WO2021132623A1 - Ic chip-mounting device and ic chip-mounting method - Google Patents

Ic chip-mounting device and ic chip-mounting method Download PDF

Info

Publication number
WO2021132623A1
WO2021132623A1 PCT/JP2020/048889 JP2020048889W WO2021132623A1 WO 2021132623 A1 WO2021132623 A1 WO 2021132623A1 JP 2020048889 W JP2020048889 W JP 2020048889W WO 2021132623 A1 WO2021132623 A1 WO 2021132623A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
chip
antenna
correction amount
suction
Prior art date
Application number
PCT/JP2020/048889
Other languages
French (fr)
Japanese (ja)
Inventor
禎光 前田
Original Assignee
サトーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サトーホールディングス株式会社 filed Critical サトーホールディングス株式会社
Priority to CN202080084962.3A priority Critical patent/CN114787976A/en
Priority to US17/783,837 priority patent/US20230021265A1/en
Priority to EP20905605.0A priority patent/EP4083861A4/en
Priority claimed from JP2020216460A external-priority patent/JP2021106268A/en
Publication of WO2021132623A1 publication Critical patent/WO2021132623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0469Surface mounting by applying a glue or viscous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/041Incorporating a pick-up tool having multiple pick-up tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0411Pick-and-place heads or apparatus, e.g. with jaws having multiple mounting heads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0882Control systems for mounting machines or assembly lines, e.g. centralized control, remote links, programming of apparatus and processes as such
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates

