar. In addition, as a result of observing the swelling of the PDMS outer film, the swelling of the outer film occurred after 1 month at 3 bar and after 7 months at 0.5 bar.
그러나 본 발명의 실시예 1 및 2로부터 제조한 극소수성 복합막은 1년 이상이 경과하여도 폴리디메틸실록산 외피막이 박리되지 않고, 공급압력이 높아도 실리콘 외피막이 부풀지 않는 것을 확인함으로써 MABR 공정에 응용이 가능함을 알았다.However, in the ultra-hydrophobic composite membranes prepared in Examples 1 and 2 of the present invention, it was confirmed that the polydimethylsiloxane outer film did not peel off even after one year or more, and the silicone outer film did not swell even when the supply pressure was high. found it possible
그러므로 본 발명에 따른 극소수성 복합막은 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막의 외부 표면에 형성된 실리콘 외피막과, 상기 중공사막 내부 방향으로 임베드된 실리콘 함침막이 크로스 로킹(cross-locking)된 구조로 인하여, 실리콘 외피막이 박리되지 않고 공급압력이 높아도 실리콘 외피막이 부풀지 않으며, 산소투과도가 높으면서도, 기계적 물성이 우수하여 내구성이 크게 향상되므로 도 1에 나타낸 통상의 MABR 공정에 적용하여 상용화 가능하다.Therefore, the ultra-hydrophobic composite membrane according to the present invention has a structure in which a silicon outer film formed on the outer surface of a porous polyvinylidene fluoride (PVDF) hollow fiber membrane and a silicon impregnated membrane embedded in the hollow fiber membrane are cross-locked. Due to this, the silicone outer film does not peel off, the silicon outer film does not swell even when the supply pressure is high, and the oxygen permeability is high and the durability is greatly improved due to excellent mechanical properties. .

Claims (9)

  1. 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막;porous polyvinylidene fluoride (PVDF) hollow fiber membrane;
    상기 중공사막의 외부 표면에 형성된 비다공성 실리콘 외피막; 및a non-porous silicone outer film formed on the outer surface of the hollow fiber membrane; and
    상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 소정의 깊이로 임베드된 실리콘 함침막;을 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막. The ultra-hydrophobic composite membrane for a membrane aeration biofilm (MABR) process comprising a; a silicon-impregnated membrane embedded to a predetermined depth in the inner direction of the hollow fiber membrane from the side in contact with the non-porous silicone outer membrane.
  2. 제1항에 있어서, 상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막은 중공사를 이루는 단섬유에 복수 개의 구멍(multi-bore)을 갖는 채널을 형성하고, According to claim 1, wherein the porous polyvinylidene fluoride (PVDF) hollow fiber membrane forms a channel having a plurality of holes (multi-bore) in the short fibers constituting the hollow fiber,
    상기 복수 개의 구멍을 포함하는 단섬유의 외주면은 원형이 아닌 오목 부분 및 볼록 부분이 반복되는 패턴을 갖는 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막.An ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process, characterized in that the outer circumferential surface of the short fibers including the plurality of holes has a pattern in which concave and convex portions are not circular.
  3. 제1항에 있어서, 상기 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막은 그 기공의 크기가 0.05 내지 0.45 ㎛인 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막.The ultra-hydrophobic composite membrane for a membrane aeration biofilm (MABR) process according to claim 1, wherein the porous polyvinylidene fluoride (PVDF) hollow fiber membrane has a pore size of 0.05 to 0.45 μm.
  4. 제1항에 있어서, 상기 비다공성 실리콘 외피막의 두께는 0.5 내지 20 ㎛인 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막.The ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process according to claim 1, wherein the non-porous silicone outer coating has a thickness of 0.5 to 20 μm.
  5. 제1항에 있어서, 상기 실리콘 함침막은 상기 중공사막 내부 방향으로 1 내지 100 ㎛ 깊이로 임베드된 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막.The ultra-hydrophobic composite membrane for a membrane aeration biofilm (MABR) process according to claim 1, wherein the silicon-impregnated membrane is embedded to a depth of 1 to 100 μm in the inner direction of the hollow fiber membrane.
  6. 제4항 또는 제5항에 있어서, 상기 실리콘은 폴리디메틸실록산(PDMS)인 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막.The ultra-hydrophobic composite membrane for a membrane aerated biofilm (MABR) process according to claim 4 or 5, wherein the silicone is polydimethylsiloxane (PDMS).
  7. (I) 다공성 폴리비닐리덴플루오라이드(PVDF) 중공사막을 얻는 단계;(I) obtaining a porous polyvinylidene fluoride (PVDF) hollow fiber membrane;
    (II) 상기 중공사막을 친수성 미디어에 습윤 및 표면만 증발시킨 후, 실리콘을 코팅하여 상기 중공사막의 외부 표면에 비다공성 실리콘 외피막을 형성하는 단계; 및(II) forming a non-porous silicone outer film on the outer surface of the hollow fiber membrane by wetting and evaporating only the surface of the hollow fiber membrane in a hydrophilic medium, and then coating the silicone; and
    (III) 상기 비다공성 실리콘 외피막 형성 후, 강한 공기를 취입하여 외피막의 두께를 조절하고 실리콘을 함침시켜 상기 비다공성 실리콘 외피막과 접하는 쪽에서 상기 중공사막 내부 방향으로 실리콘 함침막을 형성하는 단계;를 포함하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막의 제조방법.(III) after forming the non-porous silicone outer film, blowing in strong air to adjust the thickness of the outer film and impregnating with silicon to form a silicon-impregnated film in the inner direction of the hollow fiber film from the side in contact with the non-porous silicon outer film; A method of manufacturing a very hydrophobic composite membrane for a membrane aerated biofilm (MABR) process comprising a.
  8. 제7항에 있어서, 친수성 미디어는 물, 메탄올, 에탄올, n-프로판올, 이소프로판올 및 n-부탄올로 이루어진 군으로부터 선택된 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막의 제조방법.The method of claim 7, wherein the hydrophilic media is selected from the group consisting of water, methanol, ethanol, n-propanol, isopropanol and n-butanol.
  9. 제7항에 있어서, 상기 실리콘은 폴리디메틸실록산(PDMS)인 것을 특징으로 하는 멤브레인 폭기 생물막(MABR) 공정용 극소수성 복합막의 제조방법. The method of claim 7, wherein the silicone is polydimethylsiloxane (PDMS).
PCT/KR2020/016608 2019-12-24 2020-11-23 Ultra-hydrophobic composite membrane for membrane aerated biofilm reactor process and manufacturing method therefor WO2021132899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0173758 2019-12-24
KR1020190173758A KR102115434B1 (en) 2019-12-24 2019-12-24 Ultrahydrophobic composite membrane for a membrane aerated biofilm reactor process and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021132899A1 true WO2021132899A1 (en) 2021-07-01