Definitions

  • the present invention relates to an IC chip mounting device and an IC chip mounting method.
  • one aspect of the present invention is to improve the yield in the inlay manufacturing process without providing an additional device.
  • the nozzle mounting portion so that the plurality of nozzles move in an annular trajectory on orthogonal planes and the moving direction of each nozzle when each nozzle is in the second position coincides with the transport direction of the antenna continuum.
  • a rotating unit that rotates the nozzle, a determination unit that determines whether or not an IC chip is attracted to each nozzle while each nozzle moves from the first position to the second position, and an IC chip that is determined by the determination unit.
  • the nozzle mounting portion so that the nozzle that reaches the second position after the non-adsorption nozzle arranges the IC chip with respect to the antenna corresponding to the non-adsorption nozzle that is the nozzle determined not to be adsorbed. It is an IC chip mounting device provided with a control unit for controlling an angular speed when rotating a nozzle.
  • the yield can be improved in the inlay manufacturing process without providing an additional device.
  • the present invention is related to the patent applications of Japanese Patent Application No. 2019-235420 and Japanese Patent Application No. 2020-216460 filed with the Japan Patent Office on December 26, 2019 and December 25, 2020, respectively. All contents of are incorporated herein by reference.
  • the IC chip mounting device 1 is a device for mounting an IC chip on a thin-film antenna when manufacturing a non-contact communication inlay such as an RFID inlay.
  • FIG. 1 shows an exemplary antenna AN having a predetermined antenna pattern, but is not intended to be limited to that antenna pattern.
  • FIG. 1 also shows enlarged views of the E portion before and after the IC chip C is mounted on the antenna AN.
  • the IC chip C is mounted at a predetermined reference position Pref determined in advance with reference to the antenna pattern.
  • the IC chip C has an extremely small vertical and horizontal size of, for example, several hundred ⁇ m, and it is required to accurately mount the IC chip C having this extremely small size at the reference position Pref.
  • a roll in which a strip-shaped antenna sheet AS (an example of an antenna continuum) in which a plurality of antenna ANs are formed on a base material BM at a constant pitch is wound around.
  • Body PR is installed.
  • the antenna sheet AS is continuously pulled out from the roll body PR and put into the line of the IC chip arranging process.
  • the material of the base material BM is not particularly limited, but for example, a paper base material such as high-quality paper, coated paper, and art paper, PET (polyethylene terephthalate), PE (polyethylene), PP (polypropylene), PS.
  • a synthetic resin film made of (polystyrene), a sheet in which a plurality of types of the above synthetic resins are combined, and a composite sheet in which a synthetic resin film and paper are combined can also be used.
  • the antenna AN is formed, for example, by attaching a metal foil to the base material BM, or screen-printing or depositing a conductive material on the base material BM in a predetermined pattern.
  • the XYZ coordinate system is defined as shown in FIG.
  • the view seen in the YZ plane is referred to as a front view
  • the view seen in the XY plane is referred to as a plan view
  • the view seen in the XZ plane is referred to as a side view.
  • the X direction is the direction in which the antenna sheet AS drawn out from the roll body PR is conveyed in each of the steps described below, and is also appropriately referred to as the transfer direction D1.
  • the Y direction is the width direction of the antenna sheet AS, and is also appropriately referred to as the width direction D2.
  • the Z direction is a direction orthogonal to the antenna sheet AS.
  • FIG. 3 is a diagram showing a portion corresponding to the IC chip arranging process in the IC chip mounting device 1 of the embodiment.
  • FIG. 4 shows a plan view of the chip inclusion tape CT and an enlarged view of the AA cross section thereof.
  • the IC chip mounting device 1 can accurately dispose an extremely small IC chip with respect to the reference position Pref (see FIG. 1) of each antenna AN on the antenna sheet AS.
  • the IC chip mounting device 1 includes a conveyor 81, a dispenser 2, a rotary mounter 3, an ultraviolet irradiator 41, image pickup devices CA1 to CA3, a tape feeder 71, and the like.
  • the tape main body winding reel 72, the film winding reel 73, and the separation roller 74 are included.
  • the conveyor 81 conveys the antenna sheet AS drawn from the roll body PR (see FIG. 2) toward the downstream side of the process at a predetermined transfer speed.
  • the upper surface of the conveyor 81 corresponds to the transport surface.
  • the dispenser 2 (an example of a discharge unit) discharges a fixed amount of anisotropic conductive paste (ACP (Anisotropic Conductive Paste); hereinafter, simply referred to as “conductive paste”) toward the reference position Pref of each antenna AN to be conveyed.
  • ACP anisotropic Conductive Paste
  • This conductive paste is an example of an ultraviolet curable adhesive.
  • the dispenser 2 is configured so that the discharge position can be adjusted in the width direction in order to accurately position the discharge position with respect to the reference position Pref of each antenna AN.
  • the image pickup device CA1 is provided upstream from the dispenser 2 and captures an image of a portion near the reference position Pref of each antenna AN in order to determine the position where the conductive paste is applied.
  • the image pickup apparatus CA2 is provided downstream of the dispenser 2 to inspect whether or not the conductive paste is applied to each antenna AN, and to inspect whether or not the conductive paste is accurately applied to the region including the reference position Pref. In addition, an image of a portion near the reference position Paste of each antenna AN is taken.
  • the rotary mounter 3 is a chip mounter for arranging an IC chip on a conductive paste applied to each antenna AN, and rotates counterclockwise in FIG.
  • the rotary mounter 3 is attached to and suspended from the suspension plate 86.
  • the suspension plate 86 is movably supported by the support base 85 in the Y direction.
  • the rotary mounter 3 is suspended from above on the support base 85 and has a structure that can be moved in the Y direction.
  • the rotary mounter 3 sucks the IC chip from the chip inclusion tape, and discharges (mounts) the sucked IC chip toward the reference position Pref of each antenna AN on the antenna sheet AS.
  • the image pickup apparatus CA3 takes an image of the IC chip in a state of being attracted to a nozzle (described later) for correction processing for correcting the position and orientation of the IC chip when the IC chip is mounted on the antenna AN.
  • the tape feeder 71 is configured so that the chip containing tape including the IC chip is loaded in a wound state, and the chip containing tape is sequentially pulled out in the direction of the arrow in FIG. 3 at a speed synchronized with the rotary mounter 3. ..
  • the chip containing tape CT is attached to a tape body T in which recesses Td including the IC chip C are formed at regular intervals and to the tape body T so as to close the recesses Td.
  • the recess Td is formed, for example, by embossing the tape body T.
  • the IC chip C is included in each recess Td along the stretching direction of the chip inclusion tape CT.
  • Mounting holes H are formed at regular intervals in the stretching direction of the chip inclusion tape CT.
  • the mounting hole H is provided for accurate positioning with respect to the peripheral surface of the separation roller 74, and a protrusion 74p (described later) provided on the separation roller 74 when the chip inclusion tape CT is conveyed to the separation roller 74. Is inserted in).
  • suction holes Ts are formed between the bottom surface of the recess Td and the back surface of the tape body T (the surface opposite to the surface to which the coating film CF is adhered).
  • the suction holes Ts are provided for sucking the IC chip C by the separation roller 74 so that the IC chip C does not fall from the recess Td when the coating film CF is peeled off.
  • the coating film CF is peeled from the chip containing tape CT supplied from the tape feeder 71 via one or a plurality of auxiliary rollers, and separated into the tape body T and the coating film CF. ..
  • the IC chip C exposed by peeling off the coating film CF is sequentially adsorbed on each nozzle provided on the rotary mounter 3.
  • the tape body T is wound around the tape body winding reel 72 via one or more auxiliary rollers, and the coating film CF is It is wound on the film winding reel 73 via one or a plurality of auxiliary rollers.
  • FIG. 5 is a side view of the rotary mounter 3 in the IC chip mounting device 1 of the embodiment.
  • FIG. 6A is a plan view of the nozzle unit mounted on the rotary mounter 3.
  • FIG. 6B is a side view of the nozzle unit 30.
  • FIG. 7 is a diagram schematically explaining the relationship between the rotary mounter 3 and the antenna sheet AS.
  • a plurality of nozzle units 30-1 to 30-12 are arranged radially from the rotary head 3H (an example of a nozzle mounting portion) on the rotary mounter 3 (12 in the illustrated example). ..
  • the rotary drive motor (rotary drive motor M31 described later) that rotates the nozzle units 30-1 to 30-12 counterclockwise in FIG. 5 and the IC chip are attracted to the nozzle unit 30. It is connected to a vacuum pump for making the nozzle unit 30 and a blower for discharging the IC chip from the nozzle unit 30.
  • the nozzle unit 30 includes a nozzle 32, a sleeve 33, a solenoid valve 35, and a cylinder drive motor M30.
  • the nozzle 32 is provided at the tip of the nozzle unit 30 and is connected to the cylinder drive motor M30 in the sleeve 33.
  • the cylinder drive motor M30 is a motor (for example, a stepping motor) that rotates the nozzle 32 around its axis.
  • the nozzle 32 is formed with a passage that can communicate with the intake pipe 36 and the exhaust pipe 37.
  • An intake pipe 36 and an exhaust pipe 37 are connected to the sleeve 33.
  • the intake pipe 36 is connected to a vacuum pump (not shown), and the exhaust pipe 37 is connected to a blower (not shown).
  • the solenoid valve 35 (an example of a control valve) is, for example, a 3-port solenoid valve, and the exhaust pipe 37 is closed with the passage 34 of the nozzle 32 and the intake pipe 36 being opened according to the energized state of the solenoid valve 35.
  • the intake pipe 36 is configured to be closed with the passage 34 of the nozzle 32 and the exhaust pipe 37 being opened.
  • the solenoid valve 35 is configured to perform either a suction operation of suction through the intake pipe 36 by the nozzle 32 or an exhaust operation of discharging air from the nozzle 32 through the exhaust pipe 37.
  • the rotary head 3H is rotated counterclockwise by a rotary drive motor (not shown), whereby the position of each nozzle unit 30 on the circumference of the rotary head 3H is sequentially switched. That is, the specific nozzle unit 30 goes around the rotary head 3H from the position PA to the position PL counterclockwise so as to move in an annular trajectory on a plane orthogonal to the transport surface in response to the rotation of the rotary head 3H. It will be located in each of the 12 positions PA to PL in order.
  • the position PA (an example of the first position) is a position where the nozzle unit 30 newly sucks the IC chip C from the chip inclusion tape CT.
  • the position PE is a position where the image of the IC chip C in a state of being attracted to the nozzle of the nozzle unit 30 is imaged by the image pickup apparatus CA3.
  • the position PK (an example of the second position) is a position where the adsorbed IC chip C is discharged onto the conductive paste applied to the antenna AN on the antenna sheet AS to be conveyed.
  • the moving direction of the nozzle tip coincides with the transport direction D1 of the antenna sheet AS.
  • air is discharged from the nozzle of the nozzle unit 30 in order to discharge the IC chip C.
  • FIG. 7 shows an example in which a dust collection tray TR is arranged at the position PL to collect dust that can be discharged from the nozzle.
  • the nozzle unit 30-1 at the position PA in FIG. 7 newly sucks the IC chip C there, rotates counterclockwise while sucking the IC chip C, and when the position PK is reached, the IC chip C is sucked. When it is released and returns to the position PA, the new IC chip C is repeatedly adsorbed.
  • the IC chips can be continuously arranged on each antenna AN without stopping the transportation of the antenna sheet AS, and the productivity is high.
  • the speed is set or controlled.
  • FIG. 8 is a perspective view showing a state in which the chip inclusion tape CT is separated by the separation roller 74.
  • FIG. 9 is a side view of the vicinity of the separation roller 74, and is a diagram illustrating an operation in which the IC chip C is supplied from the chip inclusion tape CT to the nozzle unit 30.
  • FIG. 9 only the chip containing tape CT is shown in cross section so that the state of the chip containing tape CT can be understood.
  • the IC chip C exposed by peeling off the coating film CF is immediately adsorbed by the nozzle unit 30.
  • the separation roller 74 is provided with the IC chip toward the center of rotation of the separation roller 74 so that the IC chip C does not fall in a short time from the exposure of the IC chip C to the suction by the nozzle unit 30.
  • a suction path (not shown) for sucking C is provided. The IC chip C is sucked through the suction path and the suction holes Ts (see FIG. 4) provided in the tape body T.
  • FIG. 10 is a front view of the moving mechanism 8.
  • the moving mechanism 8 is provided so that the position of the IC chip C adsorbed by the nozzle unit 30 in the width direction D2 can be corrected.
  • the moving mechanism 8 includes a bearing 76, a shaft 77, a suspension plate 86, a guide plate 87, a slider 88, and a width direction drive motor M32.
  • the bearing 76, the shaft 77, and the width direction drive motor M32 are provided on the support base 85.
  • the shaft 77 is a rod-shaped member having a threaded portion, and is rotationally driven by the width direction drive motor M32.
  • the shaft 77 is rotatably supported by bearings 76 (two locations) fixed to the upper surface of the support base 85.
  • the rotary head 3H is attached to the suspension plate 86.
  • the upper end of the suspension plate 86 is formed with a threaded hole (not shown), and this hole is fitted with the threaded portion of the shaft 77. Therefore, the suspension plate 86 and the rotary head 3H attached to the suspension plate 86 can move in the width direction D2 according to the rotation of the shaft 77.
  • the upper portion of the support base 85 and the guide plate 87 are provided with hollow portions in the movable range of the suspension plate 86 in the width direction D2.
  • the slider 88 is attached to the suspension plate 86, and slides on the upper surface of the guide plate 87 as the suspension plate 86 moves in the width direction D2.
  • the moving mechanism 8 makes it possible to displace the rotary head 3H in the width direction D2 in response to the rotational drive of the width direction drive motor M32.
  • the nozzle unit 30 attached to the rotary head 3H is moved in the width direction D2 by moving the rotary head 3H in the width direction D2 by the moving mechanism 8, but this is not the case. ..
  • the rotary head may be configured so that each nozzle unit 30 can be individually displaced in the width direction D2 inside the rotary head without moving the rotary head in the width direction D2.
  • an ultraviolet irradiator 41 is provided in the vicinity of the position where the IC chip is discharged from the nozzle unit 30 of the rotary mounter 3 to the antenna AN (position PK in FIG. 7).
  • the ultraviolet irradiator 41 is configured to irradiate the conductive paste on the conveyed antenna AN with ultraviolet rays.
  • the purpose of irradiating ultraviolet rays with the ultraviolet irradiator 41 is different from that of ultraviolet irradiation (described later) performed in the curing step which is a subsequent step of the IC chip arranging step, and the purpose is to adjust the viscosity of the conductive paste on the antenna AN. And.
  • the integrated light amount of ultraviolet rays given to the conductive paste by the ultraviolet irradiator 41 is smaller than the integrated light amount of ultraviolet rays given to the conductive paste in the subsequent curing step. Since the integrated light intensity of ultraviolet rays is represented by the product of the light intensity and the irradiation time, at least one of the light intensity and the irradiation time may be adjusted in order to adjust the integrated light intensity.
  • the antenna AN may be coated with a thermosetting adhesive such as an epoxy resin by the dispenser 2, and a thermosetting device may be provided instead of the ultraviolet irradiator 41.
  • the ultraviolet irradiator 41 is arranged so as to irradiate ultraviolet rays after the IC chip is arranged, but this is not the case.
  • the ultraviolet irradiator 41 may be arranged to irradiate ultraviolet rays before the IC chip is arranged, or may be arranged to irradiate ultraviolet rays at the same time as the IC chip is arranged.
  • the viscosity of the conductive paste is lowered, so that the IC chip is less likely to shift or tilt after being placed on the conductive paste.
  • the IC chip When the IC chip is irradiated with ultraviolet rays before or at the same time as the IC chip is arranged, the IC chip is arranged on the conductive paste in a state where the viscosity is lowered, so that the IC chip is arranged on the conductive paste. Since the IC chip is difficult to move after being arranged in the paste, it is difficult for the IC chip to shift or tilt. In either case, by irradiating the ultraviolet rays at a position in the vicinity where the IC chip is arranged, it is possible to avoid a situation in which the IC chip is not stable on the conductive paste due to the fluidity of the conductive paste. That is, there is an advantage that the mounting accuracy of the IC chip can be improved by irradiating with the ultraviolet irradiator 41.
  • FIG. 11 is a functional block diagram of the control unit 100.
  • FIG. 12 shows an example of an image captured by the image pickup apparatus CA1.
  • FIG. 13 is a diagram illustrating the IC chip C adsorbed on the nozzle 32 before and after the rotation of the nozzle 32.
  • the state before rotation of the nozzle in FIG. 13 shows an example of an image captured by the image pickup apparatus CA3.
  • the rotated state of the nozzle of FIG. 13 shows the XYZ axis when the nozzle is in the position PK (see FIG. 7).
  • the control unit 100 is mounted on a circuit board (not shown), and includes image pickup devices CA1 to CA3, a dispenser 2, a cylinder drive motor M30, a rotary drive motor M31, a width direction drive motor M32, a solenoid valve 35, and an ultraviolet irradiator 41. Is electrically connected to.
  • the rotary drive motor M31 (an example of a rotary unit) is a drive means for rotating the nozzle units 30-1 to 30-12 in the rotary head 3H.
  • the control unit 100 includes a microcomputer, a memory (RAM (Random Access Memory), a ROM (Read Only Memory)), a storage, and a drive circuit group.
  • the microprocessor reads and executes the program recorded in the memory, and executes the discharge position adjusting means 101, the IC chip correcting means 102, the valve controlling means 103, the curing executing means 104, the suction determining means 105, and the rotary head rotation control. Each function of the means 106 is realized.
  • the discharge position adjusting means 101 has a function of determining the discharge position of the conductive paste based on the image captured by the image pickup apparatus CA1 and adjusting the discharge timing of the conductive paste and the position of the dispenser 2 in the width direction D2.
  • the method for determining the discharge position of the conductive paste is as follows with reference to FIG.
  • the image captured by the image pickup apparatus CA1 is an image of a portion in the vicinity of the reference position Pref of the antenna AN, as illustrated in FIG.
  • the discharge position adjusting means 101 specifies the reference position Pref from the characteristic portion of the shape included in the image. Specifically, the discharge position adjusting means 101 analyzes the shape of the antenna AN in the image of FIG.
  • the point Pj1 in the image of FIG. 12 is the target position of the reference position Pref on the image, and is predetermined based on the result of calibration between the image by the image pickup apparatus CA1 and the dropping position of the conductive paste of the dispenser 2.
  • Position That is, by adjusting the discharge timing of the dispenser 2 and the position in the width direction D2 so that the reference position Pref specified on the image coincides with the target position Pj1, the conductive paste is applied to the reference position of the actual antenna AN. can do.
  • in order for the reference position Pref specified on the image to coincide with the target position Pj1 it is necessary to adjust the positions by x1 in the X direction and y1 in the Y direction.
  • the discharge timing from the dispenser 2 is determined based on x1 in consideration of the transport speed of the antenna AN, and the displacement of the dispenser 2 in the width direction D2 is performed based on y1. That is, the discharge position adjusting means 101 transmits a control signal for instructing the discharge timing and the displacement in the width direction D2 to the dispenser 2, and the dispenser 2 performs the discharge operation based on the control signal.
  • the image captured by the image pickup apparatus CA2 is the same as that of FIG. 12 except that the conductive paste is applied.
  • the IC chip correction means 102 (an example of a correction amount determining unit) has a function of correcting the IC chip adsorbed on the nozzle 32.
  • the correction method of the IC chip is as follows with reference to FIGS. 12 and 13.
  • the image captured by the image pickup apparatus CA3 (an example of the image acquisition unit) includes the nozzle end 32e of the nozzle 32 and the IC chip C adsorbed on the nozzle end 32e. included.
  • the point Pc1 is the center position of the IC chip C before the rotation of the nozzle.
  • the point Pj2 in the image of FIG. 13 is the target position of the center position of the IC chip C on the image, and is set to coincide with the target position Pj1 of FIG. That is, by matching the center position of the IC chip C with the target position Pj1, the IC chip C can be arranged at the reference position of the actual antenna AN to be transported.
  • the rotation center Prc around the axis of the nozzle 32 does not become the theoretical axis center of each nozzle due to mounting variations of the nozzle units 30-1 to 30 to 12.
  • the rotation center Prc differs depending on each nozzle unit, and is specified, for example, based on measured data obtained in advance.
  • the center Pc1 of the IC chip C shown in the image is rotated around the rotation center Prc around the axis of the nozzle 32, the reference line of the IC chip C (for example, the reference side of the IC chip C in FIG. 13).
  • the amount of rotation until Sc) becomes parallel in the Y direction is determined. In the example of the state after rotation of FIG.
  • the IC chip C in the captured image is rotated around the rotation center Prc so that the reference side Sc of the IC chip C is parallel to the Y direction.
  • the rotation angle at this time is specified as a correction amount in the rotation direction of the IC chip C (an example of the first correction amount).
  • the correction amount in the X direction is x2
  • the correction amount in the Y direction is corrected in order to match the point Pc2 with the target position Pj2.
  • the amount (an example of the third correction amount) is specified as y2.
  • the IC chip correction means 102 sends a control signal corresponding to the correction amount in the rotational direction around the axis of the nozzle 32 to the cylinder drive motor M30, whereby the IC chip is removed from the position PE (position imaged by the image pickup apparatus CA3).
  • the nozzle 32 rotates about the axis until the discharge position PK.
  • the IC chip correction means 102 sends a control signal corresponding to the correction amount x2 in the X direction to the drive circuit for driving the rotary drive motor M31, whereby the angular velocity of the rotary head 3H is adjusted.
  • the IC chip correction means 102 sends a control signal corresponding to the correction amount y2 in the Y direction to the drive circuit for driving the width direction drive motor M32, whereby the position of the rotary head 3H in the width direction D2 is adjusted.
  • the position of the nozzle 32 in the width direction D2 is also adjusted.
  • the IC chip correction means 102 corrects the positions of the IC chips in the X and Y directions and the orientation of the IC chips on a plane orthogonal to the axis of the nozzle.
  • the valve control means 103 sucks each of the 12 nozzle units 30-1 to 30-12 included in the rotary mounter 3 from each nozzle unit 30 or discharges air according to the position of each nozzle unit 30.
  • Each solenoid valve 35 is controlled so as to perform either operation.
  • the valve control means 103 controls the solenoid valve 35 so that when the nozzle unit 30 is located at positions PA to PJ (see FIG. 7), it sucks from the nozzle unit 30, and the nozzle unit 30 is located at position PK.
  • the solenoid valve 35 is controlled so as to discharge air from the nozzle unit 30.
  • the curing executing means 104 sends a predetermined drive signal to the ultraviolet irradiator 41 so that the ultraviolet irradiator 41 irradiates each of the conveyed antenna ANs with ultraviolet rays at a preset integrated light amount. ..
  • the suction determining means 105 determines whether or not the IC chip is sucked by each nozzle unit 30 before each nozzle unit 30 moves from the position PA where the suction of the IC chip is started to the position PK where the IC chip is discharged. judge.
  • the suction determination means 105 determines whether or not the nozzle unit 30 that sequentially reaches the position PE based on the image captured by the image pickup device CA3 (an example of the image acquisition unit) sucks the IC chip. To judge.
  • the rotary head rotation control means 106 is positioned after the non-adsorption nozzle unit with respect to the antenna corresponding to the nozzle unit 30 (referred to as “non-adsorption nozzle unit”) for which the IC chip is determined not to be adsorbed.
  • the angular speed at the time of rotating the rotary head 3H is controlled so that the nozzle unit 30 reaching the second position) discharges the IC chip.
  • FIGS. 14 and 15 are diagrams for explaining the operation when the rotary mounter 3 fails to adsorb the IC chip C, respectively, and schematically shows the relationship between the rotary mounter 3 and the antenna sheet AS. 14 and 15 show the state of the rotary mounter 3 when the time elapses in the order of times T1 to T4.
  • the nozzle unit 30-1 at the position PA fails to adsorb the IC chip C. That is, the nozzle unit 30-1 corresponds to the non-adsorption nozzle unit.
  • the nozzle unit 30-1 rotates counterclockwise and reaches the position PE.
  • the image pickup device CA3 captures an image of the nozzle 32 of the nozzle unit 30-1, and it is determined that the nozzle unit 30-1 is a non-adsorption nozzle unit.
  • the nozzle unit 30-1, which is a non-adsorption nozzle unit reaches the position of position PJ.
  • the antenna corresponding to the nozzle unit 30-1 is the antenna AN-2 on the antenna sheet AS. That is, if the nozzle unit 30-1 has attracted the IC chip, the emission destination of the IC chip is the antenna AN-2.
  • the time T4 in FIG. 15 is the timing at which the IC chip is discharged to the antenna AN-2.
  • the angular velocity of the rotary head 3H of the rotary mounter 3 is controlled so that the IC chip is discharged to the antenna AN-2 corresponding to the nozzle unit 30-1 which is a non-adsorption nozzle unit. That is, the rotation of the rotary head 3H of the rotary mounter 3 is accelerated so that another nozzle unit following the nozzle unit 30-1 emits the IC chip to the antenna AN.
  • the IC from the nozzle unit 30-2 immediately following the nozzle unit 30-1 that is, the nozzle unit that first reaches the position PK after the nozzle unit 30-1) with respect to the antenna AN-2.
  • the chip is released. Therefore, it is possible to prevent the antenna AN-2 from flowing to the subsequent process in a state where the IC chip is not arranged, and it is possible to improve the yield.
  • the IC chip may be released with respect to -2.
  • the rotary head rotation control means 106 accelerates the rotary head 3H when the non-adsorption nozzle unit that does not adsorb the IC chip C approaches the position PK, and from the non-adsorption nozzle unit.
  • the rotary drive motor M31 and the electromagnetic valve 35 are controlled so that the nozzle unit 30 that later reaches the position PK emits the IC chip to the antenna corresponding to the non-adsorption nozzle unit.
  • the valve control means 103 preferably controls the solenoid valve 35 of the non-suction nozzle unit so that the non-suction nozzle unit does not perform a suction operation. As a result, it is possible to prevent the uncured (that is, highly fluid) conductive paste on the antenna from adhering to the non-adsorption nozzle unit and contaminating it. Further, it is preferable that the valve control means 103 controls the solenoid valve 35 of the non-adsorption nozzle unit so that the non-adsorption nozzle unit does not perform the discharge operation at the position PK. Thereby, it is possible to prevent the uncured (that is, highly fluid) conductive paste on the antenna at the position PK from being scattered and soiling the antenna.
  • the curing step will be described with reference to FIGS. 16 and 17.
  • the conductive paste applied to each antenna that has undergone the IC chip placement step described above is cured to strengthen the physical connection between the antenna and the IC chip and to electrically conduct the antenna and the IC chip. To ensure.
  • FIG. 16 is a diagram showing a portion corresponding to a curing step in the IC chip mounting device 1 of the embodiment.
  • FIG. 17 is a diagram showing a part of the pressing unit 6 and the ultraviolet irradiator 42 as seen from the arrow J of FIG.
  • the IC chip mounting device 1 includes a conveyor 82, a curing device 4, and an imaging device CA4.
  • the conveyor 82 conveys the antenna sheet AS conveyed from the upstream IC chip arranging process toward the downstream at a predetermined transfer speed.
  • the image pickup apparatus CA4 is arranged above the antenna sheet AS on the most upstream side in the curing process (that is, the most downstream side in the IC chip arrangement process), and images of each antenna AN conveyed from the IC chip arrangement process are displayed. Take an image.
  • the image pickup apparatus CA4 is provided to inspect whether or not the IC chip is arranged at an appropriate position in the IC chip arrangement process.
  • the curing device 4 has one or more pressing units 6 and an ultraviolet irradiator 42.
  • the pressing unit 6 moves up and down in a direction orthogonal to the transport surface, and presses the IC chip arranged on the conductive paste of the antenna AN while irradiating each antenna AN with ultraviolet rays.
  • the number of pressing units 6 is not limited, but can be set to any number from the viewpoint of productivity and cost.
  • the ultraviolet irradiator 42 is arranged along the transport direction D1. Therefore, it is possible to simultaneously irradiate many antenna ANs on the antenna sheet AS with ultraviolet rays.
  • the pressing unit 6 has a structure in which the pressing portion 61 is attached to the tip of the shaft 63.
  • the side surface of the pressing portion 61 of the pressing unit 6 (that is, the surface on the side on which the ultraviolet irradiator 42 is arranged) is open.
  • the glass plate 61p forming the pressing surface of the pressing portion 61 is formed of glass that transmits ultraviolet rays.
  • the ultraviolet irradiator 42 has a light source 42e such as an LED (Light Emitting Device).
  • the light source 42e is configured to irradiate ultraviolet rays toward the antenna AN from a direction obliquely inclined with respect to the transport surface.
  • the conductive paste applied to each antenna AN is cured and the physical connection between the antenna and the IC chip is strengthened.
  • the electrical continuity between the antenna and the IC chip is ensured.
  • a strip-shaped antenna sheet in which a plurality of antennas are formed on a base material at a constant pitch is put into a line, and an IC chip is mounted on each antenna through an IC chip placement process and a curing process.
  • an adhesive is applied toward the reference position of the antenna in the IC chip placement process, the IC chip is placed on the adhesive, and the adhesive is cured in the curing step to form an antenna. Strengthen the connection of the IC chip.
  • the IC chips adsorbed by the nozzle are sequentially arranged at the reference position of the antenna.
  • the IC chip mounting device of the present embodiment in the IC chip arranging step, another nozzle unit following the non-adsorption nozzle unit discharges the IC chip to the antenna corresponding to the non-adsorption nozzle unit.
  • the rotation of the rotary head of the rotary mounter is controlled so as to be used. Therefore, it is possible to prevent the antenna from flowing to the subsequent process in a state where the IC chip is not arranged, and it is possible to improve the yield.
  • the antenna sheet AS is conveyed in one direction on the conveyor 81 in the IC chip arranging step, but this is not the case.
  • the antenna sheet AS in the IC chip placement step, is conveyed by the suction drums 92, 94 and a plurality of transfer rollers (for example, transfer rollers 91, 93, 95 in FIG. 17). You may.
  • the conductive paste is discharged by the dispenser 2 to the reference position of the antenna AN of the antenna sheet AS at the highest position of the suction drum 92.
  • the IC chip is arranged on the conductive paste at the highest position of the suction drum 94.
  • At least the suction drums 92 and 94 are preferably suction rollers that suck the back surface of the antenna sheet AS.
  • suction drums 92 and 94 are preferably suction rollers that suck the back surface of the antenna sheet AS.
  • the IC chip instead of discharging the IC chip onto the conductive paste coated on the antenna AN in the shape of the antenna sheet AS to be conveyed, the IC chip may be arranged by pressing the IC chip against the conductive paste.
  • FIG. 19 shows the operation of the rotary mounter 3 in chronological order when the IC chip is arranged by pressing it against the conductive paste.
  • each nozzle unit 30 of the rotary mounter 3 is configured to be individually movable in the radial direction (diameter direction) by a built-in drive device.
  • the state ST1 is a state in which the nozzle unit 30 has attracted the IC chip C.
  • the nozzle unit 30 When arranging the attracted IC chip C, as shown in the state ST2, the nozzle unit 30 is directed toward the reference position so as to extend in the radial direction (diametrical direction) (that is, downward, that is, in the Z direction in FIG. 2).
  • the IC chip C is placed on the conductive paste by moving and pressing the IC chip C onto the conductive paste coated on the antenna AN.
  • the suction is released and the nozzle unit 30 is returned to the position of the state ST1.
  • the IC chip C is arranged on the conductive paste applied to the antenna AN by performing the operations of the states ST1 to ST3 at the timing when the nozzle unit 30 reaches the position PK (see FIG. 7).
  • FIG. 20 shows a curing device 4A used in the curing step of one embodiment.
  • a plurality of ultraviolet curing units 43 are detachably attached to the mounting plate 44.
  • a plurality of mounting plates 44 having different mounting positions are prepared according to the distance between the adjacent antenna ANs of the antenna sheet AS, and the mounting plates 44 are replaced according to the distance to correspond to various antenna sheet AS. be able to.
  • the support shaft 45 supports the mounting plate 44 and is configured so that the mounting plate 44 can be raised and lowered.
  • the antenna sheet AS conveyed from the IC chip arranging process is sent to the curing process via the transfer rollers 96 to 98.
  • the transport roller 97 is configured to be able to move up and down by a drive device (not shown).
  • FIG. 21 shows a configuration example of the ultraviolet curing unit 43.
  • the ultraviolet curing unit 43 includes a light source 432 (for example, an LED light source) for irradiating ultraviolet rays in the housing 431.
  • the light source 432 is fed by a cable 436 (not shown in FIG. 20) provided from the outside of the ultraviolet curing unit 43.
  • a condensing lens that collects ultraviolet rays emitted by the light source 432 may be provided in the housing 431.
  • the holding plate 434 is connected to the housing 431 and holds the glass plate 435.
  • the ultraviolet rays emitted from the light source 432 are applied to the conductive paste applied to each antenna AN to cure the conductive paste.
  • the transport state indicates a state in which the antenna sheet AS is transported from the IC chip arranging process.
  • the transfer of the antenna sheet AS is stopped at the timing when the antenna AN coated with the uncured conductive paste is located directly below the ultraviolet curing unit 43.
  • the ultraviolet curing unit 43 is moved downward, and the antenna AN is irradiated with ultraviolet rays while being pressed by the glass plate 435 to cure the conductive paste.
  • the transport roller 97 Since the antenna sheet AS is transported from the IC chip placement process even in the stopped state, the transport roller 97 is lowered by its own weight while irradiating with ultraviolet rays, and the transported antenna sheet AS is combined with the transport roller 96. It absorbs between the transport rollers 98.
  • the antenna AN corresponding to the number of the ultraviolet curing units 43 is rapidly transported downstream, and the uncured antenna AN is stopped so as to be located directly under the ultraviolet curing unit 43. That is, in the curing step of one embodiment, the transport state and the stop state (state in which ultraviolet irradiation is performed) of the antenna sheet AS are repeatedly performed.
  • the transfer roller 97 rises due to the tension applied to the antenna sheet AS.
  • the curing step of one embodiment may be performed using a thermosetting device. That is, when a thermosetting adhesive such as an epoxy resin is applied to the dispenser 2, the adhesive is cured by performing a thermosetting treatment in the curing step.
  • FIG. 22 is a curing device 4B configured to repeatedly carry and stop the antenna sheet AS in the same manner as in FIG. 20. Unlike the curing device 4A, the curing device 4B includes a plurality of thermosetting units 46. Each thermosetting unit 46 is provided with a heat source that operates by being supplied with power by a cable (not shown). When the antenna sheet AS is in the stopped state, the support shaft 45 is driven so as to descend, and each thermosetting unit 46 heats and cures the adhesive while pressing the corresponding antenna AN. When the heating is completed, the support shaft 45 is driven so as to rise, and the antenna sheet AS is conveyed.
  • a thermosetting adhesive such as an epoxy resin
  • FIG. 22 is a curing device 4B configured to repeatedly carry and stop the antenna sheet AS in the same manner as in FIG
  • a pressing unit that presses the antenna AN through a glass plate is used instead of the ultraviolet curing unit 43 having a built-in light source, and the antenna is pressed in a stopped state.
  • An ultraviolet irradiation device that irradiates the conductive paste on the AN with ultraviolet rays from the outside in the width direction or diagonally above may be provided.
  • a plurality of ultraviolet curing units 43 are circulated and moved so as to be interlocked with the traveling speed of the antenna sheet AS so that the antenna sheet AS is not stopped when irradiated with ultraviolet rays, and the antenna AN is moved.
  • Ultraviolet rays may be irradiated by the built-in light source while pressing.
  • a plurality of thermosetting units 46 are circulated and moved so as to be interlocked with the traveling speed of the antenna sheet AS, and the antenna AN is heated while being pressed. You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

An IC chip-mounting device provided with: a plurality of nozzles that are each capable of being moved between a first position and a second position, the plurality of nozzles being configured to suction an IC chip when in the first position and to place, when in the second position, the IC chip upon an adhesive at the reference position of a corresponding antenna of an antenna strip; a nozzle mount unit to which the plurality of nozzles are mounted; and a control unit that, with respect to an antenna corresponding to a non-suctioning nozzle, which is a nozzle determined to have no IC chip suctioned thereto, controls the angular speed of the nozzle mount unit when rotated, such that an IC chip is placed on said antenna by a nozzle reaching the second position after the non-suctioning nozzle.

Description

ICチップ搭載装置、ICチップ搭載方法IC chip mounting device, IC chip mounting method
 本発明は、ICチップ搭載装置、および、ICチップ搭載方法に関する。 The present invention relates to an IC chip mounting device and an IC chip mounting method.
 RFIDタグの普及に伴い、アンテナと当該アンテナに電気的に接続されるICチップとを有するシート状のインレイの生産が拡大している。インレイを製造するには、ベース基材上に形成されたアンテナにおいて、ICチップを搭載するための基準となるアンテナ上の所定の基準位置に対して、供給されるICチップを配置する工程が設けられる(例えば、特開2008-123406号公報)。
 特開2008-123406号公報には、アンテナにICチップを搭載するための4組の搭載装置のうち1組の搭載装置を、他の3組の搭載装置によって搭載されなかったアンテナ上にICチップを搭載するためのバックアップ専用の装置とすることが記載されている。
With the widespread use of RFID tags, the production of sheet-shaped inlays having an antenna and an IC chip electrically connected to the antenna is expanding. In order to manufacture an inlay, a step of arranging the supplied IC chip at a predetermined reference position on the antenna, which is a reference for mounting the IC chip, is provided in the antenna formed on the base base material. (For example, Japanese Patent Application Laid-Open No. 2008-123406).
In Japanese Patent Application Laid-Open No. 2008-123406, one set of mounting devices out of four sets of mounting devices for mounting an IC chip on an antenna is mounted on an antenna that was not mounted by the other three sets of mounting devices. It is described that it is a device dedicated to backup for mounting.
 特開2008-123406号公報では、バックアップ専用の搭載装置を設けることでインレイの製造工程において歩留まりを向上させることができると考えられるが、バックアップ専用の搭載装置を持たねばならず、コスト、省スペースの観点で不利である。
 そこで、本発明のある態様は、インレイの製造工程において、追加の装置を設けることなく歩留まりを向上させることを目的とする。
According to Japanese Patent Application Laid-Open No. 2008-123406, it is considered that the yield can be improved in the inlay manufacturing process by providing a mounting device dedicated to backup, but it is necessary to have a mounting device dedicated to backup, which saves cost and space. It is disadvantageous in terms of.
Therefore, one aspect of the present invention is to improve the yield in the inlay manufacturing process without providing an additional device.
 本発明のある態様は、基材上にインレイ用の複数のアンテナが連続的に形成されているアンテナ連続体の各アンテナの基準位置に向けて、接着剤を吐出する吐出部と、複数のノズルであって、各ノズルは第1位置と第2位置の間を移動可能であり、前記第1位置にあるときにICチップを吸着するとともに、前記第2位置にあるときに前記ICチップを前記アンテナ連続体の対応するアンテナの基準位置にある前記接着剤上に配置するように構成されている、前記複数のノズルと、前記複数のノズルが取り付けられているノズル取付部と、前記搬送面に直交する平面上で前記複数のノズルが環状軌道を動き、かつ各ノズルが前記第2位置にあるときの各ノズルの移動方向が前記アンテナ連続体の搬送方向と一致するように、前記ノズル取付部を回転させる回転部と、各ノズルが前記第1位置から前記第2位置に移動する間に、各ノズルにICチップが吸着されているか否か判定する判定部と、前記判定部によってICチップが吸着されていないと判定されたノズルである非吸着ノズルに対応するアンテナに対して、前記非吸着ノズルよりも後に前記第2位置に到達するノズルがICチップを配置するように、前記ノズル取付部を回転させるときの角速度を制御する制御部と、を備えたICチップ搭載装置である。 In one aspect of the present invention, a discharge portion for discharging adhesive toward a reference position of each antenna of an antenna continuum in which a plurality of antennas for inlays are continuously formed on a base material, and a plurality of nozzles. Therefore, each nozzle can move between the first position and the second position, and when it is in the first position, it attracts the IC chip, and when it is in the second position, it sucks the IC chip. The plurality of nozzles, the nozzle mounting portion to which the plurality of nozzles are mounted, and the transport surface, which are configured to be arranged on the adhesive at the reference position of the corresponding antenna of the antenna continuum. The nozzle mounting portion so that the plurality of nozzles move in an annular trajectory on orthogonal planes and the moving direction of each nozzle when each nozzle is in the second position coincides with the transport direction of the antenna continuum. A rotating unit that rotates the nozzle, a determination unit that determines whether or not an IC chip is attracted to each nozzle while each nozzle moves from the first position to the second position, and an IC chip that is determined by the determination unit. The nozzle mounting portion so that the nozzle that reaches the second position after the non-adsorption nozzle arranges the IC chip with respect to the antenna corresponding to the non-adsorption nozzle that is the nozzle determined not to be adsorbed. It is an IC chip mounting device provided with a control unit for controlling an angular speed when rotating a nozzle.
 本発明のある態様によれば、インレイの製造工程において、追加の装置を設けることなく歩留まりを向上させることができる。 According to an aspect of the present invention, the yield can be improved in the inlay manufacturing process without providing an additional device.
実施形態のアンテナの平面図とそのICチップ搭載前後の部分拡大図である。It is a top view of the antenna of an embodiment and a partially enlarged view before and after mounting the IC chip. アンテナシートと、アンテナシートを巻回したロール体とを示す図である。It is a figure which shows the antenna sheet and the roll body which wound the antenna sheet. 実施形態のICチップ搭載装置においてICチップ配置工程に対応する部分を示す図である。It is a figure which shows the part corresponding to the IC chip arrangement process in the IC chip mounting apparatus of embodiment. チップ包含テープとその拡大断面を示す図である。It is a figure which shows the chip inclusion tape and its enlarged cross section. 実施形態のICチップ搭載装置におけるロータリーマウンタの側面図である。It is a side view of the rotary mounter in the IC chip mounting apparatus of embodiment. ロータリーマウンタに搭載されるノズルユニットの平面図および側面図である。It is a top view and a side view of the nozzle unit mounted on a rotary mounter. ロータリーマウンタとアンテナシートとの関係を概略的に説明する図である。It is a figure which briefly explains the relationship between a rotary mounter and an antenna sheet. チップ包含テープが分離ローラによって分離される状態を示す斜視図である。It is a perspective view which shows the state which the chip containing tape is separated by the separation roller. チップ包含テープからノズルユニットにICチップが供給される動作を説明する図である。It is a figure explaining the operation which IC chip is supplied to a nozzle unit from a chip inclusion tape. ロータリーマウンタの幅方向の移動機構を示す正面図である。It is a front view which shows the moving mechanism in the width direction of a rotary mounter. ロータリーマウンタを制御する制御部の機能ブロック図である。It is a functional block diagram of the control part which controls a rotary mounter. 撮像装置によって撮像された画像の例を示す図である。It is a figure which shows the example of the image which was taken by the image pickup apparatus. ノズルに吸着されたICチップをノズルの回転前後で例示する図である。It is a figure which illustrates the IC chip adsorbed on the nozzle before and after the rotation of the nozzle. ロータリーマウンタの動作を説明する図である。It is a figure explaining the operation of a rotary mounter. ロータリーマウンタの動作を説明する図である。It is a figure explaining the operation of a rotary mounter. 実施形態のICチップ搭載装置において硬化工程に対応する部分を示す図である。It is a figure which shows the part corresponding to the curing process in the IC chip mounting apparatus of embodiment. 図16の矢視Jから見た押圧ユニットの一部と紫外線照射器を示す図である。It is a figure which shows a part of a pressing unit and an ultraviolet irradiator seen from the arrow J of FIG. 一実施形態のアンテナシートの搬送方法を示す図である。It is a figure which shows the transport method of the antenna sheet of one Embodiment. 一実施形態のICチップ配置工程を説明する図である。It is a figure explaining the IC chip arrangement process of one Embodiment. 一実施形態の硬化工程を説明する図である。It is a figure explaining the curing process of one Embodiment. 図20における紫外線硬化ユニットの構成例を示す図である。It is a figure which shows the structural example of the ultraviolet curing unit in FIG. 一実施形態の硬化工程を説明する図である。It is a figure explaining the curing process of one Embodiment.
 本発明は、2019年12月26日及び2020年12月25日にそれぞれ日本国特許庁に出願された特願2019-235420及び特願2020-216460の特許出願に関連しており、これらの出願のすべての内容がこの明細書に参照によって組み込まれる。 The present invention is related to the patent applications of Japanese Patent Application No. 2019-235420 and Japanese Patent Application No. 2020-216460 filed with the Japan Patent Office on December 26, 2019 and December 25, 2020, respectively. All contents of are incorporated herein by reference.
 以下、実施形態に係るICチップ搭載装置およびICチップ搭載方法について、図面を参照して説明する。
 実施形態に係るICチップ搭載装置1は、RFIDインレイ等の非接触通信用インレイを製造する際に、薄膜状のアンテナに対してICチップを搭載する装置である。
 図1には、所定のアンテナパターンを有する例示的なアンテナANが示されるが、当該アンテナパターンに限定する意図ではない。図1にはまた、アンテナANにICチップCが搭載される前と搭載された後のE部の拡大図を示している。この例では、アンテナパターンを基準として予め決定されている所定の基準位置PrefにICチップCが搭載される。ICチップCは、例えば縦および横のサイズは数百μmと極めて小さく、この極小サイズのICチップCを正確に基準位置Prefに搭載することが求められる。
Hereinafter, the IC chip mounting device and the IC chip mounting method according to the embodiment will be described with reference to the drawings.
The IC chip mounting device 1 according to the embodiment is a device for mounting an IC chip on a thin-film antenna when manufacturing a non-contact communication inlay such as an RFID inlay.
FIG. 1 shows an exemplary antenna AN having a predetermined antenna pattern, but is not intended to be limited to that antenna pattern. FIG. 1 also shows enlarged views of the E portion before and after the IC chip C is mounted on the antenna AN. In this example, the IC chip C is mounted at a predetermined reference position Pref determined in advance with reference to the antenna pattern. The IC chip C has an extremely small vertical and horizontal size of, for example, several hundred μm, and it is required to accurately mount the IC chip C having this extremely small size at the reference position Pref.
 アンテナANにICチップCを搭載するには、アンテナANの基準位置Prefに向けて接着剤を塗布し、当該接着剤上にICチップCを配置するICチップ配置工程と、接着剤を硬化させてアンテナANとICチップCの接続を強固にする硬化工程とが必要となる。 To mount the IC chip C on the antenna AN, apply an adhesive toward the reference position Pref of the antenna AN, place the IC chip C on the adhesive, and cure the adhesive. A curing step is required to strengthen the connection between the antenna AN and the IC chip C.
 後述するICチップ配置工程には、図2に示すように、複数のアンテナANが一定のピッチで基材BM上に形成された帯状のアンテナシートAS(アンテナ連続体の一例)を巻回したロール体PRが設置される。ロール体PRから継続的にアンテナシートASが引き出され、ICチップ配置工程のラインに投入される。
 基材BMの材料は、特に限定されるものではないが、例えば、上質紙、コート紙、アート紙のような紙基材、PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)を素材とした合成樹脂フィルムや、前記の合成樹脂を複数種組み合わせたシート、合成樹脂フィルムと紙とを合わせた複合シートも使用できる。
 アンテナANは、例えば、基材BMに金属箔を貼り付ける、又は、基材BMに導電材料を所定のパターンでスクリーン印刷若しくは蒸着すること等により形成される。
In the IC chip arranging step described later, as shown in FIG. 2, a roll in which a strip-shaped antenna sheet AS (an example of an antenna continuum) in which a plurality of antenna ANs are formed on a base material BM at a constant pitch is wound around. Body PR is installed. The antenna sheet AS is continuously pulled out from the roll body PR and put into the line of the IC chip arranging process.
The material of the base material BM is not particularly limited, but for example, a paper base material such as high-quality paper, coated paper, and art paper, PET (polyethylene terephthalate), PE (polyethylene), PP (polypropylene), PS. A synthetic resin film made of (polystyrene), a sheet in which a plurality of types of the above synthetic resins are combined, and a composite sheet in which a synthetic resin film and paper are combined can also be used.
The antenna AN is formed, for example, by attaching a metal foil to the base material BM, or screen-printing or depositing a conductive material on the base material BM in a predetermined pattern.
 なお、以下の説明では、図2に示すように、XYZ座標系を定義する。以下の説明では、各工程に配置された状態の図について言及するときには、YZ平面で見た図を正面図、XY平面で見た図を平面図、XZ平面で見た図を側面図という。
 X方向は、ロール体PRから引き出されたアンテナシートASが以下で説明される各工程において搬送される方向であり、適宜、搬送方向D1ともいう。また、Y方向は、アンテナシートASの幅方向であり、適宜、幅方向D2ともいう。Z方向は、アンテナシートASと直交する方向である。
In the following description, the XYZ coordinate system is defined as shown in FIG. In the following description, when referring to the views of the states arranged in each step, the view seen in the YZ plane is referred to as a front view, the view seen in the XY plane is referred to as a plan view, and the view seen in the XZ plane is referred to as a side view.
The X direction is the direction in which the antenna sheet AS drawn out from the roll body PR is conveyed in each of the steps described below, and is also appropriately referred to as the transfer direction D1. Further, the Y direction is the width direction of the antenna sheet AS, and is also appropriately referred to as the width direction D2. The Z direction is a direction orthogonal to the antenna sheet AS.
 (1)ICチップ配置工程
 以下、ICチップ配置工程について、図3~図10を参照して説明する。図3は、実施形態のICチップ搭載装置1においてICチップ配置工程に対応する部分を示す図である。図4は、チップ包含テープCTの平面図とそのA-A断面の拡大図を示す。
 ICチップ配置工程では、ICチップ搭載装置1により、アンテナシートAS上の各アンテナANの基準位置Pref(図1参照)に対して、極めて小さいICチップを精度良く配置することが可能である。
(1) IC chip placement process Hereinafter, the IC chip placement process will be described with reference to FIGS. 3 to 10. FIG. 3 is a diagram showing a portion corresponding to the IC chip arranging process in the IC chip mounting device 1 of the embodiment. FIG. 4 shows a plan view of the chip inclusion tape CT and an enlarged view of the AA cross section thereof.
In the IC chip arranging step, the IC chip mounting device 1 can accurately dispose an extremely small IC chip with respect to the reference position Pref (see FIG. 1) of each antenna AN on the antenna sheet AS.
 図3に示すように、ICチップ配置工程においてICチップ搭載装置1は、コンベア81と、ディスペンサ2と、ロータリーマウンタ3と、紫外線照射器41と、撮像装置CA1~CA3と、テープフィーダ71と、テープ本体巻取りリール72と、フィルム巻取りリール73と、分離ローラ74と、を含む。 As shown in FIG. 3, in the IC chip arranging process, the IC chip mounting device 1 includes a conveyor 81, a dispenser 2, a rotary mounter 3, an ultraviolet irradiator 41, image pickup devices CA1 to CA3, a tape feeder 71, and the like. The tape main body winding reel 72, the film winding reel 73, and the separation roller 74 are included.
 コンベア81は、ロール体PR(図2参照)から引き出されるアンテナシートASを、工程の下流に向けて所定の搬送速度で搬送する。コンベア81の上面が搬送面に相当する。
 ディスペンサ2(吐出部の一例)は、搬送される各アンテナANの基準位置Prefに向けて定量の異方性導電ペースト(ACP(Anisotropic Conductive Paste);以下、単に「導電ペースト」という。)を吐出する。この導電ペーストは、紫外線硬化型の接着剤の一例である。ディスペンサ2は、各アンテナANの基準位置Prefに対して正確に吐出位置を位置決めするために、吐出位置を幅方向に調整可能に構成されている。
The conveyor 81 conveys the antenna sheet AS drawn from the roll body PR (see FIG. 2) toward the downstream side of the process at a predetermined transfer speed. The upper surface of the conveyor 81 corresponds to the transport surface.
The dispenser 2 (an example of a discharge unit) discharges a fixed amount of anisotropic conductive paste (ACP (Anisotropic Conductive Paste); hereinafter, simply referred to as “conductive paste”) toward the reference position Pref of each antenna AN to be conveyed. To do. This conductive paste is an example of an ultraviolet curable adhesive. The dispenser 2 is configured so that the discharge position can be adjusted in the width direction in order to accurately position the discharge position with respect to the reference position Pref of each antenna AN.
 撮像装置CA1は、ディスペンサ2よりも上流に設けられ、導電ペーストを塗布する位置を決定するために、各アンテナANの基準位置Prefの近傍の部分の画像を撮像する。撮像装置CA2は、ディスペンサ2よりも下流に設けられ、各アンテナANに対する導電ペーストの塗布の有無を検査するとともに、導電ペーストが正確に基準位置Prefを含む領域に塗布されたか否かを検査するために、各アンテナANの基準位置Prefの近傍の部分の画像を撮像する。 The image pickup device CA1 is provided upstream from the dispenser 2 and captures an image of a portion near the reference position Pref of each antenna AN in order to determine the position where the conductive paste is applied. The image pickup apparatus CA2 is provided downstream of the dispenser 2 to inspect whether or not the conductive paste is applied to each antenna AN, and to inspect whether or not the conductive paste is accurately applied to the region including the reference position Pref. In addition, an image of a portion near the reference position Paste of each antenna AN is taken.
 ロータリーマウンタ3は、各アンテナANに塗布された導電ペースト上にICチップを配置するチップマウンタであり、図3の反時計回りに回転する。ロータリーマウンタ3は懸架板86に取り付けられ、かつ懸架される。懸架板86は、支持台85にY方向に移動可能に支持される。それによって、ロータリーマウンタ3は、支持台85に上から懸架され、かつY方向に移動可能な構造となっている。
 後述するように、ロータリーマウンタ3は、チップ包含テープからICチップを吸着し、アンテナシートAS上の各アンテナANの基準位置Prefに向けて、吸着したICチップを放出して配置(搭載)する。このとき、ICチップを正確にアンテナANの基準位置Prefに配置するために、吸着したICチップの位置および向きを補正する処理を行う。撮像装置CA3は、ICチップをアンテナANに搭載するに際してICチップの位置および向きを補正する補正処理のために、ノズル(後述する)に吸着された状態のICチップを撮像する。
The rotary mounter 3 is a chip mounter for arranging an IC chip on a conductive paste applied to each antenna AN, and rotates counterclockwise in FIG. The rotary mounter 3 is attached to and suspended from the suspension plate 86. The suspension plate 86 is movably supported by the support base 85 in the Y direction. As a result, the rotary mounter 3 is suspended from above on the support base 85 and has a structure that can be moved in the Y direction.
As will be described later, the rotary mounter 3 sucks the IC chip from the chip inclusion tape, and discharges (mounts) the sucked IC chip toward the reference position Pref of each antenna AN on the antenna sheet AS. At this time, in order to accurately arrange the IC chip at the reference position Pref of the antenna AN, a process of correcting the position and orientation of the attracted IC chip is performed. The image pickup apparatus CA3 takes an image of the IC chip in a state of being attracted to a nozzle (described later) for correction processing for correcting the position and orientation of the IC chip when the IC chip is mounted on the antenna AN.
 テープフィーダ71は、ICチップを包含するチップ包含テープが巻回された状態で装填され、図3の矢印の方向にロータリーマウンタ3と同期した速度で順次、チップ包含テープを引き出すように構成される。
 ここで、図4を参照して、チップ包含テープの一例について説明する。
 図4に示すように、チップ包含テープCTは、ICチップCを包含する凹みTdが一定の間隔で形成されたテープ本体Tと、凹みTdを塞ぐようにしてテープ本体Tに貼着されている被覆フィルムCFと、を含む。凹みTdは、例えば、テープ本体Tにエンボス加工を施すことにより形成される。チップ包含テープCTの延伸方向に沿ってICチップCが各凹みTd内に包含されている。チップ包含テープCTの延伸方向には、一定の間隔で取付孔Hが形成されている。この取付孔Hは、分離ローラ74の周面に対する正確な位置決めを行うために設けられており、チップ包含テープCTが分離ローラ74に搬送されるときに、分離ローラ74に設けられる突起74p(後述する)に挿入される。
The tape feeder 71 is configured so that the chip containing tape including the IC chip is loaded in a wound state, and the chip containing tape is sequentially pulled out in the direction of the arrow in FIG. 3 at a speed synchronized with the rotary mounter 3. ..
Here, an example of the chip containing tape will be described with reference to FIG.