Family

ID=70920266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016608 WO2021132899A1 (en) 2019-12-24 2020-11-23 Ultra-hydrophobic composite membrane for membrane aerated biofilm reactor process and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102115434B1 (en)
WO (1) WO2021132899A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115434B1 (en) * 2019-12-24 2020-05-28 주식회사 퓨어엔비텍 Ultrahydrophobic composite membrane for a membrane aerated biofilm reactor process and preparation method thereof
KR102325817B1 (en) 2021-06-18 2021-11-12 주식회사 퓨어엔비텍 Membrane aerated biofilm reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966224A (en) * 1995-08-31 1997-03-11 Nok Corp Production of silicone coating porous hollow fiber membrane
CN102000516A (en) * 2010-09-30 2011-04-06 浙江大学 Method for preparing polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite hollow fiber film
KR101848817B1 (en) * 2015-08-31 2018-04-16 주식회사 퓨어엔비텍 Multi-bore hollow fiber membrane
KR102115434B1 (en) * 2019-12-24 2020-05-28 주식회사 퓨어엔비텍 Ultrahydrophobic composite membrane for a membrane aerated biofilm reactor process and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008027A (en) 2013-02-22 2015-10-28 通用电气公司 Membrane assembly for supporting a biofilm
WO2015132291A1 (en) 2014-03-04 2015-09-11 Oxymem Limited A membrane aerated biofilm reactor (mabr)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966224A (en) * 1995-08-31 1997-03-11 Nok Corp Production of silicone coating porous hollow fiber membrane
CN102000516A (en) * 2010-09-30 2011-04-06 浙江大学 Method for preparing polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite hollow fiber film
KR101848817B1 (en) * 2015-08-31 2018-04-16 주식회사 퓨어엔비텍 Multi-bore hollow fiber membrane
KR102115434B1 (en) * 2019-12-24 2020-05-28 주식회사 퓨어엔비텍 Ultrahydrophobic composite membrane for a membrane aerated biofilm reactor process and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE BO INGE, HEYMAN JEROEN, VINCKE JOCHEN, VERSTRAETE WILLY, VAN LANGENHOVE HERMAN: "Dimethyl Sulfide Removal from Synthetic Waste Gas Using a Flat Poly(dimethylsiloxane)-Coated Composite Membrane Bioreactor", ENVIRONMENTAL SCIENCE & TECHNOLOGY, AMERICAN CHEMICAL SOCIETY, US, vol. 37, no. 18, 1 September 2003 (2003-09-01), US, pages 4228 - 4234, XP055823934, ISSN: 0013-936X, DOI: 10.1021/es020168f *
SETHUNGA G.S.M.D.P., H. ENIS KARAHAN, RONG WANG, TAE-HYUN BAE: "PDMS-coated porous PVDF hollow fiber membranes for efficient recovery of dissolved biomethane from anaerobic effluents", JOURNAL OF MEMBRANE SCIENCE, vol. 584, 7 May 2019 (2019-05-07), pages 333 - 342, XP055823938, DOI: 10.1016/j.memsci.2019.05.016 *

Also Published As

Publication number Publication date
KR102115434B1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2021132899A1 (en) Ultra-hydrophobic composite membrane for membrane aerated biofilm reactor process and manufacturing method therefor
CA1207607A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
US9314736B2 (en) Separation composite membrane and separating membrane module using the same
US4919860A (en) Manufacture of porous carbon membranes
Kowalska et al. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms
CA2374561A1 (en) Culture chamber
US4861480A (en) Organomineral semipermeable membrane and its production process
CN112619446B (en) Polyethylene substrate acid and alkali resistant water treatment membrane
JPH0525529B2 (en)
CN108726688B (en) Porous carrier for water treatment and preparation method thereof
JPH0523553A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus, and gas-dissolving liquid manufacturing method
CN113731194A (en) MABR hollow fiber composite membrane and preparation method and application thereof
CN110713253A (en) Bioreactor membrane and preparation process
CN203139913U (en) Composite membrane for MABR (Membrane Aerated Biofilm Reactor)
TWI405804B (en) Polymeric complex supporter for controlling gas-releasing substances and manufacturing thereof
JP2565431B2 (en) Method and apparatus for treating organic wastewater
Nisola et al. Partial nitrification in a membrane-aerated biofilm reactor with composite PEBA/PVDF hollow fibers
CN110656103A (en) Composite immobilization carrier for improving microorganism immobilization efficiency and preparation method and application thereof
WO2002094979A2 (en) Production of secondary metabolites
WO2022015088A1 (en) Composite membrane comprising highly permeable gutter layer and method for preparing same
WO2021251667A1 (en) Biofilm formation-suppressing apparatus and separation membrane water treatment system comprising same
KR20020021675A (en) Method of modifying a surface of polymer membrane by ion assisted reaction
JP5010785B2 (en) Bioreactor and water treatment method
JP2022152743A (en) Wastewater treatment apparatus and wastewater treatment method
JPS56147604A (en) Manufacture of composite gas permeable membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906122

Country of ref document: EP

Kind code of ref document: A1