As shown in FIG. 4, the chip containing tape CT is attached to a tape body T in which recesses Td including the IC chip C are formed at regular intervals and to the tape body T so as to close the recesses Td. Includes a coating film CF. The recess Td is formed, for example, by embossing the tape body T. The IC chip C is included in each recess Td along the stretching direction of the chip inclusion tape CT. Mounting holes H are formed at regular intervals in the stretching direction of the chip inclusion tape CT. The mounting hole H is provided for accurate positioning with respect to the peripheral surface of the separation roller 74, and a protrusion 74p (described later) provided on the separation roller 74 when the chip inclusion tape CT is conveyed to the separation roller 74. Is inserted in).
 図4に示すように、凹みTdの底面とテープ本体Tの裏面(被覆フィルムCFが接着されている面とは反対側の面)の間には、吸着孔Tsが形成されている。吸着孔Tsは、被覆フィルムCFを剥離したときに凹みTdからICチップCが落下しないように、分離ローラ74によってICチップCを吸着するために設けられている。 As shown in FIG. 4, suction holes Ts are formed between the bottom surface of the recess Td and the back surface of the tape body T (the surface opposite to the surface to which the coating film CF is adhered). The suction holes Ts are provided for sucking the IC chip C by the separation roller 74 so that the IC chip C does not fall from the recess Td when the coating film CF is peeled off.
 再度図3を参照すると、分離ローラ74において、テープフィーダ71から1又は複数の補助ローラを経て供給されるチップ包含テープCTから被覆フィルムCFが剥離され、テープ本体Tと被覆フィルムCFに分離される。被覆フィルムCFが剥離されて露出したICチップCは、ロータリーマウンタ3に設けられる各ノズルに順次吸着される。
 分離ローラ74によってチップ包含テープCTがテープ本体Tと被覆フィルムCFに分離された後、テープ本体Tは、1又は複数の補助ローラを経てテープ本体巻取りリール72に巻き取られ、被覆フィルムCFは、1又は複数の補助ローラを経てフィルム巻取りリール73に巻き取られる。
Referring to FIG. 3 again, in the separation roller 74, the coating film CF is peeled from the chip containing tape CT supplied from the tape feeder 71 via one or a plurality of auxiliary rollers, and separated into the tape body T and the coating film CF. .. The IC chip C exposed by peeling off the coating film CF is sequentially adsorbed on each nozzle provided on the rotary mounter 3.
After the chip containing tape CT is separated into the tape body T and the coating film CF by the separation roller 74, the tape body T is wound around the tape body winding reel 72 via one or more auxiliary rollers, and the coating film CF is It is wound on the film winding reel 73 via one or a plurality of auxiliary rollers.
 次に、図5~図7を参照して、ロータリーマウンタ3について説明する。
 図5は、実施形態のICチップ搭載装置1におけるロータリーマウンタ3の側面図である。図6Aは、ロータリーマウンタ3に搭載されるノズルユニットの平面図である。図6Bは、ノズルユニット30の側面図である。図7は、ロータリーマウンタ3とアンテナシートASとの関係を概略的に説明する図である。
Next, the rotary mounter 3 will be described with reference to FIGS. 5 to 7.
FIG. 5 is a side view of the rotary mounter 3 in the IC chip mounting device 1 of the embodiment. FIG. 6A is a plan view of the nozzle unit mounted on the rotary mounter 3. FIG. 6B is a side view of the nozzle unit 30. FIG. 7 is a diagram schematically explaining the relationship between the rotary mounter 3 and the antenna sheet AS.
 図5に示すように、ロータリーマウンタ3には、ロータリーヘッド3H(ノズル取付部の一例)から放射状に複数(図示の例では12個)のノズルユニット30-1~30-12が配設される。以下の説明では、ノズルユニット30-1~30-12に対して共通する事項に言及するときには、総称してノズルユニット30と表記する。
 ロータリーヘッド3Hについて詳細は図示しないが、図5の反時計回りにノズルユニット30-1~30-12を回転させる回転駆動モータ(後述する回転駆動モータM31)と、ノズルユニット30にICチップを吸着させるための真空ポンプと、ノズルユニット30からICチップを放出するためのブロワと、に接続されている。
As shown in FIG. 5, a plurality of nozzle units 30-1 to 30-12 are arranged radially from the rotary head 3H (an example of a nozzle mounting portion) on the rotary mounter 3 (12 in the illustrated example). .. In the following description, when the matters common to the nozzle units 30-1 to 30-12 are referred to, they are collectively referred to as the nozzle unit 30.
Although the details of the rotary head 3H are not shown, the rotary drive motor (rotary drive motor M31 described later) that rotates the nozzle units 30-1 to 30-12 counterclockwise in FIG. 5 and the IC chip are attracted to the nozzle unit 30. It is connected to a vacuum pump for making the nozzle unit 30 and a blower for discharging the IC chip from the nozzle unit 30.
 図6を参照すると、ノズルユニット30は、ノズル32、スリーブ33、電磁弁35、および、シリンダ駆動モータM30を備える。ノズル32は、ノズルユニット30の先端に設けられており、スリーブ33内でシリンダ駆動モータM30と連結されている。シリンダ駆動モータM30は、ノズル32をその軸回りに回転させるモータ(例えばステッピングモータ)である。ノズル32には、吸気管36および排気管37と連通可能な通路が形成されている。
 スリーブ33には、吸気管36および排気管37が連結されている。吸気管36は真空ポンプ(図示せず)に接続され、排気管37はブロワ(図示せず)に接続される。
 電磁弁35(制御弁の一例)は例えば3ポート電磁弁であり、電磁弁35に対する通電状態に応じて、ノズル32の通路34と吸気管36との間を開路として排気管37を閉路とするか、あるいは、ノズル32の通路34と排気管37との間を開路として吸気管36を閉路とするように構成されている。電磁弁35は、吸気管36を通してノズル32により吸引する吸引動作、又は、排気管37を通してノズル32から空気を排出する排出動作のいずれかを行うように構成されている。
Referring to FIG. 6, the nozzle unit 30 includes a nozzle 32, a sleeve 33, a solenoid valve 35, and a cylinder drive motor M30. The nozzle 32 is provided at the tip of the nozzle unit 30 and is connected to the cylinder drive motor M30 in the sleeve 33. The cylinder drive motor M30 is a motor (for example, a stepping motor) that rotates the nozzle 32 around its axis. The nozzle 32 is formed with a passage that can communicate with the intake pipe 36 and the exhaust pipe 37.
An intake pipe 36 and an exhaust pipe 37 are connected to the sleeve 33. The intake pipe 36 is connected to a vacuum pump (not shown), and the exhaust pipe 37 is connected to a blower (not shown).
The solenoid valve 35 (an example of a control valve) is, for example, a 3-port solenoid valve, and the exhaust pipe 37 is closed with the passage 34 of the nozzle 32 and the intake pipe 36 being opened according to the energized state of the solenoid valve 35. Alternatively, the intake pipe 36 is configured to be closed with the passage 34 of the nozzle 32 and the exhaust pipe 37 being opened. The solenoid valve 35 is configured to perform either a suction operation of suction through the intake pipe 36 by the nozzle 32 or an exhaust operation of discharging air from the nozzle 32 through the exhaust pipe 37.
 図7を参照すると、図示しない回転駆動モータによってロータリーヘッド3Hが反時計回りに回転させられ、それによって各ノズルユニット30のロータリーヘッド3Hの周上における位置が順次切り替わる。つまり、特定のノズルユニット30は、ロータリーヘッド3Hの回転に応じて、搬送面に直交する平面上で環状軌道を動くように、位置PAから反時計回りに位置PLまでのロータリーヘッド3Hの周上の12個の位置PA~PLの各々に順に位置することになる。 With reference to FIG. 7, the rotary head 3H is rotated counterclockwise by a rotary drive motor (not shown), whereby the position of each nozzle unit 30 on the circumference of the rotary head 3H is sequentially switched. That is, the specific nozzle unit 30 goes around the rotary head 3H from the position PA to the position PL counterclockwise so as to move in an annular trajectory on a plane orthogonal to the transport surface in response to the rotation of the rotary head 3H. It will be located in each of the 12 positions PA to PL in order.
 ここで、位置PA(第1位置の一例)は、ノズルユニット30がチップ包含テープCTから新たにICチップCを吸着する位置である。位置PEは、ノズルユニット30のノズルに吸着された状態のICチップCの画像が撮像装置CA3によって撮像される位置である。
 位置PK(第2位置の一例)は、搬送されるアンテナシートAS上のアンテナANに塗布されている導電ペースト上に、吸着したICチップCを放出する位置である。位置PKでは、ノズル先端の移動方向がアンテナシートASの搬送方向D1と一致する。位置PKでは、ICチップCを放出するためにノズルユニット30のノズルから空気を排出する。
 位置PLでは、ICチップCを位置PKで放出済みであるため、ノズルユニット30はICチップCを吸着していない。なお、位置PLでは、ノズルに付着しうるゴミを除去するためにノズルから空気を放出してもよい。図7には、ノズルから放出されうるゴミを収集するために位置PLにゴミ収集トレイTRが配置された例が示される。
Here, the position PA (an example of the first position) is a position where the nozzle unit 30 newly sucks the IC chip C from the chip inclusion tape CT. The position PE is a position where the image of the IC chip C in a state of being attracted to the nozzle of the nozzle unit 30 is imaged by the image pickup apparatus CA3.
The position PK (an example of the second position) is a position where the adsorbed IC chip C is discharged onto the conductive paste applied to the antenna AN on the antenna sheet AS to be conveyed. At the position PK, the moving direction of the nozzle tip coincides with the transport direction D1 of the antenna sheet AS. At the position PK, air is discharged from the nozzle of the nozzle unit 30 in order to discharge the IC chip C.
At the position PL, since the IC chip C has already been discharged at the position PK, the nozzle unit 30 does not adsorb the IC chip C. At the position PL, air may be discharged from the nozzle in order to remove dust that may adhere to the nozzle. FIG. 7 shows an example in which a dust collection tray TR is arranged at the position PL to collect dust that can be discharged from the nozzle.
 例えば、図7において位置PAにあるノズルユニット30-1は、そこでICチップCを新たに吸着し、ICチップCを吸着したまま反時計回りに回転して、位置PKに達するとICチップCを放出し、位置PAに戻ると再度新たなICチップCを吸着することを繰り返し行う。かかるICチップ搭載方法では、アンテナシートASの搬送を止めることなく連続的にICチップを各アンテナANに配置することができ、生産性が高い。 For example, the nozzle unit 30-1 at the position PA in FIG. 7 newly sucks the IC chip C there, rotates counterclockwise while sucking the IC chip C, and when the position PK is reached, the IC chip C is sucked. When it is released and returns to the position PA, the new IC chip C is repeatedly adsorbed. In such an IC chip mounting method, the IC chips can be continuously arranged on each antenna AN without stopping the transportation of the antenna sheet AS, and the productivity is high.
 順に位置PKに到達するノズルユニット30が、上流から搬送されるアンテナシートASの各アンテナANの基準位置Prefに向けてICチップCを放出するように、ロータリーヘッド3Hの角速度とアンテナシートASの搬送速度が設定され、又は制御される。確実なICチップCの配置のために、位置PKに近傍のノズルユニット30の先端の速度とアンテナシートASの搬送速度とが等速となる区間を設けることが好ましい。 The angular velocity of the rotary head 3H and the transfer of the antenna sheet AS so that the nozzle unit 30 that reaches the position PK in order emits the IC chip C toward the reference position Pref of each antenna AN of the antenna sheet AS transported from the upstream. The speed is set or controlled. For reliable placement of the IC chip C, it is preferable to provide a section at the position PK where the speed of the tip of the nozzle unit 30 in the vicinity and the transport speed of the antenna sheet AS are constant.
 なお、本実施形態では、ロータリーヘッド3Hに12個のノズルユニット30が配設されている例が示されるが、その限りではない。ロータリーヘッド3Hに配設されるノズルユニット30の数は任意に設定可能である。 In the present embodiment, an example in which 12 nozzle units 30 are arranged on the rotary head 3H is shown, but this is not the case. The number of nozzle units 30 arranged on the rotary head 3H can be arbitrarily set.
 次に、図8および図9を参照して、ICチップCがノズルユニット30によって吸着される動作について説明する。
 図8は、チップ包含テープCTが分離ローラ74によって分離される状態を示す斜視図である。図9は、分離ローラ74の近傍の側面図であり、チップ包含テープCTからノズルユニット30にICチップCが供給される動作を説明する図である。図9では、チップ包含テープCTの状態がわかるように、チップ包含テープCTのみ断面で示してある。
Next, the operation in which the IC chip C is attracted by the nozzle unit 30 will be described with reference to FIGS. 8 and 9.
FIG. 8 is a perspective view showing a state in which the chip inclusion tape CT is separated by the separation roller 74. FIG. 9 is a side view of the vicinity of the separation roller 74, and is a diagram illustrating an operation in which the IC chip C is supplied from the chip inclusion tape CT to the nozzle unit 30. In FIG. 9, only the chip containing tape CT is shown in cross section so that the state of the chip containing tape CT can be understood.
 図8に示すように、テープフィーダ71から供給されるチップ包含テープCTの取付孔Hに分離ローラ74の突起74pが挿入されることで、チップ包含テープCTの幅方向の位置決めが行われた状態でチップ包含テープCTが搬送される。このとき、分岐部材75によってチップ包含テープCTの被覆フィルムCFが剥離されてフィルム巻取りリール73に向かう。他方、チップ包含テープCTのテープ本体Tは、テープ本体巻取りリール72に向かう。 As shown in FIG. 8, a state in which the protrusion 74p of the separation roller 74 is inserted into the mounting hole H of the chip containing tape CT supplied from the tape feeder 71 to position the chip containing tape CT in the width direction. The chip inclusion tape CT is conveyed at. At this time, the coating film CF of the chip containing tape CT is peeled off by the branch member 75 and heads toward the film take-up reel 73. On the other hand, the tape body T of the chip containing tape CT faces the tape body take-up reel 72.
 図9に示すように、被覆フィルムCFが剥離されて露出したICチップCは、直ちにノズルユニット30によって吸着される。このとき、ICチップCが露出してからノズルユニット30によって吸着されるまでの僅かな時間にICチップCが落下しないように、分離ローラ74には、分離ローラ74の回転中心に向かってICチップCを吸引するための吸引路(図示せず)が設けられる。この吸引路とテープ本体Tに設けられている吸着孔Ts(図4参照)を通してICチップCが吸引される。 As shown in FIG. 9, the IC chip C exposed by peeling off the coating film CF is immediately adsorbed by the nozzle unit 30. At this time, the separation roller 74 is provided with the IC chip toward the center of rotation of the separation roller 74 so that the IC chip C does not fall in a short time from the exposure of the IC chip C to the suction by the nozzle unit 30. A suction path (not shown) for sucking C is provided. The IC chip C is sucked through the suction path and the suction holes Ts (see FIG. 4) provided in the tape body T.
 次に、図10を参照して、ロータリーヘッド3Hを幅方向D2に移動させる移動機構8について説明する。図10は、移動機構8の正面図である。
 移動機構8は、ノズルユニット30が吸着したICチップCの幅方向D2の位置を補正可能とするために設けられている。図10に示すように、移動機構8は、軸受76、シャフト77、懸架板86、ガイド板87、スライダ88、および、幅方向駆動モータM32を有する。
 軸受76、シャフト77、および、幅方向駆動モータM32は、支持台85上に設けられている。シャフト77はねじ切り部分を有する棒状の部材であり、幅方向駆動モータM32によって回転駆動される。シャフト77は、支持台85の上面に固定された軸受76(2箇所)によって回転可能に支持されている。
 ロータリーヘッド3Hは、懸架板86に取り付けられる。懸架板86の上端部は、ねじ切り加工が施された孔部(図示せず)が形成されており、この孔部がシャフト77のねじ切り部分と嵌合している。そのため、シャフト77の回転に応じて、懸架板86と、懸架板86に取り付けられたロータリーヘッド3Hとが、幅方向D2に移動可能である。なお、支持台85の上部とガイド板87には、懸架板86の幅方向D2の可動範囲において中空部分が設けられる。スライダ88は懸架板86に取り付けられており、懸架板86の幅方向D2の幅方向の移動に伴って、ガイド板87の上面をスライドする。
 上述した構成により、移動機構8は、幅方向駆動モータM32の回転駆動に応じて、ロータリーヘッド3Hを幅方向D2に変位可能とする。
Next, the moving mechanism 8 for moving the rotary head 3H in the width direction D2 will be described with reference to FIG. FIG. 10 is a front view of the moving mechanism 8.
The moving mechanism 8 is provided so that the position of the IC chip C adsorbed by the nozzle unit 30 in the width direction D2 can be corrected. As shown in FIG. 10, the moving mechanism 8 includes a bearing 76, a shaft 77, a suspension plate 86, a guide plate 87, a slider 88, and a width direction drive motor M32.
The bearing 76, the shaft 77, and the width direction drive motor M32 are provided on the support base 85. The shaft 77 is a rod-shaped member having a threaded portion, and is rotationally driven by the width direction drive motor M32. The shaft 77 is rotatably supported by bearings 76 (two locations) fixed to the upper surface of the support base 85.
The rotary head 3H is attached to the suspension plate 86. The upper end of the suspension plate 86 is formed with a threaded hole (not shown), and this hole is fitted with the threaded portion of the shaft 77. Therefore, the suspension plate 86 and the rotary head 3H attached to the suspension plate 86 can move in the width direction D2 according to the rotation of the shaft 77. The upper portion of the support base 85 and the guide plate 87 are provided with hollow portions in the movable range of the suspension plate 86 in the width direction D2. The slider 88 is attached to the suspension plate 86, and slides on the upper surface of the guide plate 87 as the suspension plate 86 moves in the width direction D2.
With the above-described configuration, the moving mechanism 8 makes it possible to displace the rotary head 3H in the width direction D2 in response to the rotational drive of the width direction drive motor M32.
 本実施形態では、移動機構8によってロータリーヘッド3Hを幅方向D2に移動させることで、ロータリーヘッド3Hに取り付けられているノズルユニット30を幅方向D2に移動させる例が示されるが、その限りではない。例えば、ロータリーヘッドを幅方向D2に移動させることなく、ロータリーヘッドの内部で各ノズルユニット30が個別に幅方向D2に変位可能となるようにロータリーヘッドを構成してもよい。 In the present embodiment, an example is shown in which the nozzle unit 30 attached to the rotary head 3H is moved in the width direction D2 by moving the rotary head 3H in the width direction D2 by the moving mechanism 8, but this is not the case. .. For example, the rotary head may be configured so that each nozzle unit 30 can be individually displaced in the width direction D2 inside the rotary head without moving the rotary head in the width direction D2.
 再度、図3を参照すると、ロータリーマウンタ3のノズルユニット30からアンテナANにICチップが放出される位置(図7の位置PK)の近傍には、紫外線照射器41が設けられる。
 紫外線照射器41は、搬送されるアンテナAN上の導電ペーストに対して紫外線を照射するように構成される。紫外線照射器41による紫外線の照射は、ICチップ配置工程の後工程である硬化工程で行われる紫外線照射(後述する)とは目的が異なり、アンテナAN上の導電ペーストの粘度を調整することを目的とする。その観点で、紫外線照射器41によって導電ペーストに与えられる紫外線の積算光量は、後の硬化工程で導電ペーストに与えられる紫外線の積算光量よりも少なくすることが好ましい。紫外線の積算光量は光線強度と照射時間の積で表されることから、積算光量を調整するには光線強度と照射時間の少なくともいずれかを調整すればよい。
Referencing FIG. 3 again, an ultraviolet irradiator 41 is provided in the vicinity of the position where the IC chip is discharged from the nozzle unit 30 of the rotary mounter 3 to the antenna AN (position PK in FIG. 7).
The ultraviolet irradiator 41 is configured to irradiate the conductive paste on the conveyed antenna AN with ultraviolet rays. The purpose of irradiating ultraviolet rays with the ultraviolet irradiator 41 is different from that of ultraviolet irradiation (described later) performed in the curing step which is a subsequent step of the IC chip arranging step, and the purpose is to adjust the viscosity of the conductive paste on the antenna AN. And. From this point of view, it is preferable that the integrated light amount of ultraviolet rays given to the conductive paste by the ultraviolet irradiator 41 is smaller than the integrated light amount of ultraviolet rays given to the conductive paste in the subsequent curing step. Since the integrated light intensity of ultraviolet rays is represented by the product of the light intensity and the irradiation time, at least one of the light intensity and the irradiation time may be adjusted in order to adjust the integrated light intensity.
 本実施形態のICチップ搭載装置1において、ディスペンサ2によってアンテナANにエポキシ系樹脂等の熱硬化型の接着剤を塗布し、紫外線照射器41に代えて熱硬化装置を設けてもよい。 In the IC chip mounting device 1 of the present embodiment, the antenna AN may be coated with a thermosetting adhesive such as an epoxy resin by the dispenser 2, and a thermosetting device may be provided instead of the ultraviolet irradiator 41.
 図3では、紫外線照射器41は、ICチップが配置された後に紫外線を照射するように配置されているが、その限りではない。紫外線照射器41は、ICチップが配置される前に紫外線を照射するように配置されてもよいし、ICチップが配置されるのと同時に紫外線を照射するように配置されてもよい。
 ICチップが配置された後に紫外線を照射する場合には、導電ペーストの粘度が低下することによって、当該導電ペースト上に配置された後にICチップがずれる、若しくは傾くといったことが生じ難くなる。ICチップが配置される前、あるいはICチップが配置されるのと同時に紫外線を照射する場合には、粘度が低下した状態の導電ペーストにICチップが配置されることになるため、当該導電ペースト上に配置された後にICチップが移動し難くなるため、ICチップがずれる、若しくは傾くといったことが生じ難くなる。
 いずれの場合も、ICチップが配置される近傍の位置で紫外線を照射することにより、導電ペーストの流動性に起因してICチップが導電ペースト上で安定しないという状況を回避することができる。すなわち、紫外線照射器41による照射を行うことでICチップの搭載精度を高めることができるという利点がある。
In FIG. 3, the ultraviolet irradiator 41 is arranged so as to irradiate ultraviolet rays after the IC chip is arranged, but this is not the case. The ultraviolet irradiator 41 may be arranged to irradiate ultraviolet rays before the IC chip is arranged, or may be arranged to irradiate ultraviolet rays at the same time as the IC chip is arranged.
When the IC chip is irradiated with ultraviolet rays after being placed, the viscosity of the conductive paste is lowered, so that the IC chip is less likely to shift or tilt after being placed on the conductive paste. When the IC chip is irradiated with ultraviolet rays before or at the same time as the IC chip is arranged, the IC chip is arranged on the conductive paste in a state where the viscosity is lowered, so that the IC chip is arranged on the conductive paste. Since the IC chip is difficult to move after being arranged in the paste, it is difficult for the IC chip to shift or tilt.
In either case, by irradiating the ultraviolet rays at a position in the vicinity where the IC chip is arranged, it is possible to avoid a situation in which the IC chip is not stable on the conductive paste due to the fluidity of the conductive paste. That is, there is an advantage that the mounting accuracy of the IC chip can be improved by irradiating with the ultraviolet irradiator 41.
 次に、図11~図13を参照して、ロータリーマウンタ3を制御する制御部100によって行われる制御について説明する。図11は、制御部100の機能ブロック図である。図12は、撮像装置CA1によって撮像された画像の例を示す。図13は、ノズル32に吸着されたICチップCをノズル32の回転前後で例示する図である。図13のノズルの回転前の状態は、撮像装置CA3によって撮像された画像の例を示している。図13のノズルの回転後の状態では、当該ノズルが位置PK(図7参照)にあるときのXYZ軸を示している。 Next, with reference to FIGS. 11 to 13, the control performed by the control unit 100 that controls the rotary mounter 3 will be described. FIG. 11 is a functional block diagram of the control unit 100. FIG. 12 shows an example of an image captured by the image pickup apparatus CA1. FIG. 13 is a diagram illustrating the IC chip C adsorbed on the nozzle 32 before and after the rotation of the nozzle 32. The state before rotation of the nozzle in FIG. 13 shows an example of an image captured by the image pickup apparatus CA3. The rotated state of the nozzle of FIG. 13 shows the XYZ axis when the nozzle is in the position PK (see FIG. 7).
 制御部100は、図示しない回路基板に実装されており、撮像装置CA1~CA3、ディスペンサ2、シリンダ駆動モータM30、回転駆動モータM31、幅方向駆動モータM32、電磁弁35、および、紫外線照射器41と電気的に接続されている。回転駆動モータM31(回転部の一例)は、ロータリーヘッド3Hにおいてノズルユニット30-1~30-12を回転させる駆動手段である。
 制御部100は、マイクロコンピュータ、メモリ(RAM(Random Access Memory),ROM(Read Only Memory))、ストレージ、駆動回路群を含む。マイクロコンピュータは、メモリに記録されているプログラムを読み出して実行し、吐出位置調整手段101、ICチップ補正手段102、弁制御手段103、硬化実行手段104、吸着判定手段105、および、ロータリーヘッド回転制御手段106の各機能を実現する。
The control unit 100 is mounted on a circuit board (not shown), and includes image pickup devices CA1 to CA3, a dispenser 2, a cylinder drive motor M30, a rotary drive motor M31, a width direction drive motor M32, a solenoid valve 35, and an ultraviolet irradiator 41. Is electrically connected to. The rotary drive motor M31 (an example of a rotary unit) is a drive means for rotating the nozzle units 30-1 to 30-12 in the rotary head 3H.
The control unit 100 includes a microcomputer, a memory (RAM (Random Access Memory), a ROM (Read Only Memory)), a storage, and a drive circuit group. The microprocessor reads and executes the program recorded in the memory, and executes the discharge position adjusting means 101, the IC chip correcting means 102, the valve controlling means 103, the curing executing means 104, the suction determining means 105, and the rotary head rotation control. Each function of the means 106 is realized.
 吐出位置調整手段101は、撮像装置CA1によって撮像された画像に基づいて導電ペーストの吐出位置を決定し、導電ペーストの吐出タイミングおよびディスペンサ2の幅方向D2の位置を調整する機能を備える。導電ペーストの吐出位置の決定方法は、図12を参照すると、以下のとおりである。
 撮像装置CA1によって撮像される画像は、図12に例示されるように、アンテナANの基準位置Prefの近傍の部分の画像である。
 吐出位置調整手段101は、当該画像に含まれる形状の特徴部分から基準位置Prefを特定する。具体的には、吐出位置調整手段101は、図12の画像におけるアンテナANの形状を解析し、X方向において互いに平行な基準線L1,L2と、Y方向において互いに平行な基準線L3,L4を特定し、基準線L1,L2の中央の線と基準線L3,L4の中央の線の交点を基準位置Prefとして特定する。
The discharge position adjusting means 101 has a function of determining the discharge position of the conductive paste based on the image captured by the image pickup apparatus CA1 and adjusting the discharge timing of the conductive paste and the position of the dispenser 2 in the width direction D2. The method for determining the discharge position of the conductive paste is as follows with reference to FIG.
The image captured by the image pickup apparatus CA1 is an image of a portion in the vicinity of the reference position Pref of the antenna AN, as illustrated in FIG.
The discharge position adjusting means 101 specifies the reference position Pref from the characteristic portion of the shape included in the image. Specifically, the discharge position adjusting means 101 analyzes the shape of the antenna AN in the image of FIG. 12, and sets reference lines L1 and L2 parallel to each other in the X direction and reference lines L3 and L4 parallel to each other in the Y direction. It is specified, and the intersection of the center line of the reference lines L1 and L2 and the center line of the reference lines L3 and L4 is specified as the reference position Pref.
 図12の画像中の点Pj1は、画像上の基準位置Prefの目標位置であり、撮像装置CA1による画像とディスペンサ2の導電ペーストの滴下位置との間でキャリブレーションを行った結果により予め決められた位置である。すなわち、画像上で特定された基準位置Prefが目標位置Pj1と一致するようにディスペンサ2の吐出タイミングと幅方向D2の位置とを調整することで、導電ペーストを実際のアンテナANの基準位置に塗布することができる。
 図12の例では、画像上で特定された基準位置Prefが目標位置Pj1と一致するためには、X方向にx1、Y方向にy1だけ位置を調整する必要がある。具体的には、x1に基づいてアンテナANの搬送速度を考慮した、ディスペンサ2からの吐出タイミングが決定され、y1に基づいてディスペンサ2の幅方向D2の変位が行われる。つまり、吐出位置調整手段101は、ディスペンサ2に対して、吐出タイミングおよび幅方向D2の変位を指示するための制御信号を送信し、当該制御信号に基づいてディスペンサ2が吐出動作を行う。
The point Pj1 in the image of FIG. 12 is the target position of the reference position Pref on the image, and is predetermined based on the result of calibration between the image by the image pickup apparatus CA1 and the dropping position of the conductive paste of the dispenser 2. Position. That is, by adjusting the discharge timing of the dispenser 2 and the position in the width direction D2 so that the reference position Pref specified on the image coincides with the target position Pj1, the conductive paste is applied to the reference position of the actual antenna AN. can do.
In the example of FIG. 12, in order for the reference position Pref specified on the image to coincide with the target position Pj1, it is necessary to adjust the positions by x1 in the X direction and y1 in the Y direction. Specifically, the discharge timing from the dispenser 2 is determined based on x1 in consideration of the transport speed of the antenna AN, and the displacement of the dispenser 2 in the width direction D2 is performed based on y1. That is, the discharge position adjusting means 101 transmits a control signal for instructing the discharge timing and the displacement in the width direction D2 to the dispenser 2, and the dispenser 2 performs the discharge operation based on the control signal.
 撮像装置CA2によって撮像される画像は、導電ペーストが塗布されている点を除き、図12と同様の画像である。 The image captured by the image pickup apparatus CA2 is the same as that of FIG. 12 except that the conductive paste is applied.
 ICチップ補正手段102(補正量決定部の一例)は、ノズル32に吸着されたICチップを補正する機能を備える。ICチップの補正方法は、図12および図13を参照すると、以下のとおりである。
 図13の回転前の状態に示すように、撮像装置CA3(画像取得部の一例)によって撮像された画像には、ノズル32のノズル端32eと、ノズル端32eに吸着されたICチップCとが含まれる。点Pc1は、ノズルの回転前のICチップCの中心位置である。図13の画像中の点Pj2は、画像上のICチップCの中心位置の目標位置であり、図12の目標位置Pj1と一致するように設定されている。つまり、ICチップCの中心位置を目標位置Pj1と一致させることで、搬送される実際のアンテナANの基準位置にICチップCを配置することができるようになっている。
The IC chip correction means 102 (an example of a correction amount determining unit) has a function of correcting the IC chip adsorbed on the nozzle 32. The correction method of the IC chip is as follows with reference to FIGS. 12 and 13.
As shown in the state before rotation in FIG. 13, the image captured by the image pickup apparatus CA3 (an example of the image acquisition unit) includes the nozzle end 32e of the nozzle 32 and the IC chip C adsorbed on the nozzle end 32e. included. The point Pc1 is the center position of the IC chip C before the rotation of the nozzle. The point Pj2 in the image of FIG. 13 is the target position of the center position of the IC chip C on the image, and is set to coincide with the target position Pj1 of FIG. That is, by matching the center position of the IC chip C with the target position Pj1, the IC chip C can be arranged at the reference position of the actual antenna AN to be transported.
 ノズル32の軸回りの回転中心Prcは、ノズルユニット30-1~30~12の取り付けばらつき等のために各ノズルの理論上の軸中心とはならない。回転中心Prcは各ノズルユニットによって異なり、例えば予め得られた実測データを基に特定される。
 先ず、ノズル32の軸回りの回転中心Prcの回りに、画像に表れたICチップCの中心Pc1を回転させたときに、ICチップCの基準線(例えば、図13のICチップCの基準辺Sc)がY方向に平行となるまでの回転量が決定される。
 図13の回転後の状態の例では、回転中心Prcの回りに、撮像された画像内のICチップCを回転させて、ICチップCの基準辺ScをY方向に平行になるようにする。このときの回転角がICチップCの回転方向の補正量(第1補正量の一例)として特定される。ここで、移動後のICチップCの中心位置を点Pc2とした場合、点Pc2を目標位置Pj2と一致させるため、X方向の補正量(第2補正量の一例)がx2、Y方向の補正量(第3補正量の一例)がy2として特定される。
The rotation center Prc around the axis of the nozzle 32 does not become the theoretical axis center of each nozzle due to mounting variations of the nozzle units 30-1 to 30 to 12. The rotation center Prc differs depending on each nozzle unit, and is specified, for example, based on measured data obtained in advance.
First, when the center Pc1 of the IC chip C shown in the image is rotated around the rotation center Prc around the axis of the nozzle 32, the reference line of the IC chip C (for example, the reference side of the IC chip C in FIG. 13). The amount of rotation until Sc) becomes parallel in the Y direction is determined.
In the example of the state after rotation of FIG. 13, the IC chip C in the captured image is rotated around the rotation center Prc so that the reference side Sc of the IC chip C is parallel to the Y direction. The rotation angle at this time is specified as a correction amount in the rotation direction of the IC chip C (an example of the first correction amount). Here, when the center position of the IC chip C after movement is set to the point Pc2, the correction amount in the X direction (an example of the second correction amount) is x2 and the correction amount in the Y direction is corrected in order to match the point Pc2 with the target position Pj2. The amount (an example of the third correction amount) is specified as y2.
 ICチップ補正手段102は、ノズル32の軸回りの回転方向の補正量に対応する制御信号をシリンダ駆動モータM30に送出し、それによって位置PE(撮像装置CA3によって撮像される位置)からICチップを放出する位置PKまでの間に、ノズル32が軸回りに回転する。
 ICチップ補正手段102は、X方向の補正量x2に対応する制御信号を、回転駆動モータM31を駆動する駆動回路に送出し、それによってロータリーヘッド3Hの角速度が調整される。ICチップ補正手段102は、Y方向の補正量y2に対応する制御信号を、幅方向駆動モータM32を駆動する駆動回路に送出し、それによってロータリーヘッド3Hの幅方向D2の位置が調整される。ロータリーヘッド3Hの幅方向D2の位置が調整されることで、ノズル32の幅方向D2の位置も調整される。
The IC chip correction means 102 sends a control signal corresponding to the correction amount in the rotational direction around the axis of the nozzle 32 to the cylinder drive motor M30, whereby the IC chip is removed from the position PE (position imaged by the image pickup apparatus CA3). The nozzle 32 rotates about the axis until the discharge position PK.
The IC chip correction means 102 sends a control signal corresponding to the correction amount x2 in the X direction to the drive circuit for driving the rotary drive motor M31, whereby the angular velocity of the rotary head 3H is adjusted. The IC chip correction means 102 sends a control signal corresponding to the correction amount y2 in the Y direction to the drive circuit for driving the width direction drive motor M32, whereby the position of the rotary head 3H in the width direction D2 is adjusted. By adjusting the position of the rotary head 3H in the width direction D2, the position of the nozzle 32 in the width direction D2 is also adjusted.
 本実施形態のICチップ搭載装置1では、ICチップ補正手段102によってICチップのX方向、Y方向における位置、および、ノズルの軸に直交する平面でのICチップの向きの補正が行われるため、ICチップのアンテナの基準位置に対する搭載精度が非常に高いという利点がある。 In the IC chip mounting device 1 of the present embodiment, the IC chip correction means 102 corrects the positions of the IC chips in the X and Y directions and the orientation of the IC chips on a plane orthogonal to the axis of the nozzle. There is an advantage that the mounting accuracy of the IC chip with respect to the reference position of the antenna is very high.
 弁制御手段103は、ロータリーマウンタ3に含まれる12個のノズルユニット30-1~30-12の各々について、各ノズルユニット30の位置に応じて各ノズルユニット30から吸引するか、あるいは空気を排出するかのいずれかの動作を行うように、各電磁弁35を制御する。具体的には、弁制御手段103は、ノズルユニット30が位置PA~PJ(図7参照)に位置するときにはノズルユニット30から吸引するように電磁弁35を制御し、ノズルユニット30が位置PK,PLに位置するときにはノズルユニット30から空気を排出するように電磁弁35を制御する。 The valve control means 103 sucks each of the 12 nozzle units 30-1 to 30-12 included in the rotary mounter 3 from each nozzle unit 30 or discharges air according to the position of each nozzle unit 30. Each solenoid valve 35 is controlled so as to perform either operation. Specifically, the valve control means 103 controls the solenoid valve 35 so that when the nozzle unit 30 is located at positions PA to PJ (see FIG. 7), it sucks from the nozzle unit 30, and the nozzle unit 30 is located at position PK. When located in the PL, the solenoid valve 35 is controlled so as to discharge air from the nozzle unit 30.
 硬化実行手段104は、搬送されているアンテナANの各々に対して、予め設定された積算光量で紫外線照射器41から紫外線が照射されるように、所定の駆動信号を紫外線照射器41に送出する。 The curing executing means 104 sends a predetermined drive signal to the ultraviolet irradiator 41 so that the ultraviolet irradiator 41 irradiates each of the conveyed antenna ANs with ultraviolet rays at a preset integrated light amount. ..
 吸着判定手段105は、各ノズルユニット30がICチップの吸着を開始する位置PAからICチップを放出する位置PKに移動するまでの間に、各ノズルユニット30にICチップが吸着されているか否か判定する。本実施形態の例では、吸着判定手段105は、撮像装置CA3(画像取得部の一例)によって撮像される画像に基づいて位置PEに順次到達するノズルユニット30がICチップを吸着しているか否かを判定する。 The suction determining means 105 determines whether or not the IC chip is sucked by each nozzle unit 30 before each nozzle unit 30 moves from the position PA where the suction of the IC chip is started to the position PK where the IC chip is discharged. judge. In the example of the present embodiment, the suction determination means 105 determines whether or not the nozzle unit 30 that sequentially reaches the position PE based on the image captured by the image pickup device CA3 (an example of the image acquisition unit) sucks the IC chip. To judge.
 ロータリーヘッド回転制御手段106は、ICチップが吸着されていないと判定されたノズルユニット30(「非吸着ノズルユニット」という。)に対応するアンテナに対して、非吸着ノズルユニットよりも後に位置PK(第2位置の例)に到達するノズルユニット30がICチップを放出するように、ロータリーヘッド3Hを回転させるときの角速度を制御する。 The rotary head rotation control means 106 is positioned after the non-adsorption nozzle unit with respect to the antenna corresponding to the nozzle unit 30 (referred to as “non-adsorption nozzle unit”) for which the IC chip is determined not to be adsorbed. The angular speed at the time of rotating the rotary head 3H is controlled so that the nozzle unit 30 reaching the second position) discharges the IC chip.
 ここで、ロータリーヘッド回転制御手段106に関連して、図14および図15を参照して、ロータリーマウンタ3がICチップCを吸着し損なった場合の動作について説明する。図14および図15は、それぞれロータリーマウンタ3がICチップCを吸着し損なった場合の動作について説明する図であり、ロータリーマウンタ3とアンテナシートASとの関係を概略的に示している。図14および図15では、時刻T1~T4の順に時刻が経過するときのロータリーマウンタ3の状態を表す。 Here, in relation to the rotary head rotation control means 106, the operation when the rotary mounter 3 fails to adsorb the IC chip C will be described with reference to FIGS. 14 and 15. 14 and 15 are diagrams for explaining the operation when the rotary mounter 3 fails to adsorb the IC chip C, respectively, and schematically shows the relationship between the rotary mounter 3 and the antenna sheet AS. 14 and 15 show the state of the rotary mounter 3 when the time elapses in the order of times T1 to T4.
 図14の時刻T1では、位置PAにあるノズルユニット30-1がICチップCを吸着し損なった場合を想定する。つまり、ノズルユニット30-1が非吸着ノズルユニットに相当する。
 図14の時刻T2では、ノズルユニット30-1が半時計回りに回転し、位置PEに到達する。このタイミングで、撮像装置CA3によりノズルユニット30-1のノズル32の画像が撮像され、ノズルユニット30-1が非吸着ノズルユニットであると判定される。
 図15の時刻T3では、非吸着ノズルユニットであるノズルユニット30-1が位置PJの位置に到達する。図示されるように、ノズルユニット30-1に対応するアンテナは、アンテナシートAS上のアンテナAN-2である。すなわち、仮にノズルユニット30-1がICチップを吸着していたならば、当該ICチップの放出先がアンテナAN-2となる。
At time T1 in FIG. 14, it is assumed that the nozzle unit 30-1 at the position PA fails to adsorb the IC chip C. That is, the nozzle unit 30-1 corresponds to the non-adsorption nozzle unit.
At time T2 in FIG. 14, the nozzle unit 30-1 rotates counterclockwise and reaches the position PE. At this timing, the image pickup device CA3 captures an image of the nozzle 32 of the nozzle unit 30-1, and it is determined that the nozzle unit 30-1 is a non-adsorption nozzle unit.
At time T3 in FIG. 15, the nozzle unit 30-1, which is a non-adsorption nozzle unit, reaches the position of position PJ. As shown, the antenna corresponding to the nozzle unit 30-1 is the antenna AN-2 on the antenna sheet AS. That is, if the nozzle unit 30-1 has attracted the IC chip, the emission destination of the IC chip is the antenna AN-2.
 図15の時刻T4は、アンテナAN-2にICチップを放出するタイミングである。このとき、非吸着ノズルユニットであるノズルユニット30-1に対応するアンテナAN-2に対してICチップが放出されるように、ロータリーマウンタ3のロータリーヘッド3Hの角速度を制御する。すなわち、ノズルユニット30-1に後続する他のノズルユニットがアンテナANに対してICチップを放出するように、ロータリーマウンタ3のロータリーヘッド3Hの回転を加速させる。その結果、時刻T4では、ノズルユニット30-1の直ぐ後に続くノズルユニット30-2(つまり、ノズルユニット30-1に次いで最初に位置PKに到達するノズルユニット)からアンテナAN-2に対してICチップが放出される。そのため、アンテナAN-2がICチップを配置しない状態で後工程に流れることを防止することができ、歩留まりを向上させることができる。
 なお、ノズルユニット30-2からアンテナAN-2に対してICチップが放出される場合に限られず、ノズルユニット30-1の後に続く他のノズルユニット(例えば、ノズルユニット30-3)からアンテナAN-2に対してICチップが放出されてもよい。
The time T4 in FIG. 15 is the timing at which the IC chip is discharged to the antenna AN-2. At this time, the angular velocity of the rotary head 3H of the rotary mounter 3 is controlled so that the IC chip is discharged to the antenna AN-2 corresponding to the nozzle unit 30-1 which is a non-adsorption nozzle unit. That is, the rotation of the rotary head 3H of the rotary mounter 3 is accelerated so that another nozzle unit following the nozzle unit 30-1 emits the IC chip to the antenna AN. As a result, at time T4, the IC from the nozzle unit 30-2 immediately following the nozzle unit 30-1 (that is, the nozzle unit that first reaches the position PK after the nozzle unit 30-1) with respect to the antenna AN-2. The chip is released. Therefore, it is possible to prevent the antenna AN-2 from flowing to the subsequent process in a state where the IC chip is not arranged, and it is possible to improve the yield.
Not only when the IC chip is discharged from the nozzle unit 30-2 to the antenna AN-2, but also from another nozzle unit (for example, the nozzle unit 30-3) following the nozzle unit 30-1 the antenna AN. The IC chip may be released with respect to -2.
 図14および図15に示す動作を行う場合、ロータリーヘッド回転制御手段106は、ICチップCを吸着しない非吸着ノズルユニットが位置PKに接近したときにロータリーヘッド3Hを加速させ、非吸着ノズルユニットよりも後に位置PKに到達するノズルユニット30が、非吸着ノズルユニットに対応するアンテナにICチップを放出するように、回転駆動モータM31および電磁弁35を制御する。 When performing the operations shown in FIGS. 14 and 15, the rotary head rotation control means 106 accelerates the rotary head 3H when the non-adsorption nozzle unit that does not adsorb the IC chip C approaches the position PK, and from the non-adsorption nozzle unit. The rotary drive motor M31 and the electromagnetic valve 35 are controlled so that the nozzle unit 30 that later reaches the position PK emits the IC chip to the antenna corresponding to the non-adsorption nozzle unit.
 なお、弁制御手段103は、非吸着ノズルユニットが吸引動作を行わないように、当該非吸着ノズルユニットの電磁弁35を制御することが好ましい。それによって、アンテナ上の未硬化の(つまり、流動性の高い)導電ペーストが非吸着ノズルユニットに付着して汚損することが防止できる。
 また、弁制御手段103は、非吸着ノズルユニットが位置PKでは排出動作を行わないように、当該非吸着ノズルユニットの電磁弁35を制御することが好ましい。それによって、位置PKにあるアンテナ上の未硬化の(つまり、流動性の高い)導電ペーストを飛散させてアンテナを汚損することが防止できる。
The valve control means 103 preferably controls the solenoid valve 35 of the non-suction nozzle unit so that the non-suction nozzle unit does not perform a suction operation. As a result, it is possible to prevent the uncured (that is, highly fluid) conductive paste on the antenna from adhering to the non-adsorption nozzle unit and contaminating it.
Further, it is preferable that the valve control means 103 controls the solenoid valve 35 of the non-adsorption nozzle unit so that the non-adsorption nozzle unit does not perform the discharge operation at the position PK. Thereby, it is possible to prevent the uncured (that is, highly fluid) conductive paste on the antenna at the position PK from being scattered and soiling the antenna.
 (2)硬化工程
 次に、硬化工程について、図16および図17を参照して説明する。
 硬化工程では、上述したICチップ配置工程を経た各アンテナに塗布されている導電ペーストを硬化させて、アンテナとICチップの物理的な接続を強固にするとともに、アンテナとICチップの電気的な導通を確実にする。
(2) Curing Step Next, the curing step will be described with reference to FIGS. 16 and 17.
In the curing step, the conductive paste applied to each antenna that has undergone the IC chip placement step described above is cured to strengthen the physical connection between the antenna and the IC chip and to electrically conduct the antenna and the IC chip. To ensure.
 図16は、実施形態のICチップ搭載装置1において硬化工程に対応する部分を示す図である。図17は、図16の矢視Jから見た押圧ユニット6の一部と紫外線照射器42を示す図である。 FIG. 16 is a diagram showing a portion corresponding to a curing step in the IC chip mounting device 1 of the embodiment. FIG. 17 is a diagram showing a part of the pressing unit 6 and the ultraviolet irradiator 42 as seen from the arrow J of FIG.
 図16に示すように、硬化工程においてICチップ搭載装置1は、コンベア82と、硬化装置4と、撮像装置CA4と、を含む。
 コンベア82は、上流のICチップ配置工程から搬送されるアンテナシートASを、下流に向けて所定の搬送速度で搬送する。
 撮像装置CA4は、硬化工程において最も上流側(つまり、ICチップ配置工程の最も下流側)において、アンテナシートASの上方に配置されており、ICチップ配置工程から搬送される各アンテナANの画像を撮像する。撮像装置CA4は、ICチップ配置工程においてICチップが適切な位置に配置されているか否かを検査するために設けられている。
As shown in FIG. 16, in the curing step, the IC chip mounting device 1 includes a conveyor 82, a curing device 4, and an imaging device CA4.
The conveyor 82 conveys the antenna sheet AS conveyed from the upstream IC chip arranging process toward the downstream at a predetermined transfer speed.
The image pickup apparatus CA4 is arranged above the antenna sheet AS on the most upstream side in the curing process (that is, the most downstream side in the IC chip arrangement process), and images of each antenna AN conveyed from the IC chip arrangement process are displayed. Take an image. The image pickup apparatus CA4 is provided to inspect whether or not the IC chip is arranged at an appropriate position in the IC chip arrangement process.
 図16に示すように、硬化装置4は、1又は複数の押圧ユニット6と紫外線照射器42を有する。
 押圧ユニット6は、搬送面に直交する方向に昇降動作し、アンテナANの導電ペースト上に配置されたICチップを、各アンテナANに紫外線を照射している間に押圧する。押圧ユニット6の数は問わないが、生産性とコストの観点から、任意の数に設定可能である。
 紫外線照射器42は、搬送方向D1に沿って配置される。そのため、アンテナシートAS上の多くのアンテナANに対して同時に紫外線を照射することも可能である。
As shown in FIG. 16, the curing device 4 has one or more pressing units 6 and an ultraviolet irradiator 42.
The pressing unit 6 moves up and down in a direction orthogonal to the transport surface, and presses the IC chip arranged on the conductive paste of the antenna AN while irradiating each antenna AN with ultraviolet rays. The number of pressing units 6 is not limited, but can be set to any number from the viewpoint of productivity and cost.
The ultraviolet irradiator 42 is arranged along the transport direction D1. Therefore, it is possible to simultaneously irradiate many antenna ANs on the antenna sheet AS with ultraviolet rays.
 図17を参照すると、各アンテナANに対して紫外線照射器42によって紫外線が照射される状態が示される。図17に示すように、押圧ユニット6は、シャフト63の先端に押圧部61が取り付けられた構造である。押圧ユニット6の押圧部61の側面(つまり、紫外線照射器42が配置される側の面)は開放している。押圧部61の押圧面を構成するガラス板61pは、紫外線を透過するガラスによって形成されている。
 紫外線照射器42は、例えばLED(Light Emitting Device)等の光源42eを有する。光源42eは、搬送面に対して斜めに傾斜した方向からアンテナANに向けて紫外線を照射するように構成されている。
 各アンテナANに塗布されている導電ペースト上のICチップを押圧しながら紫外線照射を行うことによって、各アンテナANに塗布されている導電ペーストが硬化し、アンテナとICチップの物理的な接続を強固になるとともに、アンテナとICチップの電気的な導通が確実になる。
With reference to FIG. 17, a state in which ultraviolet rays are irradiated to each antenna AN by the ultraviolet irradiator 42 is shown. As shown in FIG. 17, the pressing unit 6 has a structure in which the pressing portion 61 is attached to the tip of the shaft 63. The side surface of the pressing portion 61 of the pressing unit 6 (that is, the surface on the side on which the ultraviolet irradiator 42 is arranged) is open. The glass plate 61p forming the pressing surface of the pressing portion 61 is formed of glass that transmits ultraviolet rays.
The ultraviolet irradiator 42 has a light source 42e such as an LED (Light Emitting Device). The light source 42e is configured to irradiate ultraviolet rays toward the antenna AN from a direction obliquely inclined with respect to the transport surface.
By irradiating ultraviolet rays while pressing the IC chip on the conductive paste applied to each antenna AN, the conductive paste applied to each antenna AN is cured and the physical connection between the antenna and the IC chip is strengthened. At the same time, the electrical continuity between the antenna and the IC chip is ensured.
 以上説明したようにして、複数のアンテナが一定のピッチで基材上に形成された帯状のアンテナシートがラインに投入され、ICチップ配置工程と硬化工程を経て、各アンテナ上にICチップが搭載される。本実施形態のICチップ搭載装置は、ICチップ配置工程においてアンテナの基準位置に向けて接着剤を塗布するとともに当該接着剤上にICチップを配置し、硬化工程において接着剤を硬化させてアンテナとICチップの接続を強固にする。ICチップ配置工程では、ノズルで吸着したICチップを順次、アンテナの基準位置に配置していく。このとき、本実施形態のICチップ搭載装置によれば、ICチップ配置工程において、非吸着ノズルユニットに対応するアンテナに対しては、非吸着ノズルユニットに後続する他のノズルユニットがICチップを放出するように、ロータリーマウンタのロータリーヘッドの回転を制御する。そのため、アンテナがICチップを配置しない状態で後工程に流れることを防止することができ、歩留まりを向上させることができる。 As described above, a strip-shaped antenna sheet in which a plurality of antennas are formed on a base material at a constant pitch is put into a line, and an IC chip is mounted on each antenna through an IC chip placement process and a curing process. Will be done. In the IC chip mounting device of the present embodiment, an adhesive is applied toward the reference position of the antenna in the IC chip placement process, the IC chip is placed on the adhesive, and the adhesive is cured in the curing step to form an antenna. Strengthen the connection of the IC chip. In the IC chip arranging step, the IC chips adsorbed by the nozzle are sequentially arranged at the reference position of the antenna. At this time, according to the IC chip mounting device of the present embodiment, in the IC chip arranging step, another nozzle unit following the non-adsorption nozzle unit discharges the IC chip to the antenna corresponding to the non-adsorption nozzle unit. The rotation of the rotary head of the rotary mounter is controlled so as to be used. Therefore, it is possible to prevent the antenna from flowing to the subsequent process in a state where the IC chip is not arranged, and it is possible to improve the yield.
 以上、ICチップ搭載装置、ICチップ搭載方法の実施形態について説明したが、本発明は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。 Although the embodiment of the IC chip mounting device and the IC chip mounting method has been described above, the present invention is not limited to the above embodiment. Further, the above-described embodiment can be improved or modified in various ways without departing from the spirit of the present invention.
 例えば、図3に示した実施形態では、ICチップ配置工程において、アンテナシートASがコンベア81上を一方向に搬送される場合を示したが、その限りではない。
 一実施形態では、図18に示すように、ICチップ配置工程において、吸着ドラム92,94と複数の搬送ローラ(例えば、図17では、搬送ローラ91,93,95)によりアンテナシートASを搬送してもよい。図18では、吸着ドラム92の最も高い位置で、アンテナシートASのアンテナANの基準位置にディスペンサ2により導電ペーストが吐出される。また、吸着ドラム94の最も高い位置で、導電ペースト上にICチップが配置される。この場合、少なくとも吸着ドラム92,94は、アンテナシートASの裏面を吸着する吸着ローラであることが好ましい。それによって、アンテナシートASの位置ずれ(特に、長手方向)を防止することができ、導電ペーストの吐出及びICチップの配置を精度良く行うことができる。
For example, in the embodiment shown in FIG. 3, the case where the antenna sheet AS is conveyed in one direction on the conveyor 81 in the IC chip arranging step is shown, but this is not the case.
In one embodiment, as shown in FIG. 18, in the IC chip placement step, the antenna sheet AS is conveyed by the suction drums 92, 94 and a plurality of transfer rollers (for example, transfer rollers 91, 93, 95 in FIG. 17). You may. In FIG. 18, the conductive paste is discharged by the dispenser 2 to the reference position of the antenna AN of the antenna sheet AS at the highest position of the suction drum 92. Further, the IC chip is arranged on the conductive paste at the highest position of the suction drum 94. In this case, at least the suction drums 92 and 94 are preferably suction rollers that suck the back surface of the antenna sheet AS. As a result, it is possible to prevent the antenna sheet AS from being displaced (particularly in the longitudinal direction), and it is possible to accurately discharge the conductive paste and arrange the IC chip.
 一実施形態では、搬送されるアンテナシートAS状のアンテナANに塗布されている導電ペースト上にICチップを放出することに代えて、ICチップを導電ペーストに押し付けることによって配置してもよい。
 図19は、ICチップを導電ペーストに押し付けることによって配置する場合のロータリーマウンタ3の動作を時系列で示している。一実施形態では、ロータリーマウンタ3の各ノズルユニット30は、内蔵される駆動装置により個別に放射方向(径方向)に移動可能に構成される。
 状態ST1は、ノズルユニット30がICチップCを吸着した状態である。吸着したICチップCを配置するときには、状態ST2に示すように、ノズルユニット30を放射方向(径方向)に延びるように基準位置に向けて(つまり、下方向、すなわち図2のZ方向に)移動させ、アンテナANに塗布されている導電ペースト上にICチップCを押し付けることでICチップCを導電ペースト上に配置する。ICチップCを配置した後は、吸着を解除するとともに状態ST1の位置までノズルユニット30を戻す。例えば、ノズルユニット30が位置PK(図7参照)に達するタイミングで状態ST1~ST3の動作を行うことで、ICチップCがアンテナANに塗布されている導電ペースト上に配置される。
In one embodiment, instead of discharging the IC chip onto the conductive paste coated on the antenna AN in the shape of the antenna sheet AS to be conveyed, the IC chip may be arranged by pressing the IC chip against the conductive paste.
FIG. 19 shows the operation of the rotary mounter 3 in chronological order when the IC chip is arranged by pressing it against the conductive paste. In one embodiment, each nozzle unit 30 of the rotary mounter 3 is configured to be individually movable in the radial direction (diameter direction) by a built-in drive device.
The state ST1 is a state in which the nozzle unit 30 has attracted the IC chip C. When arranging the attracted IC chip C, as shown in the state ST2, the nozzle unit 30 is directed toward the reference position so as to extend in the radial direction (diametrical direction) (that is, downward, that is, in the Z direction in FIG. 2). The IC chip C is placed on the conductive paste by moving and pressing the IC chip C onto the conductive paste coated on the antenna AN. After arranging the IC chip C, the suction is released and the nozzle unit 30 is returned to the position of the state ST1. For example, the IC chip C is arranged on the conductive paste applied to the antenna AN by performing the operations of the states ST1 to ST3 at the timing when the nozzle unit 30 reaches the position PK (see FIG. 7).
 一実施形態の硬化工程を図20に示す。図20には、一実施形態の硬化工程で使用される硬化装置4Aが示される。硬化装置4Aは、複数の紫外線硬化ユニット43が取付板44に取り外し可能に取り付けられている。アンテナシートASの隣接するアンテナANの間隔に応じて、取り付け位置が異なる複数の取付板44を用意しておき、当該間隔に応じて取付板44を取り替えることで、様々なアンテナシートASに対応させることができる。
 支持軸45は、取付板44を支持し、取付板44を昇降可能に構成されている。ICチップ配置工程から搬送されてくるアンテナシートASは、搬送ローラ96~98を介して硬化工程に送られる。搬送ローラ97は、図示しない駆動装置によって昇降可能に構成されている。
The curing process of one embodiment is shown in FIG. FIG. 20 shows a curing device 4A used in the curing step of one embodiment. In the curing device 4A, a plurality of ultraviolet curing units 43 are detachably attached to the mounting plate 44. A plurality of mounting plates 44 having different mounting positions are prepared according to the distance between the adjacent antenna ANs of the antenna sheet AS, and the mounting plates 44 are replaced according to the distance to correspond to various antenna sheet AS. be able to.
The support shaft 45 supports the mounting plate 44 and is configured so that the mounting plate 44 can be raised and lowered. The antenna sheet AS conveyed from the IC chip arranging process is sent to the curing process via the transfer rollers 96 to 98. The transport roller 97 is configured to be able to move up and down by a drive device (not shown).
 紫外線硬化ユニット43の構成例を図21に示す。図21に示すように、紫外線硬化ユニット43は、筐体431内に紫外線を照射するための光源432(例えばLED光源)を内蔵する。光源432は、紫外線硬化ユニット43の外部から提供されるケーブル436(図20には不図示)によって給電される。筐体431内には、光源432によって照射される紫外線を集光する集光レンズを設けてもよい。保持板434は、筐体431に連結されており、ガラス板435を保持する。光源432から照射される紫外線は、各アンテナANに塗布されている導電ペーストに照射され、導電ペーストを硬化させる。 FIG. 21 shows a configuration example of the ultraviolet curing unit 43. As shown in FIG. 21, the ultraviolet curing unit 43 includes a light source 432 (for example, an LED light source) for irradiating ultraviolet rays in the housing 431. The light source 432 is fed by a cable 436 (not shown in FIG. 20) provided from the outside of the ultraviolet curing unit 43. A condensing lens that collects ultraviolet rays emitted by the light source 432 may be provided in the housing 431. The holding plate 434 is connected to the housing 431 and holds the glass plate 435. The ultraviolet rays emitted from the light source 432 are applied to the conductive paste applied to each antenna AN to cure the conductive paste.
 再度図20を参照すると、搬送状態は、ICチップ配置工程からアンテナシートASが搬送される状態を示している。未硬化の導電ペーストが塗布されているアンテナANが紫外線硬化ユニット43の直下に位置するタイミングで、アンテナシートASの搬送が停止される。そして、アンテナシートASの搬送が停止された状態(停止状態)において、紫外線硬化ユニット43を下方向に移動させてアンテナANをガラス板435により押圧しながら紫外線を照射し、導電ペーストを硬化させる。 With reference to FIG. 20 again, the transport state indicates a state in which the antenna sheet AS is transported from the IC chip arranging process. The transfer of the antenna sheet AS is stopped at the timing when the antenna AN coated with the uncured conductive paste is located directly below the ultraviolet curing unit 43. Then, in the state where the transport of the antenna sheet AS is stopped (stopped state), the ultraviolet curing unit 43 is moved downward, and the antenna AN is irradiated with ultraviolet rays while being pressed by the glass plate 435 to cure the conductive paste.
 停止状態のときにおいてもICチップ配置工程からアンテナシートASが搬送されてくるため、紫外線を照射している間は搬送ローラ97が自重で降下し、搬送されてきたアンテナシートASを搬送ローラ96と搬送ローラ98の間で吸収する。紫外線の照射が終了すると、紫外線硬化ユニット43の数に相当するアンテナANを下流に急速に搬送させ、未硬化のアンテナANが紫外線硬化ユニット43の直下に位置するように停止させる。つまり、一実施形態の硬化工程では、アンテナシートASの搬送状態と停止状態(紫外線照射を行う状態)が繰り返し行われる。アンテナANを急速に搬送する際、搬送ローラ97は、アンテナシートASに加わった張力により上昇する。 Since the antenna sheet AS is transported from the IC chip placement process even in the stopped state, the transport roller 97 is lowered by its own weight while irradiating with ultraviolet rays, and the transported antenna sheet AS is combined with the transport roller 96. It absorbs between the transport rollers 98. When the irradiation of ultraviolet rays is completed, the antenna AN corresponding to the number of the ultraviolet curing units 43 is rapidly transported downstream, and the uncured antenna AN is stopped so as to be located directly under the ultraviolet curing unit 43. That is, in the curing step of one embodiment, the transport state and the stop state (state in which ultraviolet irradiation is performed) of the antenna sheet AS are repeatedly performed. When the antenna AN is rapidly conveyed, the transfer roller 97 rises due to the tension applied to the antenna sheet AS.
 一実施形態の硬化工程は、熱硬化装置を用いて行ってもよい。すなわち、ディスペンサ2においてエポキシ系樹脂等の熱硬化型の接着剤を塗布した場合には、硬化工程では、熱硬化処理を行うことで接着剤を硬化させる。
 図22は、図20と同様に、アンテナシートASの搬送状態と停止状態が繰り返し行われるように構成された硬化装置4Bである。硬化装置4Bは、硬化装置4Aとは異なり、複数の熱硬化ユニット46を備える。各熱硬化ユニット46には、不図示のケーブルにより電源が供給されて動作する熱源が配置される。アンテナシートASが停止状態のときには、支持軸45が下降するように駆動され、各熱硬化ユニット46が対応するアンテナANを押圧しながら接着剤を加熱して硬化させる。加熱が完了すると、支持軸45が上昇するように駆動されるとともに、アンテナシートASの搬送が行われる。
The curing step of one embodiment may be performed using a thermosetting device. That is, when a thermosetting adhesive such as an epoxy resin is applied to the dispenser 2, the adhesive is cured by performing a thermosetting treatment in the curing step.
FIG. 22 is a curing device 4B configured to repeatedly carry and stop the antenna sheet AS in the same manner as in FIG. 20. Unlike the curing device 4A, the curing device 4B includes a plurality of thermosetting units 46. Each thermosetting unit 46 is provided with a heat source that operates by being supplied with power by a cable (not shown). When the antenna sheet AS is in the stopped state, the support shaft 45 is driven so as to descend, and each thermosetting unit 46 heats and cures the adhesive while pressing the corresponding antenna AN. When the heating is completed, the support shaft 45 is driven so as to rise, and the antenna sheet AS is conveyed.
 なお、図20において、導電ペーストを紫外線により硬化させる場合、光源を内蔵した紫外線硬化ユニット43に代えて、ガラス板を介してアンテナANを押圧する押圧ユニットを用い、停止状態で押圧されているアンテナAN上の導電ペーストに対して幅方向外部や斜め上方から紫外線を照射する紫外線照射装置を設けてもよい。
 一実施形態では、紫外線を照射するときにアンテナシートASを停止状態とすることがないように、複数の紫外線硬化ユニット43をアンテナシートASの進行速度と連動するように循環移動させ、アンテナANを押圧しながら内蔵する光源により紫外線を照射してもよい。
 同様に、一実施形態では、導電ペーストを熱硬化させる場合、複数の熱硬化ユニット46をアンテナシートASの進行速度と連動するように循環移動させ、アンテナANを押圧しながら加熱するように構成してもよい。
In FIG. 20, when the conductive paste is cured by ultraviolet rays, a pressing unit that presses the antenna AN through a glass plate is used instead of the ultraviolet curing unit 43 having a built-in light source, and the antenna is pressed in a stopped state. An ultraviolet irradiation device that irradiates the conductive paste on the AN with ultraviolet rays from the outside in the width direction or diagonally above may be provided.
In one embodiment, a plurality of ultraviolet curing units 43 are circulated and moved so as to be interlocked with the traveling speed of the antenna sheet AS so that the antenna sheet AS is not stopped when irradiated with ultraviolet rays, and the antenna AN is moved. Ultraviolet rays may be irradiated by the built-in light source while pressing.
Similarly, in one embodiment, when the conductive paste is heat-cured, a plurality of thermosetting units 46 are circulated and moved so as to be interlocked with the traveling speed of the antenna sheet AS, and the antenna AN is heated while being pressed. You may.

Claims (12)

  1.  基材上にインレイ用の複数のアンテナが連続的に形成されているアンテナ連続体の各アンテナの基準位置に向けて、接着剤を吐出する吐出部と、
     複数のノズルであって、各ノズルは第1位置と第2位置の間を移動可能であり、前記第1位置にあるときにICチップを吸着するとともに、前記第2位置にあるときに前記ICチップを前記アンテナ連続体の対応するアンテナの基準位置にある前記接着剤上に配置するように構成されている、前記複数のノズルと、
     前記複数のノズルが取り付けられているノズル取付部と、
     前記搬送面に直交する平面上で前記複数のノズルが環状軌道を動き、かつ各ノズルが前記第2位置にあるときの各ノズルの移動方向が前記アンテナ連続体の搬送方向と一致するように、前記ノズル取付部を回転させる回転部と、
     各ノズルが前記第1位置から前記第2位置に移動する間に、各ノズルにICチップが吸着されているか否か判定する判定部と、
     前記判定部によってICチップが吸着されていないと判定されたノズルである非吸着ノズルに対応するアンテナに対して、前記非吸着ノズルよりも後に前記第2位置に到達するノズルがICチップを配置するように、前記ノズル取付部を回転させるときの角速度を制御する制御部と、
     を備えた、ICチップ搭載装置。
    An ejection part that ejects adhesive toward the reference position of each antenna of the antenna continuum in which a plurality of antennas for inlays are continuously formed on the base material.
    There are a plurality of nozzles, and each nozzle can move between the first position and the second position. When the nozzle is in the first position, the IC chip is attracted, and when the nozzle is in the second position, the IC is sucked. With the plurality of nozzles configured to place the chip on the adhesive at the reference position of the corresponding antenna of the antenna continuum.
    A nozzle mounting portion to which the plurality of nozzles are mounted and
    The moving direction of each nozzle when the plurality of nozzles move in an annular trajectory on a plane orthogonal to the transport surface and each nozzle is in the second position coincides with the transport direction of the antenna continuum. A rotating part that rotates the nozzle mounting part and
    A determination unit for determining whether or not an IC chip is adsorbed on each nozzle while each nozzle moves from the first position to the second position.
    The IC chip is arranged by the nozzle that reaches the second position after the non-adsorption nozzle with respect to the antenna corresponding to the non-adsorption nozzle that is the nozzle determined by the determination unit that the IC chip is not adsorbed. As described above, the control unit that controls the angular velocity when rotating the nozzle mounting unit, and
    IC chip mounting device equipped with.
  2.  前記制御部は、前記判定部によってICチップが吸着されていると判定されたノズルであって、前記非吸着ノズルよりも後に最初に前記第2位置に到達したノズルがICチップを配置するように、前記角速度を制御する、
     請求項1に記載されたICチップ搭載装置。
    The control unit is a nozzle determined by the determination unit to have the IC chip adsorbed, and the nozzle that first reaches the second position after the non-adsorption nozzle arranges the IC chip. , Control the angular velocity,
    The IC chip mounting device according to claim 1.
  3.  前記ノズルが前記第1位置から前記第2位置の間の所定の位置にあるときの前記ノズルの画像を取得する画像取得部を備え、
     前記判定部は、前記画像取得部によって取得された画像に基づいて、前記ノズルにICチップが吸着されているか否か判定する、
     請求項1又は2に記載されたICチップ搭載装置。
    An image acquisition unit for acquiring an image of the nozzle when the nozzle is in a predetermined position between the first position and the second position is provided.
    The determination unit determines whether or not the IC chip is attracted to the nozzle based on the image acquired by the image acquisition unit.
    The IC chip mounting device according to claim 1 or 2.
  4.  前記ノズルに接続され、前記ノズルにより吸引する吸引動作、又は、前記ノズルから空気を排出する排出動作のいずれかを行うように構成された制御弁を有し、
     前記制御部は、前記非吸着ノズルが吸引動作を行わないように前記制御弁を制御する、
     請求項1から3のいずれか一項に記載されたICチップ搭載装置。
    It has a control valve connected to the nozzle and configured to perform either a suction operation of suction by the nozzle or a discharge operation of discharging air from the nozzle.
    The control unit controls the control valve so that the non-suction nozzle does not perform a suction operation.
    The IC chip mounting device according to any one of claims 1 to 3.
  5.  前記ノズルに接続され、前記ノズルにより吸引する吸引動作、又は、前記ノズルから空気を排出する排出動作のいずれかを行うように構成された制御弁を有し、
     前記制御部は、前記非吸着ノズルが前記第2位置では排出動作を行わないように前記制御弁を制御する、
     請求項1から4のいずれか一項に記載されたICチップ搭載装置。
    It has a control valve connected to the nozzle and configured to perform either a suction operation of suction by the nozzle or a discharge operation of discharging air from the nozzle.
    The control unit controls the control valve so that the non-suction nozzle does not perform a discharge operation at the second position.
    The IC chip mounting device according to any one of claims 1 to 4.
  6.  前記画像取得部によって取得された画像に基づき、前記ノズルに吸着されたICチップの補正量として、前記ノズルの軸回りの角度の補正量である第1補正量と、前記アンテナ連続体の搬送方向の位置の補正量である第2補正量と、前記アンテナ連続体の幅方向の位置の補正量である第3補正量と、を決定する補正量決定部を備えた、
     請求項3に記載されたICチップ搭載装置。
    Based on the image acquired by the image acquisition unit, the correction amount of the IC chip adsorbed on the nozzle is the first correction amount which is the correction amount of the angle around the axis of the nozzle and the transport direction of the antenna continuum. A correction amount determining unit for determining a second correction amount, which is a correction amount for the position of, and a third correction amount, which is a correction amount for the position in the width direction of the antenna continuum.
    The IC chip mounting device according to claim 3.
  7.  ディスペンサによって、基材上にインレイ用の複数のアンテナが連続的に形成されているアンテナ連続体の各アンテナの所定の基準位置に向けて、接着剤を吐出し、
     第1位置と第2位置の間を移動可能な複数のノズルの各ノズルが前記第1位置にあるときに、順に各ノズルによってICチップを吸着し、
     前記搬送面に直交する平面上で前記複数のノズルが環状軌道を動き、かつ各ノズルが前記第2位置にあるときの各ノズルの移動方向が前記アンテナ連続体の搬送方向と一致するように、前記複数のノズルが取り付けられているノズル取付部を回転させ、
     各ノズルが前記第1位置から前記第2位置に移動する間に、各ノズルにICチップが吸着されているか否か判定し、
     ICチップが吸着されていると判定された各ノズルに対して、各ノズルが前記第2位置にあるときに、順に各ノズルによって、ICチップを前記アンテナ連続体の対応するアンテナの前記基準位置にある前記接着剤上に配置し、
     ICチップが吸着されていないと判定されたノズルである非吸着ノズルに対応するアンテナに対して、前記複数のノズルのうち前記非吸着ノズルよりも後に前記第2位置に到達するノズルがICチップを配置するように、前記ノズル取付部を回転させるときの角速度を制御する、
     ICチップ搭載方法。
    The dispenser ejects the adhesive toward a predetermined reference position of each antenna of the antenna continuum in which a plurality of antennas for inlays are continuously formed on the base material.
    When each nozzle of the plurality of nozzles that can move between the first position and the second position is in the first position, the IC chip is sucked by each nozzle in order.
    The moving direction of each nozzle when the plurality of nozzles move in an annular trajectory on a plane orthogonal to the transport surface and each nozzle is in the second position coincides with the transport direction of the antenna continuum. Rotate the nozzle mounting part to which the plurality of nozzles are mounted,
    While each nozzle moves from the first position to the second position, it is determined whether or not the IC chip is adsorbed on each nozzle.
    For each nozzle determined to have the IC chip adsorbed, when each nozzle is in the second position, each nozzle in turn places the IC chip at the reference position of the corresponding antenna of the antenna continuum. Placed on one of the adhesives
    With respect to the antenna corresponding to the non-adsorption nozzle, which is the nozzle determined that the IC chip is not adsorbed, the nozzle that reaches the second position after the non-adsorption nozzle among the plurality of nozzles holds the IC chip. Control the angular velocity when rotating the nozzle mounting portion so that it is arranged.
    IC chip mounting method.
  8.  ICチップが吸着されていると判定されたノズルであって、前記非吸着ノズルよりも後に最初に前記第2位置に到達したノズルがICチップを配置するように、前記角速度を制御する、
     請求項7に記載されたICチップ搭載方法。
    The angular velocity is controlled so that the nozzle determined to have the IC chip adsorbed and the nozzle that first reaches the second position after the non-adsorption nozzle arranges the IC chip.
    The IC chip mounting method according to claim 7.
  9.  前記ノズルが前記第1位置から前記第2位置の間の所定の位置にあるときの前記ノズルの画像を取得し、
     取得した前記画像に基づいて、前記ノズルにICチップが吸着されているか否か判定する、
     請求項7又は8に記載されたICチップ搭載方法。
    An image of the nozzle when the nozzle is in a predetermined position between the first position and the second position is acquired.
    Based on the acquired image, it is determined whether or not the IC chip is adsorbed on the nozzle.
    The IC chip mounting method according to claim 7 or 8.
  10.  前記ノズルに接続され、前記ノズルにより吸引する吸引動作、又は、前記ノズルから空気を排出する排出動作のいずれかを行うように構成された制御弁を制御することで、前記非吸着ノズルが吸引動作を行わないようにする、
     請求項7から9のいずれか一項に記載されたICチップ搭載方法。
    By controlling a control valve connected to the nozzle and configured to perform either a suction operation of suction by the nozzle or a discharge operation of discharging air from the nozzle, the non-adsorption nozzle sucks. Do not do,
    The IC chip mounting method according to any one of claims 7 to 9.
  11.  前記ノズルに接続され、前記ノズルにより吸引する吸引動作、又は、前記ノズルから空気を排出する排出動作のいずれかを行うように構成された制御弁を制御することで、前記非吸着ノズルが前記第2位置では排出動作を行わないようにする、
     請求項7から10のいずれか一項に記載されたICチップ搭載方法。
    By controlling a control valve connected to the nozzle and configured to perform either a suction operation of suction by the nozzle or a discharge operation of discharging air from the nozzle, the non-adsorption nozzle becomes the first. Do not discharge at 2 positions,
    The IC chip mounting method according to any one of claims 7 to 10.
  12.  取得した前記画像に基づき、前記ノズルに吸着されたICチップの補正量として、前記ノズルの軸回りの角度の補正量である第1補正量と、前記アンテナ連続体の搬送方向の位置の補正量である第2補正量と、前記アンテナ連続体の幅方向の位置の補正量である第3補正量と、を決定する、
     請求項9に記載されたICチップ搭載方法。
    Based on the acquired image, as the correction amount of the IC chip adsorbed on the nozzle, the first correction amount which is the correction amount of the angle around the axis of the nozzle and the correction amount of the position of the antenna continuum in the transport direction. The second correction amount, which is, and the third correction amount, which is the correction amount of the position of the antenna continuum in the width direction, are determined.
    The IC chip mounting method according to claim 9.
PCT/JP2020/048889 2019-12-26 2020-12-25 Ic chip-mounting device and ic chip-mounting method WO2021132623A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080084962.3A CN114787976A (en) 2019-12-26 2020-12-25 IC chip mounting device and IC chip mounting method
US17/783,837 US20230021265A1 (en) 2019-12-26 2020-12-25 Ic chip-mounting device and ic chip-mounting method
EP20905605.0A EP4083861A4 (en) 2019-12-26 2020-12-25 Ic chip-mounting device and ic chip-mounting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-235420 2019-12-26
JP2019235420 2019-12-26
JP2020216460A JP2021106268A (en) 2019-12-26 2020-12-25 Ic chip-mounting device and ic chip-mounting method
JP2020-216460 2020-12-25

Publications (1)

Publication Number Publication Date
WO2021132623A1 true WO2021132623A1 (en) 2021-07-01

Family

ID=76574388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048889 WO2021132623A1 (en) 2019-12-26 2020-12-25 Ic chip-mounting device and ic chip-mounting method

Country Status (2)

Country Link
US (1) US20230021265A1 (en)
WO (1) WO2021132623A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339502A (en) * 2004-04-27 2005-12-08 Dainippon Printing Co Ltd Method for manufacturing sheet with ic tag, apparatus for manufacturing sheet with ic tag, sheet with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag
JP2008077599A (en) * 2006-09-25 2008-04-03 Dainippon Printing Co Ltd Method of manufacturing non-contact communication member and apparatus for manufacturing non-contact communication member, and method of manufacturing interposer and apparatus for manufacturing interposer
JP2008123406A (en) 2006-11-15 2008-05-29 Shinko Electric Co Ltd Manufacturing device for ic chip mounting body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339502A (en) * 2004-04-27 2005-12-08 Dainippon Printing Co Ltd Method for manufacturing sheet with ic tag, apparatus for manufacturing sheet with ic tag, sheet with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag
JP2008077599A (en) * 2006-09-25 2008-04-03 Dainippon Printing Co Ltd Method of manufacturing non-contact communication member and apparatus for manufacturing non-contact communication member, and method of manufacturing interposer and apparatus for manufacturing interposer
JP2008123406A (en) 2006-11-15 2008-05-29 Shinko Electric Co Ltd Manufacturing device for ic chip mounting body

Also Published As

Publication number Publication date
US20230021265A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP6977020B2 (en) Transfer method for semiconductor devices
JP2021106263A (en) Ic chip-mounting device and ic chip-mounting method
JP7086070B2 (en) Pattern array direct transfer device and method for it
JP2021523573A (en) Methods and Devices for Multiple Direct Transfers of Semiconductor Devices
JP2020516051A (en) Apparatus and method for stacking semiconductor devices
JPH07101428A (en) Labeling device and label base board used for the device
WO2014087489A1 (en) Die bonder device
WO2021132622A1 (en) Ic chip mounting device and ic chip mounting method
WO2021132613A1 (en) Ic chip mounting device, and ic chip mounting method
WO2021132623A1 (en) Ic chip-mounting device and ic chip-mounting method
JP2001055212A (en) Label sticking apparatus
WO2021132611A1 (en) Ic chip-mounting device and ic chip-mounting method
WO2021132621A1 (en) Ic chip mounting device and ic chip mounting method
EP4084048A1 (en) Ic chip mounting device, and ic chip mounting method
JP2021106267A (en) Ic chip mounting device and ic chip mounting method
JP2021106268A (en) Ic chip-mounting device and ic chip-mounting method
JP2021106266A (en) Ic chip mounting device and ic chip mounting method
WO2021132614A1 (en) Ic chip mounting device and ic chip mounting method
JP2021106265A (en) Ic chip mounting device and ic chip mounting method
WO2023188538A1 (en) Ic chip mounting device and ic chip mounting method
JP2003258500A (en) Method and apparatus of confirming part installation
JPH10229276A (en) Bond coater
JP3013213B2 (en) Apparatus and method for marking electronic components
JP2002019751A (en) Label affixing apparatus
JP2001335014A (en) Labeling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905605

Country of ref document: EP

Effective date: 20220726